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Abstract
In economic and financial time series we sometimes observe sudden and large price 
jumps. Although these events are relatively rare, they have significant impacts on 
not only a given financial market but also several different markets and wider macro 
economies. Using simultaneous Hawkes-type multivariate point process (SHPP) 
models, it is possible to analyze the causal effects of large events in the sense of 
the Granger-non-causality (GNC) from one market to other markets as well as the 
instantaneous Granger-non-causality (IGNC). We investigate the financial market of 
Tokyo and other major markets, and apply GNC tests to investigate the interdepend-
ence of large events among markets. Several important empirical findings emerge 
among financial markets and wider macro economies.
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1  Introduction

In economic and financial time series, we sometimes observe sudden and large 
price jumps. Although they are relatively rare events, when they occur they often 
have significant impact on not only a single financial market but also several 
different markets and wider macro-economies. Several recent notable events in 
European and Asian countries with large jumps include the global 2008 crisis.

The standard econometric method for investigating economic and finan-
cial time series has been the statistical analysis of discrete time series. In sta-
tistical time series analysis, we often assume that the observed time series data 
are equally spaced realizations of stochastic processes and that the state space 
is �d (d ≥ 1) in multivariate cases. Many statistical procedures in discrete time 
series analysis have been developed and applied to economic and financial time 
series in recent decades. When we do not observe events frequently, however, 
traditional discrete time series modeling with continuous state space may present 
important limitations. For instance, it may be difficult to distinguish major con-
tagious events from small contagious events among different financial markets 
across international borders.

In this paper, we propose an alternative way of investigating economic and 
financial events with time series data in macro-economies, i.e., the statisti-
cal analysis of marked point processes to identify and explore multivariate time 
series events. Although this is not a standard approach in time series economet-
rics, there have been applications of this methodology in statistical seismology 
[see Ogata (1978, 2015) and the related literature, for instance]. We will show 
that this approach is a useful alternative way of investigating multivariate eco-
nomic and financial markets to shed new light on issues that have hitherto some-
times neglected. In particular, we propose using simultaneous Hawkes-type mul-
tivariate point process models and their applications in this study. We argue that 
using the simultaneous multivariate Hawkes-type point process (SHPP) models, 
which are a new class of multivariate point processes, it is possible to investigate 
the causal effects of sudden and large jumps with their magnitude. We develop a 
new way to measure the Granger non-causality (GNC) and instantaneous Granger 
non-causality (IGNC) through stochastic intensity modeling of point processes.

In econometric time series analysis, the concept of Granger causality (after 
Granger 1969) has become an important, well-established tool for investigating 
relationships among multivariate time series variables (See Hosoya et  al. 2017 
for the recent developments). In the econometric literature, Florens and Foug-
ere (1996) investigated several Granger causality concepts in the framework of 
continuous time stochastic processes, but their formulation of the problem was 
incomplete because they excluded the possibility of co-jumps therein, which 
means the simultaneous jumps that can be observed in multivariate times series 
data are excluded from the outset. The problem of co-jumps is important because 
we often analyze economic time series data in discrete time (monthly, weekly, 
daily, hourly, and/or minute), but continuous stochastic processes are also sali-
ent recently in financial econometrics. We need to coherently unify discrete time 
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series analyses and continuous stochastic processes. In this paper, we investi-
gate the possible use of co-jumps in a systematic way and develop new GNC and 
IGNC tests, which may provide important insight for advancing the development 
and application of econometric time series modeling.

Previously, Kunitomo et al. (2017) have used the traditional multivariate Hawkes-
type point process (THPP) models without co-jumps and the SHPP models are the 
extension of their models (that is, the THPP models are special cases of SHPP mod-
els). There are important cases when we need the SHPP models as we will illus-
trate in Sect. 6. In statistical seismology, researcher often uses the earthquake data 
of large magnitudes (greater than 3, say) and the time scale of measurement is short 
due to physical laws. In financial markets, however, the impacts of shocks occur in 
actual trades of financial commodities and digestion of bad or good news among 
market participants often needs time (1, 2 h, a day and days). Therefore, it may not 
be fruitful to use the method developed for seismology to financial problem mechan-
ically and we need to consider the issues of time scales, discretization of statistical 
models and their measurements carefully.

Several recent studies in financial econometrics have utilized point processes 
and conditional intensity modeling (Ait-Sahalia and Jacod 2014; Ait-Sahalia et al. 
2015; Embrechts et al. 2011; Grothe et al. 2014; and others). In a survey of these 
and other works, Bacry et al. (2015) noted that the focus therein is mostly on studies 
of financial micro-market structures. The approach developed in this paper is related 
to these works, but the main purpose is quite different because we develop a new 
point process approach to assess the relationships among different (international 
financial) markets. In this respect, there have also been studies on international link-
age in financial markets (e.g., Hamao et al. 1990), but our proposed methodology is 
notably different because those studies utilized standard discrete time series mod-
eling. In terms of empirical examples, we will investigate the interactions among 
Tokyo–New York, Tokyo–London, and Tokyo–Hong Kong financial markets and 
apply the GNC tests developed herein to those contexts. This yields several impor-
tant findings among major financial markets.

The remainder of the paper is organized as follows. In Sect. 2 we present a gen-
eral formulation of simultaneous multivariate Hawkes-type point process (SHPP) 
models. In Sect.  3, we describe the estimation method and develop non-causality 
tests in the sense of Granger (1969). In Sect. 4, we explore simulation results and the 
empirical applications are offered in Sect. 5. Concluding remarks are presented in 
Sect. 6 and the mathematical details are provided in the Appendix.

2 � Simultaneous Hawkes‑type point processes

We divide the observation period [0,  T] into discrete periods 
In
i
= (tn

i−1
, tn
i
] (i = 1,… , n) and set the initial time as tn

0
= 0 . We may interpret In

i
 as 

the i-th day, but it is possible to use higher resolution of observation periods (e.g. 
hourly or per minute) and we allow the irregularly-spaced time series modeling in 
principle.
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Let the observable price processes of Itô-semimartingale with the state space of 
�d (see Ikeda and Watanabe 1989) be Pj(t) (j = 1,… , d; tn

i−1
< t ≤ tn

i
, i = 1,… , n) , 

and in s ∈ In
i
 we denote the (negative) log-return of prices Xn

j
(s) (s ∈ In

i
) as

Let the first stopping time when Xn
j
(s) exceeds the threshold uj (> 0) in s ∈ In

i
 be 

�n(i, j, 1) . When 𝜏n(i, j, 1) < tn
i
 , we re-define the return process 

Xn
j
(s) = − log[Pj(s)∕Pj(�

n(i, j, 1))] (s ∈ In
i
, s ≥ �n(i, j, 1)) and let the first stopping 

time when Xn
j
(s) exceeds the threshold uj crossing from below in s ∈ (�n(i, j, 1), tn

i
] 

be �n(i, j, 2) . In this way, we define the sequence of �n(i, j, k) (k ≥ 1) successively.
Let also a sequence of numbers of jumps in an interval be 

Jj(i) = #{k ∶ �n(i, j, k) ∈ In
i
, k ≥ 1} and then define

where Nj(I
n
l
, t, uj) is the number of counts that the resulting return process 

Xn
j
(s) (s ≤ t ) exceeds uj as the threshold crossing from below in s ∈ In

l
 and s ≤ t ∈ In

i
 . 

The stochastic process Nn∗
j

 varies at most one in every discrete observation period.

This formulation of normalized counting in each intervals In
i
(i = 1,… , n) allows us to 

measure the market impacts of financial price jumps in discrete intervals while we can use 
the standard statistical intensity modeling. We note that Jj(i) are countable in [0, T] (T is 
finite, n is sufficiently large and uj > 0 are fixed constants) and the number of instantane-
ous jumps (i.e. |Pj(s) − Pj(s−)| > uj > 0 ) is finite for the price processes of Itô-semima-
rtingales. In financial risk management and regulation, the sudden and/or large downward 
movements of financial commodity prices in short time intervals are the most important 
subject because of their negative consequences to financial markets and economies.1

In the following analysis, we consider the situation that there is a common threshold 
value u for uj (j = 1,… , d) and the observations of the counting processes are available 
at day-start, day-minimum and day-end in each interval. In principle, however, we can 
allow the irregularly-spaced time series modeling, but we need an explicit discretiza-
tion of observations. For these intervals of observation, we consider the point pro-
cesses, Nn∗

j
(t, u) (j = 1,… , d), which are simple. They satisfy the standard condition 

for point processes that as Δt → 0 , we have the conditions

(1)Xn
j
(s) = − log

[
Pj(s)∕Pj(t

n
i−1

)
]

(j = 1,… , d; i = 1,… , n).

(2)Nn∗
j
(t, uj) =

∑
1≤l≤i,Jj(l)>0

1

Jj(l)
Nj

(
In
l
, t, uj

)
(t ∈ In

i
),

1  As a referee had pointed out, the present formulation may be complicated because we allow multiple 
jumps in a fixed interval. When the length of discretization becomes small, as a limit we can ignore the 
complication involved (see Kurisu 2018).
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where n
t−

 is the �−field generated by the latest information before t. The (condi-
tional) intensity functions are given by

where we use the notation n
t−

 as the latest information before t because we discre-
tize the counting process and we have discrete observations. For convenience, we 
denote n

t−
 as t in the following analysis whenever such notation allows.

For expository purposes, in the following analysis, we interpret the increments of 
Nn∗
j
(s, uk) as if jumps of the counting process occur at tn

i
, the end of each interval In

i
 and 

we have set the threshold uj = u (j = 1,… , d) . When we consider the situation when 
the interval length goes to zero, i.e., Δnt = maxi=1,…,n |tni − tn

i−1
| ⟶ 0 as n ⟶ ∞ for 

a fixed T, the counting process, which is a simple point process, Nn∗
j
(s, u) weakly con-

verges to N∗
j
(s, u) . The resulting counting process can be interpreted as a limiting con-

tinuous-time stochastic process in high-frequency asymptotics, which is not a diffusion 
type but a pure jump process (see Ikeda and Watanabe 1989; Ait-Sahalia and Jacod 
2014; Kurisu 2018, for example).

Next, for uj = u (j = 1,… , d) we define the point processes Nn∗
jk
(s, u) by the number 

of stopping times that Xn
j
(s) exceeds u (j = 1,… , d) for a particular j, Xn

k
(s) exceed 

u (k = 1,… , d;k ≠ j) for another k, and other Xn
l
(s) (l ≠ j, k) do not exceed u crossing 

from below by time s in the interval In
i
 . By this construction, we can introduce the point 

processes Nn∗
jk
(t, u) with co-jumps of Nj and Nk by

where �n∗
jk
(t, u) are the conditional intensity functions of co-jumps.

Then, when we have co-jumps of two point processes, we can define the point 
processes

P(Nn∗
j
(t + Δt, u) − Nn∗

j
(t, u) =1|n

t−
) = 𝜆n∗

j
(t, u)Δt + op(Δt),

P(Nn∗
i
(t + Δt, u) − Nn∗

i
(t, u) >1 for any i|n

t−
) = op(Δt),

P(Nn∗
i
(t + Δt, u) − Nn∗

i
(t, u) =1 for i = j, k;j ≠ k|n

t−
) = op(Δt),

(3)�n∗
j
(t, u) = lim

Δt→0
�

[
Nn∗
j
(t + Δt, u) − Nn∗

j
(t, u)

Δt
|n

t−

]
,

P(Nn∗
j
(t + Δt, u) − Nn∗

j
(t, u) =Nn∗

k
(t + Δt, u) − Nn∗

k
(t, u) = 1|t)

=𝜆n∗
jk
(t, u)Δt + op(Δt),

P(Nn∗
i
(t + Δt, u) − Nn∗

i
(t, u) >1 for any i|t) = op(Δt),

P(Nn∗
i
(t + Δt, u) − Nn∗

i
(t, u) =1 for i = j, k, l;j ≠ k ≠ l||t) = op(Δt),

(4)Nn
j
(s, u) = Nn∗

j
(s, u) +

∑
k≠j

Nn∗
jk
(s, u) (j, k = 1,… , d)
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and the corresponding conditional intensity functions are given by

The resulting point processes can be interpreted as the marginal point process for the 
j-th component of the vector point process �n(s, u) with d dimension.

By extending this formulation to more complex co-jumps, in general we define

where the index set Jj = {j1,… , jl} ∈ {1,… , d} is a subset of (1,… , d) . The 
index sets are defined as Ji = {i} for (i = 1,… , d), Ji = {1, 1 + (i − d)} for 
(i = d + 1,… , 2d − 1),… , and Jp = {1,… , d}.

Then we sequentially define Nn
i
(s, u) = Nn∗

i
(s, u) (i = 1,… , d); 

Nn
d+1

(s, u) = Nn∗
1,2
(s, u),… , and Nn

p
(s, u) = Nn∗

1,…,d
(s, u).

We use the self-exciting form of conditional intensity functions �Jn∗
j
(⋅) for co-jumps 

as �n∗
jk
(t, x|n

t−
) in the same way and the marginal conditional intensity function for the 

j− th components as

There is a one-to-one transformation between Nn
j
(s, u) for j = 1,… , p and 

Nn∗
j1,…,jk

(s, u) for 1 ≤ k ≤ d and between �n
j
(t, u) and �n∗

j1,…,jk
(t, u) for p = 2d − 1.

The self-exciting Hawkes-type conditional intensity functions for the marked point 
processes are given by

for j = 1,… , p , where N∗n
Ji
(ds × dx) are the marked point processes, �j,0 are the ini-

tial intensities, gi(t − s) = e−�i(t−s) are the damping functions, and C(X) = (cji(x)) are 
the impact functions.

Since we are interested in sudden and large jumps of the underlying price pro-
cesses (in the sense of negative returns), it is important to use the probability func-
tions of the return process in the tail areas. In this respect, many empirical studies 
on the stock markets found that stock returns exhibit the non-Gaussianity and thick 

(5)�n
j
(t, u) = �n∗

j
(t, u) +

∑
k≠j

�n∗
jk
(t, u).

(6)Nn
j
(s, u) =

∑
Jj∈(1,…,d)

Nn∗
Jj
(s, u) (j = 1,… , p),

(7)�n
j
(t, u) =

∑
Jj∈(1,…,d)

�n∗
Jj
(t, u).

(8)�n
j

(
t, x|n

t−

)
= �j,0 +

p∑
i=1

�
t

−∞

cji(x)gi(t − s)N∗n
Ji
(ds × dx)
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tails. Hence it may be appropriate to use the generalized Pareto distributions (GPD) 
as tail probability functions for x > u > 0 (j = 1,… , d) as

and we set �∗
j
= �juj + �j ( 𝜎j > 0)

(See Resnick 2007 for the details of GPD in statistical extreme value theory 
(SEVT)).

Herein, we assume that given the return at s Xn
j
(s) (j = 1,… , d) , the conditional 

density functions are given by

In terms of impact functions and the intensity function of co-jumps, there can be 
many possible specifications. In our empirical study, we mainly investigate the form

and

where aij and c are some constants.
In particular when p = d and cij = �(i, j) (indicator functions), they correspond to 

the traditional multivariate Hawkes-type (THPP) processes, which are simple point 
processes without co-jumps.

Let p × 1 vector point process �n(t, u) be partitioned as (d + (p − d)) × 1 processes 
as

(9)

P(Xn
j
(s) > x|Xn

j
(s) > u,s) =

[
1 +

𝜉j

𝜎j
x
]−1∕𝜉j

[
1 +

𝜉j

𝜎j
u
]−1∕𝜉j

=

[
1 +

𝜉j

𝜎∗
j

(x − u)

]−1∕𝜉j

,

(10)fj(x, s) =
1

𝜎∗
j

[
1 +

𝜉j

𝜎∗
j

(x − u)

]−1∕𝜉j−1

(x > u, 𝜉j > 0).

cij(X) =
(
aijx

c
j

)
(0 ≤ c ≤ 1; i = 1,… , p; j = 1,… , d)

cij(X) =

(
aij max

k∈Ji
xc
k

)
(0 ≤ c ≤ 1; i = 1,… , p; j = d + 1,… , p),

(11)�n(t, �) =

�
�n

1
(t, u)

�n
2
(t, u)

�
=

⎡
⎢⎢⎢⎢⎢⎢⎣

Nn
1
(t, u)

⋮

Nn
d
(t, u)

Nn
1,2
(t, u)

⋮

Nn
1,2,…,d

(t, u)

⎤
⎥⎥⎥⎥⎥⎥⎦

,



304	 Japanese Journal of Statistics and Data Science (2018) 1:297–332

1 3

where �n
1
(t, u) is the d × 1 vector of marginal point processes with p = 2d − 1 and 

�n
2
(t, u) is the (p − d) vector of co-jump point processes. The corresponding condi-

tional intensity functions as

and p × p matrices

We use notation such that �n
1
(t, u) is the vector process of conditional intensities of 

marginal jumps, diag(⋅) for diagonal matrices and we often omit n for 
�n
Ji
(s) (i = 1,… , p) and Nn

Ji
 whenever their meanings are clear in the following 

analysis.
Next, we rewrite (6) and (7) as

and

where �1 is a d × p matrix as

and �2 is a (p − d) × p matrix as �2 =
[
�, �p−d

]
(p ≥ d).

We call the above Hawkes-type conditional intensity models as the simultane-
ous multivariate Hawkes-type point process (SHPP) models because the resulting 
marked point processes are not necessarily simple.2 The classical Hawkes-type point 
processes have been useful in applications because they are simple point processes. 
However, they exclude the possibility of simultaneous jumps or co-jumps and they 
are not fit for our purposes here. The foregoing constructions of marked point pro-
cesses can be regarded as an extension of Solo (2007).

(12)�n(t, �) =

�
�n
1
(t, u)

�n
2
(t, u)

�
=

⎡
⎢⎢⎢⎢⎢⎢⎣

�n
1
(t, u)

⋮

�n
d
(t, u)

�n
1,2
(t, u)

⋮

�n
1,2,…,d

(t, u)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

�(X(s−)) =
[
cij(Xs−)

]
, �(t − s) =

[
diag(gj(t − s))

]
.

(13)�n
1
(t, u) = �1�

n(t, u),

(14)�n
2
(t, u) = �2�

n(t, u),

�1 =

⎡⎢⎢⎢⎣

1 0 ⋯ 0 1 1 ⋯ 0 ⋯ 1

0 1 ⋯ 0 1 0 ⋯ 0 ⋯ 1

⋮ 1 0 0 ⋮ ⋯ 1

0 ⋯ ⋯ 1 0 ⋯ ⋯ ⋯ 1 1

⎤⎥⎥⎥⎦

2  Definition and mathematical details of “simple-point process” and other basic point processes are 
given in Daley and Vere-Jones (Vol-I, 2003), for instance.
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3 � Stationarity and Bartlett spectrum decomposition

3.1 � Stationarity of Hawkes‑type processes

In our applications, we use stationary self-exciting Hawkes-type (marked) point pro-
cesses. We take the expectation of the intensity function of (11) and (12) in (−∞, t] 
as

where �0 = (�j,0).
Let a p × 1 vector of functions �(t) = (vj(t)) be �[�n(t, �)] . For sim-

plicity, we take �(t − s) = [diag(gj(t − s))] with gj(t − s) = e−�j(t−s) and 
�(0) = �p, Γ = [diag(𝛾j)] (𝛾j > 0, j = 1,… , p).

The stationarity implies � = �[�(�(s−)] and we can use the identity relation 
�(t) − �0 = ∫ t

−∞
��(t − s)�(s)ds . Then by a direct calculation, we have a set of dif-

ferential equations

provided the initial condition �(0) and the non-degeneracy condition |�| ≠ 0.
We need a condition for the convergence of �(t) as t → ∞ . Therefore, the condi-

tion for the existence of stationary point processes is that the spectral radius

where �i(�) are the characteristic roots of � = �Γ−1 . (See Theorem 2 of Kunitomo 
et al. 2017 as a special case.) When d = p = 1 (one-dimensional Hawkes process), 
� = � and Γ = 𝛾 (> 0), then � = �∕�.

3.2 � Applying the Bartlett spectrum

Hawkes (1971) introduced the spectral density for the stationary vector point pro-
cess �(t) = (Ni(t)) , which was originally developed by Bartlett (1963) without co-
jumps ( p = d ); it is defined for the conditional intensity vector in the form of

where �(u) = (�ij(u)) is a d × d matrix and �(u) = (0) (zero-matrix) for u < 0 . Let the 
Fourier transform of �(�) be

(15)�[�n(t, �)] = �0 + �

[
∫

t

−∞

C(�(s−))�(t − s)d�n(s,�)

]
,

(16)
d�(t)

dt
=
[
� − �Γ�−1

]
�(t) + �Γ�−1�0,

(17)max
1≤i≤p |𝜇i(�)| < 1,

(18)�(t) = �0 + ∫
t

−∞

�(t − u)d�(u),
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where i2 = −1.
Then, when p = d (there are no co-jumps), the Bartlett spectral matrix for fre-

quency � (∈ �) is given by

where Γ∗ in (20) is a d × d matrix for the d-dimensional vector point process and Γ∗� 
is the transposed matrix of Γ∗.

To permit co-jumps, Bartlett spectral matrix for the d-dimensional marginal point 
process vector can be defined by

where �(�) = (gij(�)) is the d × d spectral density matrix, Γ∗(�) is a p × p Fourier 
transform as (19), � = (�

�

1
,�

�

2
)
� is a p × p choice matrix, and Σ = (�ii) is the diago-

nal matrix with diagonal elements of the variances �ii (i = 1,… , p).
Then we define the relative power contribution (RPC) of the marginal spectral 

density function gii(�) (i = 1,… , d) where the frequency � can be defined using the 
joint spectral density matrix �(�) . The (i,i)-component of �(�) can be represented as

and

where aij(�) (i = 1,… , d; j = 1,… , p) are the functions of complex variables. In 
addition, the instantaneous RPC ( IRPCj→i ) can be defined by

In this way, we can measure the RPCs for any frequency � , which corresponds to 
the Granger-causality measures in the frequency domain. One important aspect of 
the above formulation is that we have a natural definition of instantaneous Granger 

(19)Γ∗(�) = ∫
∞

−∞

e−i���(�)d�,

(20)�(�) =
1

2�
[�d − Γ∗(�)]−1Σ[�d − Γ∗�(−�)]−1,

(21)�(�) =
1

2�
[�d,�][� − �Γ∗(�)]−1Σ[�

�

− �
�

Γ∗� (−�)]−1
[
�d
�

]
,

(22)gii(�) =

p∑
k=1

|aik(�)|2�kk

(23)���k→i(�) =
|aik(�)|2�kk

gkk(�)
(i = 1,… , p; k = 1,… , d),

(24)����j→i(�) =
|aij(�)|2�jj

gii(�)
(j = d + 1,… , p).
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causality in the frequency domain, that is different from discrete time series 
modeling.

3.3 � Conditional probability prediction

An important application of conditional intensity modeling involves assessing 
the conditional probability of rare events in the future from past observations. Let 
�(j) (j = 1,… , d) be the first arrival time of an event in the j− th variable. Then we can 
write the probability of the random variable �(j) as

where N
T

 is the �−field of information available at time T < T
′ and �n

j
(t, u|N

T
) is the 

conditional intensity of the j-th variable.
Kunitomo et al. (2017) conducted some experiments suggesting that useful informa-

tion on the conditional probability of future events can be extracted from past obser-
vations. For instance, they provided an important example vis-à -vis the conditional 
probability prediction of the Lehman Shock occurred in 2008 as a global crisis given 
past information available before that event. This illustrates the potential value of our 
approach.

4 � Estimation and non‑causality tests

4.1 � Likelihood function

When the point process is simple and there is no co-jump, the log-likelihood function 
of the (d-dimensional) multivariate point process is known (see Daley 2003; Kunitomo 
et al. 2017) and it is given by

 The log-likelihood function of the marked multivariate point process with the den-
sity function fi(x) is given by

where

(25)Pr(�(j) ≥ T
� |N

T
) = exp

(
−�

T
�

T

�n
j
(t, u|N

T
)dt

)
,

(26)
d∑
i=1

{
−∫

T

0

�n
i
(s)ds + ∫

T

0

log(�n
i
(s))dNn

i
(s)

}
.

(27)LT = L1T + LT2,
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and the density function for the tail probability is given by

Then we can apply the maximum likelihood (ML) method to L1T and L2T separately. 
In this formulation we use the GPD for the marginal distribution of return process.

When co-jumps are permitted, the log-likelihood function of the (d-dimensional) 
marginal point process is not as per the above form; instead, it should be given by

where

and L∗
2T

= L2T.
In our applications, we are principally concerned with the case in which d = 2 ; 

thus, there is only one extra term in the likelihood function because p = 2d − 1.
We assume the stationarity condition (17) and the existence of second order 

moments of �(�) = cij(�(s)) in the statistical inference of Hawkes-type point pro-
cesses without and with co-jumps. Further, we take �(�) as the stationary conditional 
intensity and some q × p predictable processes �(t)  having second order moments. 
(Here q ≥ 1 and we utilize the notation �T (t) in Appendix, for instance.)

Then, because of the resulting martingale property given the information avail-
able at each time, it is straightforward to confirm the asymptotic properties as we 
have

L1T =

d∑
i=1

{
−∫

T

0

�n
i
(s)ds + ∫

T

0

log(�n
i
(s))dNn

i
(s)

}
,

L2T =

d∑
i=1

{
∫

T

0

log fi(x
n
i
(s−))dNn

i
(s)

}

(28)fi(x) =
1

�∗
i

(
1 + �i

xi − ui

�∗
i

)−
1

�i
−1

(i = 1,… , d).

(29)L∗
T
= L∗

1T
+ L∗

2T
,

L∗
1T

=
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(s)ds + �

T

0

log(�n
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(s))dNn
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(s)

}

+
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i≠j=1

{
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T

0

�n
ij
(s)ds + �

T

0

log(�n
ij
(s))dNn

ij
(s)

}

+⋯ +

{
−�

T

0

�n
i…d

(s)ds + �
T

0

log(�n
i…d

(s))dNn
i…d

(s)

}
.

(30)1

T ∫
T

0

�(t)[�(t, u) − �(t, �)]dt ⟶ 0 (a.s.)
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and

as T → ∞.
For the one-dimensional point processes with the stationary intensity function 

with p = q = 1 , Ogata (1978) gave a set of sufficient conditions for the consist-
ency and asymptotic normality of the ML estimation. His derivations are based on 
a martingale central limit theorem (MCLT), and it is straightforward to extend his 
arguments to the multi-dimensional case. For the sake of completeness, we provide 
details of our approach based on a new MCLT in the Appendix, which may be more 
general than the standard literature. In the next subsection, we develop new non-cau-
sality tests in the sense of Granger, which are explored in the context of our empiri-
cal applications.

4.2 � Non‑causality tests

We develop and use novel GNC tests based on the likelihood ratio principle for the 
Hawkes-type point processes. In particular, our results in this subsection, whose 
derivations are given in the Appendix, include not only the multivariate extension 
of existing results, but also cases in which the resultant limiting Fisher information 
matrix can be random variables. We first state our results for the case of no co-jumps 
under a set of regularity conditions, which will be extended to the more general 
case. The proof is lengthy, but often along the standard line of asymptotic arguments 
and we only give its outline in Appendix.

Theorem 1  Let the log-likelihood function of the Hawkes-type point processes with 
true parameters be LT (�0) in (26) and (27), the log-likelihood function with the 
ML estimator 𝜃̂ML be LT (𝜃̂ML) under � ∈ Θ and the log-likelihood function with the 
restricted maximum likelihood estimator 𝜃̂RML be LT (𝜃̂RML) under � ∈ Θ1 ( Θ1 ⊂ Θ ). 
We assume the sufficient condition for stationarity, the existence of the second-order 
moment condition of �(�) , and we assume that the parameter spaces � ∈ Θ in �r 
and � ∈ Θ1 in �r1 (0 ≤ r1 < r) are compact sets. Under a set of regularity conditions 
(see Theorem A-3 in the Appendix), as T → ∞,

where r − r1 is the number of restrictions of � = (�k) and �2(r − r1) is the �2−ran-
dom variable with r − r1 degrees of freedom.

The details of a set of regularity conditions are discussed in the Appendix. When 
co-jumps are permitted in the Hawkes-type processes, we cannot apply Theorem 1, but 
it is important to obtain the corresponding results in such cases for econometric appli-
cations. When we use discrete versions of point processes, which would be often the 
case in econometric applications, we need to consider the existence of co-jumps. We 

(31)
1

T ∫
T

0

�(t)[�(t, u) − �(�)]dt
p

⟶ 0

(32)2
{
LT (𝜃̂ML) − LT (𝜃̂RML)

} d
−→𝜒(r − r1),
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then develop non-causality tests based on the likelihood ratio principle. In this respect, 
note that in our setting discussed in Sect. 2, although we permit co-jumps, it is possible 
to apply the martingale central limit (MCLT) theorem for point processes. Our results, 
in consideration of co-jumps, are an extension of Theorem 1. The proof is lengthy, but 
often along the standard line of asymptotic arguments and we only give its outline in 
Appendix.

Theorem 2  Let the log-likelihood function of the Hawkes-type point processes with 
true parameters be L∗

T
(�0) in (29), the log-likelihood function with the ML estimator 

𝜃̂ML be L∗
T
(𝜃̂ML) under � ∈ Θ and the log-likelihood function with the restricted ML 

estimator 𝜃̂RML be L∗
T
(𝜃̂RML) under � ∈ Θ1 ( Θ1 ⊂ Θ ). We assume sufficient conditions 

for stationarity, and the existence of the second-order moment condition of �(�), 
and we assume that the parameter spaces Θ ∈ � in �r and Θ1 ∈ � in �r1 (0 ≤ r1 < r) 
are compact sets. Under a set of regularity conditions (see Theorem A-3 in Appen-
dix), as T → ∞,

where r − r1 is the number of restrictions of � = (�k) and �2(r − r1) is the �2−ran-
dom variable with r − r1 degrees of freedom.

5 � Simulations

To examine the relevance of the estimation and testing procedure proposed in this 
paper, a set of simulations are executed. The model used in these simulations is a 
simultaneous Hawkes-type model with two dimension and the intensity functions are 
given by

(33)2
{
L∗
T
(𝜃̂ML) − L∗

T
(𝜃̂RML)

} d
−→𝜒(r − r1),

�n
1
(t) =�n

10
+ ∫

t

0

�11e
−�(t−s)X1dN

n
1
(s) + ∫

t

0

�12e
−�(t−s)X2dN

n
2
(s)

+ ∫
t

0

�13e
−�(t−s)

[
max

i
Xi

]
dNn

12
(s),

�n
2
(t) =�n

20
+ ∫

t

0

�21e
−�(t−s)X1dN

n
1
(s) + ∫

t

0

�22e
−�(t−s)X2dN

n
2
(s)

+ ∫
t

0

�23e
−�(t−s)

[
max

i
Xi
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dNn

1,2
(s),

�n
12
(t) =�n

12,0
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0

�31e
−�(t−s)X1dN

n
1
(s) + ∫

t

0
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−�(t−s)X2dN
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�33e
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where 𝜆n
1,0

> 0, 𝜆n
2,0

> 0, 𝜆n
12,0

> 0 and 𝛾 > 0.
We first generate stock price returns using the GPD as marginal and the two-

dimensional Gaussian copura. Then we employ ML method to obtain estimates of 
the underlying parameters. We provide a set of visualization (Figs. 1, 2, 3 and 4) 
to illustrate the key results on the finite sample distributions of the ML estimator. 
All histograms are standardized for the comparison of the standard normal distri-
butions as

where � = (�i) is a vector of parameters and 𝜃̂ is the ML estimator.
In our numerical evaluations, the values of estimate sometimes hit the bound-

aries of the non-negativity of intensity functions with finite samples, resulting 
in instabilities. To mitigate against this, we thus set non-negativity restrictions 
on parameters in our simulations. The ensuring results are reasonable, but some-
times we observe that the ML estimators of coefficients exhibit biases, although 
they are not very large (Fig. 2 is a typical example of this). The sample size in 

(34)�1∕2
n

(𝜃̂ − 𝜃),

Table 1   Simulation results

�∗
11

�∗
12

�∗
13

�∗
21

�∗
22

�∗
23

True 0.57000 0.00000 0.19000 0.00010 0.71000 0.09500
Mean 0.63641 0.00259 0.12387 0.03994 0.76318 0.07905
RMSE 0.01045 0.00426 0.00913 0.00568 0.01004 0.00557

�∗
31

�∗
32

�∗
33

�∗ �∗
1,0

�∗
2,0

�∗
3,0

True 0.05900 0.12000 0.20000 0.02700 0.00930 0.00530 0.00084
Mean 0.06748 0.13922 0.11315 0.02859 0.00853 0.00427 0.00107
RMSE 0.00272 0.00380 0.00963 0.00033 0.00019 0.00017 0.00007

Fig. 1   �∗
12
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Fig. 2   �∗
21

Fig. 3   �∗
23

Fig. 4   �∗
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our experiments was around 1000 because it may be similar to the data size 
in the empirical examples and it seems that we need large number of data for 
reducing these biases. We summarize the configuration of our numerical experi-
ments: the number of replication of simulations as 100, and for GPD(�j , �j ) we 
set (�1, �1) = (0.007, 0.22) , and (�2, �2) = (0.008, 0.15) . These numerical values 
give reasonable results, and they are based on the preliminary estimates from our 
empirical studies.

Among many simulations we illustrate key results in Table 1 and Figures. Note 
that because we have taken �∗

12
= 0 , we have a sampling distribution around zero, 

and the resulting estimate is not significant as illustrated in Fig. 1. Other estimates 
of �ij , which are around their true values, take reasonable values on average in the 
sense that they are not significantly different from the true values, and the sampling 
distributions are illustrated in Figs. 2, 3 and 4. We observe some positive biases on 
the estimates of �ij and negative biases on the estimates of initial intensities, which 
may be due to the results of the non-negative constraints of the parameter restric-
tions and the number of sample size we employed. We have imposed the non-nega-
tivities of the intensities of variables directly in the ML computation.

In the ML estimation, there can be some effects of initial conditions and we have 
investigated this problem in the SHPP models, where such sensitivity is also appar-
ent, albeit minor in overall simulations.

We also use the �2-distributions as the limiting distributions of the likelihood 
ratio statistics for hypothesis testing in our empirical study. We confirm that the �2

-approximations with finite samples are basically appropriate.

6 � Empirical applications

In this section, we report the empirical results on two empirical examples using the 
SHPP and THPP models. The first concerns the three major stock markets, namely, 
Tokyo, New York, and London. Since time differences exist when each market is 
open and closed, it is reasonable to assume that there are no co-jumps. In terms 
of the second example, we focus on analyzing the simultaneous interaction among 
Tokyo and Hong Kong financial markets. In this latter case, since the time zone dif-
ferences are small (just a 1 h difference) compared to the first empirical example, 
it may be natural to use SHPP, which is the extended Hawkes-type point process 
model with co-jumps. Because of the limitations of data available to us, we have 
ignored the possibilities of crossing the threshold from below except the first one in 
a day, or between the day-start to day-minimum.

In the first example, daily data of day-start to day-minimum data are employed cov-
ering Nikkei225, S&P500 and FTSE100 during January 2, 1990–August 26, 2015. We 
choose u = 2% based on the earlier study of Kunitomo et al. (2017), which used the for-
mulation of discrete process of returns and analyzed daily data of day-start to day-end 
for this case. Their empirical results were quite similar to those in the following analy-
sis, but the numerical values are different. All computations were carried out by the 
original programs written in R. Example 2, which concerns the Tokyo and Hong-Kong 
markets, is entirely new and is the principal driver of the SHPP models developed in 
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this study. We will report the results for Example 2 using this type of data. Nonetheless, 
we have done robustness check of our results on the estimation of conditional intensity 
modeling and non-causality tests. We omit reporting the details of some results using 
the day-start to day-end data because they are basically quite similar.

6.1 � Example 1 (Tokyo–NY–London)

We first maximize the likelihood L2T to estimate the marginal distributions of finan-
cial market returns. As shown in Table 2, we confirmed that the marginal distributions 
of market returns (i.e., log-returns) have thicker tails than the normal distribution. It 
is because the estimates of �i (i = 1, 2, 3) are positive and it is appropriate to use the 
GDP in our estimation procedure. The result means that the Frechet-type tail distribu-
tion is appropriate since the domain of attraction of Gaussian distribution is Gumbel 
(see Embrechts et al. 1998 Chapter 3 for instance). The standard deviations (SD) (or the 
standard errors of the estimates) in Tables are estimated by the numerical evaluation of 
the Fisher information matrix.

For the estimated models with two dimensions ( d = p = 2 ), we take the impact func-
tions c(x) as Model 1 ( c(x) = 1, Model 2 ( c(x) = x, and Model 3 c(x) = xc (0 < c < 1) . 
The estimated values of the log-likelihood and Akaike information criterion (AIC) are 
those with the marginal distribution L1T . The full likelihood can be calculated using L1T 
and L2T . The standard deviations (SD) or standard errors of the estimated coefficients are 
also evaluated numerically using the inverse of the estimated Fisher information matrix.

Model 1

We estimated the intensity function as

�n
1
(t) = �n

10
+ ∫

t

0

�11e
−�11(t−s)dNn

1
(s) + ∫

t

0

�12e
−�12(t−s)dNn

2
(s),

�n
2
(t) = �n

20
+ ∫

t

0

�21e
−�21(t−s)dNn

1
(s) + ∫

t

0

�22e
−�22(t−s)dNn

2
(s).

Table 2   Tail distributions

Log likelihood �∗
1

�1

Tokyo − 1919.31 0.00757 0.22778
SD 0.00051 0.05552

Log likelihood �∗
2

�2

New York − 1346.55 0.00874 0.13978
SD 0.00064 0.05648

Log likelihood �∗
3

�3

London − 1479.35 0.0079 0.18246
SD 0.00058 0.05808
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Since the ML estimates can be numerically sometimes unstable without any restric-
tions on the parameter space, we have set restrictions that the discounted param-
eters �ij (i, j = 1, 2) have the same value � in the following estimation. The estimation 
results for Case 1 are presented in Tables 3, 4.

In Table 3, N1 of Model 1 corresponds to Tokyo and N2 corresponds to New York 
in Tokyo–New York markets. In terms of Tokyo–London, in Table 4 N1 of Model 1 
corresponds to Tokyo while N2 corresponds to London.

The most important finding here (and in Tables 5, 6 below), is that the coefficient 
�12 is statistically significant while the coefficient �21 is not statistically significant. 
This represents a kind of non-causality test, but we will discuss this more formally 
below. We found reasonable values for other parameters in their magnitudes and sig-
nificance, and they are significant for both Tokyo–New York and Tokyo–London 
markets.

Table 3   Tokyo–New York

Log likelihood AIC �11 �12

Tokyo–NY − 3570.69 7155.37 0.0199 0.0073
SD 0.0024 0.0019

�21 �22 � �10 �20

0.0000 0.0267 0.0326 0.0094 0.0052
0.0009 0.0030 0.0034 0.0017 0.0011

Table 4   Tokyo–London

Log likelihood AIC �11 �12

Tokyo–London − 3670.86 7355.73 0.0209 0.0052
SD 0.0023 0.0016

�21 �22 � �10 �20

0.0000 0.0279 0.0333 0.0103 0.0051
0.0010 0.0030 0.0033 0.0017 0.0011

Table 5   Tokyo–New York

Log likelihood AIC �11 �12

Tokyo–NY − 3562.02 7138.03 0.6508 0.2193
SD 0.0784 0.0586

�21 �22 � �10 �20

0.0000 0.8582 0.0324 0.0105 0.0058
0.0287 0.0985 0.0035 0.0017 0.0011
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Model 2

We estimated the intensity function as

and the estimation results are presented in Tables 5, 6.
In the present case, we have similar values for the estimated coefficients as Case 

1 except �21 . The significance of coefficient is more pronounced here compared to 
Case 1, which corresponds to the likelihood values and their AIC.

Model 3

We estimated the intensity function as 0

�n
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1
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c11dNn
1
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0

�12e
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2
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1
(s) + ∫
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0
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−�(t−s)X2

c22dNn
2
(s).

Table 6   Tokyo–London

Log likelihood AIC �11 �12

Tokyo–London − 3660.22 7334.43 0.6866 0.1423
SD 0.0779 0.0506

�21 �22 � �10 �20

0.0000 0.9089 0.0329 0.0114 0.0056
0.0310 0.0990 0.0033 0.0017 0.0011

Table 7   Tokyo–New York

Log likelihood AIC �11 �12 �21 �22

Tokyo–NY − 3562.23 7140.47 0.1702 0.0575 0.0000 0.2234
SD 0.0625 0.0242 0.0084 0.0791

� �10 �20 c = c11 = c12 = c21 = c22

0.0321 0.0100 0.0055 0.6146
0.0035 0.0017 0.0011 0.1049
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Although we used the ML estimation in this case, the estimates of ML are often 
unstable numerically. In particular, we often found numerical difficulty to calculate 
the standard errors of estimates (Tables 7, 8). It was probably because the optimiza-
tion computations with R often were unstable without any restrictions on the param-
eter space due to the near-singularity of the estimated Fisher information. Then we 
have tried to set some restrictions that the discounted parameters �j (j = 1, 2) have 
the same value � and we set c11 = c12, c21 = c22 for instance. The results of estima-
tion with this restriction have been given in Kunitomo et al. (2017) with the datasets 
of day-start to day-end. Here we report the estimation results of Model 3 with fur-
ther restriction as c = c11 = c12 = c21 = c22.

Overall, the results suggest that Models 2 and 3 are better than Model 1. In addi-
tion, according to AIC, Model 2 is better than Model 3 mainly because the latter is 
over-parametrized for Tokyo–New York markets. Hence, we adopted Model 2 in the 
following non-causality tests.

6.2 � Non‑causality tests

In applying the GNC test procedure, we set the impact function as c(x) = x . We 
report our empirical results for the hypothesis H0 ∶ �ij = 0 using the likelihood 
ratio test (LRT) statistics based on the Tokyo–New York data. For the null-hypoth-
esis H0 ∶ �21 = 0, LRT statistic is 2 × (−3562.015 + 3562.017) ∼ 0 , and we could 
not reject the null-hypothesis. (The upper 95% critical point of �2(1) is 3.481 in 
Table 5.) This means that changes of the Japanese financial market have little impact 
on the U.S. financial market.

For testing the null-hypothesis H0 ∶ �12 = 0, LRT statistic based on the 
Tokyo–New York data was 2 × (−3562.017 + 3572.843) = 21.652, and the null-
hypothesis was rejected. Thus, there is a significant effect from U.S. financial mar-
kets to Tokyo financial market (see Table 5).

Similarly, in Tokyo–London markets, for the null-hypothesis H0 ∶ �21 = 0, LRT 
statistic was 2 × (−3660.215 + 3660.215) ∼ 0.0; that the null-hypothesis was not 
rejected. Thus, knock-on effects from Tokyo to London financial market are rather 
limited.

For the null-hypothesis H0 ∶ �12 = 0, LRT statistic based on the Tokyo–Lon-
don data was 2 × (−3660.215 + 3665.593) ∼ 10.756 , and the null-hypothesis was 

Table 8   Tokyo–London

Log likelihood AIC �11 �12 �21 �22

Tokyo–London − 3659.49 7335.88 0.4244 0.0898 0.0000 0.5614
SD 0.6608 0.0994 0.0397 0.6023

� �10 �20 c = c1,1 = c1,2 = c2,1

= c2,2

0.0329 0.0111 0.0055 0.8593
0.0033 0.0018 0.0014 0.3140
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rejected. This means that the London market affects Tokyo market (see Tables 4 and 
6).

To summarize our findings among three major financial markets, the effects of the 
Japanese market on the U.S. and London are rather limited, while we found significant 
effects of both of these markets on the Tokyo market. This finding agrees with several 
empirical findings obtained using different statistical methods as explained by Kuni-
tomo et al. (2017).

6.3 � Example 2: Tokyo–Hong Kong markets

For the second example, we have used daily data of day-start to day-minimum from 
the Nikkei-225 and the Hansen Index of Hong-Kong during January 2, 1990–August 
26, 2015, which is the same sample period as Example 1. Since the trading periods in 
these two financial markets are quite similar, we expected simultaneous movements in 
the two markets. For the estimated models with two dimensions ( d = 2, p = 3 ), we take 
the impact functions c(x) as Model 1 c(x) = 1 and Model 2 c(x) = x . Because there can 
be many additional parameters in Model 3, which has the general form of impact func-
tions, the estimated results are often not statistically significant and we omitted report-
ing our results thereof.

We first maximize the likelihood L∗
2T

 to estimate the marginal distributions of finan-
cial market returns. As we have shown before, we confirmed that the marginal distri-
butions of market returns have thicker tails than the normal distribution in Table  9. 
Hence, it may be appropriate to use the GPD in our estimation. It is because the esti-
mates of �i (i = 1, 2) are positive and it means that the Frechet-type tail distribution is 
appropriate

The estimated model consists of two dimensions ( d = 2 and p = 3 ), and we take the 
impact functions c(x) as Case (1) c(x) = 1 and Case (2) c(x) = x . The estimated values 
of the log-likelihood and AIC are those with the marginal distributions L∗

1T
 . The full 

likelihood can be calculated using L∗
1T

 and L∗
2T

 . The SD of the estimated coefficients 
are evaluated numerically using the inverse of the estimated Fisher information matrix.

Model 1

We estimated the intensity function as

Table 9   Tail distributions

Log likelihood �∗
1

�1

Tokyo − 1919.307 0.00757 0.22778
SD 0.00051 0.05552

Log likelihood �∗
2

�2

HK − 1888.716 0.00861 0.15773
SD 0.00055 0.05076



319

1 3

Japanese Journal of Statistics and Data Science (2018) 1:297–332	

Again the ML estimates can sometimes be numerically unstable, we set restrictions 
so that the discounted parameters �ij (i, j = 1, 2, 3) have the same value � . We show 
the estimation results in Table 10.

Note that in the above table N1 of Model 1 corresponds to Tokyo and N2 corre-
sponds to Hong Kong in Tokyo–Hong Kong markets.

Model 2

We estimated the intensity function as

�n
1
(t) =�n

10
+ ∫

t

0

�11e
−�(t−s)dNn

1
(s) + ∫

t

0

�12e
−�(t−s)dNn

2
(s)

+ ∫
t

0

�13e
−�(t−s)dNn

1,2
(s),

�n
2
(t) =�n

20
+ ∫

t

0

�21e
−�(t−s)dNn

1
(s) + ∫

t

0

�22e
−�(t−s)dNn

2
(s)

+ ∫
t

0

�23e
−�(t−s)dNn

1,2
(s),

�n
12
(t) =�n

12,0
+ ∫

t

0

�31e
−�(t−s)dNn

1
(s) + ∫

t

0

�32e
−�(t−s)dNn

2
(s)

+ ∫
t

0

�33e
−�(t−s)dNn

12
(s).

Table 10   Tokyo–Hong Kong

Log likelihood AIC �11 �12 �13

Tokyo–HK − 3954.73 7935.47 0.015 0.000 0.012
SD 0.002 0.001 0.0036

�31 �32 �33

Tokyo–HK 0.0015 0.0035 0.0086
SD 0.0007 0.0008 0.0022

�21 �22 �23 � �1 �2 �3

Tokyo–HK 0.000 0.020 0.007 0.0262 0.0090 0.0048 0.0008
SD 0.00074 0.0025 0.0033 0.0028 0.0016 0.0012 0.0007
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We present our estimation results in Table 11. From our estimated results, we find 
that Model 2 is better than Model 1 as in Example 1. When comparing Tables 10 
and 11, we see several interesting findings. The value of AIC in Model 2 is better 
than Model 1 as we observed in the Tokyo–New York and Tokyo–London datasets. 
The estimates of coefficients of past effects are often statistically insignificant in the 
estimated intensity functions ( �12 and �21 ), while the contemporaneous effects of the 
co-jump term are statistically significant ( �13 and �23 ). This aspect basically agrees 
with our motivations for developing the SHPP models.

6.4 � Non‑causality tests

In applying the Granger non-causality test procedure, we set the impact function as 
c(x) = x . We report our empirical results for the hypothesis H0 ∶ �ij = 0 using LRT 
statistics.

�n
1
(t) =�n

10
+ ∫

t

0

�11e
−�(t−s)X1dN

n
1
(s) + ∫

t

0

�12e
−�(t−s)X2dN

n
2
(s)

+ ∫
t

0

�13e
−�(t−s)

[
max

i
Xi

]
dNn

1,2
(s),

�n
2
(t) =�n

20
+ ∫

t

0

�21e
−�(t−s)X1dN

n
1
(s) + ∫

t

0

�22e
−�(t−s)X2dN

n
2
(s)

+ ∫
t

0

�23e
−�(t−s)

[
max

i
Xi

]
dNn

12
(s),

�n
12
(t) =�n

12,0
+ ∫

t

0

�31e
−�(t−s)X1dN

n
1
(s) + ∫

t

0

�32e
−�(t−s)X2dN

n
2
(s)

+ ∫
t

0

�33e
−�(t−s)

[
max

i
Xi

]
dNn

1,2
(s).

Table 11   Tokyo–Hong Kong

Log likelihood AIC �11 �12 �13

Tokyo–HK − 3944.79 7915.58 0.5675 0.000 0.1930
SD 0.764 0.0373 0.0738

�31 �32 �33

Tokyo–HK 0.0586 0.1242 0.0547
SD 0.0007 0.0008 0.0022

�21 �22 �23 � �1 �2 �3

Tokyo–HK 0.0001 0.7147 0.0950 0.0267 0.0094 0.0053 0.0008
SD 0.0241 0.0871 0.0701 0.0029 0.0016 0.0012 0.0007
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Fig. 5   Relative power contributions of Nikkei-225 (Tokyo–NY model)
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Fig. 6   Relative power contributions Nikkei-225 (Tokyo–London model)
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For the null-hypothesis H0 ∶ �13 = 0, LRT statistic based on Tokyo–Hong Kong 
data was 11.14 and we reject the null-hypothesis. (The upper 95% critical value of 
�2(1) is 3.481). Thus, we revealed a significant instantaneous causal relationship 
between the Japanese financial market and Hong-Kong financial markets.

For testing the null-hypothesis H0 ∶ �12 = 0, LRT statistics was 0.0, and 
the null hypothesis was accepted. In addition, for testing the null-hypothesis 
H0 ∶ �12 = 0, �13 = 0 , LRT statistic was 11.14; thus the null-hypothesis was rejected.

For the null-hypothesis H0 ∶ �21 = 0, LRT statistic was 0.006 and we cannot 
reject the null-hypothesis. (The upper 95% critical value of �2(1) is 3.481). For test-
ing the null-hypothesis H0 ∶ �23 = 0, LRT statistic was 2.42,  and the null-hypoth-
esis was accepted. Similarly, for the null-hypothesis H0 ∶ �21 = 0, �23 = 0 LRT sta-
tistic was 2.66,  and the null-hypothesis could not be rejected.

To summarize our findings in this subsection among Tokyo and Hong Kong 
financial markets, we found that the simultaneous effects of the two markets are sig-
nificant, while the effects of past events are rather small.

6.5 � Further empirical analysis

Here we employ spectral decomposition and RPC as explained in Sect.  3; see 
Figs. 5, 6 and 7 for the United States, United Kingdom, and Hong Kong, respec-
tively. In the former (two) decompositions, we assume there are no co-jumps, 
while in the last one co-jumps are permitted. We adopted Models with cij(x) = x 
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because the resulting models minimize AIC. The graphs are depicted at each 
frequency, but truncated in x axis because it seems that our empirical data of 
point processes do not have much information in high frequencies.

In particular, Fig. 5 gives the spectral decomposition based on the estimated 
intensity model (Model 2) from Japan (Nikkei-225) data, which gives the rela-
tive contributions from Japan itself and from US ( S&P 500). Figure 6 gives the 
spectral decomposition based on the estimated intensity model (Model 2) from 
Japan (Nikkei-225) data, which gives the relative contributions from Japan itself 
and from UK (FTSE). Then Fig.  7 gives the spectral decomposition based on 
the estimated intensity model with co-jumps (Model 2) from Japan (Nikkei-225) 
data, which gives the relative contributions from Japan itself, Hong Kong 
(Hansen) and the instantaneous relation.

From these figures, we found that for the relationship between the Tokyo–New 
York financial markets, self contribution of past events plays a major role, while 
there is some contribution from New York to Tokyo in the low frequency, which 
corresponds to the long-run relationship. On the other hand, for the relationship 
between the Tokyo–Hong Kong financial markets, the instantaneous contribu-
tion and the self contribution play major roles in all frequencies. This aspect 
reflects the fact that we used SHPP models.

7 � Conclusions

In this paper, we developed a new method of econometric analysis of multivariate 
time series of events and proposed the simultaneous multivariate Hawkes-type point 
process (SHPP) modeling. Unlike some existing studies, we developed and used 
new statistical models for simultaneous sudden, large events and delayed events 
occurring explicitly. Using the SHPP models, we investigated Granger causality and 
instantaneous Granger causality on several financial markets and economies, and 
developed bespoke non-causality tests.

By applying GNC and IGNC tests, we revealed the important relationships 
among major financial markets and several empirical findings. In the Tokyo–New 
York financial markets, there is a strong unidirectional causation, while in the 
Tokyo–Hong Kong financial markets the simultaneous effects are dominant.

Several questions remain to be answered. First, although we used Hawkes-type 
marked point processes, there can be many possible non-linear point processes and 
Kurisu (2018) discussed one way to justify the use of SHPP models. In economic 
and financial econometrics, it is standard to handle discrete time series observa-
tions in yearly, monthly, weekly, daily, hourly, and per minute terms. Thus, we need 
a coherent way of investigating abrupt or sudden events, and we propose one way 
to deal with discrete time series events in this paper. In this respect, it should be 
interesting to investigate the robustness of our empirical results further. Second, the 
choice of threshold parameter is an important issue that is related to the relevance of 
the GPD in SEVT. Since we used a simple threshold parameter, we need a convinc-
ing justification on the choice of threshold. Finally, when d > 2 there can be many 
parameters to be estimated, and the estimated parameters would often be statistically 
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insignificant. This aspect is important when we have the possibility of co-jumps and 
we used the likelihood and its AIC as a criterion. We need to investigate the problem 
of choosing statistical point process models further.

These issues are currently under investigation, we shall report our progress in 
these respects on another occasion.
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Appendix: Mathematical details

In this Appendix, we provide some mathematical details, which are related to exposi-
tions in the main text, and the outline of proofs of Theorems 1 and 2 in Sect. 4.2. In the 
statistical analysis of point processes, Ogata (1978) derived the asymptotic properties 
of consistency and asymptotic normality of the maximum likelihood estimation for 
one dimensional intensity models, which have since been classical and widely cited in 
later studies. He obtained the results using a martingale central limit (CLT) theorem 
for point processes, which is not widely known among econometricians; in addition, 
the asymptotic normality holds under more general conditions that are often cited. 
Hence, we first discuss some properties of jump martingales with a continuous time 
parameter and then apply the CLT for deriving the Wilks property of non-causality 
tests. We omit the subscript n without any loss of generality in this Appendix.

(i) A Martingale CLT
Let (�, , P) be the probability space and {t} (0 ≤ t ≤ T) be the continuous-

time filtration. We present a general martingale CLT for one-dimensional point pro-
cesses, which is useful for our application.

Theorem A.1:  Let an -adapted simple point process on �+ be N and the -adapted 
(continuous) compensator be A. We assume that for any T (> 0) there exist an t

-adapted function gT (t) (0 ≤ t ≤ T) and an 0−adapted (positive) random variable 
� , which satisfy the following conditions.

	 (i)	 �
[
1

T
∫ T

0
(gT (x))

2dA(x)
]
< ∞,

	 (ii)	 For any 𝛿 (> 0) , 

(A.35)
1

T1+�
A(T)

p
⟶ 0,

http://creativecommons.org/licenses/by/4.0/
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	 (iii)	 As T ⟶ ∞

	 (iv)	 For any c > 0 and some positive 𝜖 (0 < 𝜖 < 1∕6) , as T → ∞

Then

converges to U� in the sense of 0-(stable convergence), where U is N(0, 1), 
which is independent of 0.

Remark A‑1  The method of proof is basically a modification of that given by Daley 
and Vere–Jones (Vol-II, 2008) as their Theorem 14.5.I. They derived a martingale 
CLT under a Lyapunov condition. Our condition includes the speed of divergence of 
compensator, which may be a reasonable condition for applications.

Proof  For any real number y and fT (u) = (1∕
√
T)gT (u) , we define

Using Lemma A-1 below, when A(t) and N(t) are a continuous process and a pure 
jump process, respectively, we can represent

where ti are jump times. Using the transformation of jump process, we have

(A.36)1

T ∫
T

0

(gT (x))
2dA(x)

p
⟶ �2,

(A.37)�

[
1

T �
T

0

[gT (x)I(|gT (x)| > cT𝜖)

]2
dA(x)|0]

p
⟶ 0.

(A.38)XT =
1√
T
∫

T

0

gT (x)[dN(x) − dA(x)]

(A.39)�T (t, y) = exp

(
iy∫

t

0

fT (u)[dN(u) − dA(u)] +
1

2
y2 ∫

t

0

[fT (u)]
2dA(u)

)
.

(A.40)
�T (t, y) = exp

(
1

2
y2 ∫

t

0

[fT (u)]
2 − iy∫

t

0

fT (u)]dA(u)

)

×
∏
i

[(1 + (exp(iyfT (ti) − 1))ΔN(ti)],
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We define the stopping time � by � = inf{t ∶ ∫ T

0
[fT (u)]

2dA(u) ≥ �2}. Then for any 
0−measurable and essentially bounded random variable Z, we set t = T ∧ � . By the 
martingale property we have

Hence

where

For 0 < u < T ∧ 𝜏 , from (A.39) we find that

In addition, we take positive cT and using the Taylor-expansion,

�T (t, y) − 1

= ∫
t

0

�T (u−, y)
[
1

2
y2[fT (u)]

2 − iyfT (u)]dA(u) + [exp(iyfT (u)) − 1]dN(u)
]

= ∫
t

0

�T (u−, y)(exp(iyfT (u)) − 1)(dN(u) − dA(u))

+ ∫
t

0

�T (u−, y)
[
exp(iyfT (u)) − 1 − iyfT (u) +

1

2
y2[fT (u)]

2
]
dA(u).

�

[
Z �

T∧�

0

�T (u−, y)(exp(iyfT (u)) − 1)(dN(u) − dA(u))|0

]
= 0.

|�(Z�T (T ∧ �)|0] − Z)| ≤ �[|Z|�
T∧�

0

|�T (u−, y)R(fT (u), y)|dA(u)|0],

R(fT (u), y) = exp(iyfT (u)) − 1 − iyfT (u) +
1

2
y2[fT (u)]

2.

|�T (T ∧ �)| ≤ exp

(
1

2
y2 �

T∧�

0

[fT (u)]
2dA(u)

)
≤ exp

(
1

2
y2�2

)
.

|R(fT (u), y)| ≤ y2|fT (u)|2I[|fT (u)| > cT ] +
|𝜃y|3
3!

|fT (u)|3I[|fT (u)| ≤ cT ]
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and then

where |�| ≤ 1.
We set fT (u) = gT (u)∕

√
T  and cT = c∕T�1 for a positive c and 3𝛿1 > 1 . Then for 

the second term of the right-hand side of (A.41)

which converges to zero by (A.35).
By setting � = 1∕2 − �1 with 1∕3 < 𝛿1 < 1∕2 , the first term of the right-hand side 

of (A.41) is

which converges to zero by (A.37) with 0 < 𝜖 < 1∕6.
The left-hand side multiplying exp[(−1∕2)y2�2] is equal of larger than

where

It is because

(A.41)

|�(Z𝜁T (T ∧ 𝜏)|0] − Z|
≤ exp

(
1

2
y2𝜂2

)
�

{
|Z|

[
y2 �

T∧𝜏

0

|fT (u)|2I[|fT (u)| > cT

]
dA(u)

+|y𝜃|3 �
T∧𝜏

0

|fT (u)|3I[|fT (u)| ≤ cT ]dA(u)

}
,

�
T∧�

0

|fT (u)|3I[|fT (u) ≤ cT ]dA(u) ≤ c3

T3�1
A(T ∧ �),

∫
T∧𝜏

0

|fT (u)|2I[|fT (u)| > cT ]dA(u) =
1

T ∫
T∧𝜏

0

|gT (u)|2I[|gT (u)| > cT𝜖]dA(u),

|||�(Z[�Te
iyXT − e−1∕2y

2�2 ])
|||,

�T = exp

[
−iy∫

T

T∧�

fT (u)[dN(u) − dA(u)] −
y2

2

(
�2 − ∫

T

0

[fT (u)]
2dA(u)

)

+

]
.

�T (T ∧ �, y)e−y
2�2∕2 = eiyXT

[
e
iy ∫ T∧�

0
fT (u)(dN−dA)+

y2

2
∫ T

0
fT (u)

2dA−iy ∫ T

0
fT (u)(dN−dA)−

y2�2

2

]

= eiyXT�T .
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Since |�T | ≤ 1 and (A.36), we find � → 1 as T → ∞ . Then we have that 
�[Z(�T − 1)eitXT )] → 0 as T → ∞ and

Hence, using weak-convergence and stable convergence (Daley and Vere-Jones 
(Vol-II, 2008), Jacod and Protter 2012), we have XT ⟶ X (0-stably). This means 
that for any bounded 0−measurable random variable Z, �[ZeiyX] = �[Ze−y

2�2∕2] , 
which implies �[eiyXT∕�|0] = e−y

2∕2.	�  □

We give the integration-by-parts formula, which has been known in stochastic 
analysis (see Chapter II of Protter 2003, for instance).

Lemma A.1:  Let

where v(u) = (y2∕2)[fT (u)]
2 − iyfT (u) and w(ti) = exp(iyfT (ti) − 1) . Then by the inte-

gration-by-parts formula,

Using Theorem A.1, it is straightforward to obtain a martingale convergence 
result under the same assumptions of Theorem  A.1. That is, for any -adapted 
function gT (x) and any 𝜖 > 0 we have

Thus, we do not need to use the Ergodic Theorem for stationary stochastic pro-
cesses, which was one of key arguments on the asymptotic results obtained by Ogata 
(1978).

It is also straightforward to extend Theorem A.1: to the multivariate case. Let 
� = (Ni) be a p × 1 vector -adapted simple point processes on �+ and � = (Ak) 

(A.42)�[Z exp(iyXT )] ⟶ �
[
Ze

−
1

2
y2�2∕2

]
.

(A.43)G1(t) =
∏
i

(1 + w(ti))ΔN(ti),G2(t) = exp

(
∫

t

0

v(u)dA(u)

)
,

(A.44)

G1(t)G2(t) − G1(0)G2(0)

= ∫
t

0

G1(u)dG2(u) + ∫
t

0

G2(u)dG1(t)

= ∫
t

0

G1(u−)G2(u)v(u)dA(u) +
∑
i

G2(ti)G1(ti−)w(ti)ΔN(ti).

(A.45)YT =
1

T1∕2+� ∫
T

0

gT (x)[dN(x) − dA(x)]
p

⟶ 0.
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are the -(continuous)compensators. For any T (> 0) we consider q × p t

-adapted and predictable processes �T (t) = (g
ij

T
(t)) and a q × q 0−adapted (posi-

tive-definite) random matrix � = (�ij), we assume the following conditions.
(i)

� max1≤i,j≤q max1≤k≤p �[ 1T ∫ T

0
|gik

T
(t)||gik

T
(t)|dAk(t)] < ∞,

(ii)
� For any 𝛿 (> 0),

(iii)
� As T ⟶ ∞

where � = (�ij) is a q × q non-negative definite matrix.
(iv)

� For any c > 0 and some positive 𝜖 (0 < 𝜖 < 1∕6) , as T → ∞

where �⋅k
T
(t) = (g1,k

T
,… , g

p,k

T
)
�.

Here we abuse the notation Ni (i = 1,… , p) slightly, which may differ from 
that in the main text. Under the above conditions, we have the next result.

Theorem A.2:  For the point processes � = (Ni) and their compensators � = (Ai) 
stated, we assume the conditions (i)� − (iv)

� . Then a q × 1 vector process

converges to �1∕2� in the sense of 0-(stable convergence sense), where � is Nq(�, �q) , 
which is independent of 0 and we have used the notation �1∕2�1∕2 = �.

(ii) A Wilks property
We consider the parametric point process models for the case when the intensity 

function is �i(s, �) for the point processes Ni(s, �) (i = 1,… , p) over the observation 
period [0, T]. We take � = (�i) ∈ Rr . Then the log-likelihood function is given by

(A.46)
1

T1+�
max
1≤k≤p Ak(T)

p
⟶ 0,

(A.47)
1

T ∫
T

0

p∑
k=1

gik
T
(t)g

jk

t (x)dAk(t)
p

⟶ �ij,

(A.48)max
1≤k≤p�

�
1

T �
T

0

‖�⋅,k
T
(t)‖2I(‖�⋅ k

T
(t)‖ > cT𝜖)dAk(t)�0

�
p

⟶ 0,

(A.49)�T =
1√
T
∫

T

0

p�
i=1

�
⋅,k

T
(t)[dNk(t) − dAk(t)]

(A.50)LT (�) =

p∑
i=1

LiT (�),
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where

and its derivatives are given by

and

Theorem A.3:  Let the log-likelihood function be LT (�), the log-likelihood function 
under the true parameter vector �0 be LT (�0), and the log-likelihood function under 
the maximum likelihood estimator 𝜃̂ML be LT (𝜃̂ML) . Then under the following regu-
larity conditions as T → ∞

where r is the dimension of � = (�k) and �(r) is the �2-distribution with degrees of 
freedom r. The required conditions are

and

(A.51)LiT (�) = ∫
T

0

log �i(s, �)dNi(s) − ∫
T

0

�i(s, �)ds,

(A.52)
�LiT (�)

��
= ∫

T

0

log �i(s, �)

��
[dNi(s) − �i(s, �)ds],

(A.53)

�2LiT (�)

����
�

= ∫
T

0

1

�i(s, �)

�2�i(s, �)

����
�

[
dNi(s) − �i(s, �)ds

]
− ∫

T

0

[
log �i(s, �)

��

][
�i(s, �)

��
�

]
ds.

(A.54)2{LT (𝜃̂ML) − LT (𝜃0)}
d
−→𝜒(r),

(A.55)

1

T

p∑
i=1

∫
T

0

[
𝜕 log 𝜆i(s, 𝜃)

𝜕𝜃

𝜕 log 𝜆i(s, 𝜃)

𝜕𝜃
�

]
𝜆i(s, 𝜃)ds

p
⟶ I(𝜃0) > 0 (positive definite),

(A.56)
1√
T

p�
i=1

∫
T

0

�
� log �i(s, �)

��

��
dNi(s) − �i(s, �)ds

� w
⟶ Nr(0, �(�0)),

(A.57)
1

T

p∑
i=1

∫
T

0

[
�2�i(s, �)

����
�

]
1

�i(s, �)

[
dNi(s) − �i(s, �)ds

] p
⟶ 0,
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where �(�0) is the Fisher information matrix.

Remark A‑2  As corollaries of Theorems A.2 and A.3, it is straightforward and stand-
ard, but lengthy to give the formal proofs of Theorems 1 and 2 as the non-causality 
tests we have developed and discussed in Sect. 4.

Remark A‑3  As a final remark, we re-emphasize that while Ogata (1978) discussed 
a set of sufficient conditions for the consistency and asymptotic normality of the ML 
estimator in one-dimensional self-exciting point processes, we extended his results 
significantly to the multivariate point processes under a set of weaker conditions. 
For instance, �(�0) is not necessarily a constant matrix and our conditions mean the 
mixed Gaussian distribution in the present formulation of the Appendix. The limit-
ing �2 property of the statistics is often called the Wilks Property.

References

Ait-Sahalia, Y., & Jacod, J. (2014). High-frequency financial econometrics. Princeton: Princeton Univer-
sity Press.

Ait-Sahalia, Y., Cacho-Diaz, J., & Laeven, L. (2015). Modeling financial contagion using mutually excit-
ing jump processes. Journal of Financial Economics, 117, 585–606.

Bacry, E., Mastromatteo, I., & Muzy, J.-F. (2015). Hawkes processes in finance. Market Microstructure 
and Liquidity, 1, 1550005, World Scientific.

Bartlett, M. S. (1963). The spectral analysis of point processes. Journal of Royal Statistical Society (B), 
25–2, 264–296.

Daley, D. J., & Vere-Jones, D. (2003, 2008). An Introduction to the Theory of Point Processes, Volume I, 
Volume II, 2nd Edition, Springer, New York .

Embrechts, P., Kluppelberg, C., & Mikosch, T. (1997). Modelling extremal events for insurance and 
finance. New York: Springer.

Embrechts, P., Liniger, T., & Lin, L. (2011). Multivariate Hawkes processes: An application to financial 
data. Journal of Applied Probability, Special, 48A, 367–378.

Florens, J.-P., & Fougere, D. (1996). Noncausality in continuous time. Econometrica, 64, 1195–1212.
Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral methods. 

Econometrica, 37, 161–194.
Grothe, O., Korniichuk, V., & Mannera, H. (2014). Modeling multivariate extreme events using self-

exciting point processes. Journal of Econometrics, 182, 269–289.
Hamao, Y., Masulis, R. W., & Ng, V. (1990). Correlations in price changes and volatility across interna-

tional stock markets. Review of Financial Studies, 3(1990), 281–308.
Hawkes, A. G. (1971). Point spectra of some mutually exciting point processes. Journal of the Royal Sta-

tistical Society, Series B, 33–3, 438–443.
Hosoya, Y., Oya, K., Takimoto, T., & Kinoshita, R. (2017). Characterizing interdependencies of multiple 

time series: Theory and applications. New York: Springer.
Ikeda, N., & Watanabe, S. (1989). Stochastic Differential Equations and Diffusion Processes (2nd ed.). 

Amsterdam: North-Holland.
Jacod, J., & Protter, P. (2012). Discretization of Processes. New York: Springer.

(A.58)
1

T

p∑
i=1

∫
T

0

[
� log �i(s, �)

��

� log �i(s, �)

��
�

][
dNi(s) − �i(s, �)ds

] p
⟶ 0,



332	 Japanese Journal of Statistics and Data Science (2018) 1:297–332

1 3

Kunitomo, N., Ehara, A., & Kurisu, D. (2017). A causality analysis of financial markets by multivariate 
Hawkes-type models (in Japanese). Journal of Japan Statistical Society, 46–2, 137–171.

Kurisu, D. (2018). Discretization of self-exciting peaks over threshold models, Tokyo Tech IEEE Work-
ing Paper 2018-3, Tokyo Institute of Technology. https​://educ.titec​h.ac.jp/iee/eng/publi​catio​ns/file/
pub_19457​.pdf

Ogata, Y. (1978). The asymptotic behavior of maximum likelihood estimators of stationary point pro-
cesses. Annals of Institute of Statistical Mathematics, 30, 243–261.

Ogata, Y. (2015). Studies of probabilistic prediction of earthquakes: A survey. Statistical Mathematics, 
63–11, 3–27. (in Japanese).

Protter, P. (2003). Stochastic integration and differential equations. New York: Springer.
Resnick, S. (2007). Heavy-tail phenomena. New York: Springer.
Solo, V. (2007) Likelihood functions for multivariate point processes with coincidences. Proceedings of 

the 46th IEEE Conference on Decision and Control, 4245–4250.

https://educ.titech.ac.jp/iee/eng/publications/file/pub_19457.pdf
https://educ.titech.ac.jp/iee/eng/publications/file/pub_19457.pdf

