Coulomb Scattering of a Spherical Wave
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Coulomb Scattering of a Spherical Wave

Koichi NAKAMURA

In our paper[1] on the point source electron microscope, we solved the scat-
tering problem with a spherical incident wave td simulate the holographic im-
age. There the scattering potential has been assumed to be a short range one,
so that we can not apply the resuit we obtained to the case that an object con-
tains ions, because of the slow decrease of the Coulomb potential. To treat such
an object, we need to extend our argument to one with long range potentials. In
this note, we will discuss the simplest case where the object consists of only
one ion. |

Our problem is to find a solution of the Schrodinger equation with the

Coulomb potential,
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where ¢ (#) contains only outgoing wave component. Here we take the origin
at the center of the potential and R is the position vector of the source of the in-
cident spherical wave.

We expand y (7) into partial waves,
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then the spherical function %, (r) satisfies the equation
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We also have the expansion
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with #_=min(7, R), 7+ =max(#, R). Here j; and h{" are the spherical Bessel
_function and the spherical Hankel function respectively and © and & denote
the polar and azimuth angles of the vector R respectively.

We note that #fy () given by (6) satisfies
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Now we consider the Green’s function Gf " (7, ') of eq.(4) with outgoing

wave boundary condition which is described as satisfying the equation
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This Green’s function is found to be (cf. eq.(14.50) in Newton’s book[2])
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where r<=min(7, 7), r>=max(r, 7). ®(a, b; x) is the confluent
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hypergeometric function,
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and ¥(a, b; x) is the irregular cofluent hypergeometric function defined by
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By using the above Green’s function, the solution of eq.(4), um (7)), is writ-
ten as |
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We can see that the above u,,,, (7) satisfiés eq.(4) by making use of eqs.(7) and
(8).

Substituting (12) into eq.(3), we obtain the solution of eq.(1), w (7). Eq.(5)
shows that the first term of (12) leads to the first term of (2) and hence the

scattered wave function ¢ (#) is written as
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The integral with respect to 7' is devided into three parts:
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By the definitions bf r—, r+, r< and 7~, the third part takes the form as
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Since the configuration which we are interested in is 1<kR< k7, we can use the

asymptotic form of ¥ and hf? for large %7 in the integrand:

_ 1
Y’(l{r1+z'n, 21+2; —2ikr') ~ Ty (16)
. e'.k.f' . : '
h;m (k?") ~ (—i) 1 "’? . (17)

Then the integral in (15) reads
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‘Therefore we can neglect the third term of (14).

Simlarly the second part of (14) is written as
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Here we can also use the asymptotic form of @ and 4{ in the integrand, that is,
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and eq.(14) for hf" . Then the integral in (19) becomes
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The contribution of the second term is O(1/ kR) as (18), so that we can
neglect this. And the first term yields
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Therefore, for the second part of (14), we have
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here we make use of the asymptotic form (16).

For the first part of (14), we have
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To get the last expression, we use the asymptotic form of ¥ and #{V, (16) and
(7).
Adding (23) to (24), we have the integral (14) and hence the expression for

the scattered wave function ¢ (¥):
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Here I;(R) is given by
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where we use the Newton’s notation (eq. (14 46) in Newton's book{2]),
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. To obtain the first térm of (25), the following expansion is made use of,
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In the previous paper [ 1], we wrote the wave equation by taking the origin at
the source of the incident spherical wave. Therefore, in order to compare the
wave function which we obtained in this note with the corresponding one in the
paper 1], we rewrite eq.(25) in termsl of the veétdfs E= 7— R and B= —Rto

yield
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where we assume p/¢é<1 (note that E is the vector from the source of the inci-
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dent wave to the observation point and p is one from the source to the position
of the ion).

The complete wave function including the incident wave reads
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where [; (K) is given by
[(R) =e~"los #O[(R). (31)
with I; (R) defined by eq. (26). Here we put the notations & and p back to #and
R respectively.
In the case of the short range potential, the wave function corresponding to

eq.(30) is expressed as (cf. eq.(21) in [1])
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where 1;=k—1¢" sin §; with J;, the phase shift of /-th partial wave.

In conclusion, comparing (30) with (32), we find that the long range proper-
ty of the Coulomb potential gives the extra phase factor g—in{log(2) —log 2 R} and
that the partial wave scattering amplitude 7; is given by L (R) in (31).
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