土壌乾燥密度がCO図, CH図, N図O放出量に与える影響

メタデータ	言語: Japanese
	出版者:明治大学農学部
	公開日: 2024-05-30
	キーワード (Ja):
	キーワード (En):
	作成者: 土井,俊弘, 西脇,淳子, 小松崎,将一, 登尾,浩助
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10291/0002000556

〔研究論文〕

土壌乾燥密度が CO₂, CH₄, N₂O 放出量に与える影響

土井 俊弘1・西脇 淳子2・小松崎将一3・登尾 浩助4节

(2023年12月15日)

Effect of Soil Dry Bulk Density on CO₂, CH₄ and N₂O Emissions

Toshihiro DOI¹, Junko NISHIWAKI², Masakazu KOMATSUZAKI³ and Kosuke NOBORIO^{4†}

Abstract

The greenhouse gas flux from agricultural fields is related to gas production and migration in the soil. The primary mechanism of gas migration in soil is gas diffusion. Gas diffusion is influenced by porosity, volumetric water content, and other physical properties of soil. High soil water content inhibits gas diffusion and dissolves gases in soil water. Rewetting dry soil causes a large gas flux because of the rapidly increasing microbial respiration. Understanding the effect of soil physical properties on gas behavior in rewetted dry soil is essential for accurately estimating gas flux from the soil to the atmosphere. The present study was designed to investigate the effects of varying dry bulk densities on the dynamics of CO₂, CH₄, and N₂O gases in rewetted paddy soil environments. A column experiment used air-dried grey lowland soil in a constant-temperature room. After we added water only once at the start of the experiments to the columns with three types of dry bulk density ($\rho_d = 0.89$, 0.96, and 1.05 g/cm³), we measured the gas concentration in the columns and gas fluxes at the soil surface for 5 d. After the water supply, the CO₂ and N₂O gas fluxes increased from the rewetted dried soil in all columns. In contrast, CH₄ gas flux did not increase in these columns. Under the $\rho_d = 1.05$ condition, the total CO₂ and N₂O gas fluxes were smaller than those under the other dry bulk density conditions. This evidence suggests that high soil bulk density inhibits gas diffusion in the surface soil and reduces gas efflux into the atmosphere after water is supplied to the air-dried soil.

Key words: grey lowland soil, greenhouse gas, dry bulk density, gas diffusivity

要 旨 二酸化炭素(CO₂),メタン(CH₄)および亜酸化窒素(N₂O)といった温室効果ガスの放出源の一つ として水田土壌が挙げられる。稲作栽培期間中の水田土壌では,湛水期には水稲体を経由してCH₄が放出さ れる。中干しや間断灌漑といった落水処理によってCH₄放出量は低減するがCO₂やN₂O放出量が増加する。 非湛水条件下の水田土壌において大気-土壌間のガス移動は,主に濃度勾配による拡散によって生じる。非湛 水条件下の水田土壌において、乾燥密度条件の違いがCO₂,CH₄およびN₂Oガス放出量との関係性を評価し た研究例はほとんどない。本研究では乾燥密度の違いが大気-土壌間のCO₂,CH₄,N₂O交換に与える影響を明 らかにすることを目的とした。供試土壌は灰色低地土とし、3つの乾燥密度条件(*ρ_d*=0.89,0.96および1.05

¹ 明治大学大学院農学研究科 214-8571 神奈川県川崎市多摩区東三田 1-1-1

² 東京農工大学大学院農学研究院 183-8509 東京都府中市幸町 3-5-8

³ 茨城大学農学部附属国際フィールド農学センター 300-0331 茨城県稲敷郡阿見町阿見4668-1

⁴ 明治大学農学部 214-8571 神奈川県川崎市多摩区東三田 1-1-1

^{*} Corresponding Author: 登尾浩助 noboriok@meiji.ac.jp TEL: 044-934-7156 FAX: 044-934-715

 $g \text{ cm}^{-3}$) に調整して充填したカラムを作成し実験に用いた。実験期間中の積算ガスフラックスの結果より, 乾燥密度が高い土壌で CO₂ および N₂O ガス放出量が低下する傾向を得た。ただし乾燥密度間での統計的な有 意差は得られなかった。CH₄ ガスフラックスはすべての乾燥密度条件で低い値を示した。土中ガスの変動で は $\rho_d = 0.89 \text{ g cm}^{-3}$ 条件において土壌中の気相率が高い状態が維持されたことで,土壌中の徴生物呼吸による CO₂ 生成量の増加が生じたことが推察された。CH₄ と N₂O において乾燥密度条件の違いによる変化は生じな かった。実験開始後 6 時間以降は,N₂O 生成の基質となる窒素成分がカラム土壌内で枯渇したことが示唆さ れた。各ガスフラックスより算出した相対ガス拡散係数 (D_p/D_0) は,ガス種の違いおよび乾燥密度条件が異 なっても差異は生じなかった。ただし,土壌中でのガス生成・消費量を考慮する必要が示唆された。 **キーワード**:灰色低地土,温室効果ガス,乾燥密度,ガス拡散係数

1. はじめに

近年、地球温暖化の原因物質である温室効果ガスの 大気中濃度が増加しており、地球規模での気候変動が 危惧されている。温室効果ガスの放出源の一つとし て,水田や畑地といった農耕地土壌が挙げられる。農 耕地土壌において土壌中の有機物分解や微生物活動に よって二酸化炭素 (CO₂), メタン (CH₄) および一 酸化二窒素(N₂O)といった温室効果ガスが生成され る。水田からの温室効果ガス放出に関する研究はこれ まで数多く行われている。湛水期間中の水田において は水稲体を経由して CH4(陽・八木, 1988) が放出 される。間断灌漑や中干しおよび落水処理によって CH₄放出量が低減するが、N₂O(石橋ら、2007;工藤 ら, 2012) と CO₂(石橋ら, 2009) が放出される。 また水田において、稲作栽培期間中だけでなく収穫後 の落水期間も含めた通年の温室効果ガス放出量の測定 をしている研究例は少ない。中干しや間断灌漑および 落水処理によって水田土壌表面が露出した非湛水条件 下においては、水稲体経由のガス移動だけでなく土壌 表面-大気間を経由するガス移動もあわせて評価する 必要がある。自然の大気圧条件下では、拡散移動がガ ス移動経路の大部分を占める。土壌中のガス拡散移動 において,降雨による土壌中の体積含水率の増加(堀 田ら,2010)や乾燥密度が高い耕盤層が存在するこ と(藤川ら,2003)で拡散移動量が低下することが 報告されている。

乾燥密度とガス放出量の関係について好気的条件下の畑地や草地を対象として Ruser ら(1998)はジャ

ガイモ畑において乾燥密度の高い土壌で N₂O 放出量 が増加し, CH₄ 吸収量が低減することを明らかにし た。Ruser ら (2006) や Klefoth ら (2014)の畑地 土壌を用いた室内実験では,乾燥した土壌において水 分量が増加した後に,乾燥密度が低い条件では積算 N₂O ガスフラックスが増加することを明らかにし た。森村ら (1995)は,水田土壌の粗孔隙が発達し た移植水田では中干し後に CH₄ ガスフラックスが増 加することを報告した。しかし, CH₄ だけでなく非 湛水条件下の水田土壌から放出される CO₂ や N₂O ガ ス放出量とあわせて乾燥密度とガス放出量の関係性を 評価した研究例はほとんどない。そこで本研究は非湛 水条件下の水田土壌において,乾燥密度条件の違いが 土壌-大気間における CO₂, CH₄ および N₂O ガス交換 に与える影響を明らかにすることを目的とした。

2. 材料と方法

2.1 室内カラム実験

実験には、茨城県つくばみらい市内の水田から採取 した灰色低地土を用いた。風乾後、2.0 mm 篩を通過 させた土壌試料を実験に用いた。2.0 mm 篩通過後の 風乾土壌をアクリル製カラム(内径8.5 cm,高さ30 cm)に設定した乾燥密度($\rho_d = 0.89$, 0.96および 1.05 g cm⁻³)でそれぞれ充填した。カラム作成は実 験開始前日に行った。カラム下部には二方コックを設 置し、長さ約50 cm のポリビニル製の排水用チューブ を取り付けた(Fig. 1)。ガス採取中と水分散布時は 二方コックを開き、それ以外の時間ではコックを閉じ た。カラム側面はアルミホイルを巻いて遮光した。

Condition during experiment

During Gas sampling

Fig. 1 Schematic diagram of an experimental soil column.

本実験ではカラム上部より,500 mL ビーカーとプ ラスチック製漏斗を用いて設定量の純水を給水強度が 190 mm h⁻¹ となるように調整して,各カラム地表面 に散布した。散布する水分量は深さ 0-13 cm までの 間隙飽和度(Water-filled pore space, WFPS)が80% となる量を設定した。先行研究(陽ら,1983)の結 果を参考に散布する水分量を設定した。純水散布後に 地表面に湛水が見られなくなった状態を0時間(0h) とし、測定を開始した。実験期間は120時間とし、0 ~24時間までは3時間おき,24~120時間までは6時 間おきに地表面ガスフラックスの測定と土中ガスの採 取を行った。カラム実験は3反復実施し、反復実験 には新しい風乾土壌を用いた。カラムは室温を25℃ に設定した恒温室に設置して実験を行った。実験中に 測定した恒温室内の室温は24~26℃の範囲内であっ た。

2.2 統計解析

統計解析は有意水準10%の無相関検定とTurkeyの 多重比較検定を用いて実施した。 2.3 地表面ガスフラックス

地表面ガスフラックスの測定にはクローズドチャン バー法を用いた。測定に用いたアクリル製チャンバー (内径:8.5 cm,高さ:5.0 cm)内にはファン,気圧 調整用の調圧袋,温度計およびガス採取用のサンプリ ングポートをチャンバー上部に設置した。チャンバー 設置後10分毎に40分までガス採取を行った。シリン ジで採取したガスは,あらかじめ内部を真空にした5 mLバイアルに保存し,ガスクロマトグラフ (GC14A,島津製作所)を使って CO₂, CH₄ および N₂O 濃度を分析した。ガスクロマトグラフの検出器 には CO₂ の分析に TCD, CH₄ の分析に FID, N₂O の 分析に ECD をそれぞれ用いた。地表面ガスフラック ス Q_{eff1} (CO₂: mg C m⁻² h⁻¹, CH₄: μ g C m⁻² h⁻¹, N₂O: μ g N m⁻² h⁻¹)は,工藤ら (2012)の方法を参 考に式(1)から求めた。

$$Q_{effl} = \rho_g \ b_g \ \frac{V}{A} \frac{\Delta C}{\Delta t} \left(\frac{273.15}{273.15 + T}\right) \tag{2}$$

ここで、Vはチャンバー体積(m³)、Aはチャンバーの断面積(m²)である。T はフラックス測定開始時のチャンバー内温度(°C)、 $\Delta C/\Delta t$ は測定時間とガス 濃度の関係を線形近似した傾き(mg m⁻³ h⁻¹)であ

Table 1 Gases' properties used in Eq. (1).

	CO_2	CH_4	N_2O
Q_{effl} unit	$mgCm^{-2}h^{-1}$	$\mu \mathrm{g}\mathrm{C}\mathrm{m}^{-2}\mathrm{h}^{-1}$	$\mu \mathrm{gNm^{-2}h^{-1}}$
$ ho_{ m g}$	$1.977 (mgCm^{-3})$	$0.717 (\mu g Cm^{-3})$	$1.978(\mu g Nm^{-3})$
b_g	12/44	12/16	28/44

る。 ρ_g は標準状態のガス密度 (CO₂: mg Cm⁻², CH₄: μ g Cm⁻², N₂O: μ g Nm⁻²) であり, b_g は CO₂, CH₄ お よび N₂O 分子量に対する C または N 分子量の割合で ある (Table 1)。CO₂, CH₄ および N₂O 濃度を一次近 似する際,明らかな外れ値は除外した。

2.4 土中ガス濃度,体積含水率および地温

セラミック製のガスサンプリングポートを用いて土 中ガス濃度測定用のガス試料を1回当たり5mL採取 した。ガスサンプリングポートは深さ1-3 cm, 10-12 cm, 21-23 cm の土層の中程に水平方向に埋設し,深 さ2, 11, 22 cm のガス濃度とした。土中ガス試料採 取は地表面ガスフラックスの測定と同時刻におこなっ た。土中ガス試料の分析は地表面ガスフラックスの試 料と同様にガスクロマトグラフを使って CO_2 , CH_4 お よび N_2O 濃度を分析した。土壌中の体積含水率およ び地温は水分地温センサー(5TE, Decagon)で刻定 し、測定値はデータロガー(Em50, Decagon)で5 分ごとに記録した。センサーは深さ3-8 cm, 12-17 cm, 23-28 cm の土層に埋設し、それぞれの体積含水 率および地温の測定値を深さ5.5, 14.5, 25.5 cm の値 とした。

2.5 土壌ガス拡散係数

相対ガス拡散係数 (D_p/D_0) を下記の方法により求 めた。Fick の法則より、土壌ガス拡散係数 D_p を求め た (宮崎ら、2005)。

$$D_p = Q_{effl} \frac{\Delta x}{\Delta C} \tag{2}$$

ここで、 Q_{effl} は地表面ガスフラックス(CO₂: mg C m⁻² h⁻¹, CH₄: μ g C m⁻² h⁻¹, N₂O: μ g N m⁻² h⁻¹), Δx は深さ 0 cm と 2 cm の距離 (m), ΔC は深さ 0 cm と 2 cm の土中ガス濃度差(m³ m⁻³)である。大気中の

Table 2Constants in Eq. (1).

	CO_2	CH_4	N ₂ O
A	$5.75 imes 10^{-10}$	$7.04 imes 10^{-10}$	$5.34 imes 10^{-10}$
В	1.81	1.83	1.82

ガス拡散係数 *D*₀の値は以下の松永ら(1998)の式を 用いて算出した。

 $D_0 = AT^B$ (3) ここで、 D_0 は1atm (101.3 kPa) における空気中の ガス拡散係数 (m² s⁻¹)、T はガス温度 (K) であり、 A と B はガス種によって異なる定数である (Table 2)。本研究では、(2) と(3)式を用いて D_p/D_0 を算出 した。

$$\frac{D_p}{D_0} = \frac{1}{A T^B} \left(Q_{effl} \frac{\Delta x}{\Delta C} \right) \tag{4}$$

先行研究より WLR-Marshall model (Moldrup *et al.*, 2000) と D-C GMP model (Deepagoda *et al.*, 2011) を用いて、本研究で提案したモデル式(4)の D_p/D_0 を 比較および検証した.

WLR-Marshall model :
$$\frac{D_p}{D_0} = \varepsilon^{3/2} \left(\frac{\varepsilon}{\phi}\right)$$
 (5)

D-C GMP model :

$$\frac{D_{p}}{D_{0}} = 0.1 \left\{ 2 \left(\frac{\varepsilon}{\phi} \right)^{3} 0.04 \left(\frac{\varepsilon}{\phi} \right) \right\}$$
(6)

ここで, εは気相率 (m³ m⁻³), φは間隙率 (m³ m⁻³) である。

3. 結果と考察

3.1 気相率,体積含水率および地温の変動

実験期間中の気相率,体積含水率および地温の変動 を Fig. 2 に示した。データは 3 反復実験の平均値を 用いた。カラム上部へ純水を散布した直後の 0 時間 にて,深さ5.5 cmの体積含水率は実験期間中の最大 値を示した。体積含水率の最大値を示した時間はすべ ての乾燥密度条件で同じであった。0~3時間後にか けて深さ5.5 cmの体積含水率は減少し,深さ14.5 cm の体積含水率は増加した。このことから 3 時間後に は表層土壌に散布した一部の水は14.5 cm まで到達し たと考えられた。 $p_d=0.89$ g cm⁻³条件下においては,

— 48 —

Dry bulk density changing Green-house gas emission

Fig. 2 Variations of Air ratio, Volumetric water contents and soil temperature.

30時間後以降は深さ5.5 cm と14.5 cm における体積 含水率および気相率はほぼ同じ値を示した。 ρ_d =0.96 g cm⁻³ および ρ_d =1.05 g cm⁻³ 条件下では30時間後 ~実験終了時まで深さ5.5 cm と14.5 cm における体積 含水率および気相率は一定値を示した。実験期間中, ρ_d =0.89 g cm⁻³ 条件の深さ5.5 cm と14.5 cm の気相 率は他の乾燥密度条件の同じ深さの気相率よりも高い 値を示した。

実験期間中の地温は24.5~25.8℃の範囲内で推移し ていた。深さ5.5 cm と14.5 cm で地温の変動に違いは 見られず,すべての乾燥密度条件で変動に差は見られ なかった。

3.2 地表面ガスフラックスの変動

実験期間中の CO₂, CH₄ および N₂O の地表面ガス フラックスの時間変動を Fig. 3 に示す。データは 3 反復実験の平均値を用いた。CO₂ ガスフラックスは 実験開始直後に増加し, $\rho_d = 0.89 \text{ g cm}^{-3}$ 条件下と ρ_d = 1.05 g cm⁻³ で条件下は実験開始から21時間後に, $\rho_d = 0.96 \text{ g cm}^{-3}$ では実験開始から24時間後にそれぞ れ最大値を示した。3 種の乾燥密度条件の中で, $\rho_d =$ 0.89 g cm⁻³条件下でのフラックス値が最も高い値を

Fig. 3 Variations of CO_2 , CH_4 and N_2O gas fluxes after water supply.

示した。24時間から実験終了時にかけて、すべての 乾燥密度条件の CO_2 ガスフラックスは減少傾向を示 した。

CH₄ガスフラックスは,実験期間中の変動におい て放出と吸収を繰り返しており,実験開始時に水分散 布した後の時間経過で法則性のある変動をとらえるこ とはできなかった(Fig. 3)。実験終了時では,すべ ての乾燥密度条件でフラックス値は近い値を示した。

 N_2O ガスフラックスは、6時間後に最大値を示し、 6~36時間後にかけて低下し、36時間後以降は一定値 を示した。この変動はすべての乾燥密度条件でみられ た。3種の乾燥密度条件の中で、 $\rho_d = 0.89 \, \mathrm{g \, cm^{-3}}$ 条 件下でのフラックス値が最も高い値を示した。

3.3 土中ガス濃度の変動

実験期間中の土中ガス濃度の変動を Fig. 4 に示 す。土中ガス濃度のデータは3反復実験の平均値を 用いた。恒温室内の大気中のガス濃度の値は1 試料 の結果を用いた。

3種の乾燥密度条件の土中 CO2 ガス濃度は、似た 変動を示した。実験開始直後から21時間後にかけ て、すべての深さで土中CO2ガス濃度は初期値より 増加した。6時間後以降において,深さ2cmのガス 濃度よりも深さ11 cm および22 cm のガス濃度におい て高い濃度を示し、18時間後から実験終了時にかけ て緩やかに減少した。深さ11 cm と22 cm の CO_2 ガ ス濃度の差は90時間後以降わずかであった。土壌中 の体積含水率が増加することで, 微生物呼吸量が増加 する (Linn and Doran, 1984;藤川ら, 2000) ことか ら、微生物呼吸による CO2 生成量の増加または土壌 有機物の分解による土壌中へ CO2 が放出されること によって、土中 CO2 ガス濃度が増加したことが考え られた。この土中 CO2 濃度の増加はすべての乾燥密 度条件下でみられた。実験期間中はすべての深さにお いて $\rho_d = 0.89 \text{ g cm}^{-3}$ 条件の土中 CO_2 濃度が他の乾燥 密度条件よりも高い値を示した。

土中CH4ガス濃度の変動はすべての乾燥密度条件 で似た変動を示した。すべての深さにおいて土中 CH₄ガス濃度の大きな変動は見られず室内大気中の ガス濃度と似た値を示した。大気および土中CH4ガ ス濃度の値が似た値を示した理由としては、実験開始 から3時間後以降はすべての乾燥密度条件下で体積 含水率は0.25 m³ m⁻³ 以下であった。CH₄ は土壌中で 酸化還元電位(Eh)が-200mV以下の嫌気条件で生 成されると報告された(Takai, 1970)。先行研究にお いて、中干しを行い乾燥した土壌に湛水してから24 時間経過した後の土壌の酸化還元電位は負の値まで低 下しないことから(工藤ら, 2012),本実験条件では CH₄生成が生じる条件(酸化還元電位が負の値)が 形成されなかったことが推察された。ただし本研究で は酸化還元電位の測定を実施しなかったため、今後同 様の実験を行う際に土壌中の酸化還元電位を測定する ことが課題として挙げられた。

Dry bulk density changing Green-house gas emission

Fig. 4 Variations of CO₂, CH₄ and N₂O gas concentrations after water supply.: CO₂ ((a) 2 cm (b) 11 cm (c) 22 cm), CH₄((d) 2 cm (e) 11 cm (f) 22 cm), N₂O ((g) 2 cm (h) 11 cm (i) 22 cm)

3種の乾燥密度条件の土中 N₂O ガス濃度は6時間 後に最大値を示し、6~36時間後にかけて減少を示し た。36時間後以降は一定値(0.35~0.38 ppm)を示 した。すべての乾燥密度条件および深さで同様の変動 がみられ, N₂O フラックスと土中 N₂O ガス濃度は似 た変動を示した。先行研究より、水分量の増加ととも に N₂O 生成量(陽ら, 1983; Freney et al., 1979) お よび微生物呼吸速度が増加する(Birch, 1958)。さら に,水分供給により土壌有機物が易分解性となること と生物由来の土壌有機物量が増加することによって、 微生物呼吸速度が増加する(Lovieno and Baath, 2008)。したがって、0~6時間後にかけての土中 N₂O ガス濃度の増加については、実験開始時の水分散布に よって、土壌水分量が増加し土壌中の微生物呼吸速度 が増加したためと考えられた。N2Oガスフラックス の放出は土壌中で生成された N₂O が拡散移動によっ て大気中へ移動したためと考えられた。6時間後以降 は土壌中のN2O生成の基質となる窒素成分がカラム

土壌内で枯渇したことが考えられた。これによって土 中 N_2O ガス濃度が低下したため、36時間後以降は一 定値を示したと考えられた。36時間後以降の土中 N_2O ガス濃度の変動について、乾燥密度の違いによる影響 は見られず同様の変動を示した。

3.4 積算ガスフラックスと乾燥密度の関係

実験期間中の積算ガスフラックスと乾燥密度ごとの 関係を Fig. 5 に示した。データは 3 反復実験の平均 値を用いた。 $\rho_d = 0.96 \text{ g cm}^{-3}$ 条件下の積算値では $CO_2 \ge CH_4$ において反復でばらつきが見られた。乾 燥密度が低下すると、すべてのガスで積算ガスフラッ クス値が増加する傾向を得た。この関係は Ruser ら (1998) と Klefoth ら (2014)が示した WFPS = 60 と 75%条件下において乾燥密度が低い条件下において 積算 N_2O ガス放出量が増加する関係性と同様の結果 であった。

乾燥密度と積算 CO2 ガスフラックスの関係に関し

Fig. 5 Relationships between Cumulative gas fluxes of CO₂, CH₄ and N₂O and dry bulk density.

て無相関検定を行った結果,有意水準10%で有意差 がみられた。積算 N₂O ガスフラックスに関して有意 差は見られなかった。Turkey の多重比較検定で,乾 燥密度と積算ガスフラックスの平均値に有意差は見ら れなかった。CH₄ は土中ガス濃度と恒温室内大気中 のガス濃度の値が近く,ガスフラックス値にばらつき が見られたため今回の考察から除外した。

3.5 土壌中のガス拡散係数の比較

各乾燥密度条件下の土壌中のガス拡散係数と気相率 の関係を Fig. 6 に示した。式(5)の WLR-Marshall 式 (Moldrup *et al.*, 2000) と式(6)の D-C GMP model 式 (Deepagoda *et al.*, 2011) を用いて算出した ガス拡散係数の結果と気相率の関係を Fig. 6 に併記 した。本実験で得られたガスフラックスから算出した D_b/D_o の値を3つの乾燥密度条件で比較すると,ガス 種が異なっても同じ傾向を示したため,本実験条件下 ではガス種の違いによってガス拡散係数に違いは見ら れなかった。先行研究(Moldrup *et al.*, 2000; Deepagoda *et al.*, 2011)の関係式よりも,算出した相 対ガス拡散係数は全体的に低い傾向を示した。今回算 出した相対ガス拡散係数は,計算過程の中でガスフラ ックスから換算する際に,土壌中でのガス生成・消費 量を考慮していなかったため低くなったことが推察さ れた。そのため,ガス生成・消費量および $CO_2 \approx N_2O$ の基質となる物質の時間変動を明らかにすることとあ わせて,乾燥密度条件の違いと相対ガス拡散係数の関 係性について調査することが今後必要であると考えら

Fig. 6 Relationships between D_p/D_o and air ratio in CO₂, CH₄ and N₂O (m: WLR–Marshall model, d: D–C GMP model).

れた。

3.6 乾燥密度条件の違いがガス交換に与える影響 についての考察

 $\rho_d = 0.89 \text{ g cm}^{-3}$ 条件の CO₂ ガスフラックスおよび

すべての深さの土中 CO_2 ガス濃度は,他の乾燥密度 条件よりも高い値を示した。実験期間中, $\rho_d = 0.89 \text{ g}$ cm⁻³条件の深さ5.5 cm と14.5 cm の気相率は0.38~ 0.51 m³ m⁻³, 0.49~0.59 m³ m⁻³ の範囲で変動してい た。体積含水率が増加し,好気的な条件では微生物呼 吸量が増加することが報告されている(Linn and Doran, 1984)。そのため,他の乾燥密度条件よりも $\rho_d =$ 0.89 g cm⁻³条件において,実験期間中に気相率が高 い状態が維持されたことで,土壌中の微生物呼吸によ る CO_2 生成量の増加が生じたことが考えられた。

 CH_4 においては、すべての乾燥密度条件下で水分 量が増加しても CH_4 ガスフラックスは放出と吸収を 繰り返し、すべての深さの土中 CH_4 ガス濃度は室内 大気中の CH_4 ガス濃度と似た値を示した。 CH_4 は土 壌中で酸化還元電位(Eh)が-200 mV 以下の嫌気条 件で生成されることから(Takai, 1970)、本実験の 土壌水分条件では CH_4 生成が生じなかったことが推 察された。そのため本実験条件において、乾燥密度条 件の違いによる CH_4 放出量および土中 CH_4 濃度に与 える効果を明らかにすることはできなかった。

N₂Oにおいてはすべての乾燥密度条件で,水分量 の増加によって N₂O ガスフラックスとすべての深さ の土中N₂Oガス濃度が増加した。これは、体積含水 率の増加とともに N₂O 生成量(陽ら, 1983; Freney et al. 1979) および微生物呼吸速度(Birch, 1958) が 増加したためと考えられた。すべての乾燥密度条件お よび深さで同様の変動がみられ、 $\rho_d = 0.89 \text{ g cm}^{-3}$ 条 件でのN2Oガスフラックス値は他の乾燥密度条件よ りも高い値を示した。これは先行研究の Ruser ら (2006) や Klefoth ら (2014) の乾燥密度が低い条件 でN2O放出量が増加するという結果と同様の傾向を 得た。好気的な条件では水分量の増加によって硝化速 度が増加することと (Linn and Doran, 1984), 乾燥 密度の低い条件では O2 供給が増加し脱窒による N2O 生成量が低下する (Zhu et al., 2013)。そのため ρ_d = 0.89g cm⁻³条件では,他の乾燥密度条件よりも硝化 による N₂O 生成量が増加したことが推察された。36 時間後以降は土壤中で N₂O が生成していないため, すべての深さで土中ガス濃度が一定値を示したと考え

られた。36時間後以降の土中 N₂O ガス濃度の変動に ついて、乾燥密度の違いによる差は生じなかった。

今回算出したガス拡散係数においては,ガス種の違いおよび乾燥密度条件での違いによる差は生じなかった。

4. おわりに

本研究では非湛水条件下の水田土壌において、乾燥 密度条件の違いが土壌-大気間における CO₂, CH₄ お よび N₂O 交換に与える影響を明らかにすることを目 的とした。1) 積算ガスフラックスの結果より, 乾燥 密度が高い土壌で CO2 および N2O ガス放出量が低下 する傾向を得た。ただし乾燥密度間での統計的な有意 差は得られなかった。CH₄ガスフラックスはすべて の乾燥密度条件下で低い値を示した。2) 土中ガスの 変動では、実験期間中に $\rho_d = 0.89 \, \text{g cm}^{-3}$ 条件におい て土壌中の気相率が高い状態が維持されたことで、土 壌中の微生物呼吸による CO2 生成量の増加が生じた ことが推察された。CH4 とN2Oにおいて乾燥密度条 件の違いによる変化は生じなかった。実験開始後6 時間以降は、N₂O生成の基質となる窒素成分がカラ ム土壌内で枯渇したことが示唆された。3) ガスフラ ックス値より算出した D_p/D_oの結果においては,ガ ス種の違いおよび乾燥密度条件が異なってもD_b/D_o の値に差異は生じなかった。今回算出したD_b/D_a は、土壌中でのガス生成・消費量を考慮していなかっ たため低くなったことが推察された。

謝辞:

本研究のガス分析は国立研究開発法人農業環境技術 研究所で行いました。ここに記して感謝の意を表しま す。

引用文献

- Birch HF. (1958): The effect of soil drying on humus decomposition and nitrogen availability. Plant and Soil, 10: 9–31.
- Deepagoda TKKC, Moldrup P, Schjønning P, Jonge LWD, Kawamoto K and Komatsu T. (2011): Density-corrected models for gas diffusivity and air permeability in unsaturated soil. Vadose Zone Journal, 10: 226–238.
- Freney JR, Denmead OT and Simpson JR. (1979): Nitrous

oxide emission from soils at low moisture contents. Soil Biology and Biochemistry, 11: 167–173.

- 藤川智紀·宮崎 毅·関 勝寿·井本博美(2000):田畑輪換 圃場における土壌微生物数分布と CO₂, O₂ ガス濃度分布の相 関について. 農業土木学会論文集, 208: 19–28.
- 藤川智紀·宮崎 毅・井本博美(2003):耕盤層を有する土壌 中の CO₂, O₂ ガス挙動に関する研究.農業土木学会論文集, 225: 111-118.
- 堀田紀文・奈良康平・小田智基・鈴木雅一(2010):降雨イベ ント中の土壌中二酸化炭素濃度と土壌呼吸速度の変化.東京 大学農学部演習林報告, 123: 17-32.
- 石橋英二・山本章吾・赤井直彦・鶴田治雄(2007):不耕起乾 田直播水田における亜酸化窒素発生要因.日本土壌肥料学雑 誌,78(5):453-463.
- 石橋英二・山本章吾・赤井直彦・岩田 徹・鶴田治雄(2009): 水稲の不耕起乾田直播栽培が温室効果ガス発生に与える影響 - (第5報)水田から発生するメタン,亜酸化窒素および二 酸化炭素の年間発生量と水田土壌への炭素貯留-.日本土壌 肥料学雑誌,80(2):123-135.
- Klefoth RR, Clough TJ, Oenema O and Groenigen van JWV. (2014): Soil bulk density and moisture content influence relative gas diffusivity and the reduction of Nitrogen–15 Nitrous oxide. Vadose zone journal, 13(11): 1–8.
- 工藤裕亮・登尾浩助・加藤 孝・下大園直人 (2012):間断灌 漑における間断日数の違いが水田からの温室効果ガス放出と 水稲収量に及ぼす影響.農業農村工学会論文集,80(6):507-514.
- Linn DM and Doran JW. (1984): Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil science Society of America Journal, 48; 1267–1272
- Lovieno P, Baath E. (2008): Effect of drying and rewetting on bacterial growth rates in soil. Federation of European Microbiological Societies 65: 400–407.
- 松永直樹・堀 守雄・長島昭 (1998): Taylor 法による気体の 相互拡散係数の測定 (第5報, CO₂-空気系, CO₂-N₂系, CO₂-O₂系, CH₄-空気系, CH₄-N₂系, CH₄-O₂系, N₂O-空 気系, N₂O-N₂系および N₂O-O₂系の測定). 日本機械学会論 文集 (B 編), 64(621): 1433-1439.
- 陽 捷行・大西 将・福士定雄(1983):土壌中の硝酸化成の 過程で発生する N₂O. 日本土壌肥料学雑誌,54(4):277-280.
- 陽 捷行・八木一行 (1988):水田から発生するメタンフラッ クスの測定法.日本土壌肥料学雑誌,59(6):458-463.
- 宮崎 毅·長谷川周一·粕渕辰昭.土壤物理学.初版.80-81.朝倉書店.東京.2005.
- Moldrup P, Olesen T, Gamst J, Schjønning P, Yamaguchi T, and Rolston DE. (2000): Predicting the gas diffusion coefficient in Repacked soil: Water-induced linear reduction model. Soil Science Society of America Journal, 64: 1588– 1594.
- 森村大樹・成岡市・麻生昇平・武長宏・吉羽雅昭(1995):港 水直播水田の土壌物理性とメタン生成.日本土壌肥料学雑誌, 66(6):632-638.
- Ruser R, Flessa H, Schilling R, Steindl H and Beese F. (1998): Soil compaction and Fertilization effects on nitrous oxide and methane fluxes in potato fields. Soil Science Society of America Journal, 62(6): 1587–1595.
- Ruser R, Flessa H, Russsow R, Schmidt G, Buegger F and

Munch JC. (2006): Emission of N_2O , N_2 and CO_2 from soil fertilized with nitrate: effect of compaction. soil moisture and rewetting. Soil biology & Biochemistry, 38(2): 263–274.

- Takai Y. (1970): The mechanism of methane fermentation in flooded paddy soil. Soil Science and plant Nutrition, 16(6): 238-244.
- Zhu X, Burger M, Doane TA and Howarth WR. (2013): Ammonia oxidation pathways and nitrifer dentrification are significant sources of N_2O and NO under Low oxygen availability. Proceedings of the National Academy of Sciences, 110 (16): 6328–6333.