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the Schriodinger-type operator on a

-

spherically symmetric Riemannian manifold
Reiji KONNO*

Abstract

The aim of this paper is to obtain the growth order of non-trivial solutions of the equation —A f
+q(x)f=2f(2>0) on a spherically symmetric Riemannian manifold. We find that the square integral
of the solution in a shell-like region is bounded from below by a function which is determined by the
metric of the manifold. Four theorems and two corollaries are set forth corresponding to various situa-

tions. But they are proved in a unified manner which is reffered to as the abstract theory.

§0 Introduction

The problem “When does the Schrédinger operator —/\+¢ (x) possess no positive eig-
envalues?” or more precise problem such as “How is the growth order of the solution?” has
been studied by many authors. The same is said to the more general operators, e. g. —2 0,
ai;(x)8;+q(x) or —2 @i+ vV =Tbi(x))ai;(x) @5+ —1b;(x)) +q(x) (cf. (3], (4], (7] etc.).

However, it seems that there are very few literatures which refer explicitly to the con-
ditions that give rise to the absence of positive eigenvalues of the Schrédinger operator
considered on non-Euclidean manifolds. This article deals with problems of this type and
gives several interesting results, though in the special case that the metric of the manifold
M is “spherically symmetric”.

In this paper, we consider the local problem in the neighbourhood of infinity. That is,
the solution of —A f+¢(x) f=4f is simply assumed not to vanish identically in any neigh-
bourhood of infinity, with no boundary conditions imposed.  And then, we try to get the
lower bound to the integral of | f(x)|? in the “ball of the radius R”, which the Riemannin
structure and the behavior of p (x) affect only in the neighbourhood of infinity.

In view of the results obtained, it is easy to derive the absence of positive eigenvalues
of any selfadjoint realization of —A+¢(x) on a manifold a part of which coincides with
ours, provided a global condition is added which excludes the existence of a solution with
compact support. Therefore we do not comment upon it in each case. ‘

Every result contains in particular the case that M is a part of a Euclidean space. In
that case, the results coincide with well-known ones or relax their assumptions slightly.

Another aim of this paper is to simplify the proofs. All the theorems are proved by a
unified technique, which in particular gives considerably simple proofs for the well-known
theorems in the case of the Fuclidean spaces. The common parts of the processes are de-

scribed in an abstract manner so that the flow of reasoning may become clear.

*Faculty of Engineering, Meiji University.



Asymptotic behavior of eigenfunctions

It should be noted that a part of our methods originates mostly from S. Agmom’s
works, especially from [13. Furthermore, the abstract part of our theory is an immediate
development of K. Masuda’s work (6]. In [6] he considered the differential equation u—
prMu+A(u+A4,(r)u=0 (cf. (2.1) of this paper). He gave two alternative estimates on the
norm of u at infinity by calculating the derivative of the function F(r)=|lull*+ (A,(ru, w),
both implying well-known results on the absence of positive eigenvalues of the Schrédinger
operator. He also dealt with the more general equation (d/dr+B(r))*u+B,(r)du/dr+A,(u
+A,(ru=0 and applied it to seccond order elliptic equations with variable coefficients.

Now, let M be an n-dimensional Riemannian manifold (r=2) of the structure

M=(r,, ©) XS 1={({r, @) | rer, =), weS»!}
with the metric

dst=dr*+ p(r)? ds?
where d§ is the ordinary line element of n-1 dimensional unit sphere 8*7! and p(r) is a non-
negative twice continuously differentiable function. Then, the Laplace-Beltrami operator on
M is expressed as

A:*‘pnlj (o )

i

where 4 is that on Sr™
We use the following notations throughout this paper: x denotes the point of M, ¢(x)
is a measurable real-valued function* defined on M, 1 is a positive constant and f(x) is
the real-valued solution* of the Schrédinger equation
—NfHqf=2f on M 0.D
which belongs to H%oc (M) and does not vanish identically in any neighbourhood of infi-
nity. Moreover, we denote by a topside or superior dot the (ordinary or partial) deriva-
tive with respect to r and by superior —1 the reciprocal number. Further, the expression

“(r—>co, unif.)” should be read as “uniformly on S~ as r—oo”,

§1. Theorems.

(A) Main theorem.
In what follows, we assume n > 2 unless otherwise is stated.
Assumption (p, 0). o ¢ C*((r, o)) while p(r) is monotone increasing and diverging.
Assumption (p, 1). p'p=0(l), p'Fg=0(l) (r—o0).
Assumption (p, 1). ¢ is decomposed into the sum of two bounded and continuous func-
tions ¢, and ¢, with the properties
(1) ¢ € C'(M) and there exists a positive function e(r) such

that

e(r)=o(l) (r—co),

§:=Ze(r), ¢:=p7'p e(r) (on M).
1) g=a(p7') (r~>co, unif.).

Theorem 1. Let Assumptions (p, 0) (o, 1) (g, 1) be satisfied. For an arbitrary positive constant
€, there exist a positive constant C, a constant C and an r, (=r,) such that

*With little modification, we can treat complex-valued ones.
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5,-U<r<1<| f(x)|2dx<C'5 o) dr+C  (R=r)
holds. (dx=p(r)r 'drdew is the volume element of M).
Remark. If M is a part of a Euclidean space (o(r) =r), this theorem almost implies the
results of T. Kato (5; Theorem 1 with #=0], S. Agmon (2; Theorem 4] and F. Odeh [9].
We like to know how the conditions are written in the case of a surface of revolution
imbedded in Rat!,
Corollary. Let M be the surface obtained by rotating the graph of a C-function t=t(p) (pZ
002=0) around the t-axis in Rn¥i 1, e.
M=(((0), pw) ¢ R**'|p2p, @ ¢ S,
If t(p) and bounded continuous real-valued functions q,(p, ®) and ¢.(p, @) satisfy the following
conditions

(D o) (o),

(11) ¢ € G and there exists a positive function e(p) such that
e(o)=0(l) (r—c0),
0:=e(o), 0q./0p=p7'e(p)  (on M),
_ ] .
(iii) qz—o(W) (p—co, unif.),
then, for g=q,+q, and for any ¢ >0, we can find positive constants C and p, (= p,) such that

P - -
ool fCos @ s 2C "0 T UG do (2CP™Y Pz
holds, where do is the surface element.

(B) Two dimensional case; elimination of g.
If in particular n=2, we can remove the smallness requirement on § (r) in Assump-

tion (p, 1). Namely:
Assumption (p, 2). Sm‘o () 'dr=co
)

Assumption (g, 2). ¢ ¢ C'(M) and ¢ is bounded. Moreover, there is a positive function
¢(r) such that
e(r)=o(l)  (r—o0),
g=<e(r), g=p~'pe(r)  (on M).

Theorem 2. If n=2 and if Assumption (o, 0)(p, (g, 2) are satisfied, then we can find pos-

itive constants G and ry (= r,) such that

.ol raxzc pdr Rz

holds.

The following corollary may arouse our special interest, because we find there very
weak restrictions on the shape of a surface except for the axial symmetry in order to
guarantee the absence of positive eigenvaluse of Schrédinger-type operators on the surface.

Corollary. Let M be the two dimensional surface obtained by rotating the graph of a C*-function
t=t(0) (0 € [po, ), 0,20 around the t-axis in R%. If a C'-function q is bounded and if there

exists a positive function ¢(p) such that

39



Asymptotic behavior of eigenfunctions

e(p) =o0(l) (p—0),
g=<e(p), 09q/0p<p~'pe(p)  (on M),
then there exist positive constants C and p, such that

N S
Lo>p>p'f<f” w>|2d"zCLOP“‘v T+ ()t do (Pzp)
holds, (the second member being > C log P). Here do means the surface element of M.

(C) Linear lower bound.

The ¢ appearing in Theorem 1 can be removed under some stronger conditions.
S. Agmon ([2; Theorem 2] and T. Kato {5; Theorem la) showed estimates of the type

fR lfG)[*dx=CR  (Rzr)

in the case when M= {x ¢ R*| |x]|= r,), p()=r. We have also similar results as fol-
lows.

Assumption(p. 3). There exists a 6 > 0 such that

6=0(p"™, $=0p=p)  (r—rc0).

Assumption(g, 3). ¢ is decomposed into the sum of two bounded continuous functions 7,
and ¢, with the properties
(i) g ¢ C(M), q=eo™, discp ™ (on M),

(1) ¢=0(pp) (r—co, unif.)
for some C, § > 0

Theorem 3. Under Assumptions (p, 0) (o, 3) (g, 3), we can find positive constants C and r, (=
7o) with which

Lo<r<R|f<x)lzdeCR (Rzr)

holds.
In the case p(r)=r and M= {x ¢ R*| |x|=r,}, Assumption (¢g. 3) and Theorem 3 imply
Agmon’s result. Next, let us concern ourselves in conditions of integral type.
Assumption(p, 4). p7'¢ € L(ry,, ), g5 € L(r,, ).
Assumption(q. 4). ¢ ¢ C(M) and, setting ¢*(r) =supwere|g(r, )|,
we have

(i) g* € L'((ry, ),

Sy 1 ln-1] |n=3] . n=1 .\ .
1D lim sup re T { 7 eTlo+ 50 61400 Q}< 2.

Theorem 4. Under Assumptions (o, 0) (o, 4) (g, 4), we can JSind positive constants C and r,(=
) for which we have

§"0<T<R f@|*dxzCR (Rzr).

In the case of the Euclidean spaces o(r)=r, M=(xe¢ R*| |x|=r,), this theorem almost
corresponds to Kato’s result.
Remark. If ¢ is positive or negative definite, then the fact p'p ¢ L? ((ro, =)) and
Assumption (g, 1) imply p7'6 € L' ((r,, %)), because the integration by parts shows

T 00 4o 6 o) [T ()
Jrbtgds =L LG [ o (HTL
while o(")"' () — 0.
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§2. Abstract differential equation.

In order to carry out the proofs systematically, we prefer to describe the process of esti-
mation in an abstract manner. That is, we interpret (0.1) as an equation for a vector-valued
function and closely examine a subsidiary function to obtain the estimate of the solution.

Let H be a Hilbert space and D, its linear subset. A,=A4,(r) and A,=A,(r) are as-
sumed to be linear operators defined for each value of 7. Further, we assume that for each
value of 7 the domains of 4,(r) and 4,(r) contain D,. We denote in the sequel by (,) and
[l Il the inner product and the norm of H respectively, and by a dot the derivative with
respect to 7. Moreover, instead of writing as “for almost every r = r,”, we say simply “(r
= 1)

We shall consider a differential equation in H and want to get the estimate of the norm

of the solution. To this end, let us state several conditions and definitions.
Condition 0.
(1) Ao, w)=(v, A;(rw) for every v, w € D,.
(ii) For each v € D,, A,(r) v is strongly differentiable at almost every r (being Ao(r) v its

derivative).

Definition 1. Let p(r), a(*) and ¢ (r) > 0 be real-valued C*-functions. For every v ¢ D,
and w ¢ H, we set

B(v, w)=({(p4) +pp(do+4)+ (ap)}v, v)
+ (@ —po)|lwl|l*+ ({2ap — 204, — (pe)}v, w)

Condition 1. There exist a nonnegative function ¢ and a number r, (= r,) such that
(i) [Temdr=c,
o
A1) B, wy= ¢lv|* (rzry)

for every v € Dy, w € H.

Condition 2. We can find a nonnegative function 4(r) and a number r, (=7r,)* such that

for an arbitrary v € D,,

(1) ad—-4®}o, v) Z—b|lvl)? (rzr.),
G1) S: eP " h(r)dr<co, where P :Sp(r)dr.

Condition 3. Let K be an arbitrary positive constant and put
C(f):'{ rogo(s) exp{—Kre‘P‘” dt) dsdr.

Then we have
limg—el (R) = oo, limgoowe EBL(R) =0,

R eP(r)

r o)

Condition 4, There exist a number r, and a function 7(#) € L'oc((r5, ©)) such that for
every v € D, and w ¢ H,
B, w)z 7() ¢{lwll*+ (4o, 0)- p(v, w)+allv]]*) (rzry)
holds.

*We can choose the same value of 7, as in Condition 1. -
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Asymptotic behavior of eigenfvnctions

Condition 4’. There exist a number 7, and a function 7(r) ¢ L'((r,, ©)) such that for
any v € D, and w ¢ H,
B, w)z(¢—e { llwli*+ (Ao, ) ~pv, w)+allv)|?) (rzry)
holds.
Now we consider the following differential equation in H:
i+ A(nu+A,(rHu=0,
and study the solution u(r) which does not vanish identically in any neighbourhood of in-
finity. We mean by “z is the solution” that (i) u(r) ¢ D, a. e, (ii) u(r) exists a.e. in the
strong sense belonging to L%oc((r,, ); H) and enjoying (2. 1), Gii) «, # are the indefinite

integrals of u, & respectively in the strong sense, (iv) (4,("u, ) is absolutely continuous and

satisfies jT(AO u, &) =(Aou, u)+2Re(Aou, @) a. e.

Definition 2. For the solution u, we set
F(r)={lall* + (Aou, ) —pCa, w) +ailull?,
where p(r) and a(r) are the the functions appearing in Definition 1. (Note that F(r) is an
absolutely continuous function).

We are now in a position to describe several estimates for F(r) and u().

Lemma 1. If Condition 0 and 1 are satisfied, we have
(pF ) =B, @) z¢|lull* (rzry).
Proof. Differentiating ¢F by r and considering (2. 1), we have
(pF) =0 (2@a+Aw, &)+ (A, )} +¢ {|[al*+ (Ao, 0))
—(Pp) (u, w) —poliall®* —pe (d, u)+2a0(u, &)+ (ap)|[ull®
== 20(Adw, W)+ ({(p4o) +(ap)}u, w)+ (¢ —pe)all?
+{2a0—(po)) (u, @) +po((Ao+4Du, )
=({(pdo) +po(do+ 4D + (ap) ) u, w)
+ (@ —p) [lull* + ({220 204, — (pe) ) u, u)

=B(u, &).
Therefore, by Condition 1, we obtain
(F) zllul. ¢
Lemma 2. Under Conditions 0, 1, 2 and 3, we can find an ry (= r,) such that
F(ry) > 0.

Proof. Suppose by way of contradiction that F(r) < 0 for almost every r (= r,). Then,
since F and F belong to LYec((ry, o)), it follows from Lemma | that

~¢() F)=—¢®OF® + [ (¢() F() ds
= ‘ol ds.

The last member is an increasing function of ¢, while the first one does not depend on .

Hence, letting {—co, we obtain

o) F® = [T ds

together with the finiteness of the right member.

Now, let I be an interval in which #(r) does not vanish, and for r € I, set

(6)
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o) =logllu(»"
Then,
£=2Ca, w/|ulf’
&=12Ga, w)+2al®}/llujl* -4, w?/llull*,
and the Schwarz inequlity shows
&= (20, w) —2all*}/{luli®
=—2"0{F+pla, w)—allull*+(Au, v))
=2 9F—pg+2a—29(Au, uw.
Hence,
(ePg)=eP(g+pg)
>—2eP79 F+2eP{a— (A, w)/ul?}.
Therefore, from Condition 2 and the assumption F < 0, we see
(ePg) = —2%b,
and hence, there exists a positive constant K such that
ePW (1) 2P g(ry) ﬁggilemwb(r)d,
=-—K

holds. Consequently, we obtain

¢D—g® z—K[erod.
Since the right-hand side is {inite for any s>r>r,, g(s) never goes to —co at a finite s.
That means

u(r)#0 throughout the interval (r;, co).
Moreover, from (2.2) and (2.3) we have

(e g(r)) *Z——Q%Smgb(5)50(3)-9(T)d5+5ummable function
= 2;15;;) Sjog!)(s) CXp(—KSie‘P(ndt) ds+ summable function

which yields

eP‘R’g(R)gQSR ere S:osb(}) eXp(—KS: e Pw dt)dsdr+const.

n o)
=2L(R) + const.
Therefore, Condition 3 shows
g(R)=e7#® (2L(R) +const.) 2e P RL(R)— o (R— ),
and hence
llu(r)|| =020 (r—o0),

which contradicts the fact that
[Toomuoe ds<eo while ["g(ds—co,
70 70
as were found in (2.2) and Condition 1. Thus, Lemma 2 is established.

Lemma 3. wunder Condition 0, 1, 2 and 3, we can find a positive constant C satisfying
F(r)zCo(n)™ (rzry).

Proof. Lemma 1 shows (¢F) =0 for r=r,. Therefore, ¢ >0 and F(r;) >0 (by Lemma
2) give

79



Asymptotic behavior of eigenfunctions

eNEG) Zze(ry) F(rd) =C>0.

Lemma 4. Under Conditions 0, 1, 2, 3 and 4, there exists a positive constant C such that

holds.

F) 2Cem expl[n@em 7o Ddr) Gz
In particular, if n(r) is a constant 7, we have
F(r)zCop(r)m (rzry).

Proof. Since Condition 4 reads

(pF)yznpF=n90"'¢(oF),

the fact that ¢(DF(@) >0 (rz=r,) (by Lemma 2) shows

eFM) 2eGFa) expl|| 1De(70(ds)  rzn).

Lemma 4'. Under Conditions 0, 1, 2, 3 and 4, we can find a positive constant C such that

FirzC (rzry).

Proof. Condition 4 means just

(pF)z(p7'¢— ok,

by Lemma 1. Hence, from Lemma 2 it follows that

(eF) (pF)z¢ 'p—y

for r=r,. Integrating both sides from r, to r, we obtain

F) 2 Farexp (- 2(9ds) =€,

which proves Lemma 4.

We thus have had estimates for F(r), but our final need is those for the solution u(r).

To this end, we note a lemma which is a modification of Lemma 2 of Agmon [2). Let us

choose a C*-function ¢r(r) possessing the following propertics where 7, (ry) is chosen

arbitrarily:

(i) O0=or(nxl (ro=r<0),

(1) er()=0 (rosr=<ry),

(ii) or()=1 (rs+1<r<R-1),

Gv) (=0 (R=n),

(v) the value of 6x(r) does not depend on R in the interval ro<r<r,-1,

(vi) in the interval R—1 < r < R, the graph of oz (r) does not change its shape but for

translation. (Note that sup r,<r<r |6r| does not depend on R).

With this function oz(r), we claim

Lemma 5. If Condition O is satisfied. u and F enjoy the following inequality with certain positive
constants Cy, C,, C; and C,.

|7 antuiiar
o
+ [ o R (Copllul+ Caalul+ CoCdy w, 1) +-Co Ay w, ) dr

25: orFdr.

Proof. The integration by parts and the equation (2.1) show

g ol =g [ o

2
& ullar

¢8)
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[ anllaliz+ @ wyar

= |7 on il = o w0~ (4 v, ) dr,
Therefore,

SR uRuuWy=S” { é Gellull+ oAy v, 0)+02(A, u, u)}dr. » 2.4
70 70

On the other hand, F=|a|*—p(%, w) +allul|*+ (4o u, u) implies
F <llall+ [l +—pllel +allul + (A, 0.

Hence, by (2.4) we have

j” o Fr < 2§R { L g elu2 4 0 (Ao u, 1)+ 0 =4, 4, u)}dr
70 70

2
+) o

(% Iyl SR | TIPSR
|7 ontular+ |7 onf—gprul +a'ul

18CA, u, 1) +2(4, 1, u)}dr.

Ol aul - (Ao, ) dr

Thus the lemma is established.
§3. Proofs of the theorems.

In every case, we may set
=47 qo
(For example, we consider as ¢;=0 in Theorem 2, etc.). If we put
u=u(x) =u(r, @)=p"""" f(x)

for the solution f(x) of (0.1), a straightforward calculation shows that u satisfies

' @+ o Au+ QA—q@u—np 2 0u—n,07' 0 u=0, G.D
on M, where a dot stands for d/dr and
— — -1
nlz(n 1)4(71 3)’ n2:n2 )

Now, let
H=LS"") with (a, w):SSn_lv(w)de,
and set
D,=H?*(S» ).
Our aim is to reduce the problems to the abstract theory described in §2. At first, we note

that the fact f € H?oc(M) implies that u(r) satisfies the conditions (i) ~ (iii) on the solu-
tion. .

If we set
Ay=p"A+2—¢q, with D(4,) =D,, ' (3.2)
A=—q,—n,p 20 —n,p "0 with D(4,)=H,
then Condition 0 and the condition (iv) on the solution is trivial and (3.1) is rewritten as
g+ At Au=0,

where u=u(r, +) is the solution in the sense of §2.

C9)



Asymptotic behavior of eigenfunctions

For the proof of the theorems, we choose as
p(r)=p (", PO =P 6 3.3
where @ and § are constants chosen appropriately in each case. (In fact, p(r) is set to be 0
so far as this paper is concerned. But we prefer to leave p(r) for general convenience).
The function a(r) should also be determined later. By substituting these functions into the
definition of B(v, w), onec immediately verifies the following formula.
Proposition 1.
B(v, wy=({(a+ =D p*pA+ (a+B)p " 6(2—g) — p°q,
—Bo T (a0 4 na07 0D + (o) ") v, )
+(a=B)p o lwll?
+ o ({20424, +(2n— Bla- 1)) 072 0°+ny— B o5} v, w).
Although the choices of a, 8, p(r) and a(r) will be different by each theorem, we shall

extensively choose as

¢(r)=const. p(r)*16(r)

which, as we now show, realizes Condition 3 by itself.

Proposition 2. If « > B and if Assumption (o, 0) is satisfied, then Condition 3 applies with
¢ =const. p«1p,

Proof. Since ¢ =p(r)?, we see that
R o s
const. C(R)= jm p(r)Fe S p@«-lp(s)exp{_Kjrp(o-ﬁdt} dsdr.

Putting Q(r):Sr o(t)"fdt we have
7o

const. LR =(" 00 [To( 6 (Dexp(~K(QL) - Q) ddr

v

SRP(S)“”‘ﬂ(J)e_KQ“’ Ss (1) eXQ™ drds
ro To

R

@ p(Dexew " o(ryep(y teerdrds

O

[Fommo exen [ oy tenendrds  Gif 26=a)
To 70

v

const. SR,O(J “Tlo (e KQ® r 0 (r) 2K drds (f 28z a)

const. SR 0 (Do (s) (1 —e KQw)ds
70

const. p(R)*+const.

v

[ const. SZp(s)zﬁ_lp(s) (1—e ke ds

const. p(r)*+ const.
Hence, if 8 < a,
limgoo L (r) = oo, limg—co e P ®L(R) =limg—oo p (R) F{(R) = co.

Thus, Proposition 2 is proved.

1o
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Proof of Therem 1. Let us fix an arbitrary (small) ¢ > 0 and put
a=c, =0, a()=c*y/" T o6

and substitute them into Proposition 1 which reads

B, w)= (eo‘I { (e—Dp2A+i1—gq,—

0074,
ey TTLGE=D oo+, 0 )+e‘o“'pf!wllz

(2€p‘ olev 2 +Lpp"q+ pT o+ g ﬁ}v,w) G.H

Now, considering Assumptions (o, 1) (g, 1), we can find an r, such that each of the

following inequalities

qlgel, 10p—19§5'2, (5_1) AO_IP"FP_l(’Z—)\
Il T In - &7
N gy A n1 ey A ol o1 s e/ A
PO gl == 5, o” p<—3—, sl =—5—

holds for r=r,. Then, we observe in virtue of (Av, v) <0 that

the first inner product =ep'o(1—-3e)2!0i[3

the last inner product =—ep7'6+2¢(Jw 2+ A ]0][*)
where we have used the inequality

20| lwll = lwllP/v" 2 +v" 2 vl (3.6)

Therefore,
B(v, w)zeptp(1—=5¢) (lw|*+2vi[*) (rzrs)

that is, Condition 1 holds with ¢ =const. o<'¢. Next, being

a—Ai=ep™'p (e/ 4 + 007 g+

! Lot L)

—1 — 1 - 1 — 1 —
! A — _ Z —_ -
>ecp'p (ey/ 4 3 ey 4 3 g/ 3 gy 4 )=0

in virtue of (3.5), Condition 2 is satisfied by choosing 6=0.
Conditioﬁ 3 was already shown (Proposition 2). Hence, by dint of Lemma 3, we can con-
clude that ’
F)zCo(r)™ (rzro.
Now, Lemma 5 and (3.2) show that

supre<r<(lda] +Coonit gD+ Coonlgal) | uldr

;CSRGRF(r)dr.
70
But we know that sup|éz| and supez do not depend on R. Hence we have
SR [lul|?dr= const. SR_I F(r)dr=const. SR—lp(r)"dr
70 T4+l T4+1
C SR oM ~edr+C
for some C and C. On the other hand, from u=p" /2, we have

@ tdx={"] s | f1707 dwdr= | .

1)

S7’0<7‘<R
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This proves the theorem.
Proof of Corollary to Theorem 1. Put

r :Szow/ I+t (o)? de.
Then, r is the length along the meridian which corresponds to the r in Theorem 1. The
operation 8/0r, denoted by a dot, is cqual to ¢ 8/8p. Therefore,

1 gyt

=i ST

p‘lp:_d‘;_p:—t’t"(l+t’2)“3'2.
From these formulas and the assumption (i) it follows that
O<o<l, p7'p=0C™. g7'g=0(l).
On the other hand, writing ¢(9) as e(r), we have
Gi=p0 0q./0p=p7'0 e(r),
PO =pV1+7 go=0(1).
Hence from Theorem 1 (letting r=R when o=P), we have
|, ocelfizc [foar Rzr=rem)

(p, being some constant=p,). Consequently,

P -
2 —c ! 2
| oo fCos @ tdozC |7 0=y THT (0 de (Pzp0),
which proves Corollary.
Proof of Theorem 2. We introduce a variable r by
e={ otyar,
and set u=f. Then we have
i+ Au+0*(A—u=0 (0<r <o)
where the dot means d/dc*
Let us now set
A0:A+2p2~_pz% AIZO:
pm =1, p@) =0, a(r)=0,
and substitute them into Definition 1 in §2. Then we have
By, w)=(4,0, v)

=200 ~g——5—06”Dllo|

2206(A—8)l[0]®
by Assumption (g, 2). Hence, Condition 1 applies with
Py =202—e)p()p (0.
Condition 2 is trivial with b=0. Condition 3 is a conclusion of
T
o

4D ZS jwconst. 0(8)p (e K dsdr

* If n+ 2, it seems difficult to find r increasing till infinity and u satisfying an equation free of g and §.

(12)
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=["const. p(p(em [lemae
0 0

Hence, it follows from Lemma 3 that
F()=z4C (z=47y)

where F(z)= ||v]|?*+ (4, u, u). Therefore, one observes from Lemma 5 that

T T 71
{orluaz+C, (Tona-gyu, wprdez|" " Far
1] 0 +1

4

for some 7,. (We write as o7 instead of ¢z). Hence,

Gt tsupier 19| +supraceer| ST uleptar
=CT—const.
which leads to the desired inequality by putting T=SZ o(r)~'dr, because dr=p(r) 'dr, do
=p(r)drde. Theorem 2 is thus established.
Proof of Corollary to Theorem 2. Putting

= VTFCG@Y do,  R=[ VIFTG) do
and writing p=p(), we have pg~i¢=p dg/op=<e(p) besides

S:) o) dr= S; Wu’p;(]log P— oo,

Thus, writing as e(r) =e(p), we affirm Assumption (g, 2). Accordingly, Theorem 2 shows
for P=p, that
o, 0|* do= | _ _ 1S dx

gcgz o) dr

Spo<p<p ro<lr<R

P T —
cf’ oV THEG dp,
which proves the corollary.

Proof of Theorem 3. Put ¢ =p@. e. a=1), p=0 (i. e. f=0) and a=0. Further, let ¢,, ¢_
be the positive and the negative parts of g, respectively. Then, from Proposition 1 and As-
sumptions (o, 3) (g, 3), we observe for sufficiently large r that

B, w)zp((p A+ 2+q.—qe—p07'¢)v, )+ 0wl
+26((067 e+ p 7" 6+ 1267 D)0, W)
26(A+q_—c2p Do, ) +pllwlP—2v7 p7|olllw]]
=6 ((A+q_—2c20"Dv, v)+ o1 —co™N|lwl|®
=(1~2c07)6 {lwll*+ ((A+4¢)0, )}
=(1-2c07) 6 {[wl*+ o7 (Ao, o)+ ((A—g) v, )
=p (v, w)+allv]]*}.
These calculations show that Condition 1 is fulfiled with ¢ =const. ¢ and Condition 4 with
p=1—2p~% Condition 2 is a consequence of the summability of A,=—¢,—n,p7?p*—n,07'p
=0(p1"%). Condition 3 was already shown. Hence, we can apply Lemma 4 obtaining

(13)
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F(y zeonst. o™ exp ([[(1=20(9 070 ()dr)
—const. exp(—p(M) N 2C>0  Gzry)

by an appropriate choice of C. Accordingly, Lemma 5 yields

["hedr=cr Rz

as before, which leads to the desired inequality. Proof is completed.

Proof of Theorem 4. Set =2, p=0, ¢,=¢,=0, ¢,=¢, a=0 and substitute them into
Proposition 1. Then we have
B(v, w)=2pp2[0[*+2p6 |wil*+20*((g+np 720+ 07"} 0, w)
2206 (lw [P+ 225
—200(pp7'g*+ Imlp™ 6+ nal 67 DAV ]|
22p0 Clw'l*+2i[v)|*)

- eonatlmlg Pl OO ol o).

Hence, from (ii) of Assumption (g, 4), it follows that
B(v, w)zCop o]
which implies Condition 1. On the other hand, from 4,=p7*4+2 and p=a=0, we see

that

By, w) = (206 —p*(g*+ Im[ 7?67+ [na 07 D/ 2 ) %
x (wll*+ (4o v, ) —p o, w) +allof]*).
Hence, from Assumptions (p, 4) (g, 4) we have
1) = @+ mlo7 e+l e™ 61D/ T € LI({ro, o).
Consequently, we can apply Lemma 4/ obtaining
FirzC (rzry).

which, by virtue of Lemma 5, implies
|ipdr=cr  (R2AD.
70

This is nothing but the desired inequality. Theorem 4 is proved.
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