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Thickness Design for Ambiguous Cylinder Illusion

Kokichi Sugihara∗

Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan

Abstract

This paper proposes methods for giving as uniform a thickness as
possible to a class of illusion solids called ambiguous cylinders. Ambiguous
cylinders are solids that have two quite different appearances when seen
from two specific viewpoints, and thus create the impression of impossible
objects. In order to realize them as physical objects, we have to give
them thickness. However, it is impossible to give a completely uniform
thickness despite this being desirable. Instead we have to content ourselves
with second-best methods. For this purpose, this paper proposes three
alternative strategies for creating objects as uniform as possible. Each
strategy has its own merits and demerits, and hence users can choose
their method according to their priorities for the visual effects which they
want to emphasize.

Keywords: Optical illusion, impossible object, anomalous cylinder, am-
biguous object, uniform thickness.

1 Introduction

Optical illusions are perceptual phenomena in which what we see differs from
reality. Historically, optical illusions were found using 2D pictures [6–8, 10, 11],
but recently many new illusions have been discovered or invented using 3D ob-
jects [3,13,14,17]. Optical illusions can be mysterious, surprising, inspiring, and
beautiful. Therefore, they are potential resources for new products in many in-
dustrial fields such as education, architecture, museum curation, entertainment,
art, advertising, and tourism.

The author recently found a method for designing cylindrical objects that
each have two desired appearances when seen from two specific viewpoints.
This class of objects creates an optical illusion when viewed directly and in
a mirror simultaneously. For example, a cylinder with a circular cross-section
changes to a cylinder with a rectangular cross-section, a full moon cross-section
to a star-shaped section, and a diamond-shaped cross-section to a heart-shaped
cross-section. These are called ambiguous cylinders because their appearances
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are ambiguous [15]. This concept was also extended to “partly invisible objects”
for which parts of the objects disappear in a mirror [16].

The ambiguous cylinder illusion can be considered as a variant of the well-
known illusion called trompe l’œil or anamorphosis, in which pictures painted
on planar surfaces or on the surfaces of 3D objects give meaningful appearances
only when they are seen from a unique special viewpoint [11, 17]. Ambiguous
cylinders, on the other hand, give meaningful appearances when seen from two
special viewpoints. In this sense, the ambiguous cylinder illusion might be
regarded as double trompe l’œil illusion.

However, the design method proposed in [15] only creates surfaces without
thickness. This is okay conceptually, but not satisfactory if we want to construct
physical models because thickness is necessary to make the objects rigid.

Ideally we want to make the cylinder surfaces such that they have uniform
thickness. That is, we want to construct a cylinder so that its thickness ap-
pears to be uniform from both of the viewpoints. However, this requirement is
not consistent with the nature of an ambiguous cylinder. There is a trade-off
between uniform thickness and the quality of the appearances: If we want to
achieve uniform thickness, we have to change the appearances of the cylinder
from the desired ones, and if we want to keep the desired appearances, we have
to give up having complete uniformness of thickness.

In this paper, we present several alternative methods for handling this in-
consistency. Which method to use depends on the pair of appearances of the
ambiguous cylinder and the preference of the designer. Hence, the contribution
of this paper is to offer a menu from which designers can select the method that
is most suitable for their aims and preferences.

We first review the method for constructing ambiguous cylinders without
thickness (section 2) before presenting the problem of thickness design (section
3). Then, we define some concepts and procedures as preparation (section 4),
propose three methods for handling the inconsistency (section 5), show addi-
tional examples (section 6), and give concluding remarks (section 7).

2 Review of Ambiguous Cylinders

An ambiguous cylinder is a cylindrical object that has two different appearances
when seen from two different specific viewpoints. It creates an optical illusion in
the sense that the two appearances are so different that it is almost unbelievable
that they could come from the same object. In particular, if the cylinder is
reflected in a mirror, the viewer has the impression that the object changes to
another object in the mirror instead of being a normal mirror image.

Fig. 1 shows an example of an ambiguous cylinder. In this figure, (a) shows
a scene with an object and a vertical mirror behind it. In the direct view of the
object, it appears to be a cylinder whose cross-section is a circle, in other words,
the outline of a full moon, while the mirror image appears to be a cylinder with
a star-shaped cross-section. Both the full moon shape and the star shape appear
to be planar curves obtained by cutting the cylinder with a horizontal plane,
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but actually the upper edge of the cylinder is a non-planar space curve. This is
the trick that makes the two appearances quite different.

(a) (b)

Figure 1: Ambiguous cylinder “Full Moon and Star”: (a) special view; (b)
general view.

The method for designing an ambiguous cylinder is based on two observa-
tions, one mathematical and the other psychological. Mathematically, a 2D
image of a 3D object lacks depth information and hence there are infinitely
many 3D objects whose projections coincide with a given 2D image [12]. This
property allows us to create an object that has two desired appearances when
seen from two specific viewpoints.

Psychologically, on the other hand, we usually perceive a specific 3D object
from a 2D picture although there are infinitely many possible interpretations. It
has been observed that the human vision system prefers rectangular structures,
and hence tries to interpret a picture as an object that has as many 90-degree
angles as possible [9]. Hence, we can cheat the vision system in such a way that
the edge curve of a cylinder appears as if it were a planar curve perpendicular
to the axis of the cylinder. Specifically, we can construct an ambiguous cylinder
in the following way [15].

Let (x, y, z) be the Cartesian coordinate system where the xy plane is hori-
zontal and the positive z axis directs upward. As shown in Fig. 2, let H be the
xy plane, and E1 and E2 be two viewpoints that are above H. We assume that
the line E1E2 is parallel to the y axis, where for any two points P and Q, the
line passing through P and Q is referred to as the line PQ.

Let A and B be two curves on H. We assume that A and B are x-monotone
and their start points share the same x coordinate and their end points also
share the same x coordinate. Therefore, these curves can be represented in
parametric forms with the common parameter x. Without loss of generality, we
denote the two curves as A(x) and B(x), 0 ≤ x ≤ 1. Our goal is to construct
a space curve, say C(x), that coincides with A(x) when it is seen from E1, and
coincides with B(x) when seen from E2.

For any fixed x, 0 ≤ x ≤ 1, the four points E1,E2, A(x), and B(x) are on a
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Figure 2: Space curve that has appearances of two desired planar curves.

common plane because the line E1E2 and the line A(x)B(x) are parallel. Hence,
the line E1A(x) and the line E2B(x) intersect. Let the point of intersection be
denoted by C(x). Note that the point C(x) coincides with A(x) when it is seen
from E1 and coincides with B(x) when seen from E2.

We call the obtained C(x) the ambiguous curve generated from A(x) and
B(x). Note that C(x) is defined unambiguously from A(x), B(x), E1, and E2.
The term “ambiguous” is used simply because the curve can generate an am-
biguous cylinder in the following way.

Note that the geometric fact that C(x) coincides with A(x) when seen from
the first viewpoint E1 does not necessarily mean that C(x) appears to be A(x).
This is because a 2D image does not have depth information and hence the image
of C(x) taken at E1 has infinitely many interpretations of the corresponding
space curve, including A(x) and C(x). In order to force the vision system to
choose A(x) as the perceived interpretation, we create a surface swept by a line
segment that is perpendicular to H in the following way.

Let ez be a unit vector in the z direction, and h be a positive real number.
We define surface S by

S = {C(x)− uez | 0 ≤ x ≤ 1, 0 ≤ u ≤ h}. (1)

Intuitively, S is obtained as the surface swept by a vertical line segment with
length h when it moves in such a way that the upper terminal point travels
along the curve C(x).

Note that the vertical length of this surface is equal to h no matter where
we measure it. Hence, if this surface is seen from E1, we can expect it to appear
to be a cylindrical surface and its upper edge to appear to be the planar curve
on a plane perpendicular to the axis of the cylinder i.e., the curve A(x) on H.
For the same reason, if this surface is seen from E2, we can expect the upper
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edge of the surface to appear to be the planar curve perpendicular to the axis,
i.e., the curve B(x).

A closed cylinder such as the one in Fig. 1 can be constructed by applying the
above method twice, once to the upper pair of monotone curves and once more to
the lower pair of monotone curves. More complicated shapes can also be handled
if the boundaries of the two shapes can be decomposed into a finite number of
pairs of monotone curves such that each pair spans the same x range; that is, the
left terminal points share the same x coordinate and the right terminal points
also share the same x coordinate.

3 Problem of Uniform Thickness

In order to understand the difficulty of attaining uniform thickness, let us con-
sider the full moon shape and star shape shown in Fig. 3. First, let us concen-
trate on the outer boundaries of the two shapes. Each boundary can be divided
into an upper curve and a lower curve, both of which are horizontally monotone.
Moreover, the horizontal widths of the two shapes are the same, as shown by
the rightmost and leftmost vertical dashed lines. Therefore, we can apply our
method for creating an ambiguous cylinder surface S without thickness.

Figure 3: Uniform thickness given to two 2D figures.

Next, we consider how to add uniform thickness to this cylinder. Here, what
we want is not only to add uniform thickness to each of the two appearances
but also to make their thicknesses the same. If we add thickness with these
properties to the full moon and the star, we get the inner boundaries of the two
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shapes shown in Fig. 3. The thickness in this figure is uniform in the sense that
the perpendicular distance between the outer and inner boundaries is l. We
will define uniform thickness formally a little later; here let us accept that the
inner curve of the star in Fig. 3 gives an intuitively uniform thickness. However,
as shown by the distance l′ in Fig. 3, the horizontal thickness of the rightmost
point of the star is larger than l, because it forms a sharp corner. On the other
hand, the horizontal thickness at the rightmost point of the full moon remains
l because the tangent is vertical. Therefore, the horizontal widths of the two
inner boundaries are not the same. The inner boundary of the full moon is
larger than that of the star. This implies that we cannot establish a one-to-one
correspondence between the two inner boundaries, and consequently we can-
not construct an ambiguous cylinder surface from the pair of inner boundaries.
Thus, attaining uniform thickness is not consistent with constructing the de-
sired ambiguous cylinder. Therefore, we have to consider ways to compromise
in this situation of having incompatible aims.

4 Thinning, Fattening, and Bridging

The following are some concepts and operations that are necessary for discussing
our strategies.

Let C be a closed curve in 2D space, and let In(C) and Out(C) represent
the regions interior and exterior, respectively, to C. For two points P and Q, let
d(P,Q) denote the Euclidean distance between P and Q. We extend the distance
d to the distance between point P and region X by

d(P, X) = inf
Q∈X

d(P,Q). (2)

Let us define a thinning operation by

Thin(C, h) = {P | P ∈ In(C), d(P, C) ≥ h}, (3)

where h is a positive constant. Thin(C, h) is the region composed of points that
are in In(C) and whose distances from the boundary C are not less than h. We
call the boundary of Thin(C, h) the inner offset curve of C by h [2, 5].

Similarly, we define a fattening operation by

Fat(C, h) = {P | d(P, In(C)) ≤ h}. (4)

Fat(C, h) is the region composed of points whose distances from In(C) are not
greater than h. Note that if P ∈ In(C), d(P, In(C)) = 0 and hence Fat(C, h)
includes In(C). We call the boundary of Fat(C, h) the outer offset curve of C
by h.

Fig. 4 shows examples of the inner and outer offset curves. There are three
closed curves; the middle is the original curve, and the other two are the inner
and outer offset curves.

Let P be a corner point on the curve C. If the angle measured in In(C) is
less than 180 degrees, the corner is called a convex corner, and if it is greater
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Figure 4: Inner and outer offset curves.

than 180 degrees, it is called a reflex corner. The sharpness of a corner is not
necessarily preserved in the offset curves. As we can see in Fig. 4, a convex
corner corresponds to a smooth curve in the outer offset curve, while a reflex
corner corresponds to a smooth curve in the inner offset curve.

In order to preserve the sharpness of corners, we can modify the offset curves.
As shone in Fig. 5, let C(t) be a closed curve in 2D space and P be a convex
corner. Let us denote by C1 and C2 the two local parts of C(t) divided at P. We
generate the outer offset curve of C1 and that of C2 by displacing points on C(t)
perpendicular to their tangents. Let P1 and P2 be the points displaced from P
in the directions perpendicular to the tangents of C1 and C2, respectively. In the
original offset curve, P1 and P2 are connected by a circular arc as shown by the
dashed curve in Fig. 5. Instead, we connect P1 and P2 by the two line segments
parallel to the tangents of C1 and C2 at P as shown by the solid lines in Fig. 5.
In this way, we obtain a curve in which the sharpness of the convex corner is
preserved. We call this curve the sharpness-preserved outer offset curve.

Figure 5: Sharpness-preserved offset curve.

We can apply the same procedure to reflex corners when constructing an
inner offset curve. We call the resulting curve the sharpness-preserved inner
offset curve.

Note that the thickness of the star in Fig. 3 is created by the sharpness-
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preserved offset curve.
For any point P in 3D space, we denote its Cartesian coordinates by (Px,Py,Pz)

and the projection of P on the xy plane by Pxy, i.e., Pxy = (Px,Py). Let P (s)
and Q(t) be two closed curves in 3D space parameterized by s and t, 0 ≤ s, t ≤ 1,
P (0) = P (1), and Q(0) = Q(1). We assume that their projections Pxy(s) and
Qxy(t) are simple non-intersecting curves and that Qxy(t) is inside Pxy(s). Let
R denote the 2D region bounded by Pxy(s) and Qxy(t); that is, Pxy(s) is the
outer boundary and Qxy(t) is the inner boundary of R.

Suppose that f(x, y) is a real-valued continuous function defined in R such
that

f(x, y) =

{
Pz(s) if (x, y) = Pxy(s),
Qz(t) if (x, y) = Qxy(t).

(5)

We define
F = {(x, y, f(x, y)) | (x, y) ∈ R}. (6)

F forms a surface connecting the two curves P (s) and Q(t). We call F a bridging
surface of P (s) and Q(t). In what follows, F is used to cap the top and bottom
of the cylindrical solid between the swept surfaces by the two curves P (s) and
Q(t), so we want an F that does not have unnecessary undulation. One method
for generating such a surface approximately is to first replace P (s) and Q(t)
with point strings, next triangulate the region R using the projections of those
points as vertices, and finally lift the resulting triangular mesh to 3D space.
Methods for this purpose are well studied in surface modeling and computer
graphics [1,4], and hence we assume that we can construct bridging surfaces as
necessary and do not go into further detail.

5 Strategies for Uniform Thickness

In what follows, we mainly consider closed curves composed of upper and lower
monotone curves. For that purpose, we adjust our notation in the following
way. Let A be a closed curve in 2D space and A1(x) and A2(x) be its upper
and lower monotone curves. We parameterize A by t as

A(t) =

{
A1(2t) if 0 ≤ t ≤ 1

2 ,
A2(2− 2t) if 1

2 ≤ t ≤ 1.
(7)

That is, the new parameter t moves from 0 to 1, and the first half 0 ≤ t ≤ 1
2

corresponds to the upper curve, and the second half 1
2 ≤ t ≤ 1 corresponds to

the lower curve, parameterized in the reverse direction. Similarly, for the other
closed curve B with the upper monotone curve B1(t) and the lower monotone
curve B2(x), we define

B(t) =

{
B1(2t) if 0 ≤ t ≤ 1

2 ,
B2(2− 2t) if 1

2 ≤ t ≤ 1.
(8)

For each fixed t, the two points A(t) and B(t) share the same x coordinate, and
hence we can apply our method for constructing an ambiguous cylinder. Let
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C(t), 0 ≤ t ≤ 1, be the closed ambiguous curve constructed from A(t) and B(t),
and S be the cylindrical surface defined by

S = {C(t)− uez | 0 ≤ t ≤ 1, 0 ≤ u ≤ h}. (9)

Our basic idea for generating an ambiguous cylinder with uniform thickness
is as follows. We first create another pair of closed curves A′(t) and B′(t) inside
or outside A(t) and B(t) so that A(t) and A′(t) give uniform thickness to the
first shape and B(t) and B′(t) give uniform thickness to the second shape, and
that the leftmost points of A′(t) and B′(t) share the same x coordinate, and
the rightmost points of A′(t) and B′(t) also share the same x coordinate. Next
we construct the ambiguous space curve C ′(t) from A′(t) and B′(t), and the
associated cylindrical surface

S′ = {C ′(t)− uez | 0 ≤ t ≤ 1, 0 ≤ u ≤ h}. (10)

Finally, we pack material between S and S′, and thus obtain a solid cylinder
with finite thickness. These steps can be represented formally as the following
algorithm.

Basic algorithm for adding thickness
Input: two closed curves A(t) and B(t), thickness parameter l, and height h.
Procedure:
Step 1. Create closed curves A′(t) and B′(t) inside or outside A(t) and B(t),

respectively.
Step 2. Construct the ambiguous space curve C(t) from A(t) and B(t).
Step 3. Construct the ambiguous space curve C ′(t) from A′(t) and B′(t).
Step 4. Generate bridging surface F of C(t) and C ′(t).
Step 5. Generate cylindrical solid D by

D = {P− uez | P ∈ F, 0 ≤ u ≤ h}. (11)

The set D of points defined in (11) is the volume swept by the bridging surface
F in the direction parallel to the z axis by length h. Hence, it is equivalent to
the volume obtained by packing material between the two cylindrical surfaces
S and S′ defined by (9) and (10).

Note that there is freedom in the choice of A′(t) and B′(t) in Step 1, but
once A′(t) and B′(t) are set, Steps 2 to 5 are performed without ambiguity.
Hence we concentrate on Step 1. Note also that the input parameter l does
not appear in the above procedure, but we will use this parameter in Step 1 as
described in what follows.

Our first strategy is to use the outer offset curves. Let A′(t) and B′(t) be the
outer offset curves of A(t) and B(t), respectively, by l. Note that the rightmost
point and the leftmost point of a closed curve are each either a smooth point or a
convex corner. Therefore, the horizontal distance between A(t) and A′(t) at the
rightmost or leftmost point is the same as l. The same is true of the horizontal
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distance between B(t) and B′(t). Hence, the horizontal widths of A′(t) and
B′(t) are the same, and a one-to-one correspondence can be established between
A′(t) and B′(t). Consequently, we can construct the associated ambiguous curve
C ′(t). Thus, we have the following strategy.

Strategy 1 (fattening strategy)
Step 1-1. Construct the outer offset curve A′(t) of A(t) by l, and the outer offset

curve B′(t) of B(t) by l.

This strategy gives two appearances with uniform thickness in the sense that
the thickness is determined by the original curves and their outer offset curves.
However, this thickness is a little different from our intuitive idea of uniformness
because the sharpness of convex corners is lost.

Fig. 6 shows the two appearances of the ambiguous solid created by this
strategy. (These are computer graphic images generated by the solid modeling
software Rhinoceros version 5.) As we can see in the lower image, the sharpness
of the star has been lost. If we use a small value for the thickness parameter l,
we will get a thin cylinder with a sharp star as shown in Fig. 7. However, this
can be physically realized only when we use a hard material such as metal.

Figure 6: Solid created by Strategy 1 (outer offset strategy); sharpness of the
star is lost.

The sharpness-preserved offset curve maintains the feature points of the
original curve more faithfully, but the horizontal distance at the rightmost or
the leftmost point may become larger. In that case, we can normalize the
sharpness-preserved offset curve so that the horizontal distances become equal.
Thus we have the following strategy.

Strategy 2 (shrink-and-normalize strategy)
Step 1-2. Construct the sharpness-preserved inner offset curves A′(t) of A(t)
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Figure 7: Thin solid created by Strategy 1 (outer offset strategy); it will be
fragile unless made of a hard material.

by h, and the sharpness-preserved inner offset curves B′(t) of B(t) by h.
Then, expand or shrink the curve B′(t) in such a way that the leftmost
and the rightmost points share the same x coordinates as A′(t)

Fig. 8 shows the two appearances of the ambiguous solid created by this
strategy. We can see that each shape has uniform thickness and that sharp
corners are preserved. However, the two shapes do not have the same thickness:
the star is thinner than the full moon.

Figure 8: Solid created by Strategy 2 (horizontal width normalization strategy);
the star is thinner than the full moon.

We should note that this strategy does not always work. An example is
shown in Fig. 9. Suppose that the given curve and the sharpness-preserved inner
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offset are as shown in (a). Because the horizontal thickness at the rightmost
corner is large, the normalized inner curve becomes the dashed line in (b), which
intersects with the original curve. Hence, the desired ambiguous solid cannot
be created.

(a) (b)

Figure 9: Example in which Strategy 2 does not work: (a) original curve and
its inner offset curve; (b) normalized inner curve which intersects the original
curve.

Another strategy for making the horizontal widths of the two curves A′(t)
and B′(t) the same is to add horizontal line segments as shown in Fig. 10, which
is based on the same pair of curves as before, i.e., a full moon A(t) and a star
B(t). As shown, we let A1(t) and A2(t) [resp. B1(t) and B2(t)] be the upper
and lower monotone curves of A(t) [resp. B(t)], and let A′

1(t) and A′
2(t) [resp.

B′
1(t) and B′

2(t)] be the inner offset curves of A1(t) and A2(t) [resp. B1(t) and
B2(t)] by l.

Because B(t) has sharp corners at the rightmost and leftmost points, the
horizontal width of the inner offset curve of B(t) is smaller than that of A(t).
Instead of expanding it, we add horizontal line segment, say Bl and Br, to the
left and to the right of the offset curves so that the horizontal width becomes
the same as that of the other offset curve A′(t). In other words, we augment
B′

1(t) and B′
2(t) by adding Bl to the left and Br to the right. Then, the resulting

horizontal widths are the same as those of A′
1(t) and A′

2(t), and hence we have
one-to-one correspondences between A′

1(t) and B′
1(t), and between A′

2(t) and
B′

2(t), enabling us to apply the method of ambiguous cylinder construction.
Thus, we have the following strategy.

Strategy 3 (shrink-and-augment strategy)
Step 1-3. Construct the sharpness-preserved inner offset curves A′(t) of A(t)
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Figure 10: Normalization of the horizontal width by adding horizontal line
segments.

and B′(t) of B(t) by h. Augment the offset curve with smaller horizontal
width by adding horizontal line segments to the leftmost and rightmost
points so that the horizontal widths become the same.

This strategy generates an ideal ambiguous cylinder in that the apparent
thicknesses of the two curves are homogeneous and equal. Fig. 11 shows an
example of the solid generated by this strategy illustrating these properties.

However, the solid created by this strategy is degenerate in the sense that
the appearance changes drastically if we move the viewpoint even slightly. This
is due to the added horizontal line segments. As shown in Fig. 12, we can see a
sharp crack if we shift our viewpoint.

The three strategies that we have presented each have their own merits and
demerits. Theses are summarized in Table 1.

Strategy 1 (fattening strategy) has many good properties. Its only demerit
is that corner sharpness is lost. This demerit will decrease if the cylinder is
made with a thinner surface, so this strategy is suitable for cases where we can
make the cylinder from a thin hard material such as metal or the object can be
treated carefully, such as the case where the object is protected by a showcase.

Strategy 2 (shrink-and-normalize strategy) can preserve the sharpness of cor-
ners, but cannot necessarily attain uniformity of thickness. Hence, this strategy
is applicable only to limited cases.

Strategy 3 (shrink-and-augment strategy) has many good properties: it at-
tains complete uniformity of thickness and preserves corner sharpness. However,
the resulting cylinder has a crack structure; this crack is invisible from the cor-
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Figure 11: Solid created by Strategy 3 (shrink-and-augment strategy).

Figure 12: Appearance of the star of the solid in Fig. 9 from a slightly deviated
viewpoint.

rect viewpoint if it can be strictly maintained, but it becomes visible if the
viewpoint moves even slightly. Hence, this strategy is suitable for cases where
we can control the viewpoint strictly, such as the case where the object is dis-
played to be seen through a view hole or where images are taken by a carefully
placed camera.

6 Examples

We present further examples to better show the behaviors of the presented
strategies.

First, let us consider a pair of shapes whose leftmost and rightmost points
are smooth, i.e., have vertical tangents. An example of such a pair is the shape
of “heart” and that of “club” of playing cards. The horizontal distances of
the original curves and their offset curves are the same as the offset distance
l. Therefore, we can apply Strategy 2. That is, we generate the sharpness-
preserved offset curves and construct the ambiguous space curve directly; the
normalization process can be skipped. The resulting solid is shown in Fig. 13.
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Table 1: Comparison of the three strategies

Property 1. Fattening 2. Shrink-and- 3. Shrink-and-
strategy normalize strategy augment strategy

(i) Each appearance has YES NO YES
uniform thickness

(ii) Two appearances have YES NO YES
the same thickness

(iii) Sharp corners are NO YES YES
preserved

(iv) Applicable to any YES NO YES
shapes

(v) Stable against YES YES NO
viewpoint deviation

We can see that the two appearances have the same uniform thickness. Thus,
Strategy 2 works well if both of the shapes have smooth leftmost and rightmost
points.

Figure 13: “Heart” and “club”; in both shapes, the leftmost and rightmost
points are smooth points, and hence Strategy 2 can be applied directly.

The next example is a pair of dolls whose heads are on the right and on
the left. Applying Strategy 1, we obtain the cylinder whose two appearances
are as shown in Fig. 14. Uniformity of thickness is attained, but the apex at
the legs is lost. If we apply Strategy 2, the normalized inner curve is displaced
from the center, as shown in the lower diagram in Fig. 15, and consequently
the thickness becomes non-uniform. The resulting solid will be as shown in
Fig. 16. If we apply Strategy 3, on the other hand, we can construct a solid
whose two appearances have the same uniform thickness, as shown in Fig. 17.
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However, this solid has a crack around the apex at the legs, which can be seen
if we slightly move our viewpoint, as shown in Fig. 18. Hence, Strategy 1 seems
most suitable for this pair of shapes if we want to place the solid in a museum
for exhibition.

Figure 14: Left-oriented and right-oriented dolls generated by Strategy 1; the
sharpness of the corner is lost.

Figure 15: Normalization of the horizontal width according to Strategy 2.

Next, let us consider the pair of shapes shown in Fig. 19(a): a circle and
a triangle-like closed curve. Our plan is to combine the ambiguous cylinder
generated by this pair of shapes and its mirrored and/or rotated copies to form
the crossing leaves shown in (b).

Fig. 20 shows the unit ambiguous cylinders generated by the three strategies.
Strategy 1 results in (a), which seems to have good appearances if we see this
unit alone. Strategy 2 results in (b), which is not of good quality because
the thickness is not uniform: the leftmost edge is wider than the other two
edges. Strategy 3 results in (c), which preserves sharp corners but has unstable
appearances because the cylinder has a small crack at the right corner, as shown
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Figure 16: Left-oriented and right-oriented dolls generated by Strategy 2; the
thickness is far from uniform.

in Fig. 21.
Combining the unit ambiguous cylinder and its mirrored and/or rotated

copies, we get four circles and crossing leaves. The object generated by Strategy
1 is shown in Fig. 22. This object is not satisfactory because the edges are
not smooth at the crossing points. Figs. 22(b) and (c) show close-up views of
the bottom and right crossing points in (a). In both cases, the edges are not
smoothly connected because sharpness is lost at the corner of the unit cylinder.

In contrast, the object generated by Strategy 3, shown in Fig. 23, is neater
than that in Fig. 22 in that the edges are smooth at the crossing points. Indeed,
looking at the close-up views in Figs. 23(b) and (c) of the bottom and right
crossing points, the associated edges are smooth; this is because the sharpness
of the corners in the unit cylinder is not lost.

Thus, Strategy 3 is the best among the three for this object.
As we have seen in the presented examples, the three strategies each have

their own merits and demerits. Therefore, which strategy is suitable much de-
pends on individual objects, and hence we have to choose the strategy carefully.

7 Concluding Remarks

We considered the problem of how to give uniform thickness to ambiguous cylin-
ders. The requirement that the appearances of an ambiguous cylinder be both
uniform and equal in thickness is not consistent with the illusion effect. Hence,
we had to search for second-best solutions. We have presented three strategies,
each of which has merits and demerits, and therefore the user needs to choose
one according to the individual object and the desired visual effect.

Although in this paper we have concentrated on the apparent thickness from
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Figure 17: Left-oriented and right-oriented dolls generated by Strategy 3.

Figure 18: Crack structure around the apex of the legs of the solid in Fig. 17.

the two special viewpoints, the thickness control problem also includes other
aspects. From the physical rigidity point of view, we also have to consider the
actual thickness of the cylinder. Empirically, if we make the apparent thickness
as uniform as possible, the physical thickness of the resulting cylinder will tend
to be relatively uniform. However, this is not theoretically guaranteed. Thus,
one task for future study is to understand the relation between the apparent
thickness and the physical thickness of an ambiguous cylinder. If there exists
a trade-off between these two, then we will also need to develop methods for
balancing them.

Another direction for future work is the intentional control of nonuniform
thickness. From a visual artistic point of view, we might want to make the
apparent thickness nonuniform according to the details of the shape. In that
case, we need a quite different approach for thickness control.

Still another related problem is filling the inside of the cylinder with mate-
rial. Sometimes we want to make short ambiguous cylinders. In that case, one
natural way to make physical models is to fill the cylinder by covering the top
and the bottom with smooth surfaces. It is not difficult to do this, but there
are infinitely many possible surfaces. On the other hand, the resulting surface
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(a) (b)

Figure 19: Four circles and crossing leaves: (a) unit pair of shapes; (b) four
circles and crossing leaves created by combination of (a) and its mirrored and/or
rotated copies.

(a) (b) (c)

Figure 20: Unit ambiguous cylinders generated by three strategies: (a) Strategy
1; (b) Strategy 2; (c) Strategy 3.

creates shading effects, and different surfaces give different shading and conse-
quently give different visual effects, so we need to find the smooth surface such
that the resulting shading enhances (or at least does not diminish) the visual
effect of the ambiguous cylinder.
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