Energy Bands of the Frenkel Excitons in Complex
Crystal Lattices and the Effect of Medium on

Exciton Energies

S eng

HARE: BSA RETEE
~EFEH:2011-04-11
F—7— K (Ja):
*—7— K (En):
YERZE : Akio, Honma
A—=ILT7 KL R:

FilE:

http://hdl.handle.net/10291/10060




%%ﬁ%x%ﬁﬂ%wﬁ)
4551983 F 8 A

0-99 Energy Bands of the Frenkel Excitons in
Complex Crystal Lattices and the Effect
of Medium on Exciton Energies

Akio HONMA*

Abstract

The Frankel excitons in crystal lattices containing several kinds of atoms (or molecules) per unit cell
are investigated theoretically in the representation of second quantization. The crystal Hamiltonian is
expressed as the sum of the quadratic terms in the Bose operators suitable for describing the creation and
annihilation of electronic excitations of an atom. The procedure for diagonalizing the crystal Hamiltonian
and the method of calculating the energy bands of excitons are shown in detail. The result obtained
corresponds to the generalization of the existing theory for Frenkel’s excitons. By making use of this result,
the microscopic theory for dielectric constant tensor of crystal is developed on the assumption of long-
wavelength excitons. Finally the Frenkel excitons in a medium instead of vacuum are discussed from a
microscopic point of view and it is found that the effective dipole-dipole interaction between the atoms
responsible for excitons is expressible in terms of the dielectric constant tensor of the medium obtained

from the microscopic theory.

§1. Introduction

Existing theory of Frenkel’s exciton is applicable to crystals consisting of the same kind of atoms (or
molecules).”*® Molecular crystals such as the crystalline anthracene, naphthacene and so on are ap-
propriate for the application of the theory. Ironic crystals contain at least two different kinds of atoms
forming their own lattices, i.e., the sublattices, each of which is composed of the same kind of atoms. In
discussing the exciton in one sublattice by the existing theory, it is usual to regard all oher sublattices as
the medium having a dielectric constant.>*® However this procedure is only phenomenological, so that
the development of the exciton theory taking account of all the Coulomb interactions between sublattices
from a microscopic point of view is desirable,

In this paper the Frankel excitons in crystal lattices containing several kinds of atoms per unit
cell are investigated theoretically in the representation of second quantization. In this representation, the
creation and annihilation of electronic excitations of an atom are described by the corresponding opera-
tors satisfying the commutation relations for bosons, and the crystal Hamiltonian including all the Cou-
lomb interactions between atoms is expressed as a sum of the quadratic terms in these operators. The
procedure for diagonalizing the crystal Hamiltonian and the method for calculating the energy bands
of excitons are shown in the main part of § 2. The remaining part of this section deals with the transi-
tion dipole moments of excitons and the macroscopic polarization and electric field which arise from the
distribution of the transition dipole moments. By making use of the results obtained in § 2, the general
expression for the dielectric constant tensor of the crystal due to the presence of exciton states is derived
in §3 on the assumption that the wavelengths of excitons are very long as compared with a lattice

constant.
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When one considers the case where the atoms participating in excitons are in a medium, the role
played by the medium becomes a subject of discussion. The usual approach to this problem is the macro-
scopic one making use of the dielectric constant of the medium, i.e., the various quantities in vacuum,
for example, the Coulomb interaction energy and the transition dipole moment of exciton defined in
vacuum, are changed to the corresponding ones in the medium with the help of the dielectric con-

stant.>*%

The validity of this approach has to be examined by the microscopic theory. In §4, the
effect of the medium on exciton energies is discussed from a microscopic point of view and the expres-
sion for the effective dipole-dipole interaction between atoms in the medium is derived by making

use of the results obtained in the preceding sections.

§2. Exciton States and Corresponding Energies

Consider a crystal consisting of several kinds of atoms (or molecules) called 4, B, .... There are
o, identical atoms of J(J=4, B, ...) in the unit cell. The equilibrium position vector of the /th unit
cell relative to an origin at some atom is denoted by r(J)and the locations of ¢, identical atoms within the
unit cell are described by the vectors #(\,) where A, takes the values 1, 2,..., ;. Thus the position
vector of the A,th atom in the Ith unit cell is given by r{(I\;)=r{)+r(x;).

It is assumed that the electronic wave functions and the corfesponding energies of isolated atoms are
known. For simplicity we shall deal with the case where the electronic states of isolated atoms do not
have degeneracy and hence the wave functions are real. The wave functions are classified according to
the irreducible representations of the local group, i.e., the symmetry group of the lattice site occupied by
the atom. The ¢, identical atoms have the same local group. Let f, be the quantum number of each
excited state of the atom J. The corresponding wave function of the Asth atom in the Ith unit cell is
denoted by ¢(IXJfJ). The ground state is represented by f,=0.

In the following discussion, A, and f, appear frequently in pair, so that we shall denote the set
(Asy fs) by p, which takes the values 1, 2,..., o,n, where nJV is the number of excited states
taken into account. Furthermore the notations A, f and p not having the subscript J will be used
when the discussion covers all the atoms of 4, B,... in the unit cell. In this case, A takes the Z,o,
values, f the n, or ng or ... values according as the atom concerned, and p the Sso,n, values.

In order to treat the problem in the representation of second quantization, we introduced the crea-
tion and annihilation operators of atomic excitation: the operator B*(Ip) (B{lp)) creates (destroys) the
excitation f of the atom at the lattice side IA. If the expectation value of B*{ip)B(lp) is considerably

1,2)

smaller than unity, these operators satisfy the commutation relations for bosons,”? i.e.,

CBUp), B*(l'0")I=08ubopr. @D

According to the procedure given by Agranovich,” the excitation-energy operator H for the total

system is written down, up to the quadratic terms in B*(lp), and B(lp), as
H=§ A(p>B*(1p)B(Lp)
+%wzu ! MClp, I'p") (BU)+B*(1o)) (BU'0N+B*Up)), 2.2)

where 4(p) is the energy difference between the excited and ground states of an isolated atom, and

the real quantiy M is defined by
Mo, I'0= [ 9UAF oW XDV (1A, U Dp(LI0GU X £, @.3)
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which is the matrix element of the Coulomb interaction V' (IA, I'A’) between the atoms I\ and '\’ and
has the property

MU0, 1p)=M(1p,1'0). 2.4)

The prime on the summation in the second term of eq. (2.2) indicates that the term with /=/" has to
be excluded when A=AM\".

The unitary transformation taking account of translation symmetry is

Bczp>=71;N 3 Blo B) exp Gik - r(lp)), (2.5)

where N is the total number of unit cells in the crystal and k is the wave vector, the inverse trans-
formation of eq. (2.5) being given by B(p, k)}=N"%23),B(lp) exp [~—ik+r(I\)]). When we substitute
eq. (2.5) into eq. (2.1), we see that the operators B(p, k) satisfy the commutation relations

UBCo, k), B*(p', k')I=8pp.Okk’. (2.6)
By means of the transformation (2,5), the Hamiltonjan (2.2) is rewritten as

H=% ; 4(p)B*(p, k) B0, k)

+1 3 2 Moo, © LB, —B)+B*(0, D) (B, )+B*(0, —B), (2.7

where M(pp’, k) is defined by

MCpp', k)=l2’M(lp, 00" exp {—ik - r{UD—-r(2D3}, @.8
and has the relations - )

M(o' 0, B)=M*(po', kD =M(op', — k), .9

as seen from eqs. (2.4) and (2.8). The prime on the summation of eq. (2.8) means excluding the
term with /=0 when A=\".

The Hamiltonian (2.7) can be diagonalized in terms of new Bose operators B, and B,* defined by
B(p, k)= 3(Bu(u,(p, k) + B (—k)va* (o, =), . (2.10)
The commutation relations for B, and B,* are .
(Bu(k), Byt (K DI=08un Ok, Q.11

and, in order that the transformation (2.10) be canonical, the amplitude function u, and v, must

satisfy the relations

%Euﬂ(p, Eup*Co, k)—vu(p, Kun*(o, K)I=8un:, } @19

SaunCor Byvw Go, — ) —valp, Duw (o, ~kI=0, '

2“3[%#(,0, Eus*(p’, B)—vu*(o, —E)va(p’, —k)I=80p", } (2.13)

SunCp, B)va* (', 1) ~vi* (o, —Boun(e’, —E)I=0. '
With the help of eq. (2.12), the inverse transformation of eq. (2.10) is given by

Bn(k)=pE (BCp, Bduw*(p, k) —B*(p, —kdvu*(o, ). 2.1

Substituting the transformaion (2.10) into eq. (2.7) and using eq. (2.9), we see that the Hamiltonian

(3D
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has the diagonal from
H::Q ; Eu(k)Bu*(k)Bu(k), .15
if the amplitude functions u, and v, satisfy the systerm of equations

CEw(B) — 4C0)Junlp, &) =—(Eu(k) + 400 Jvulo, k)
=p§} MCpp’, k) (uu(o’, ) +veo’, ). (2.16)

The functions E,(%) are the possible exciton energies and u specifies the exiton band.

To simplify the system of equations (2.16), we introduce the new amplitude function £, defined by

£, ) =CunCo, &) +ouo, ©I/v 40, @17
in terms of which u, and v, are expressed as

e k>=%g—£@ £Co, B, }

2.18)

vu(p, k) 2%—;"5&’6)— Ee(o, B,
from the first equation of eq. (2.16), and the second equation of eq. (2.16) is written as

(Ee*(B)— 4(p)]ExCp, k)=§ L{pp’, k)Eu(p’, ), (2.19)
where

L', B)=2v4(p)4C0") M(po', k). (2.20)

It is comprehensible to represent eq. (2.19) in the matrix form. Let &,(k) be the column vector

whose 3,0,n, components are {£,(p, k)} at given k. Then eq. (2.19) can be expressed as
| LA =EUO§ (), | @.21)
where £(%&) is the (yons)X (X sosn;) matrix whose rows and columns are labeled by p:
Lop (k)Y =1(0)3pe' + L 0p" K. (2.22)

The matrix .£(%k) written in the partitioned form is

LAY LK) -
) (2.23)

,L’(k)=<c£’“(k) LEER) -
where L7(k) is the osnsX0osny matrix, L77'(k) the ¢;nsX 0 ymny matrix and L7V (k) the transposed

matrix of £77'(k), whose elements are

Loo " (B)=[8(0:)8ps0' s+ L(0s0 5, 800080 o' 1,
(2.24)

Loo"" (K)=Lpsps , k00010, 05,0 (JET).

It follows from egs. (2.9), (2.20) and (2.21) that the matrix _£(%) at a given % is Hermitian and the
squared exciton energies E,2(%k) are given by the eigenvalues of the matrix (k).
If we replace k& by —k in eq. (2.21), take the complex conjugate of the resulting equation, and

make use of eq. (2.9), we obtain the result that
LUEDEF (—k)=El(—k)&§u*(— k). ' ' (2.25)
From eqs. (2.21) and (2.25) we see that the set of squard energies {E,2(—%)} and the set of squard
45



Energy Bands of the Frenkel Excitons in Complex Crystal Lattices
energies {E,2(k)} are eigenvalues of the same matrix L(%k). We therefore obtain
Eu(—B)=Eu(k), : ' (2.26)

for positive E,. Equations (2.21), (2.25) and (2.26) show that §,*(—k) satisties the same equation as
&,(k), which implies that )

§X(—k)=84s(k), 2.27)
apart from an unimportant phase factor.
Substituting eq. (2.18) into eqs. (2.12) ‘and (2.13), and making use of eqs. (2.26) and (2.27),

we obtain

; VE:(k)Ew (k) £4Co, E)Ep*Co, k)=08unp, (2.28)
7‘2 Ev(R)Eu(o, B)EX (o', B) =800, (2.29)
These are the orthonormal and complete condit‘i‘ons on the funktions +/Eu(%) &«(o, k). The state

with one exciton of the type uk can be calculated by solving the system of equations (2.19) under the
conditions mentioned above.

In the theory of Frenkel’s exciton, it is usually assumed that the electron orbits of an atom are
well localized near its nucleus. Therefore the Coulomb interaction between atoms is expanded
into a series in inverse powers of the distance between the centers of atoms. The individual terms
of the series correspond to the multipole-multipole interactions of varlous orders The leading term
gives the crystal field due to point charges, the effect of which has already been taken into account
in the quantity 4(p). If the electric dipole moment ariting from an intra-atomic transition differs from
zexo, the first term of this series contribuing to L(pp’,k) corresponds to the dipole-dipole interaction.

We shall retain only this term.

In this approximation, L(pp’,k) can be written as the sum of the macroscopic’ part Ly (oo’ k)
and the structure-dependent part Ls(op’, &):%?

Lo, &)= Lu(op’, k) + LsCop', K, . . (2.30)

with the definitions of

LuCopl, 10 = Ty Ay X ROk PG, (.30

Ls(pp’,k)=%\/@d—(p’—)— p() - LI, B - plo, (2.3
where v is the volume of a unit cell and

p(@=[o0ppCiafiae, - ' (2.39)

is the matrix element of the electric dipole moment p for electrons of the atom IA. The tensor [' is

symmetric and its components I'y(, j==z, y,z) satisfy

TQA B =T QX , k). : (2.30

In addition we have the relations
PR =L*QX, =LA, k). (2.35)
The explicit exoression for Lis given in ref. 7 (DY, (A'1k) in ref.-7 is identical with 41y (AA, —&)/v).

(5)
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~ The matrix element of electric dipole moment for the transition to an exciton state can be calcu-
lated as follows. In the representation of second quantization, the dipole moment operator of the

atom at the lattice site [\ is written as

p°”(12)=§‘:p(p)EB(lp)-i—B“(l,o)]. (2.36)
The Fourier component of this operator is given by
P4, k)=%]_v~ 2 PP exp ik - (1]

=ﬂ§} v d(p) p(p)(Br(k)En(p, k) +Bu*(—kEs*(o, — KD, 2.3D

where eqgs. (2.5), (2.10) and (2.17) have been used. The wave function of the uk exciton state, |upk>,
is obtained from the wave function of the crystal ground state, |0>>, by the rule |uk>=Bs*(k)]0>.

It follows from this that the matrix element of p°*(,¢) is given by

<01p°*QA, @) | k> =0qkps(A, k), (2.38)
where

Pu(2, k) =33 vV 4(p) €, K)p(p). (2.39)
Consequently

Pu()=3] ps(h ©)=3 v'4(0) £Cp, P (0, (2.40)

is the matrix element of the electric dipole moments for all the atoms in the unit cell consructed with
the wave functions of the crystal ground state and the exciton state of the type vk.
Finally we derive the expressions for the macroscopic polarization and the corresponding macro-

scopic electric field which arise from the distribution of transition dipole moments with % satisfying
1&lal1, ‘ (2.4

where a is a lattice constant. The microscopic polarization density P°*(r) is written, from eqs.
(2.36) and (2.37), as

Por(r)= 121 U r—r(ID]

j—ﬁ 3 3 exp Gk + P2, ) 2 00r—r (D). (2.42)

Since the sum over / is a function which has the periodicity of crystal lattice, it can be expanded as
36 Ir—rU)=1+ S exp lig- tr—r(DI}, (2.43)
o

where g are the reciprocal lattice vectors.

The macroscopic. polarization operator P°*(r) is defined as the average of P°*(r) over the volume
of a unit cell, ie, P°P=v“f GPG+rDdr’. For small [k satisfying eq. (2.41), only the term

with g=0 gives the nonvanishing contribution to this average, and hence we obtain the result that

the Fourier component of P°*(r) is given by
Pt =15 pm, ). (2.4

(6)



Energy Bands of the Frenkel Excitons in Complex Crystal Lattices

It follows from eqgs. (2.38), (2.40) and (2.44) that the macroscopic polarization Pu(k) produced by

the pk exciton is written as

Pu(k) =-:}—P;4(Ic), (2.45)

which is just the transition dipole moment per unit volume.

If we split Pu(k) into two parts Pu"(k) and Pus*(k) respecively parallel and perpendicular to
k, the Maxwell equation in the absence of free changes is written as  k<(Ex(k)+4zP."(E)]1=0
where Eux(k) is the macroscopic electric field in the system. Since Eu(k) satisfies EXE.(k)=0
if the retardation effect is ignored (the light velocity being taken to be infinite), we have the relation that
EXTE (k) +4nPs*(&)]=0. Thus the vector Ex(k)+47nP."(k) itself must vanish identically and so

Ev(l)=—4zP." (k) =—4ukk - P. (k2. (2.46)

§3. Dielectric Constant Tensor Due to the Presence of Exciton States

Substituting eq. (2.30) into eq. (2.19), we obtain the system of equations for an energy E

SHCE =22 2000 — Lsop', Yo', D=2 LuCop’, DEC0', BO. &.D
By use of eq. (2.31), the right hand side of eq. (3.1) can be written as

;‘, Ly(pp', B)ECQ', k) =—2v'4C0) p(p) - ECKD, 3.2
where

E(R)=—4nkk - P(k)E2, G.3»

is the macroscopic electric field produced by the macroscopic polarization P (%), as shown in eq.

(2.46). The macroscopic polarization is taken as

P @=LV £, k2p(o, )

according to egs. (2.45) and (2.40). In this section we consider only the long-wavelength excitons for
k satisfying the condition (2.41).
If we use the Green function G(pp’, E, k) satisfying

> {CE*~4£2(0)8e0' ~ Ls(p0', BYG(p'0", E, k) =800, 3.5
we can solve eq. (3.1) for £(p, k) to obtain
ECo, k)=—2 ,,2 Gop', E, k)vV 4(p") p(o") - E(K). (3.6)

Substitution of this solution into eq. (3.4) leads to

P (k)=—;}ﬂ—[é(E, B-11-EW®, G.7

where 1 is the unit dyadic and £ is the dielectric constant tensor given by

a

¢, ©)=1~-22 5 VA0 500" Glos', E, Ip(0IP(6). 3.8

The components of 1 and the dyad p(e)p(p") are respectively d; and p.(o)p;(0").

It is seen from eq. (3.5) that the Green function can be expressed in terms of mechanical excitons

79
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which correspond to the solutions of eq. (2.19) ignoring the contribution due to Ly(op’, k).
Denoting the energy and the amplitude function for the mechanical exciton of the type mk by

E.(k) and 5.(p, k), respectively, we have the system of equations
> {CER*(k) — 40D 000’ — Ls(pp’, k) }1pu (o', KD =0, 3.9
with the orthonormal and complete conditions on 7.(p, k)

3 VEE) En (&) 100, k)9 * (0, ) =8, (3.10
2 En(B)m(o, K)na* (o', k) =000, 31D

corresponding to egs. (2.28) and (2.29). In addition we have the properties

En(—k)=E.(k), (3.12)

and
7t o, —E)=nn(0, B, (3.13)

which can be obtained from a similar discussion to that given in deriving sgs. (2.26) and (2.27).
The fact that the function +/E,(k) y.(o,k) are orthonormal and complete allows us to expand
the Green function in the form of G(pp’, E, k) =X nn' (En(E) En (B *pup, k>7]7;:' 0", &) gmme CE, K.

Substituting this expansion into eq. (3.5) and using egs. {3.9) and (3.10), we find that the expansion
coefficient is given by gmm (E, &) =8nmn /(E*—En?(k)] and hence

R _ Em(k>77m(py k)?']m*(p,, ) 3. 14
Glop', E, ) =2 ET— B2 (B - @19

Accordingly, eq. (3.8) is written as
HER=1-5T 5 B p 3P, (3.15)

v m Ez—Em2(k)

where
\

Poll) =32 V) 1o, Do), | 3.16)

is the matrix element of the electric dipole moment for the unit cell constructed with the wave functions
of the crystal ground state and the mechanical exciton state. From egs. (3.12), (3.13), (3.15)

and (3.16), we obtain the relations between the components g; of & written as
eu(E, k) =¢e;/*(E, k)=¢y(E, — k). ' GB.17D

The expression (3.15) is the generalized form of the existing formula for £-® which holds for crystals
containing the same kind of atoms in the unit cell.

Since we are dealing with Coulomb excitons determined from the full expression of eq. (2.19)
instead of the expression omitting Lx(pp’, k), we shall rewrite eq. (3.15) in terms of Coulomb

excitons. The Green function G corresponding to eq. {2.19) is written as

Gloo', E, &) ={(E*~ £(0) I~ L5k — Lk} 00", (3.18)

where [ is unit matrix, and .Ls(k) and Lx(k) are the matrices whose elements are Ls(op', k) and

Ly(oo', k). The well-known formula for matrices leads to

{(E* = £ (0)I— L) — Lu(k)} oo ={{E2— 22 (0) I~ LK)} o0
+ puzpw{[Ez—Ach)]I—Is(k) Voo {LulB Yo" o {LE2— L2 (D)~ Ls(k)— Ly (ED} oo

¢8)
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which is transformed into the relation between the Green function for the Coulomb and mechanical
excitons as follows:
Goo', E, k)=G(pp", E, k)
+82. 5 Gloo”, B, k) VAV AG k- (0" - p(0"IG 0" B K), (319

vk? e
where eqs. (2.31) and (3.18) have been used.

Multiplying both sides of eq. (3.19) by (8x/v)Vd(p)d(0") p(o)p(¢’), taking the sum over all p
o', and using the expression for & given by eq. (3.8), we obtain . .

FE B =1-8(E ) +(1—2(E, k)) - kk - F(E EE?, (3.20)
where the tensor F(E, k) is defined as
B 8= 53 VI Ay Glod', B, 0p(0)p(0". (3.21)

Trom eq. (3.20), we obtaind that k-F=k.(—e)k¥/(k-s-k), which is substituted into the right
hand side of eq. (3.20) to give '

A i an (1—e(E, k)] -kk-(1—2(E, k)]
F(E B)=1—8CE k) + KR . (3.2

\

If we use egs. (2.19), (2.2é) and (3.18), wércan'exl‘)ress the Green function G as the bilinear
expansion

VA o Ee(B)En(p, BDE* (0, k) :
G(po', E, k)—; BB ) ) : (3.23)

in a similar way to that used in deriving eq. (3.14). Substituting this expression into eq. (3.21) and
using eq. (2.40), we find from eq. (3.22) the desired relation between the transition dipole moment and

the dielectric constant tensor written in terms of Coulomb excitons as follows:

o ¥ E-Rm PWPS®

1. (—eE D) kk-(1—£(E,K))
=1—¢(E k) + LT E . (.29

\)vhere Pu(k) is given by eq. (2.40). It should be noted that the formulae (3.15) and (3.24) are
applicable to any isolated system if the condition (2.41) is satisfied.

§4. Effective Dipole-Dipole Interaction

We divide all the atoms in crystal into two systems, the system A consisting of the ¢, atoms of
A and the system R consisting of all other atoms which can be regarded as the “medium” for excitons
in the system A if the condition (2.41). for long wavelength is satisfied. Let £:4(k) and &.%(k) be
the column vectors whose components are respectively {£4(os; %)} and {£4(or, KD}, where pa takes the
oana values and pr the a0y valnes. The column vector §:(k) and the matrix L) of eq.

(2.21) for the total system are written as

£44(k)

§.(k)= “4.1)
&.5)
LAk LRk

Lk)= “.2
LEAE) LR

9>
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where the elements of .L4(k) are given by eq. (2.24), and those of .L?(k) and .LA%K) (LP4(K)
being the transposed matrix of _£4%(k)) are '

Lo (k) =[0r)80rp' n+ L 080" 2, K)I00200" 0’ 2, } .3
L4200 ()= L040r, K)B00,80' os. '
Substituting eqs. (4.1) and (4.2) into eq. (2.21), we obtain the pair of equations
LAEEAR) + LK) E TR =En* (kD€ s (KD, ‘.9
LR B+ . LK) & 1w (R =En (k) & 4 ™K. 4.5
The solutions of eq. (4.5) for &4®(k) is given by
§1* () =G"(Eu, &).L74 (KD u*(K), 4.6)

where G® is the Green function matrix defined by G?(Eu, k) =[Eus*(k)I—_L2(k)]™, whose elements
G(orp'n, En, k) satisfy

;_,‘R{EE,F(I:)—A?(pR)j deze'r—L(or 0" 2, kD }G(0' 2 0" Ry E, k&) =080re" . “.D
Substitution of eq. (4.6) into eq. (4.4) yields the following equation for the system A4:
(LA + LARIDGH(En, k) L7A(R)IE (o) =En* (kD& 14 (KD, 4.8
or, by use of eqs. (2.24) and (4.3),
"E,A[Az(p4)6pAp'A+L°"(p4 045 Eu, K)Eu(p' 4, BY=Eu2(kDEu(pa, K, (4.82)
where
L (pap' 4y Ex, K)=L 010" 1, )+ o2 L0102, k)G 0r0"5, En, OL(0' 20’ 1, K, 4.9

is the Fourier component of the effective interaction between atoms in the system A; the first term is
the interaction energy in vacuum and the second term is the contribution to the interaction energy due
to the medium. '

Now consider the Coulomb excitons in the system R taken to be isolated from the system A
by assuming _L4%(k) to be the null matrix. The energy and the amplitude function of the vk
exciton in this system are denoted by E,(k) and {.(o=, k), respectively, where p specifies the exciton

band. These quantities satisfy the following system of equations

2 (B R)— 4(or) Jdore x— L0r0" 2, KD YL (0', KI=0, (4.10)
with the conditions of

= VE O E, (&) (u(or, k)G *(on, K) =6, (4.1

3 Es(k)Cupr, BDC* (0", KD =080r0" 5, (4.1

which correspond to eqs. (2.19), (2.28) and (2.29) for the total system. It is easy to show from the

above equations that the Green function satisfying eq. (4.7) can be expressed as the bilinear expansion

E,(BXoCon, KXL* (0 2, k)
E(k)— E; (k) : “.13)

G(orp' r, En, k)= 2”

Substituting eq. (4.13) into the second term of eq. (4.9) and using the expressions (2.30)~(2.32)

(10)
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in the dipole approximation, we obtain
o3, L0102, BYG on0'n. B, VL6201, ) [ B2 G000 0

7. oo -2 8T E(RE® . R
=k-plodk -p (o' Dk - DE—————Eﬂz(k)_Evz(@ |k P»(k)l

+k- p(p ) g E ml’(ﬂ:ﬂ) ﬁ(XA/ZR, k- Pu(ZR,k)Pu*(k)

8r E.(k)R? . P e pCo’
+kp- (PA) Z»] E mk P,(p*(Ar, k) f’CIZRl k) -p(o's)

G R%pm P, ) - P, WD, KD - P (X2 0, KD - PO,
(4.10

where Az takes the X+ 0s values and
PO=F p.(s, D=3 Vv 4(02) Loz, B)p(oz), “.19

is the transition dipole moment for all the atoms of the system R in the unit cell.
We assume that the dipole moments p(iz, k) are independent of 2z, which may be realized

in many crystals for long-wavelength excitons satisfied by the conditions (2.41)}. In this case we have

3 Ll B + pChe, BY=LAuR, B - PLCB), 4.16)
where
PR, B=3 FQale, B/, as. 417

By substituting eq. (4.16) into eq. (4.14), we see that the sum over p in each term can be expressed
in terms of the dielectric constant tensor &% for the isolated system R. Indeed, according to eq.

(3.24), we obtain the relations

Y Tﬁflf)_(—l%ﬂ—(ﬁ P.B)PX(K)

— %y, k) +- =8 k)_lﬂfgﬁ’%)‘ B k)] (4.18)
B 5 7% PP - k=L1=E f;g: Rk (4.19)
%?ﬁ%lbﬂﬁ)lkm—l. (4.20)

Making use of egs. (4.14), (4.16) and (4.18)~(4.20), and ignoring the dependence of £* and
I on %k because of the condition (2.41), we find that eq. (4.9) in the dipole approximation, i.e., the

Fourier component of the effective dipole-dipole interaction can be written as

L0400, Ev®, B) =Ly Coap’ 4, Ex®, k) + L™ (020" 4, Eu®), (4.2D

where E.° means E«(&) at £=0 and

. k+p” (o4 E, °)k~p°“(p’ ,Eu®
Lu®"Cpap’ 4, Ea®, k)~ LANG T ERY.CH; (;:- é;‘(E#D, e (4.22)
Ls"“(mp’mEﬂ):%C— VA0 D o) [Tl 4 E®) (o', (4.23)

with the definitions of

1)
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P (04, E)={1+1—2%(Es, 0) - [(RA4, O} - p(o), (4.24)
LA 4 Ee =L 0" 1, O+ QAUR, 0) « (1—£(E, 0] - (R 4, 0). (4.25)

Note that the components of £* and I at k=0 are real, as seen from eqs. (2.35) and 3.17).

The expressions (4.22) and (4.23) should be compared with Lx(o40's,k) and Ls(p4p"4,0) in
vacuum given by egs. (2.31) and (2.32). We consider cubic crystals with the dielectric constant
tensor of EX(E.° 0)=¢e®(E:)L. Since the tensor £Qa,0) is given by —(1/3)1 for lattice sites 1 and
A’ possessing at least tetrahedral symmetry”, eq. (4.24) is written as p** (o4, Ex) =p(0.)(e"(Ex®)+2)/3

and so the macroscopic part (4.22) is given by

o — 1 R(ESD+27°
Ly ”(AoAp’Ay Es k) ER(Euo)[ 2l g) ] LM(pAP’A,k)- (4.26)

The existence of ¢®(E4«?) in the denominator reflects the Coulomb law in the medium. The expression

(4.26) agrees with the results obtained from the macroscopic theory**?. In the same way we obtain

¥4 0
Ls*™ (040" 4, Es®) =—5~(EgiLs(p4p'A, 0, .27

which doses not correspond to the result from the macroscopic theory by reason of the fact that Lt
and L, are essentially of the microscopic character.

If the interaction energies between atom are very small as compared with the one-atom excitation
energy 4(p.) {this is the usual case for Frenkel’s excitons), we may replace Ex° in egs. (4.21)~(4.25)
by 4, a typical value of 4(p,), with the result that eq. (4.21) is independent of the exciton energies
to be solved. Thus, from eq. (4.8a), we can obtain the exciton energies of the system 4 by diagonalizing
the o¢4nsXo4ns matrix constructed from f"“(pAp’A,A,k), if the components of the tensors g% (4,0)
and [Q¥,0) are known. We emphasize here that the formula for ['(2,k) given in ref. 7 is
very useful for numerical calculations.

The formulae derived in this paper will be utilized for analyzing the experimental data of lead
halides which contain four lead ions and eight halogen ions per unit cell. The result will be reported

elsewhere.
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