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Abstract

This paper presents a method for designing solid shapes containing
slopes where orientation appears opposite to the actual orientation when
observed from a unique vantage viewpoint. The resulting solids generate
a new type of visual illusion, which we call “impossible motion”, in which
balls placed on the slopes appear to roll uphill thereby defying the law
of gravity. This is possible because a single retinal image lacks depth in-
formation and human visual perception tries to interpret images as the
most familiar shape even though there are infinitely many possible inter-
pretations. We specify the set of all possible solids represented by a single
picture as the solution set of a system of equations and inequalities, and
then relax the constraints in such a way that the antigravity slopes can
be reconstructed. We present this design procedure with examples.

Keywords: Visual illusion, antigravity slope, picture interpretation, im-
possible motion

1 Introduction

This paper presents a computational approach to design a new visual illusion.
Visual illusion is a perceptual behavior where what we “see” differs from the
physical reality. This phenomenon is important in vision science because it helps
us to understand the nature of human perception [7,8]. Numerous traditional
visual illusions are known, most of which are generated by two-dimensional
pictures and their motions [5,15].

However, very few visual illusions are known that make use of three-dimensional

solid shapes. An early example was the Ames room, where a person looks taller
when he moves from one corner of the room to another [3]. Other examples
include impossible solids produced by a hidden-gap trick [1], and those without
hidden gaps [13]. The latter class was extended to include a new type of illusion
called “impossible motion” [14].

The design of illusions using solids requires mathematics, because this pro-
cess can be counterintuitive.

*This manuscript was published in Computational Geometry: Theory and Applications,
vol. 47 (2014), pp. 675-682.



This paper concentrates on one class of such solids called “antigravity slopes”,
in which balls appear to roll uphill against the law of gravity and produce ap-
pearances of an “impossible motion”.

In Section 2, we briefly review picture interpretation theory, which specifies
the set of all possible solids represented by a picture, and in Section 3 we show
that antigravity slopes cannot be constructed using that formulation. In Section
4, we remove some of the constraints by changing structures in the hidden part
so that design of antigravity slopes becomes possible. We show some examples
in Section 5, and provide concluding remarks in Section 6.

2 Reconstruction of a Solid from a Picture

Our goal is to construct solids that generate a visual illusion. As a tool to
achieve this goal, let us review picture interpretation theory, by which we can
specify all solids represented by a given picture.

For two points p and ¢, let pg denote the closed line segment connecting
p and q. Let (p1,pa,...,pn) be a sequence of mutually distinct points in two-
dimensional space. We assume that the line segments p1pz, P2p3, - - -, Prn—1Pn and
Prnp1 do not intersect except at their terminal points. Then, the region bounded
by the cyclic sequence of these line segments is called a polygon (not necessarily
convex). The points pi,pa,...,p, are called vertices and the line segments
P1P2,P2D3, - - - Pn_1Pn and p,p1; are called edges of the polygon. Intuitively
a polygon is a piece of hard thin flat plate whose boundary is composed of
line segments. We place a finite number of polygons in three space, and thus
construct a solid object. Formally we define a solid object as a collection of a
finite number of polygons placed in three space. A solid object is also called a
solid for short. The polygons that constitute a solid are called faces.

For example, the solid P in Fig. 1 is a hexahedron. This object can be
considered a solid composed of the six boundary faces; we do not care whether
the inside is occupied with material or empty.

Our goal is to construct an antigravity slope, which is a solid object typically
composed of a base plate, slopes, and supporting columns. A slope is composed
of a slide and two side walls; they can all be considered as polygons. A support
column is a polyhedron, but we consider it as a collection of surface polygons.
As shown in Fig. 1, let P be a solid object fixed to three space with the (z,y, 2)
Cartesian coordinate system, and D be its projection on the plane z = 1 with
respect to the center of projection at the origin O. This means that we see the
object from the viewpoint at the origin, and get its image on the plane z = 1.
We assume that all the edges of P are drawn in D, and hence D is called the
line drawing of P. Let f be a face of a solid. We denote by [f] the image of f
projected on the plane z = 1. Similarly for a vertex v of a solid, we denote by
[v] the image of v on the plane z = 1.

If P is given, D is uniquely determined. On the other hand, if D is given, an
associated P is not unique in general. If D represents a solid object correctly,
there are infinitely many solids that generate D. If D is incorrect in the sense




Figure 1: Solid and its central projection.

that it does not represent a solid object, there is no corresponding P. So we
consider how to specify the set of all solid objects that can generate D.

Suppose that we are provided D and the relative relations among the ver-
tices and the faces of the solid object. Let V = {v1,vs,...,v,} and F =
{f1, f2s---, fm} be the set of vertices and of faces, respectively, of a solid in
three space. Let ON(v;, f;) represent the predicate stating that the vertex v;
is on the face f;. Similarly let NEARER(v;, f;) represent “v; is nearer than
the plane containing f;”, and FARTHER(v;, f;) represent “v; is farther than
the plane containing f;”, where “near” and “far” are meant according to the
distance from the viewpoint at the origin to each part of the object.

For example, consider the line drawing in Fig. 2. Let us concentrate on the
three vertices v;,vj;, v, and face f, in this figure. Since vertex v; is on face fy,
we get

ON(vs, fe).

The edge labeled + in Fig. 2 represents a ridge of a mountain, and hence, if we
extend the plane fy, it passes between the viewpoint and the vertex v;. Hence
we get

FARTHER(v;, f¢).

The edge labeled —, on the other hand, forms the bottom of a valley, and hence
the face f; when extended goes beyond v;. Hence we get

NEARER (v, fo)-

We assume that, in addition to the line drawing, we are provided all those
predicates satisfied by the solid and we are interested in judging the recon-
structability of a solid from the line drawing.

For the i-th vertex v; of the solid, let (z;,y;, 1) be the coordinates of the image
[v;] of v;. Because the original vertex v; should be on the ray emanating from the
origin and passing through the image [v;], we can express the coordinates of the
original vertex in space as (z;/t;,y;/ti,1/t;), where t; is an unknown parameter
representing the inverse of the depth of the vertex from the viewpoint measured
along the z axis.

Let

a;z +bjy+ciz+1=0 (1)



v, [v,]

O

Figure 2: ON, NEARER and FARTHER predicates between faces and vertices.

be the plane containing the j-th face f;, where a;,b; and c¢; are all unknown.
Suppose that ON(v;, f;) is true. Then, we can substitute the coordinates of
v; into the equation of f;, and thus we get

ajz; +bjy; +c¢;+1; =0, (2)

which is linear in the unknowns ¢;, a;, b; and ¢;. Similarly, if NEARER(v;, f;)
is true, we get
a;x; + bjyi +cj+ t; <0, (3)

and if FARTHER(v;, f;) is true, we get
a;z; +bjy; +c; +1t; > 0. (4)

We collect all equations of the form (2), one for each ON predicate, and
denote the resulting system of equations as

Aw =0, (5)

where w = (t1,...,tn,a1,b1,C1, .., Am,bm,cm)? is the vector of unknown vari-
ables (t represents the transpose) and A is a constant matrix. Similarly, we
collect all inequalities of the form (3) and (4), and denote the resulting system
of inequalities as

Bw > 0, (6)

where B is a constant matrix, and the inequality symbol “>” represents com-
ponentwise inequality.

We can prove that the picture represents a three-dimensional solid if and
only if the system consisting of (5) and (6) has a solution [10,12].

When we, human beings, see a line drawing of an ordinary solid, such as the
one in Fig. 2, we are apt to interpret it as a unique solid up to scaling. However,
there is usually freedom in interpretations, because any solution of the system
of (5) and (6) corresponds to a solid represented by the line drawing. This gap



between human perception and the solutions of (5) and (6) can be utilized to
mislead human perception.

For example, the picture in Fig. 3 belongs to a class called pictures of im-
possible objects, because the solid structure we perceive most naturally from
the picture seems unrealizable. This picture, in particular, is called an “endless
loop of stairs”, which was presented by Penrose and Penrose [6] and is famous
because it was used by Dutch artist M. C. Escher in his artwork “Ascending
and Decending” (1960).

Figure 3: Picture of an impossible object “Endless loop of stairs”.

Although it is called an impossible object, it is not impossible. We can
construct a solid structure as shown in Fig. 4, where (a) shows the solid seen
from the same viewpoint as the line drawing, and (b) shows the same solid seen
from another angle.

(a) (b)

Figure 4: Three-dimensional realization of the impossible object in Fig. 3.

This solid was found in the following manner. We first list all faces and
vertices drawn in Fig. 3, next gave ON, NEARER and FARTHER predicates,
and finally constructed the associated system of (5) and (6). This system admits



many solutions, and hence we can choose any one of them, obtaining a solid such
as the one shown in Fig. 4.

This way, the system of (5) and (6) helps us to construct actual solids that
look impossible. Many other examples of such “impossible objects” can be found
in [13].

Remark 1.

It has been known that the endless loop of stairs can be constructed if we use
discontinuous structure, which looks connected when we see it from a special
vantage viewpoint. An example of such a structure can be seen in the movie
“Inception” (2010) [16,17].

Note that, on the other hand, the discontinuity trick is not used in the object
in Fig. 4. Because we place ON predicates for all pairs of vertices and faces that
look incident to each other, the resulting solid is continuous. In this sense, the
solid in Fig. 4 is different from a well known realization.

Remark 2.

The system of (5) and (6) is sometimes unrobust for judging the realizability
of a solid object from a line drawing, because numerical errors in vertex locations
in the picture plane, even if they are very small, may generate inconsistency in
(5) and (6). This situation can be understood if we consider a hexahedron. Let
P be a hexahedron and D be its image. Since P has eight vertices and six faces,
there are 8 + 3 x 6 = 26 unknown variables t1,ts,...,ts,a1,b1,c1,...,aq,bg, Cg.
On the other hand, since each of the six faces has four vertices, the system (5)
has 6 x 4 = 24 equations. Thus, the system (5) consists of 24 equations with
respect to 26 unknown variables. This means that the system (5) is redundant,
because the difference between the number of variables and that of equations is
2, although there should be at least 4 degrees of freedom (i.e., three degrees of
freedom in the choice of one face and one more degree in the choice of the thick-
ness of the hexahedron) in the system (5) if the picture D correctly represents
a hexahedron. This property in turn implies that if the vertex locations in the
picture plane contain errors, the rank of the matirix A changes and the system
becomes unsatisfiable even though the picture looks correct to human eyes.

This unrobustness can be overcome by removing redundant equations from
the system (5); this can be done efficiently by employing network flow algo-
rithms. Refer to [4,11] for details.

3 Impossibility of Antigravity Slopes

The system of (5) and (6) is a powerful tool for realizing three-dimensional solids
from impossible pictures, but is not all-powerful. Indeed for many impossible
pictures, the system of (5) and (6) does not admit solutions at all, and hence
we cannot realize three-dimensional structures.

As a typical class of such impossible structures, we concentrate on antigravity
slopes. Let us consider the picture of a simple solid in Fig. 5, in which a slope is
supported by two columns standing on a base plate. The broken lines represent



the hidden parts. However, to avoid unnecessary complexity, some hidden parts
are omitted.

Figure 5: Slope supported by two columns.

The solid object shown in Fig. 5 is the most fundamental structure of the
antigravity slope. Actually we can use this structure as a gadget to construct
more complicated antigravity slopes by combining two or more copies of this
gadget. So we concentrate on this structure and see how we can convert a
normal slope into an antigravity slope.

Let f; denote the top face of the base plate, and f; denote the slope plane.
Assume that, for each of the two columns, all four lower vertices are on f; and
are farther than f5, while all four upper vertices are on f; and are nearer than
fi. We also assume that f; is horizontal. Then, we usually expect that the
slope fs tilts to the left, that is, the right end of f5 is higher than the left end.
Indeed, the system of equations (5) and inequalities (6) accepts such a slope as
its solution.

Now we ask whether the set of solutions contains a slope that tilts to the
right? The answer is “no”. In every solid whose projection matches that of the
picture shown in Fig. 5, the slope f; tilts to the left. This can be understood
in the following way. As shown in Fig. 5, let f3 and f; be the right front faces
of the left and right columns, e; and e; be the lower edges of f3 and f4, and ej3
and e4 be the upper edges of f3 and f4, respectively. Because the edge images
[e1] and [es] are collinear in the picture plane, and the corresponding original
edges e; and ey are on f1, e; and ez must also be collinear in three space. Let
I; be a line in space containing e; and ep. Similarly, because [es] and [e4] are
collinear in the picture plane and the corresponding spatial edges e3 and e4 are
on fo, they are collinear in three space. Let [ be the line containing e3 and
e4. Note that e; and e3 are coplanar because they are on fs3; thus [y and I are
coplanar, which implies that f3 and f4 are coplanar. Because /; and [ meet to
the left of the solid, the slope f; tilts to the left.

This property holds for any solution of the system of (5) and (6) associated



with the picture shown in Fig. 5. Therefore, it is impossible to construct a
slope that tilts to the right from the picture shown in Fig. 5. Therefore, in
order to realize three-dimensional structures that mislead human perception,
we need some additional technique for this class of “impossible structures”. We
will develop it in the next section.

4 Construction of an Antigravity Slope

Our goal is to construct a slope that tilts to the right, but such a slope is not
contained in the solutions of (5) and (6). Thus we want to construct a solid
such that the visible part is exactly the same as that of Fig. 5, all the incidence
relations between the vertices and the faces are also the same, but the slope
tilts to the right. To achieve this, we can modify the picture around the upper
parts of the two columns because they are hidden by the slope. The vertices at
the top of the columns can be moved slightly along the associated vertical edges
of the columns. Here “slightly” means that the movements of the vertices are
restricted to the area covered by [f2] in the picture plane.

For this purpose we first show one natural formulation. However, this leads
to a nonlinear system which is not easy to solve. Therefore, we next switch the
formulation to another, which is rough but remains linear, and hence can be
used to achieve our goal.

As shown in Fig. 6, let e;,7 = 5,6,...,12, be the eight vertical edges of
the left and right columns, and let v; be the top vertices incident to e;. Let
(v, B, 0) be the unit vector parallel to the image [e;] in the picture plane. Note
that a; = 0 does not necessarily hold; the images of the column edges are
not necessarily vertical in a strict sense, because the picture is the perspective
projection of a solid. We replace the coordinates (z;,y;,1) of the vertex [v;]
with

(zi + sy, y; + 8:8i, 1), i=5,6,...,12 (7)

where s; is a new unknown parameter. This change of the coordinates of ver-
tex [v;] implies that we move the vertex along the line containing the edge e;.
Because v; is hidden by the face fs, slight movement of v; does not change the
visible part of the edge e;. Then, instead of the equation (2), the predicate
ON(v;, f;) is represented by

ai(z; + si05) + bi(ys + sifi) +¢i +t; = 0. (8)

The inequalities of the form (3) and (4) are also changed by replacing x; and
y; with x; + s;«; and y; + s;5;, respectively. Let us change the equations and
inequalities associated with all the upper vertices of the columns, and denote
the resulting equations and inequalities by

(s)w =0, (9)
w > 0, (10)



where s = (s5,6,...,512) is the vector of u1_1kn0wn parameters introduced
by the movement of the hidden vertices, and A(s) and B(s) are the resulting
coefficient matrices corresponding to the equations (5) and the inequalities (6).

Figure 6: Upper part of the fundamental slope.

The new system of equations (9) and inequalities (10) allows a solution
corresponding to a slope tilting to the right, that is, an antigravity slope.

However, (9) and (10) are nonlinear because the matrices A(s) and B(s)
contain unknown variables. Hence, unlike for the system of (5) and (6), it is not
straightforward to specify the set of all solutions. To circumvent this difficulty,
we change our strategy. In what follows instead of introducing new variables
S5, 86, - - -, S12, we temporally ignore some of the ON predicates and thus increase
the degree of freedom of the equations. Note that we have

ON(v;, f2), i=5,6,...,12 (11)

in the original solid structure. Among them we adopt two predicates
ON(vs, f2) and  ON(vg, f2) (12)
but delete the other six predicates
ON(v;, f2), ©=6,7,8,10,11,12, (13)

and reconstruct the linear equations (5) and the inequalities (6). Because we
remove the six constraints in (13), the two edges e5 and eg are not necessarily
parallel and hence the two columns can slant in different angles. Therefore it
is possible that the left column stands almost vertical while the right column
slants much so that the vertex vy is higher than the vertex vg in three space.
Thus, the system has a solution corresponding to slopes tilting to the right, and



so we choose one of them. In this solid, the six vertices wvg, v7, Vs, V10, V11, V12
are not necessarily on fy, because the associated equations were deleted. So
next we find the points of intersection between the slope and the edges e;,7 =
6,7,8,10,11,12. Let the points of intersection be v}, i = 6,7,8,10,11,12. We
move the vertices v; to the associated point of intersection v]. Thus we obtain a
solid in which all their original incidence predicates are satisfied. In this solid,
some of the vertices are moved from the original positions. However, if the
movement of the vertices is restricted in the slope polygon, they are all hidden.
Therefore, the visible part of the solid is the same as represented by the original
picture. This is our idea for constructing antigravity slopes.

Assume that all vertices at the top of the columns are strictly inside the
slope polygon in the picture plane. In other words, assume that none of [v;],
i =5,6,...,12 in Fig 6 are on the boundary of the image [f3]. Then, we can
always find a slope in which [v;], ¢ = 5,6,...,12 are all inside [f3]. This is
because if the slope polygon f, moves close to the top face fi of the base plate,
the images [v]] of the points of intersection converge to the original locations
[v;] for i =5,6,...,12.

This procedure can be summarized in the following algorithm.

Algorithm 1 (most fundamental antigravity slope)

Input: A picture D of a slope supported by two columns, called the longer
column and the shorter column standing vertically on a base plate.

Output: A solid whose visible part coincides with the visible part of D and
whose slope descends from the shorter column to the longer column.

Procedure:

1. Remove the ON predicates between the slope and three of the four vertices
on the top of each of the two columns.

2. Construct the system of equations (5) and inequalities (6) for the resulting
solid object.

3. Choose a solution of (5) and (6) that corresponds to a slope plane that tilts
from the shorter column to the longer column. (A practical procedure to
achieve this step will be described immediately after this algorithm.)

4. Recover the ON predicates removed in Step 1 by finding the points of inter-
section between the slope and the associated edges.

5. If the points of intersection found in Step 5 are inside the slope polygon,
report the resulting solid object as the output. Otherwise go to Step 3 and
choose another solution of (5) and (6) such that the slope is more gentle. OJ

Step 3 of Algorithm 1 can be achieved in the following way. Recall that the
solutions of the system of equations (5) have at least four degrees of freedom.
Indeed, we can choose the three-dimensional position of a plane containing an
arbitrarily chosen face and one more vertex outside this face to fix a solution (i.e.,
a solid). Therefore, Step 3 can be achieved first by specifying the orientation
of the slope fs by choosing the values of variables as,bs and ¢z, and next by
specifying some of other variables until a solution is fixed uniquely. Thus we
can choose the orientation of the slope as we want.
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5 Examples

We can use the fundamental solid constructed by Algorithm 1 as a gadget to
construct more complicated antigravity slopes. Figs. 7, 8 and 9 show examples
of antigravity slopes. In each of them, (a) shows a solid that looks the same as
represented by the original picture, and hence the orientation of the slopes are
perceived opposite to the actual orientation, (b) shows the same solid seen from
another angle.

Figure 7: “Antigravity Parallel Slopes”.

Figure 8: “Antigravity Cascade of Three Slopes”.

They generate impossible motions in the sense that when we place balls on
the slopes, they look like they are rolling uphill on the slope against the gravity
law.

The solid in Fig. 7 looks like two parallel slopes both tilting to the left, but
the fact is that the nearer slope actually tilts to the left as it appears to be,
while the farther slope tilts to the right against its appearance. Thus, this solid
is composed of one normal slope and one antigravity-slope gadget. So, if we put
a ball on the nearer slopes, it rolls downhill as expected, but if we put a ball
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Figure 9: “Magnet-Like Slopes”.

on the other slope, it rolls uphill against our expectation; thus an illusion of an
impossible motion is created.

The solid in Fig. 8 looks like three parallel slopes cascaded one after another;
all tilting to the left. However, if we put a ball on the leftmost slope, it rolls
uphill to the right end, jumps on the second slope, rolls uphill, jumps on the
rightmost slope, and finally rolls uphill, falling down at the right end of the
slope. As shown in fig. 8(b), this solid is composed of three antigravity-slope
gadgets.

The solid in Fig. 9 looks like four slopes tilting in four directions from the
highest center. However, if we put balls on any slopes, they look rolling uphill
toward the highest center; thus impossible motion is created. The fact is that
the center is the lowest and all four slopes tilts toward the center. This solid is
composed of four antigravity-slope gadgets connected at the central plate. The
antigravity motion illusion generated by this solid got the first prize in the Best
Illusion of the Year Contest 2010 held at Florida in May 2010. We can enjoy
this impossible motion on the web page [18].

6 Concluding Remarks

We have presented our basic idea for constructing antigravity slopes. When we
see those slopes from a special viewpoint, the orientations of the slopes look
opposite to the actual orientations, and hence they generate the visual illusion
of an impossible motion of rolling balls. This is a new computational approach
to visual illusion.

Remaining tasks for future work/research include the increase of variants of
antigravity slopes, the extension to other types of impossible motions, and the
extension to curved-face solids. We also want to study human visual perception
through visual illusion of impossible motions. They are future problems in basic
research.

As for applications of antigravity slopes, we want to develop methods for
decreasing the strength of the illusion. It is known that one of the reasons

12



of natural congestion of traffic flow in a highway is drivers’ misperception of
slope orientations [2]. If we understand the human illusion mechanism in slope
perception, we would suggest the shape of new highways in which the true
orientations of the slopes can be easily perceived. We would also suggest possible
ways of arranging the environment of existing highways so that the slope illusion
is not evoked.
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