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Chapter 1

Introduction

In this thesis, we study submanifolds of Riemannian symmetric spaces by vector
bundles. We get new viewpoints in geometry of submanifolds using vector bundles. In
particular, we attack three problems: holomorphic isometric embeddings of the projective
line into quadrics, killing vector fields on complex hypersurfaces in the complex projective
space, and isoparametric functions on Riemannian symmetric spaces.

So, this article has three parts. In Chapter 2, we explain Nagatomo’s results about
harmonic maps into Grassmann manifolds [24]. These are the main tools in this thesis.
Then, we discuss holomorphic isometric embeddings of the projective line in quadrics in
Chapter 3, killing vector fields on complex hypersurfaces in the complex projective space
in Chapter 4, and isoparametric functions on Riemannian symmetric spaces in Chapter
5.

The study of harmonic maps from the complex projective line into complex quadrics
has a long history and has been pursued by various authors in different ways, e.g. [4, 8,
20, 34]. Our particular standpoint is a generalization by Nagatomo [24] of the methods
of Takahashi [29] and of do Carmo and Wallach [5], which can be summarized as follows:
A well-known theorem by Takahashi [29, Theorem 3] proves that an isometric immersion
of a Riemannian manifold in Euclidean space is an eigenvector for the Laplacian if and
only if it is a minimal immersion in some Euclidean sphere. The energy density of maps
is then related to the corresponding eigenvalue. A generalization of this result via vector
bundles can be found in [24, Theorem 3.5]. The statement is that a smooth map f of
a Riemannian manifold into the Grassmannian Grp(W ), where W is a real or complex
vector space with a scalar product, is harmonic if and only if W satisfies the zero property
for the Laplacian: for arbitrary t ∈ W ⊂ Γ(f ∗Q), ∆t = −At, where Q → Grp(W ) is
the universal quotient bundle, ∆ is the Laplace operator acting on sections and A is the
mean curvature operator (defined in [24, §2]) related to the energy density of f. This
viewpoint leads to a description in which a harmonic map from a Riemannian manifold
into a Grassmannian is induced by a triple composed by a vector bundle, a space of
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sections of this bundle and a Laplace operator.

A celebrated example of such induced maps is Kodaira’s embedding of an algebraic
manifold into complex projective space [18], which in the aforesaid description is induced
by a holomorphic line bundle and the space of holomorphic sections.

Takahashi’s original result finds major application in do Carmo and Wallach [5] under-
taking of the classification of minimal (isometric) immersions of spheres into spheres. A
key role in do Carmo–Wallach theory is played by certain symmetric positive semi-definite
linear operators [5, Proposition 1.3] interweaving minimal immersions: finding the space
of the image-inequivalent operators amounts to describe the moduli space, an endeavour
which is dealt successfully with representation theory.

From the generalized version of the theorem of Takahashi [24, Theorem 3.5], a gener-
alisation of do Carmo–Wallach theory in terms of vector bundles is possible [24, Theorem
5.5]. We recall its principal features in Theorem 2.3.4 below. In essence, the theorem af-
firms that the harmonic induced map f of a Riemannian manifold into the Grassmannian
Grp(W ) by the aforementioned harmonic triple is naturally equipped with a family of
symmetric positive semi-definite operators determining the moduli space, as in the classi-
cal do Carmo–Wallach theory. Uniqueness of the associated symmetric operator reduces
the moduli to a single point yielding rigidity of the induced map: this is the case of the
real standard map of our Theorem 3.3.4.

For the second problem, totally geodesic submanifolds of a Riemannian manifold
have the following distinct property. Let S be a totally geodesic submanifold of a Rieman-
nian manifold M . For a Killing vector field X on M , the tangent part of the restriction
of X to S is also a Killing vector field.

Then, we determine submanifolds satisfying such a property. In particular, we study
the induced metrics with non-trivial Killing vector fields on complex hypersurfaces in the
complex projective space.

For the third problem, we construct isoparametric functions on symmetric spaces
of compact type systematically. The research of an isoparametric hypersurface, which is
the regular level set of an isoparametric function, has a long history, going back to Levi-
Civita and É.Cartan. We have a lot of literatures about isoparametric hypersurfaces of
spaces of constant curvatures, which have constant principal curvatures. We denote by g
the number of distinct principal curvatures. Amongst all, the research of an isoparametric
hypersurface of a sphere is extensive and well-known. Substantial results are exhibited in
[3], [9], [22], [26] and [27], etc. In [22], Münzner shows that g = 1, 2, 3, 4, 6 and in [9], a
lot of isoparamertric functions on a sphere are systematically constructed by an algebraic
method, which are called isoparametric functions of OT-FKM type. By contrast, we have
few explicit examples of isoparametric functions on general Riemannian manifolds.

We utilize a homogeneous vector bundle and a section to construct an isoparametric
function on an irreducible symmetric space, say G/K. To choose a vector bundle and
a section, we consider an irreducible G-module W of spherical type. This means that
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the principal orbits are hyperspheres of W and so, we obtain a subgroup H ⊂ G as a
stabilizer. If the representation is restricted to a subgroup K, then K-submodules of W
induce homogeneous vector bundles over G/K. Using an invariant metric on the bundle,
we define a function f : G/K → R as the square of the norm of the section.

If the action ofH on G/K is of cohomogeneity one, then f is an isoparametric function.
The mean curvature of the level hypersurface is also computed (Theorem 5.3.14). We
have common description of |df |2 and the mean curvature on any pairs (G/K,W ). As
a by-product, we can specify the precise value whose inverse image of f is a minimal
hypersurface in a family given by the isoparametric function. On the contrary, when
we compute the principal curvature, we have distinct difference between pairs and no
unified way (Theorems 5.3.17, 5.3.18, 5.3.19, 5.3.20 and 5.3.21). In those computations,
the second fundamental forms of vector bundles [16] play essential roles and the theory
developed by Nagatomo in [24] provides us with a unified method.

If the cohomogeneity of the action of H on G/K is greater than one, then the function
f : G/K → R is not an isoparametric function. However, we can construct a new
isoparametric function F : G/K → Rk in the sense of Wang [33] (see also [6, p.55]),
where k denotes the cohomogeneity of H-action. One component of F consists of the
function f . In the case that a chosen pair is (Sp(n)/U(n),C2n), F coincides with a
moment map for an Sp(1)-action on Sp(n)/U(n).

Moreover, we can find a new isoparametric function f̃ : G/K → R. The function f̃
has a larger symmetry than the original f . In short, a subgroup H̃ ⊂ G such that H ⊂ H̃
enters into our theory and f̃ is invariant under the action of H̃. The appearance of f̃ and
H̃ is not accidental. We use other vector bundles and spaces of sections to explain in an
algebraic and geometric way that the chosen section in §3 has really a hidden symmetry
H̃ ⊂ G. The H̃-action on G/K turns out to be of cohomogeneity one. The relation
between f̃ and F makes some properties of H-action and level sets of F transparent. In
particular, any submanifold in our family induced by F is not an equifocal submanifold
in the sense of Terng-Thorbergsson [31].

In the final section, we interpret the reason that representations of spherical type
are chosen. One of our aims in the present paper is to provide a geometric mean of
constructing an isoparametric function on a sphere.
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Chapter 2

Preliminaries

2.1 Geometry of Grassmannian manifolds

We review geometry of Grassmannian manifolds, in order to fix notation and our
convention in this paper. For proofs, see [24].

Let W be an N -dimensional vector space. In the case that W is a real vector space,
we also consider the orientation of W .

LetGrp(W ) be a Grassmannian manifold of (oriented) p-planes inW and S → Grp(W )
a tautological vector bundle. Since S → Grp(W ) is regarded as a subbundle of a trivial
vector bundle W → Grp(W ) of fiber W , we have an exact sequence of vector bundles:

0 → S
iS−→ W

πQ−→ Q→ 0.

The quotient bundle Q → Grp(W ) is called the universal quotient bundle. The tangent
bundle is identified with S∗ ⊗ Q. (More precisely, the holomorphic tangent bundle is
identified with S∗ ⊗Q in case of complex Grassmannian.)

We fix a scalar product (·, ·) on W . On the one hand, the orthogonal projection gives
a bundle surjection πS : W → S. On the other hand, Q → Grp(W ) is regarded as the
orthogonal complementary bundle S⊥ → Grp(W ) to S → Grp(W ), and so we obtain a
bundle injection iQ : Q → W . The vector bundles S → Grp(W ) and Q → Grp(W ) are
equipped with metrics gS and gQ, respectively.

We can define a connection∇Q on Q→ Grp(W ) using a trivialization ofW → Grp(W )
with an orthonormal basis. If t is a section of Q → Grp(W ), then iQ(t) is considered as
a W -valued function. Then we have

d (iQ(t)) = πS (d (iQ(t))) + πQ (d (iQ(t))) .

The connection ∇Qt = πQ (d (iQ(t))) is nothing but the canonical connection. The other
term in right hand side πS (d (iQ(t))) is a 1-form with values in Hom(Q,S) ∼= Q∗ ⊗ S
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which is called the second fundamental form in the sense of Kobayashi [16] and denoted
by J .

In a similar way, if s is a section of S → Grp(W ), then we have

d (iS(s)) = πS (d (iS(s))) + πQ (d (iS(s))) .

The canonical connection is expressed as ∇Ss = πS (d (iS(s))) and we define the second
fundamental form I = πQdiS, which is a 1-form with values in Hom(S,Q) ∼= S∗ ⊗Q.

In the case of a complex Grassmannian, we can also consider complex analytical
structures. Canonical connections give holomorphic structures to S → Grp(W ) and Q→
Grp(W ). In particular, W can be regarded as the space of holomorphic sections of Q →
Grp(W ) by a theorem of Borel-Weil. The second fundamental form I ∈ Ω1(Hom(S,Q))
is of type (1, 0) and The second fundamental form J ∈ Ω1(Hom(Q,S)) is of type (0, 1).

Since the (holomorphic) tangent bundle is identified with S∗ ⊗ Q, we can induce a
Riemannian metric gGr on a Grassmannian.
• real case We have

gGr(X,Y ) = −trace JY IX = −trace IY JX ,

where X and Y are tangent vectors.
• complex case Let hGr be the Hermitian metric on the holomorphic tangent bundle
T1,0 induced by Hermitian metrics gS and gQ. The definition yields that

hGr(Z,W ) = −trace JW IZ ,

where Z and W are (1, 0)-vectors. Consequently we have

gGr(X,Y ) =− trace JY IX − trace JXIY

=− trace IY JX − trace IXJY ,

where X and Y are (real) tangent vectors.
The Levi-Civita connection D is nothing but a connection induced by ∇S and ∇Q.

Proposition 2.1.1. The second fundamental forms I and J are parallel.

For a vector w ∈ W , we have two sections s = πS(w) and t = πQ(w), each of which is
sometimes called the section corresponding to w. Obviously, we have

Proposition 2.1.2. If s and t are the sections corresponding to w ∈ W , then

∇Ss = −Jt, ∇Qt = −Is.

Lemma 2.1.3. The second fundamental forms I and J satisfy

gQ(Is, t) = −gS(s, Jt).
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We now can easily compute (∇S)2 and (∇Q)2. If s and t are the corresponding sections
to w ∈ W , then we have

(∇S)2s = ∇S (−Jt) = −(∇J)(t)− J(∇Qt) = JIs,

(∇Q)2t = ∇S (−Is) = −(∇I)(s)− I(∇Ss) = IJt.

More precisely, we have

∇S
X(∇Ss)(Y ) = JY IXs, ∇Q

X(∇
Qt)(Y ) = IY JXt.

For instance, we take the trace of (∇S)2 to define the Laplace operator: ∆s = −
∑n

i=1 ∇S
ei
(∇Ss)(ei).

We see that sections s and t are eigensections of the Laplacian (∆s = qs, ∆t = pt, where
q = N − p).

2.2 Totally geodesic immersions into Grassmannians

Let (G,K) be an irreducible symmetric pair of compact type, where G is a simply-
connected compact Lie group and K is a closed subgroup of G. We denote by g and k the
corresponding Lie algebras. The standard decomposition is expressed as g = k⊕m.

Let % : G→ GL(W ) be an irreducible representation with an G-invariant scalar prod-
uct. For simplicity, we do not distinguish a representation % : G → GL(W ) from the
representation space W . We assume that W has a non-trivial K-invariant orthogonal
decomposition W = U ⊕ V such that mU ⊂ V and mV ⊂ U . (Non-trivial decomposi-
tion means that neither U nor V is zero-dimensional.) Such a decomposition is called a
generalized Cartan decomposition of W . More generally, we define

Definition 2.2.1. Let % : G → GLW be an orthogonal or unitary representation of G.
The (%,W ) has a generalized Cartan decomposition (for the symmetric pair (G,K)) if W
is decomposed into two non-zero K-modules W = U0 ⊕ V0 over the same coefficient field
as that of W under the restriction of the homomorphism % to a subgroup K, in such a
way that

%(m)U0 ⊂ V0, %(m)V0 ⊂ U0, U0⊥V0,

and neither U0 or V0 is a G-module (in other words, %(m)U0 6= {0} and %(m)V0 6= {0}).
The decomposition W = U0 ⊕ V0 is called a a generalized Cartan decomposition, more
accurately, a real generalized Cartan decomposition or a complex generalized Cartan
decomposition according to the coefficient field of W .

Assume that W has a generalized Cartan decomposition : W = U⊕V . Let dimU = p
and dim V = q. We define an immersion i : G/K → Grp(W ) by

i (gK) = %(g)U, g ∈ G.
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We assume throughout this paper that a Riemannian metric on G/K is provided in
such a way that the immersion i : G/K → Grp(W ) is an isometric immersion. Then
i : G/K → Grp(W ) is indeed a totally geodesic immersion.

We can define two homogeneous vector bundles G×K U and G×K V with canonical
connections, which are denoted by U → G/K and V → G/K. Frobenius reciprocity
yields that W can be regarded as a finite dimensional space of sections of U → G/K
and V → G/K. More precisely, πU : W → U and πV : W → V denote the orthogonal
projections. For w ∈ W , we put

s([g]) :=
[
g, πU(g

−1w)
]
, t([g]) :=

[
g, πV (g

−1w)
]
,

where g ∈ G and [g] ∈ G/K. The sections s ∈ Γ(U) and t ∈ Γ(V) are also called the
corresponding sections to w ∈ W .

From the construction, U → G/K and V → G/K are pull-back bundles of the
tautological bundle and the universal quotient bundle over Grp(W ), respectively. Then
the pull-back connections are the same as the canonical connections. We can also pull-
back the second fundamental forms I and J which are sections of i∗T ∗ ⊗ Hom(U,V)
and i∗T ∗ ⊗Hom(V,U), respectively, where T ∗ is the cotangent bundle of Grassmannian.
Using the projection i∗T ∗ → T ∗G/K, the pull-backs of I and J are the second fundamental
forms of vector bundles, and so we denote by the same symbol the pull-backs of the second
fundamental forms.

Theorem 2.2.2. [24, Lemma 4.1] A map f : G/K → Grp(W ) is totally geodesic
(i.e.∇df = 0) if and only if the second fundamental form I of vector bundles is paral-
lel.

Proof. Since we have a fundamental relation ∇I = I∇df , the result follows.

We define an endomorphism A ∈ Γ (End (V)) by

A =
n∑
i=1

IeiJei , n = dimG/K,

where e1, · · · , en is an orthonormal basis of the tangent space of G/K. We call A the mean
curvature operator. Notice that A can be defined in a similar way, even if the domain is
a Riemannian manifold [24]. Then we have

Theorem 2.2.3. [24, Theorem 3.5] Let (M, g) be an n-dimensional Riemannian manifold
and F : M → Grp(W ) a smooth map. We fix an inner product or a Hermitian inner
product (·, ·) on W .

Then, the following two conditions are equivalent.

1. F :M → Grp(W ) is a harmonic map.
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2. ∆t+At = 0 for an arbitrary t ∈ W , where the vector space W is regarded as a space
of sections of the pull-back bundle F ∗Q→M .

Under these conditions, we have

|df |2 = −traceA.

The role of the universal quotient bundle in Theorem 2.2.3 can be replaced by the
tautological bundle. To do so, we define an endomorphism B of U → G/K by

B =
n∑
i=1

JeiIei ,

which is also called the mean curvature operator.

2.3 The generalization of the theorem of do Carmo–

Wallach

In this section we give a short account of results in [24] needed to state a version of the
generalization of the theorem of do Carmo–Wallach (Theorem 2.3.4), whose implications
will be applied later in this article.

Suppose V → M is a complex (resp. real/real oriented) vector bundle of rank q and
consider an N -dimensional space of sections W ⊂ Γ(V). By definition of W → M, there
is a bundle homomorphism ev : W → V, called evaluation, defined by (x, t) 7→ t(x) for
all t ∈ W,x ∈ M. The vector bundle V →M is said to be globally generated by W if the
evaluation is surjective. Under this hypothesis, there is a map f : M → Grp(W ), where
Grp(W ) is a complex (resp. real/real oriented) Grassmannian and p = N − q, defined by

f(x) = Ker evx = {t ∈ W | t(x) = 0} ,

where evx ≡ ev(x, ·). The map f is said to be induced by the couple (V → M, W ), or
simply by W if the vector bundle V →M is specified (cf. [24]).

Notice that, by the definition of induced map, V → M can be naturally identified
with f ∗Q → M. Therefore, given a smooth map f : M → Grp(W ), it can be regarded
as the induced map determined the by the couple (f ∗Q → M, W ). If the linear map of
W ⊂ Γ(V) into Γ(f ∗Q) is injective, we say that the map f is full [24, Definition 5.2].
This definition of fullness coincides with the ones used in [5] when the target space is the
sphere or complex projective space.

Moreover, assume M to be Riemannian and V → M to be equipped with a fiber-
metric and a connection. From these data a Laplace operator acting on sections can be
defined.
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The model special case is that in which M is a compact reductive homogeneous space
G/K (where G is a compact Lie group and K is a closed subgroup of G), and V → M
is a homogeneous complex (resp. real) vector bundle of rank q, i.e. V ∼= G ×K V0 where
V0 is a q-dimensional complex (resp. real) K-module (cf. [24]). If additionally V0 admits
a K-invariant Hermitian (resp. symmetric) inner product, V →M inherits a G-invariant
Hermitian (resp. symmetric) fiber-metric.

Because of reductivity, V → M is equipped with a canonical connection too, the one
for which the horizontal subspace on the principal K-bundle G → M is given by the
complement m to k = L(K) in g = L(G).

Using the Levi–Civita connection and the canonical connection, Γ(V) can be decom-
posed into eigenspaces of the Laplacian each being a finite-dimensional not necessarily
irreducible G-module and equipped with a G-invariant L2-inner product. Then, we say
that the induced map by (V → M, W ) is standard if a G-submodule W ⊆ Wµ globally
generates the bundle, where Wµ is the eigenspace of the Laplacian with eigenvalue µ.

Evidently, the definition of standard map generalizes the special homogeneous case.
However, the homogeneous setting will be enough for the purposes of the present work.

The spaces of sections inducing standard maps have the following interesting property
which will be useful later:

Lemma 2.3.1 ([24, Lemma 5.17]). Let W be a G-subspace of Wµ. If W globally generates
V → G/K, then V0 can be regarded as a subspace of W .

Denote by U0 the orthogonal complement of V0 inW. Then, the induced standard map
f0 :M → Grp(W ) is expressed as

f0([g]) = gU0 ⊂ W,

for all [g] ∈ G/K, and is G-equivariant.
Notice that, besides its assumed fiber-metric and connection, V →M is endowed with

a secondary couple of fiber-metric and connection inherited from the natural identification
φ : V ∼= f ∗Q, i.e. the fiber-metric and canonical connection on Q→ Grp(W ) pulled-back
to f ∗Q → M. In general, these structures do not need to be gauge equivalent unless the
splitting W = U0 ⊕⊥ V0 satisfies extra conditions:

Lemma 2.3.2 ([24, Lemma 5.18]). The pull-back connection is gauge equivalent to the
canonical connection if and only if

mV0 ⊂ U0.

Lemma 2.3.3 ([24, Lemma 5.19]). If a G-representation W ⊆ Wµ globally generates
V → M and satisfies the condition mV0 ⊂ U0, then the standard map f0 : M → Grp(W )
is harmonic with constant energy density e(f0) = qµ and the mean curvature operator is
proportional to the identity A = −µIdV.
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Let us introduce the two increasingly stronger equivalence relations [24, Definitions
5.3 and 5.4], up to which we shall later define moduli spaces of maps. Let f1 and f2 :
M → Grp(W ). Then f1 is called image equivalent to f2 if there exists an isometry ψ of
Grp(W ) such that f2 = ψ ◦ f1. Next, we fix a vector bundle V →M , a fiber metric and a
connection compatible with the metric. Furthermore, denote by ψ̃ the bundle isomorphism
of Q→ Grp(W ) which covers the isometry ψ of Grp(W ). Then, the pair (f1, φ1) is said to
be gauge equivalent to (f2, φ2), where φi : V → f ∗

i Q(i = 1, 2) are bundle isomorphisms, if
there exists an isometry φ of Grp(W ) such that f2 = ψ ◦ f1 and φ2 = ψ̃ ◦ φ1.

Aside from the geometric background, some algebraic preliminaries regarding Hermi-
tian/symmetric operators are needed.

Let G be a compact Lie group, W a complex G-module together with an invariant
Hermitian product ( , )

W
and denote by H(W ) the set of Hermitian endomorphisms of W.

We equip H(W ) with a G-invariant inner product (A,B)
H
= traceAB, for A,B ∈ H(W ).

Define a Hermitian operator H(u, v) for u, v ∈ W as

H(u, v) :=
1

2
{u⊗ (·, v)

W
+ v ⊗ (·, u)

W
} .

If U and V are subspaces of W , we define a real subspace H(U, V ) ⊂ H(W ) spanned by
H(u, v) where u ∈ U and v ∈ V . In a similar fashion, GH(U, V ) denotes the subspace of
H(W ) spanned by gH(u, v), where g ∈ G.

If W is a real G-module together with an invariant inner product, then symmetric
endomorphisms take the place of Hermitian ones and we get analogous definitions of
S(W ), S(u, v), S(U, V ), GS(U, V ).

Now we have all the needed ingredients to introduce a version of the generalization of
the theorem of do Carmo–Wallach for holomorphic maps.

Theorem 2.3.4. LetM = G/K be a compact irreducible Hermitian symmetric space with
decomposition g = k ⊕ m and fix a complex homogeneous line bundle V = G ×K V0 over
M with invariant metric h and canonical connection ∇. Regard V → M as a real vector
bundle with complex structure J c. Finally, let f : M → Grn(R

n+2) be a full holomorphic
map satisfying the following two conditions:

(G) The pull-back f ∗Q → M of the universal quotient bundle Q → Grn(R
n+2) with the

pull-back metric, connection and complex structure is gauge equivalent to V → M
with h, ∇ and J c.

(EH) The mean curvature operator A ∈ Γ(EndV) of f is expressed as −µ IdV with some
positive real number µ, and so e(f) = 2µ.

Hence the space of holomorphic sections W = H0(V) ⊂ Γ(V) is also an eigenspace of
the Laplacian with eigenvalue µ. Regard W as a real vector space with L2-inner product
(·, ·)

W
induced from the L2-Hermitian product. Then, there exists a positive semi-definite

symmetric endomorphism T ∈ S (W ) such that the pair (W,T ) satisfies the following three
conditions:
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(I) The vector space Rn+2 is a subspace of W with the inclusion ι : Rn+2 → W
preserving the orientation, and V →M is globally generated by Rn+2.

(II) As a subspace, Rn+2 = KerT⊥ and the restriction of T is a positive definite
symmetric endomorphism of Rn+2.

(III) The endomorphism T satisfies the orthogonality conditions(
T 2 − IdW ,GH(V0, V0)

)
H
= 0,

(
T 2,GH(mV0, V0)

)
H
= 0. (2.3.1)

By (I), (II) and (III), the endomorphism T provides the following.

(a) A holomorphic totally geodesic embedding of Grn(R
n+2) into Grn′(W ) by U 7→

U ⊕KerT where n′ = n+ dimKer T

(b) A bundle isomorphism φ = T ◦ ev∗ : V → f ∗Q which preserves the metric h
and the connection ∇ where ev∗ is the adjoint bundle map of ev with respect to h
and (·, ·)W . We consider that T ◦ ev∗ is a map of V → f ∗Q by the identification
(f ∗Q)x = (Ker evx)

⊥ (x ∈M).

(c) A expression of f :M → Grn(R
n+2),

f ([g]) = (ι∗Tι)−1 (f0 ([g]) ∩KerT⊥) , (2.3.2)

where ι∗ denotes the adjoint operator of ι under the induced inner product on Rn+2

from (·, ·)W on W and f0 is the standard map by W .

Moreover two such pairs (fi, φi), (i = 1, 2) are gauge equivalent if and only if KerT1 =
KerT2 and ι∗1T1ι1 = ι∗2T2ι2, where (Ti, ιi) correspond to fi (i = 1, 2) under the expression
in (2.3.2), respectively.

Conversely, suppose that a vector space Rn+2, the space of holomorphic sections W ⊂
Γ(V) regarded as real vector space and a positive semi-definite symmetric endomorphism
T ∈ S (W ) satisfying conditions (I), (II) and (III) are given. Then we have a unique
holomorphic embedding of Grn(R

n+2) into Grn′(W ) and the map f : M → Grn(R
n+2)

defined by (2.3.2) is a full holomorphic map into Grn(R
n+2) satisfying conditions (G) and

(EH) with bundle isomorphism V ∼= f ∗Q.

Proof. This is obtained by a combination of Theorems 5.16 and 5.20 in [24], themselves
refinements and following the same proof as that of Theorem 5.5.

Remark 1. Conditions (G) and (EH) in the theorem are named respectively gauge and
Einstein–Hermitian conditions.
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Chapter 3

Holomorphic isometric embeddings
of the projective line into quadrics

3.1 Holomorphic isometric embeddings

The aim of this section is to introduce holomorphic isometric embeddings from CP 1

into Grn(R
n+2) and to show that they satisfy the hypothesis of Theorem 2.3.4. Then

the universal quotient bundle has a holomorphic bundle structure. Notice that the cur-
vature two-form R of the canonical connection on the universal quotient bundle is the
fundamental two-form ωQ on Grn(R

n+2) up to a constant multiple:

R = −2π
√
−1ωQ.

Denote by ω0 the fundamental two-form on CP 1. When R1 denotes the curvature two-
form of the canonical connection on the hyperplane bundle O(1) → CP 1 (cf. [10, p.
145]), we also have R1 = −2π

√
−1ω0. In what follows, we will denote by O(k) → CP 1

the k-th tensor power of the hyperplane bundle.

Definition 1. Let f : CP1 ↪→ Grn(R
n+2) be a holomorphic embedding. Then f is called

an isometric embedding of degree k if f ∗ωQ = kω0 (and so, k must be a positive integer).

In order to show that holomorphic isometric embeddings CP1 ↪→ Grn(R
n+2) satisfy

the conditions of Theorem 2.3.4 we need the following two lemmas. Their proofs rely heav-
ily on properties of the (unique) Einstein–Hermitian connection. For additional details
we refer the interested reader to the excellent book by Kobayashi [16, Ch. IV].

Lemma 3.1.1. Let f : CP1 ↪→ Grn(R
n+2) be a holomorphic embedding. Then f is an

isometric embedding of degree k if and only if the pull-back bundle f ∗Q → CP 1 with the
pull-back connection is gauge equivalent to O(k) → CP 1 with the canonical connection.

Proof. If the degree of the isometric embedding f equals k, the pull-back of the universal
quotient bundle is holomorphically isomorphic to the holomorphic line bundle of degree
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k on CP 1 (by uniqueness of the holomorphic bundle structure), which by homogeneity
admits a unique Einstein–Hermitian structure up to homotheties of the fiber-metric (cf.
[16, Proposition IV.6.1]). Uniqueness of the Einstein–Hermitian connection yields the
result.

Conversely, if the pull-back of the universal quotient bundle is holomorphically iso-
morphic as Einstein–Hermitian bundle to the holomorphic line bundle, the pull-back
fiber-metric and the Einstein–Hermitian connection coincide up to homothety, and the
statement in the lemma follows.

Lemma 3.1.2. Let f : CP1 ↪→ Grn(R
n+2) be a holomorphic isometric embedding of

degree k. Then, the mean curvature operator A ∈ Γ(V) of f is the identity on V up to a
negative real constant.

Proof. It is well-known that every holomorphic section t of O(k) → CP 1 satisfies ∆t −
KEHt = 0 (cf. [24, Lemma 4.2]), where the Laplacian is defined through a compatible
connection, and KEH is the mean curvature arising from the Hermitian structure in the
sense of Kobayashi [16, p. 99]. Since the canonical connection is the Einstein–Hermitian
connection, KEH = µId.

On the other hand, a generalization of the theorem of Takahashi (Theorem 2.2.3) yields
that ∆t + At = 0 for t ∈ Rn+2. Regarding Rn+2 as a subspace of H0 (CP 1,O(k)), then
Rn+2 globally generates O(k) → CP 1. Therefore KEH = −A, and the lemma follows.

These two lemmas amount to say that the holomorphic embedding f is isometric if
and only if it satisfies the gauge condition (G), and then the (EH) condition is automat-
ically satisfied. Hence we can apply Theorem 2.3.4 to obtain the moduli space Mk of
holomorphic isometric embeddings of degree k by the gauge equivalence of maps.

3.2 Hermitian/Symmetric endomorphisms

In order to apply the generalized do Carmo–Wallach theory we need a deeper under-
standing of the space of symmetric endomorphisms of the space of holomorphic sections
of the bundles of interest. Since in the present work the spaces of holomorphic sections
are real SU(2)-modules, in this section we describe how the space of symmetric endomor-
phisms of a real irreducible SU(2)-module splits into irreducible components. To do so we
need certain spectral formulae for decomposing tensor products of real SU(2)-modules.
Being standard, proofs of the spectral formulae (Lemmas 3.2.4–3.2.6) are ommitted. The
interested reader might consult [1].

Let W be a C-vector space with a Hermitian inner product and write WR for the
underlying R-vector space naturally equipped with the complex structure J c. The Her-
mitian inner product induces a symmetric inner product on WR, simply by taking the
real part.

If H(W ) denotes the R-vector space of Hermitian endomorphisms on W and S(WR)
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the R-vector space of all symmetric endomorphisms on WR, it follows from general con-
siderations above that H(W ) ⊂ S(WR), while C-linearity of A ∈ H(W ) is reflected in
S(WR) by commutation of A and J c.

Suppose thatW has a real (resp. quaternionic) structure denoted by σ compatible with
the Hermitian inner product. Then H(W ) has a regular action of σ such that A 7→ σAσ,
where A is a Hermitian endomorphism. Hence, we can define the subspaces H±(W ) of
H(W ) as the set of invariant/anti-invariant Hermitian endomorphisms with respect to σ.
The action of σ extends to S(WR) in the obvious way.

Lemma 3.2.1. If A ∈ H+(W ), then real endomorphisms σA and J cσA are symmetric
endomorphisms on WR.

Proof. For simplicity, we assume that σ is a real structure. If σ is a quaternionic structure
the proof goes along the same lines.

Let A ∈ H+(W ) so that σA = Aσ. Also, denote the Hermitian inner product on W
by ( , ), with the convention in which it is C-linear in the first argument, and let 〈 , 〉 be
the induced symmetric inner product on WR. Then, for u, v ∈ W ∼= WR,

〈σAu, v〉 = Re(σAu, v) = Re(Au, σv) = Re(u,Aσv)

= Re(Aσv, u) = Re(σAv, u) = 〈σAv, u〉.

Therefore, σA ∈ S(WR). The proof for J cσA is analogous.

Notice that σA (resp. J cσA) above is not a Hermitian operator since σ is by definition
conjugate-linear. We put

σH+(W ) := {σA |A ∈ H+(W )} ⊂ S(WR),

J cσH+(W ) := {J cσA |A ∈ H+(W )} ⊂ S(WR).

A characterization of these subspaces is given as follows:

Lemma 3.2.2. Let B be a symmetric endomorphism of WR. Then,

1. B belongs to σH+(W ) if and only if J cB = −BJ c and σBσ = B;

2. B belongs to J cσH+(W ) if and only if J cB = −BJ c and σBσ = −B.

Proof. For B in σH+(W ) (resp. in J cσH+(W )), there exists A ∈ H+(W ) such that B = σA
(resp. J cσA). Writing BJ c, σBσ in terms of A, then commutation relations for A, J c, σ
yield the implications.

Conversely, condition J cB = −BJ c implies that B is not Hermitian. Hence, A := σB
(resp. A := J cσB) is Hermitian, for commutation relations between J c and σ lead to
AJ c = J cA. Invariance under the regular action of σ on H(W ) shows A ∈ H+(W ),
therefore B belongs to σH+(W ) (resp. J cσH+(W )).
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Subspaces σH+(W ) and J cσH+(W ) are orthogonal with respect to the inherited inner
product on S(WR), Then, counting dimensions we have

Corollary 3.2.3. We have a decomposition of S(WR):

S(WR) = H+(W )⊕ H−(W )⊕ σH+(W )⊕ J cσH+(W ).

Remark 2. As a result, the orthogonal complement of H(W ) in S(WR) has the induced
complex structure.

Let SkC2 be the k-th symmetric power of the standard complex SU(2)-module C2.
Since C2 has an invariant quaternionic structure j, S2kC2 inherits an invariant real struc-
ture σ = j2k, while S2k+1C2 is equipped with an induced invariant quaternionic structure
j2k+1. We shall denote the standard real SO(3)-module by R3 and its l-th symmetric
power by SlR3.

The fundamental relation between real irreducible SU(2)- and SO(3)-modules is as
follows.

Lemma 3.2.4. For k ≧ 2, SkR3 admits the following decomposition:

SkR3 = Sk0R
3 ⊕ Sk−2R3

where
Sk0R

3 = (S2kC2)R

is the real irreducible SU(2)-module defined as the σ-invariant real subspace of S2kC2.

Once we have identified the real irreducible SU(2)-modules we would like to have a
spectral formula for the tensor product. To that end, it is enough to restrict to the real
stable subspace of the real structure.

Lemma 3.2.5. For k ≧ l, we have

Sk0R
3 ⊗ Sl0R

3 =
2l⊕
r=0

Sk+l−r0 R3. (3.2.1)

Any complex irreducible SU(2)-module SnC2 can be interpreted as a real module by
considering its underlying R-vector space R2n+2. For odd n, this is a real irreducible
module. When n is even, this is reducible and we have further splittings into the stable
subspaces for the action of the induced real structure.

It will be useful to have a spectral formula for the decomposition of tensor products
of the underlying R-vector spaces of a given complex SU(2)-module into real irreducible
ones.
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Lemma 3.2.6. When we regard S2kC2 as a real SU(2)-module R4k+2, the second sym-
metric power S2R4k+2 has the following irreducible decomposition:

S2R4k+2 = 3

(
k⊕
r=0

S2k−2r
0 R3

)
⊕

(
k−1⊕
r=0

S
(2k−1)−2r
0 R3

)
. (3.2.2)

When we regard S2k+1C2 as a real SU(2)-module R4k+4, the second symmetric power
S2R4k+4 has the following irreducible decomposition:

S2R4k+4 = 3

(
k⊕
r=0

S
(2k+1)−2r
0 R3

)
⊕

(
k−1⊕
r=0

S2k−2r
0 R3

)
. (3.2.3)

Applying Corollary 3.2.3 to the real SU(2)-modules discussed in the previous three
lemmas yields

Proposition 3.2.7.

H+(S
2kC2) =

k⊕
r=0

S2k−2r
0 R3, H−(S

2kC2) =
k−1⊕
r=0

S2k−1−2r
0 R3,

H+(S
2k+1C2) =

k⊕
r=0

S2k+1−2r
0 R3, H−(S

2k+1C2) =
k⊕
r=0

S2k−2r
0 R3.

3.3 Rigidity of the real standard map

Let G be a compact Lie group. An irreducible G-module is said to be a class-one
representation of (G,K), for K a closed subgroup of G, if it contains non-zero K-invariant
elements.

Essential at this stage is to prove Proposition 3.3.3 (and its real invariant counterpart
Proposition 3.3.5). This is a technical result that states in short that if each factor in
the normal decomposition of a G-module W is inequivalent as a K-module to any other
factor, there is a certain G-orbit in H(W ) which contains all class-one representations of
(G,K). Since in our case H(W ) itself is composed of class-one representations only, the
G-orbit mentioned earlier fills H(W ).

The proposition has a practical reading: the Hermitian/symmetric operators parametris-
ing the moduli spaces belong to the orthogonal complement in H(W ) to the aforesaid
G-orbit, but in the present situation this space is null. Therefore the induced map will
be rigid. We use this information to study the real standard map, the outcome naming
the section (Theorem 3.3.4).

A detailed description of the normal decomposition can be found in [5]. Let us sketch
the central ideas: Consider the situation described in §2, i.e. W ⊂ Γ(V) is a space of
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sections of the vector bundleV →M, M = G/K associated to the principal homogeneous
bundle G → G/K with standard fiber the irreducible K-module V0 ⊂ W. Furthermore,
suppose V → M to be equipped with its canonical connection. Let f : G/K → Grp(W )
be the corresponding induced map by (V →M, W ). The space of sections W splits into
V0 and its orthogonal complement N0 = U0. Assume the condition of Lemma 2.1, i.e.
mV0 ⊂ U0 such that the canonical connection and the pull-back connection coincide.

From now on, our considerations will be restricted at a point o ∈ M for the sake of
simplicity. The second fundamental form K at o ∈ M is an element of T ∗

oM ⊗ V ∗
0 ⊗ U0

so that for all X ∈ ToM, v ∈ V0, (KX(v))o ∈ U0. The image of this mapping, also
designated by B1, is a well-defined subspace of N0 and thus gives a further orthogonal
decomposition of W as V0 ⊕ ImB1 ⊕ (V0 ⊕ ImB1)

⊥ . Call N1 = (V0 ⊕ ImB1)
⊥ the first

normal subspace. Applying the connection to the second fundamental form at the point
o ∈ M we have ∇K ∈ S2T ∗

oM ⊗ V ∗
0 ⊗ U0 (where symmetrization follows from Gauss–

Codazzi equations and flatness of the connection on W ). If π1 denotes the orthogonal
projection π1 : W → N1, then B2 is defined as π1 ◦ ∇K ∈ S2T ∗

oM ⊗ V ∗
0 ⊗ N1, and we

have W = V0 ⊕ ImB1 ⊕ ImB2 ⊕N2 where N2 is the second normal subspace. Recursively,
Bp = πp−1 ◦ ∇p−1K ∈ SpT ∗

oM ⊗ V ∗
0 ⊗Np−1. This reiterative process leads to

W = V0 ⊕ ImB1 ⊕ ImB2 ⊕ · · · ⊕ Im Bn ⊕Nn.

If Nn = 0 this is called the normal decomposition of W with respect to V0.
Let us enunciate without proof two results regarding the normal decomposition which

are needed in the sequel to establish Proposition 3.3.3.

Proposition 3.3.1 ([24, Prop. 7.7]). If W is an irreducible G-module, then for any
K-module, V0 ⊂ W there exists a positive integer n such that Nn = 0, i.e.

W = V0 ⊕ ImB1 ⊕ · · · ⊕ ImBn (3.3.1)

which is a normal decomposition of (W,V0).

Proposition 3.3.2 ([24, Prop. 7.8]). Let W be a G-module and V0 ⊂ W a K-module.
Suppose that (W,V0) has a normal decomposition. Assume that each term in the de-
composition (3.3.1) shares no common K-irreducible factor with any other term in the
decomposition. Let T be a non-negative Hermitian endomorphism of W which satisfies
(Tgv1, T gv2) = (v1, v2) for all g ∈ G, v1, v2 ∈ V0. Then, if T is K-equivariant, T = IdW .

Remark 3. See also Lemma 4.2 in [5].

Hereafter, we assume G = SU(2)), during this chapter. Then, we can state the
following

Proposition 3.3.3. Let W = H0(CP 1,O(k)) and V0 the K-module regarded as the stan-
dard fiber for O(k) → CP 1. Then, GH(V0, V0) = H(W ).
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Proof. By Borel–Weil theorem, W is identified with the SU(2)-module SkC2 and, using
Lemma 2.3.1, V0 can be regarded as a subspace of W. The space W decomposes under
the U(1)-action as

W = C−k ⊕C−k+2 ⊕ · · · ⊕Ck,

where Cl denotes the irreducible U(1)-module of weight l. Indeed, this is the normal
decomposition by Proposition 3.3.1 where V0 = C−k.

Let H be a class-one subrepresentation of (G,K) in H(W ). Suppose that H 6⊂
GH(V0, V0). Then, by a standard argument, we can assume that H⊥GH(V0, V0). Since H
is a class-one representation, there exists a non-zero C ∈ H such that kCk−1 = C for all
k ∈ K. It follows from the orthogonality assumption that

0 =(C, gH(v1, v2))H(W ) = (C,H(gv1, gv2))H(W )

=
1

2
{(Cgv1, gv2)W + (Cgv2, gv1)W} ,

for arbitrary g ∈ G and v1, v2 ∈ V0 ⊂ W . Polarization gives

0 = (Cgv1, gv2), g ∈ G, v1, v2 ∈ V0.

If C is sufficiently small, then Id + C > 0 and so, we can define a positive Hermitian
operator T satisfying T 2 = Id+ C. Then we have

(Tgv1, T gv2) = (v1, v2) g ∈ G, v1, v2 ∈ V0.

Since T is also K-equivariant, Proposition 3.3.2 yields that T = Id and so, C = 0, which is
a contradiction. Hence, every class-one subrepresentation of (G,K) in H(W ) is included
in GH(V0, V0). However, it follows from the Clesbsch–Gordan formulae that H(W ) is
composed by class-one representation of (G,K) only, therefore GH(V0, V0) = H(W ).

Remark 4. Amore general version of our Proposition 3.3.3 can be found in [24, Proposition
7.9]. Our proof is essentially the same with the obvious particularizations.

We shall prove the following interesting result.

Theorem 3.3.4. Let W = S2kC2 such that WR = Sk0R
3 ∼= R2k+1. If f : CP1 ↪→

Gr2k−1(R
2k+1) is a holomorphic isometric embedding of degree 2k, then f is the standard

map by WR up to gauge equivalence.

Before proving Theorem 3.3.4, let us clarify the construction of the mapping f :
CP1 ↪→ Gr2k−1(R

2k+1) from the vector bundle viewpoint.

If we regard the complex projective line as the symmetric space G/K where G = SU(2)
and K = U(1), then by Borel–Weil theorem the space of sections Γ(O(2k)) becomes a
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G-module such that W = H0(CP 1;O(2k)) ∼= S2kC2. The decomposition of S2kC2 into
irreducible U(1)-modules is as follows:

S2kC2 =
2k⊕
r=0

C2k−2r. (3.3.2)

The typical fiber of O(2k) → CP 1 is regarded as a subspace C−2k in the decomposition
by Lemma 2.3.1.

SinceW has an invariant real structure, we have an invariant real subspace denoted by
WR = (S2kC2)R ∼= Sk0R

3 of real dimension 2k+1. The real structure descends to the split-
ting (3.3.2) but now each irreducible U(1)-module is not invariant under the real structure,
but σ(C2k−2r) = C−2k+2r. Therefore for each r = 0, . . . , k the space (C2k−2r ⊕C−2k+2r) is
stable under the real structure and decomposes in two real isomorphic irreducible U(1)-
modules, denoted by (C2k−2r ⊕C−2k+2r)

R, such that (3.3.2) would be rewritten as

Sk0R
3 =

2k⊕
r=0

(C2k−2r ⊕C−2k+2r)
R. (3.3.3)

This implies that O(2k) → CP 1 is globally generated by WR. Thus, we can define a real
standard map f0 : CP 1 → Gr2k−1(R

2k+1) by WR, which turns out to be a holomorphic
isometric embedding of degree 2k by Lemma 2.3.3. Using the inner product on WR and
the fiber-metric on O(2k) → CP 1, it is possible to define the adjoint of the evaluation
which at the identity of G/K determines a mapping ev∗[e] : O(2k) → WR whose image is

just (C2k ⊕C−2k)
R.

Within this framework we have a real version of Proposition 3.3.3, which is the core
of the proof of Theorem 3.3.4:

Proposition 3.3.5. Let W = H0(CP 1,O(2k)) and V0 the K-module regarded as the
standard fiber for O(2k) → CP 1. Then, GS(V0, V0) = S(WR).

Proof. Equation (3.3.3) gives the normal decomposition of WR where now V0 = (C−2k ⊕
C2k)

R. The space of symmetric endomorphisms of WR can be identified by decomposing
first the tensor product using Lemma 3.2.1, and identifying the symmetric components

S(WR) =
k⊕
r=0

S4k−4r
0 R3 ⊂ ⊗2WR =

2k⊕
r=0

S4k−2r
0 R3.

Notice that all these modules are class-one representations. Then, a similar argument as
the one in the proof of Proposition 3.3.3 yields the desired result.

We can now proceed to prove Theorem 3.3.4.
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Proof. Consider the real standard map by the holomorphic line bundle O(2k) → CP1

and WR as depicted above. Therefore by Proposition 3.3.5, S(WR) = GS(V0, V0) and
replacing Rn+2 by WR in Theorem 2.3.4 the real standard map admits no deformations
as holomorphic isometric embedding of degree 2k into Gr2k−1(R

2k+1).

Remark 5. If the target space is replaced by a higher-dimensional Grassmannian including
Gr2k−1(R

2k+1) as a totally geodesic submanifold the resulting moduli space could be non-
trivial. This situation will be discussed in the next section.

3.4 Moduli space by gauge equivalence

We undertake now the task of giving an accurate description of the moduli space
of holomorphic isometric embeddings CP1 → Grp(W ) up to gauge equivalence. Our
strategy will be to capitalize on the representation-theoretic formulae of §4 to explicitly
determine the subspaces of linear operators in S(W ) which specify the moduli. Such
subspaces are sharply characterized by condition (III) in Theorem 2.3.4. This is achieved
after a sequence of stepping-stone results culminating in Lemma 3.4.2 and its Corollary,
which allows to compute the moduli dimension.

As indicated Theorem 2.3.4, the gauge equivalence relation is to be taken into account
to obtain the moduli space and to give a geometric meaning to its compactification in the
natural L2-topology. A qualitative description of these spaces is given in Theorem 3.4.4.

Let W be the space of holomorphic sections of O(k) → CP1 which, by Borel–Weil
theorem, is identified with the SU(2)-module SkC2. Equation (3.3.2) gives a weight decom-
position of W with respect to U(1). When O(k) → CP 1 is regarded as the homogeneous
line bundle SU(2)×U(1)V0 → CP1, then V0 is identified with the U(1)-irreducible subspace
C−k of W by Lemma 2.3.1.

In order to apply Theorem 2.3.4 we shall regard the universal quotient bundle as a
real vector bundle of rank 2. Following the generalization of do Carmo–Wallach theory,
we must determine the subspaces GS(V0, V0) and GS(mV0, V0) of S(W ).

From now on V0 and W shall stand either for the complex modules or for their under-
lying R-vector spaces whenever the meaning is clear, avoiding the heavier notation (V0)R
or WR. In the remaining sections, we will adopt this convention.

Since GH(V0, V0) is a proper subspace of GS(V0, V0), we have that H(W ) ⊂ GS(V0, V0).
Wemust determine the intersection between GS(V0, V0) and subspaces σH+(W )⊕JσH+(W )
appearing in Corollary 3.2.3. The same is true for the intersection GS(mV0, V0) with
σH+(W )⊕ JσH+(W ) as we shall consider immediately.

Lemma 3.4.1. mV0 = C−k−2.

Proof. By the decomposition of S2C2 into irreducible U(1)-modules S2C2 = C2 ⊕C0 ⊕
C−2 and using the real structure we have (S2C2)R ∼= su(2), (C0)

R ∼= u(1) therefore
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(C2 ⊕C−2)
R ∼= m. Then,

m⊗ V0 = (C2 ⊕C−2)⊗C−k = C−k+2 ⊕C−k−2.

The action of m on V0 is then obtained by projecting m⊗ V0 back to SkC2. Therefore

mV0 = (m⊗ V0) ∩ SkC2 = C−k+2.

Lemma 3.4.2. GS(mV0, V0)∩σH+(W )⊕JσH+(W ) is the highest weight representations
of SU(2) appeared in Proposition 3.2.7.

Proof. Let u−k and u−k+2 be unitary bases for the complex one-dimensional U(1)-modules
V0 = C−k and mV0 = C−k+2, respectively. Then, the space H(mV0, V0) ≡ H(C−k+2,C−k)
is the real span of

2H(u−k+2, u−k) = u−k+2 ⊗ (·, u−k)W + u−k ⊗ (·, u−k+2)W

where (, )
W

denotes the Hermitian inner product on SkC2. When C−k and C−k+2 are
regarded as their underlying two-dimensional R-vector spaces R2

k and R2
k−2, real bases are

given respectively by {u−k, J cu−k} and {u−k+2, J
cu−k+2} where J c is the almost complex

structure induced by the multiplication by the imaginary unit. Using these real bases the
complex form 2H(u−k+2, u−k) can be rewritten as a real operator

2H(u−k+2, u−k)|R = u−k+2 ⊗ 〈·, u−k〉W + J cu−k+2 ⊗ 〈·, J cu−k〉W
+u−k ⊗ 〈·, u−k+2〉W + J cu−k ⊗ 〈·, J cu−k+2〉W

where 〈, 〉
W

is the inner product on WR induced from the Hermitian inner product on
W. Write the basis for S(mV0, V0) ≡ S(R2

−k+2,R
2
−k) as {S(u−k+2, u−k), S(J

cu−k+2, u−k),
S(u−k+2, J

cu−k), S(Ju−k+2, J
cu−k)}, e.g. ,

2S(u−k+2, u−k) = u−k+2 ⊗ 〈·, u−k〉W + u−k ⊗ 〈·, u−k+2〉W , etc.

Comparing both equations we have that

H(u−k+2, u−k)|R = S(u−k+2, u−k) + S(J cu−k+2, J
cu−k).

Analogously,

H(u−k+2, iu−k)|R = S(u−k+2, J
cu−k)− S(J cu−k+2, u−k).

Let us define a new elements {X,Y }

X = S(u−k+2, u−k)− S(J cu−k+2, J
cu−k),

Y = S(u−k+2, J
cu−k) + S(J cu−k+2, u−k).
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X,Y ∈ S(WR) are orthogonal to the subspace of Hermitian matrices H(W ) ⊂ S(WR),
therefore they belong to σH+(W )⊕ JσH+(W ) according to Corollary 3.2.3.

Let us consider the contragredient action of the structure map σ on X, the case of Y
being analogous. Firstly,

σ (u⊗ 〈·, v〉
W
) σ = σu⊗ 〈σ·, v〉

W
= σu⊗ 〈·, σv〉

W

and as such σS(u, v)σ = S(σu, σv).
Secondly, the U(1)-modules Ci are not σ-invariant but σ(C±i) = C∓i, for all i that is,

σu±i = u∓i. which, together with conjugate-linearity of the structure map yields σ(R2
±i) =

R2
∓i : {u±i, J cu±i} 7→ {u∓i,−J cu∓i}. Hence we have

Xσ = σXσ = S(σu−k+2, σu−k)− S(σJ cu−k+2, σJ
cu−k)

= S(uk−2, uk)− S(J cuk−2, J
cuk).

This is not an element of S(mV0, V0) ≡ S(R2
−k+2,R

2
−k) but X

σ ∈ S(R2
k−2,R

2
k). Note that

we can find g ∈ SU(2) such that S(uk−2, uk) = S(gu−k+2, gu−k) = g · S(u−k+2, u−k) ∈
GS(mV0, V0) up to a sign. Let us add Y σ = S(uk−2, J

cuk) + S(J cuk−2, uk) for the sake of
completeness.

The preceding argument also shows that a subspace of GS(mV0, V0) is spanned by
{S(uk−2, uk), S(uk−2, J

cuk), S(J
cuk−2, uk), S(J

cuk−2, J
cuk)}.

Moreover, using the characterization given in Lemma 3.2.2 we have

X +Xσ ∈ σH+(W ), X −Xσ ∈ J cσH+(W ).

The same inclusions are also true for Y ± Y σ.
From the expression of the action of σ on H(u, v)

σ · H(u, v) = σ (u⊗ (·, v)
W
+ v ⊗ (·, u)

W
) σ = σu⊗ (σ·, v)

W
+ σv ⊗ (σ·, u)

W

= σu⊗ (·, σv)
W
+ σv ⊗ (·, σu)

W
,

it is easy to write X ±Xσ back in terms of Hermitian operators as

X ±Xσ = σ · (H(uk−2, u−k)± H(u−k+2, uk)) |R.

The toral action of a U(1)-element of SU(2) on u±k, u±(k−2) yields

exp(iθ) · u±k = exp(±ikθ)u±k, exp(iθ) · u±(k−2) = exp(±i(k − 2)θ)u±(k−2)

and as such, X±Xσ (considered as the Hermitian operators above) have weight ±(2k−2).
However, from Corollary 3.2.7 we know that the only component in the real decomposition
of σH+(W ) and J cσH+(W ) (both isomorphic to H+(W )) which can host such a vector is
the top term Sk0R

3 on each space. Therefore

GS(mV0, V0) ∩ σH+(W ) = Sk0R
3 ( resp. for J cσH+(W ) ).
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And as a result
GS(mV0, V0) = H(W )⊕ Sk0R

3 ⊕ Sk0R
3.

In other words, we obtain

Corollary 3.4.3. The orthogonal complement to GS(mV0, V0)⊕R Id in S(W ) is

2

k≥2r⊕
r=1

Sk−2r
0 R3.

This follows from applying the previous lemma to the explicit expressions for the
components of S(W ) as described in Proposition 3.2.7, and accounts for the space of
symmetric operators T described by the second relation in (2.3.1), i.e. condition (III) in
Theorem 2.3.4.

Remark 6. The first condition in (2.3.1) is for all our purposes inessential. Let GS0(V0, V0)
be the orthogonal complement of the G-invariant, irreducible subrepresentation generated
by the identity in GS(V0, V0). We denote by S0(W ) the set of tracefree symmetric operators
on W with the induced inner product from S(W ). Then,

GS0(V0, V0) ⊂ GS(mV0, V0),

which stems from an analogous result to Lemma 3.4.2 applied to GS0(V0, V0). The proof
is equivalent, changing the weight ±(2k − 2) by ±2k in the crucial final step.

Condition (III) in Theorem 2.3.4 is fulfilled by the family of operators in Corollary
3.4.3 (see remark above) thus accounting for all holomorphic embeddings f : CP1 ↪→
Grp(R

p+2) up to possible degeneracies. Quantitative information about the moduli (i.e.
its dimension) can therefore be derived from the Corollary:

dimR Mk = k(k − 1). (3.4.1)

The following theorem summarizes the qualitative information about the moduli space
and gives a neat geometric interpretation to its compactification.

Theorem 3.4.4. If f : CP1 ↪→ Grn(R
n+2) is a full holomorphic isometric embedding of

degree k, then n ≤ 2k.
Let Mk be the moduli space of pairs (f, φ) by the gauge equivalence, where f is a

full holomorphic isometric embeddings of degree k of the complex projective line into
Gr2k(R

2k+2) and φ is the bundle isomorphism O(k) → f ∗Q in Theorem 2.3.4. Then,

Mk can be regarded as an open bounded convex body in 2
⊕k≧2r

r=1 Sk−2r
0 R3.

Let Mk be the closure of the moduli Mk by the inner product. Boundary points of
Mk describe those maps whose images are included in some totally geodesic submanifold
Grp(R

p+2) of Gr2k(R
2k+2), where p < 2k.

The totally geodesic submanifold Grp(R
p+2) can be regarded as the common zero set

of some sections of Q→ Gr2k(R
2k+2), which belongs to R2k+2.
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Proof. The restriction n ≤ 2k follows from (I) in Theorem 2.3.4 and Borel–Weil theorem.

It is evident from (III) in Theorem 2.3.4 that GS(mV0, V0)
⊥ is a parametrization of

the space of full holomorphic isometric embeddings f : CP1 ↪→ Gr2k(R
2k+2) of degree k.

Positivity of T being guaranteed by fullness, we can apply the original do Carmo–Wallach
argument [5, §5.1], to conclude that Mk is a bounded connected open convex set in H(W )
with the topology induced by the L2 scalar product.

Under the natural compactification in the L2-topology, the boundary points corre-
spond to operators T which are not positive definite, but positive semi-definite. It follows
from Theorem 2.3.4 that each of these operators defines in turn a full holomorphic iso-
metric embedding CP1 ↪→ Grp(R

p+2), of degree k with p = 2k − dim Ker T, whose
target embeds in Gr2k(R

2k+2) as a totally geodesic submanifold. The image Z of the
embedding Grp(R

p+2) ↪→ Gr2k(R
2k+2) is determined by the common zero-set of sections

in Ker T.

3.5 Moduli space by image equivalence

The moduli space Mk has a natural complex structure induced by that on Q →
Gr2k(R

2k+2) which coincides with the one in Remark 2. Hence, Mk can be regarded as

holomorphically included in the C-vector space ⊕k≧2r
r=1 S

2k−4rC2. We can show that the
centralizer of the holonomy group acts on Mk with weight −k. Hence we have

Theorem 3.5.1. Let Mk be the moduli space of holomorphic isometric embeddings of the
complex projective line into Gr2k(R

2k+2) of degree k by the image equivalence of maps.
Then we have Mk = Mk/S

1.

Proof. Assume two full holomorphic isometric embeddings CP1 ↪→ Gr2k(R
2k+2) of degree

k to be image equivalent. They may represent distinct points in Mk. By definition
of image equivalence, there is an isometry ψ of Gr2k(R

2k+2) such that f2 = ψ ◦ f1,
then f ∗

2Q = f ∗
1 ψ̃Q as sets. Using the natural identifications φ1, φ2 of Theorem 2.3.4 we

introduce new bundle isomorphisms O(k) → f ∗
2Q defined by ψ̃◦φ1 and φ2. Hence, we have

a gauge transformation φ−1
2 ψ̃φ1 on the line bundle O(k) →M preserving the metric and

the connection. By connectedness of CP1 such a gauge transformation is regarded as an
element of the centralizer of the holonomy group of the connection in the structure group
of V, i.e. U(1) ≡ S1 acting with weight −k on the standard fiber V0 ∼= C−k. Modding out
the S1-action yields the true moduli space by image equivalence Mk.

Remark 7. The moduli space Mk has a complex structure (see remark in §4) and a
metric induced by the inner product both preserved by the S1-action. Hence, it is a
Kähler manifold together with an S1-action preserving the Kähler structure. Therefore,
Mk is naturally equipped with a moment map µ : Mk → R expressed as µ = |T |2.
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Corollary 3.5.2. There exists a one-parameter family {ft}, t ∈ [0, 1], of SU(2)-equivariant
image-inequivalent holomorphic isometric embeddings of even degree of CP1 into complex
quadrics, where f0 corresponds to the standard map and f1 is the real standard map.

Proof. The moduli space by gauge equivalence Mk sits in ⊕k≥2r
r=1 S

2k−4rC2. For even k
this last expression includes the trivial representation C, which using the real structure
can be described as C = Rσ ⊕ RJ cσ. Let C ∈ C ⊂ ⊕k≥2r

r=1 S
2k−4rC2. If it is small

enough, then by Theorem 2.4, Id + C determines a holomorphic isometric embedding
into Gr2k(R

2k+2). The group SU(2) acts on each component of Id + C trivially, so the
associated holomorphic isometric embedding is SU(2)-equivariant. The S1 action of the
centralizer of the holonomy group acts on C with weight −k (see proof of Theorem 3.5.1)
therefore, taking quotient by the S1-action, we obtain a half-open segment parametrising
the described maps, which becomes a closed segment under the natural compactification
in the L2-topology. Let C = tσ + sJ cσ. Then we can show that Id+ C is positive if and
only if t2 + s2 < 1. Suppose that t2 + s2 = 1. Then (t + sJ c)σ is also an invariant real
structure on S2kC2. Hence we may consider only the case that t = 1 and s = 0. Since the
kernel of Id+σ is J cWR, Theorem 2.3.4 implies that Id+σ determines a totally geodesic
submanifold Gr2k−1(R

2k+1) of Gr4k(R
4k+2) and a holomorphic isometric embedding into

the submanifold Gr2k−1(R
2k+1) represented by 2 IdWR . This map is nothing but the real

standard map by WR, because constant multiples of the identity give the same subspace
of WR.
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Chapter 4

Killing vector fields on complex
hypersurfaces in the complex
projective space

4.1 Main theorem

In this chapter, we identifyCP n+1 withGrn+1(C
n+2∗). In this case, CP n+1 is regarded

as the Hermitian symmetric space SU(n+ 2)/U(n+ 1). Hence the Lie algebra of Killing
vector fields is su(n+ 2).

We have the short exact sequence of holomorphic vector bundles:

0 −→ S −→ Cn+2∗ −→ Q −→ 0, (4.1.1)

where Q → CP n+1 is the universal quotient bundle O(1) → CP n+1. S → CP n+1 and
Q→ CP n+1 can be recognized as homogeneous vector bundles:

S = SU(n+ 2)×U(n+1) E
∗
0 , Q = SU(n+ 2)×U(n+1) L

∗
0,

Though we are mainly interested in various induced metrics on the complex quadric
hypersurface in CP n+1, the complex quadric is regarded as an oriented real 2-plane Grass-
mannian Grn(R

n+2) ∼= SO(n+2)/SO(n)×SO(2). Thus the complex quadric has SO(n+2)
invariant Kähler metric, which is unique up to a constant multiple. In this case, the Lie
algebra of Killing vector fields on the complex quadric is regarded as the Lie algebra
so(n+ 2) of SO(n+ 2).

In order to state the main theorem of this chapter, we denote by P n+2 the set of
diagonal matrices with positive entries. A subset D of P n+2 and the interior D̊ of D are
defined by

D =

{
diag(λ1, · · · , λn+2) ∈ P n+2

∣∣∣∣∣ 0 < λ1 ≦ · · · ≦ λn+2,
∑
i

λi = n+ 2

}
, (4.1.2)
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D̊ =
{
diag(λ1, · · · , λn+2) ∈ D

∣∣∣ 0 < λ1 < · · · < λn+2

}
.

Notice that D is a subset of the space of real symmetric matrices which is a representation
space of SO(n+ 2).

Theorem 4.1.1. Let S be a compact connected complex hypersurface in CP n+1 with the
Fubini-Study metric. If the induced metric on S admits a non-trivial Killing vector field,
then S is a hyperplane CP n or a complex quadric hypersurface Grn(R

n+2) as a complex
manifold.

When S = CP n, the induced metric is the Fubini-Study metric and the Lie algebra of
Killing vector fields is su(n+ 1).

When S = Grn(R
n+2), D \ D̊ can be regarded as the moduli space of the induced

metrics with non-trivial Killing vector fields. The space of Killing vector fields of the
metric corresponding to T in D \ D̊ is the Lie algebra of Lie subgroup of SO(n+2), which
is the stabilizer of T .

In each case, the Lie algebra of Killing vector fields is a subalgebra of su(n+2), which
is the Lie algebra of Killing vector fields on CP n+1.

In this chapter, we prove this theorem.

Remark 8. The set of induced metrics on Grn(R
n+2) is in one-to-one correspondence with

D. The metric in D̊ has no non-trivial Killing vector field. The metric corresponding to
diag(1, · · · , 1) has the Lie algebra of SO(n+ 2) as the space of Killing vector fields.

4.2 Proof of Theorem 4.1.1

A compact connected complex hypersurface in CP n+1 of degree d is obtained by zero
locus of a holomorphic section which is transverse to the zero section of the holomorphic
line bundle O(d) → CP n+1 of degree d. Such a section will be called a generic section.

First of all, we refer to the following result of K. Yano (see also [15, Theorem 4.3]).

Theorem 4.2.1. [35] Let M be a compact Kähler manifold and Z = X −
√
−1JX a

complex vector field of type (1,0) with real part X. Then X is a Killing vector field if and
only if Z is holomorphic and divX = 0.

Due to Theorem 4.2.1, we focus on the complex Lie algebra of holomorphic vector
fields on a hypersurface instead of the Lie algebra of Killing vector fields. For the space
of holomorphic vector fields on a hypersurface in CP n+1, K. Kodaira and D. C. Spencer
have proved the following result. This is also obtained by a theorem of H. Matsumura
and P. Monsky in [21].

Theorem 4.2.2. [19] Let S be a non-singular hypersurface in CP n+1 of degree d. If
n ≧ 2 and d ≧ 3, then S admits no non-trivial holomorphic vector field.
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We are therefore concerned with the induced metrics on hypersurfaces of degree one
or two.

Since a complex hypersurface of degree one is a totally geodesic submanifold CP n,
the induced metric on CP n is the Fubini-Study metric. Hence the Lie algebra of Killing
vector fields on CP n is a subalgebra of su(n+2) and so every Killing vector field on CP n

can be obtained by restriction.
To consider the case of degree two, let H0(CP n+1;O(2)) be the space of holomorphic

sections of O(2) → CP n+1. It follows from Borel-Weil theory that H0(CP n+1;O(2)) is
identified with the space S2Cn+2∗ of symmetric quadratic forms on Cn+2 as SU(n + 2)-
modules. Thus every generic holomorphic section t of O(2) → CP n+1 corresponds to a
non-degenerate quadratic form on Cn+2, which is also denoted by the same symbol. The
zero locus of t is denoted by Zt, which is expressed as

Zt =
{
x ∈ CP n+1

∣∣∣ t(v, v) = 0, v ∈ x
}
.

Recall that (·, ·)n+2 is the Hermitian inner product on Cn+2. We denote by e1, · · · , en+2

a unitary basis on Cn+2 and by e1, · · · , en+2 its dual. An element t in S2Cn+2∗ is written
as

t =
n+2∑
i,j=1

aije
i ⊗ ej, aij = aji ∈ C.

We denote by t0 ∈ H0(CP n+1;O(2)) the holomorphic section corresponding to the normal
form

∑n+2
i=1 e

i ⊗ ei. An involutive anti-linear endomorphism σ is induced from t0 and
SU(n+ 2)-structure, which satisfies

t0(v, w) = (v, σ(w))n+2, for any v, w ∈ Cn+2.

We call σ a real structure on Cn+2. We have the decomposition of Cn+2:

Cn+2 = Rn+2 ⊕
√
−1Rn+2,

where Rn+2 and
√
−1Rn+2 are eigenspaces of σ with eigenvalues 1 and −1, respectively.

The restriction of (·, ·)n+2 on Cn+2 to Rn+2 induces an inner product, which is denoted
by the same symbol. Thus we have a subgroup SO(n+ 2) of SU(n+ 2).

The special unitary group SU(n+ 2) acts on S2Cn+2∗ by

(g · t)(u, v) = t(g−1u, g−1v),

where g ∈ SU(n+ 2), t ∈ S2Cn+2∗ and u, v ∈ Cn+2. An element g ∈ SU(n+ 2) preserves
t0 if and only if g ∈ SO(n + 2). Thus SO(n + 2) acts on Zt0 . Therefore the induced
metric on Zt0 is SO(n+ 2) invariant. Consequently, Zt0 is the complex quadric equipped
with the standard Kähler metric ω0. The Lie algebra of Killing vector fields on Zt0 is the
corresponding Lie algebra so(n+ 2).

33



Let t be a generic element in H0(CP n+1;O(2)) = S2Cn+2∗ . Then we have an At ∈
GL(n+ 2;C) such that

t(u, v) = t0(Atu,Atv), for any u, v ∈ Cn+2.

Since t0 is symmetric, we have

t0(Atu,Atv) = t0(
tAtAtu, v).

The matrix tAtAt is a symmetric matrix with complex entries. Then a result of T. Takagi
[28] yields that there exist a unitary matrix Ut and uniquely determined positive real
numbers λ1, · · · , λn+2 such that

tAtAt =
tUtT

2
t Ut, Tt = diag

(√
λ1,
√
λ2, · · · ,

√
λn+2

)
, 0 < λ1 ≦ · · · ≦ λn+2

Therefore we obtain

t(u, v) = t0(
tUtT

2
t Utu, v) = t0(TtUtu, TtUtv),

and so Zt = U−1
t T−1

t Zt0 . Since a unitary matrix U−1
t induces a holomorphic isometry

on CP n+1, the zero locus Zt is congruent to T−1
t Zt0 . Moreover, since Zt = Zct for any

constant c, we may suppose that Trace T 2
t = n+ 2.

To identify the induced metric on Zt, we consider t ∈ S2Cn+2∗ corresponding to
Tt = diag(

√
λ1, · · · ,

√
λn+2), 0 < λ1 ≦ · · · ≦ λn+2,

∑n+2
i=1 λi = n + 2. We denote by

f0 : Grn(R
n+2) ↪→ CP n+1 the natural inclusion of Grn(R

n+2) = Zt0 . Then f0 is an
SO(n + 2)-equivariant holomorphic isometric embedding. Since Zt is T

−1
t Zt0 and T−1

t is
holomorphic transformation on CP n+1, Zt is the image of the holomorphic embedding
T−1
t ◦ f0 : Grn(Rn+2) → CP n+1. It follows that the Kähler manifold Zt with the induced

metric is isometric to Grn(R
n+2) with the induced metric by T−1

t ◦ f0. Since Tt is the
positive real diagonal matrix, the rigidity theorem of Calabi [2] implies that the moduli
space of induced metrics is identified with D in (4.1.2).

To compute the Kähler form, we may consider the fiber metric on the pull-back vector
bundle of Q→ CP n+1 by T−1

t ◦ f0.
At first we pull back (4.1.1) by f0 to obtain the short exact sequence of holomorphic

vector bundles:

0 −−→ f ∗
0S

i0−−→ Grn(R
n+2)×Cn+2∗ ev0−−→ f ∗

0Q −−→ 0.

Since the Chern class of f ∗
0Q → Grn(R

n+2) is the positive generator of H2(Grn(R
n+2)),

f ∗
0Q is denoted by O(1) → Grn(R

n+2). For simplicity, f ∗
0S → Grn(R

n+2) is denoted by
F → Grn(R

n+2) when regarded as C∞ complex vector bundle. Since f0 is SO(n + 2)-
equivariant, F → Grn(R

n+2) and O(1) → Grn(R
n+2) can also be recognized as homoge-

neous vector bundles:

F = SO(n+ 2)×SO(n)×SO(2) E
∗
0 , O(1) = SO(n+ 2)×SO(n)×SO(2) L

∗
0.
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An element in F → Grn(R
n+2) (resp. O(1) → Grn(R

n+2)) can be expressed as [g, u]
(resp. [g, v]) for g ∈ SO(n + 2) and u ∈ E∗

0 , (resp. v ∈ L∗
0). Then the homomorphisms

i0 : F → Grn(R
n+2) × Cn+2∗ and ev0 : Grn(R

n+2) × Cn+2∗ → O(1) are written in the
form:

i0
(
[g, u]

)
= ([g], gu), ev0

(
([g], w)

)
= [g, π0(g

−1w)],

where g ∈ SO(n + 2), u ∈ E∗
0 , w ∈ Cn+2∗ and π0 is the orthogonal projection of Cn+2∗

onto L∗
0.

Let t be the holomorphic section of O(2) → CP n+1 corresponding to a positive diag-
onal matrix Tt such that T 2

t ∈ D. We use a monomorphism T−1
t ◦ i0 and an epimorphism

ev0 ◦ Tt to obtain a short exact sequence of complex vector bundles

0 −−→ F
T−1
t ◦i0−−−−→ Grn(R

n+2)×Cn+2∗ ev0◦Tt−−−−→ O(1) −−→ 0, (4.2.1)

where Tt and T
−1
t are regarded as automorphisms of a vector bundle Grn(R

n+2)×Cn+2∗ →
Grn(R

n+2). Since f0(x) = Kerev0x , (4.2.1) can also be considered as the pull-back of
(4.1.1) by T−1

t ◦ f0.
The induced Kähler form ωTt on Grn(R

n+2) by T−1
t ◦ f0 is the curvature form of the

Hermitian metric gTt of O(1) → Grn(R
n+2) induced by ev0 ◦Tt up to a constant multiple.

Since Ker(ev0 ◦ T[g]) = Im(T−1 ◦ i0[g]) = T−1gE∗
0 at a point [g] ∈ Grn(R

n+2), where
g ∈ SO(n+ 2), we see (

Ker(ev0 ◦ Tt [g])
)⊥

= TtgL
∗
0.

Therefore for a unit vector v ∈ L∗
0 we have

gTt((ev ◦ Tt)([g], Ttgv), (ev ◦ Tt)([g], Ttgv)) = (Ttgv, Ttgv)n+2.

Since L∗
0 is of complex dimension one, we obtain

ev ◦ Tt([g], Ttgv) = [g, π0(g
−1T 2

t gv)] = [g, (g−1T 2
t gv, v)n+2v],

and so

gTt([g, v], [g, v]) =
1

(Ttgv, Ttgv)n+2

=
1

(g−1T 2
t gv, v)n+2

. (4.2.2)

Since we have a decomposition Cn+2 = Rn+2⊕
√
−1Rn+2 as a real SO(n+2)-module,

the space Herm(Cn+2) of Hermitian endomorphisms of Cn+2 has the decomposition of
irreducible modules:

Herm(Cn+2) = R⊕ S2
0R

n+2 ⊕ ∧2Rn+2. (4.2.3)

Notice that the second symmetric power S2Rn+2 has the one-dimensional irreducible
component R generated by the identity endomorphism. Its orthogonal complement is
denoted by S2

0R
n+2, which is a class one representation space of (SO(n+2), SO(n)×SO(2)).

An SO(n)×SO(2)-invariant vector C0 ∈ S2
0R

n+2 gives a function ϕC = (C, gC0)S2
0R

n+2 on
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Grn(R
n+2), where g ∈ SO(n+2) and (·, ·)S2

0R
n+2 is the inner product on S2

0R
n+2 inherited

from (·, ·)n+2.
According to (4.2.3), T 2

t is decomposed into T 2
t = Id+C, where C ∈ S2

0R
n+2. Substi-

tuting T 2
t = Id + C into (4.2.2), we obtain

gTt([g, v], [g, v]) =
1

1 + (g−1Cgv, v)n+2

,

for a unit vector v in L∗
0. It is easily seen that ϕC([g]) coincides with (g−1Cgv, v)n+2 up

to a constant multiple. Therefore, with an appropriate choice of C0, we have

gTt([g, v], [g, v]) =
1

1 + ϕC([g])
.

It follows that
ωTt = ω0 −

√
−1∂∂(1 + ϕC). (4.2.4)

Remark 9. Since
√
−1C is an element in su(n + 2),

√
−1ϕC([g]) can be regarded as the

restriction to Grn(R
n+2) of a moment map on CP n+1.

Finally, we specify the Lie algebra g of Killing vector fields on the hypersurface Zt. By
Theorem 4.2.1, g coincides with the Lie algebra of the group G of holomorphic isometric
transformations on Zt. Since Zt is holomorphically isomorphic to Grn(R

n+2), the group
of holomorphic transformations of Zt is SO(n+2,C) for any generic holomorphic section
t of O(2) → CP n+1. Thus G is a subgroup of SO(n+ 2,C), which preserves ωTt . Notice
that ωTt belongs to the complexification of R⊕S2

0R
n+2, which is an SO(n+2,C)-module.

It follows from (4.2.4) that ψ ∈ SO(n + 2,C) preserves ωT if and only if both of ω0 and
ϕC are preserved by ψ. This means that ψ preserves ωTt if and only if ψ ∈ SO(n+2) and
ψT tψ = T . Hence G is the stabilizer of Tt in SO(n+2). Thus g is a non-trivial subalgebra
of so(n+ 2) if and only if Tt ∈ D \ D̊.

Since SO(n+ 2) is a subgroup of SU(n+ 2), G can also be regarded as a subgroup of
SU(n+ 2). Therefore g is a subalgebra of su(n+ 2).
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Chapter 5

Isoparametric functions and Radon
transforms on symmetric spaces

5.1 Definition of isoparametric functions

First of all, we give a definition of an isoparametic function on a Riemannian manifold in
this paper.

Definition 5.1.1. Let f : M → R be a function on a Riemannian manifold (M, gM).
The function f is called an isoparametric function if there exist functions F,G : R → R
such that

(1) gM(df, df) = F (f), (2) ∆f = G(f).

The regular level set of an isoparametric function is called an isoparametric hypersur-
face. We recommend [32] for a review of isoparametric hypersurfaces.

Amongst isoparametric hypersurfaces, an isoparametric hypersurface of a sphere is
well-known and has been researched for a long time. An isoparametric hypersurface of a
sphere has g distinct constant principal curvatures, where g = 1, 2, 3, 4, 6 [22]. We give
examples of isoparametric functions on a sphere.

Example. (g = 2) Let SN−1 ⊂ RN be a unit sphere. If we denote a standard coordinate
functions on RN by (x1, · · · , xN), then

1

N

{
q

p∑
i=1

x2i − p

q∑
α=1

x2α

}
,

where 2 ≦ p ≦ N − 2 and p + q = N , is an isoparametric function. The regular level set
is identified with Sp−1 × Sq−1.

Each isoparametic hypersurface with g = 1, 2, 3 is homogeneous in the sense that
it is one of orbits of an isometry group of a sphere. Such homogeneous isoparametric
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hypersurfaces of a sphere are completely classified in Takagi-Takahashi [27] using a re-
sult in Hsiang-Lawson [14]. However, there exist a lot of examples of non-homogeneous
isoparametric hypersurfaces of a sphere with g = 4.

First of all, Nomizu [25] found an isoparametric function with g = 4.

Example. (g = 4) Let S2N−1 ⊂ CN (N ≧ 3) be a unit sphere. If a standard coordinate
functions on CN are denoted by (x1 + iy1, · · · , xN + iyN), then(

n∑
i=1

x2i −
n∑
i=1

y2i

)2

+ 4

(
n∑
i=1

xiyi

)2

is an isoparametric function.

The regular level set is homogeneous in this example.
Ozeki and Takeuchi [26] gave first examples of non-homogeneous isoparametric hy-

persurfaces with g = 4 and Ferus, Karcher and Münzner systematically constructed such
hypersurfaces [9], which are nowadays called of OT-FKM type.

5.2 Critical Submanifolds

Let (G,K) be an irreducible symmetric pair of compact type, where G is a simply-
connected compact Lie group and K is a closed subgroup of G. The standard involution
gives a decomposition g = k⊕ m, where g and k are the corresponding Lie algebras of G
and K, respectively.

We denote by W an irreducible G-module with a G-invariant scalar product, which
has a hypersphere as a principal orbit. Such a representation W is called a representation
of spherical type. Those are classified in Hsiang-Hsiang [13].

G SU(n) Spin(n) Spin(7) Spin(9) Sp(n)

W Cn, Cn∗ Rn S7 S9 C2n ∼= C2n∗

G Spin(8) G2

W S+
8 , S

−
8 R7

•Table 5.1

In this table, Sn denotes a spin representation of Spin(n) and S±
n denote half-spin

representations of Spin(n).
Then, it is easily checked that the following happens: either W is decomposed into two

irreducible components as K-module W = U⊕V , or W itself is an irreducible K-module.
We consider only the former cases. Then on a case-by-case basis, we can show

Lemma 5.2.1. The decomposition W = U ⊕ V is a generalized Cartan decomposition.
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We define two irreducible vector bundles G×K U and G×K V , which are denoted by
the same symbols U → G/K and V → G/K, with canonical connections ∇U and ∇V ,
respectively.

Fix an element w ∈ W such that |w| = 1 and consider the corresponding section
s ∈ Γ(U). Denote by H the isotropy subgroup of G at w ∈ W . Our assumption yields
that the homogeneous space G/H is a unit sphere in W .

The square of a pointwise norm f([g]) = |s|2([g]) (g ∈ G) of the section s is a function
on G/K. Here, we can take w ∈ U ⊂ W without loss of generality, since W is of spherical
type.

First of all, we can show

Lemma 5.2.2. Only the zero set S0 and the set SM where the function f attains the
maximum value (, which is called the maximum set) are critical submanifolds of f :
G/K → R.

Lemma 5.2.3. If neither U nor V is a trivial representation of K, then both sets S0 and
SM are connected and H-orbits.

Lemma 5.2.4. The function is a Morse-Bott function.

For proofs, see [23] Lemmas 7.3, 7.8 and 7.10. The assumption that W is a G-
representation of spherical type is exploited in proofs and we have that K-modules U
and V are K-representations of spherical type, if they are not trivial representations of
dimension 1. Indeed, we obtain

S0 =
{
[g] ∈ G/K | πU([g−1w]) = 0

}
, (5.2.1)

SM =
{
[g] ∈ G/K | πV ([g−1w]) = 0

}
. (5.2.2)

If we denote by T0 the zero set and by TM the maximum set of |t|2, then T0 = SM
and TM = S0. For this duality, we do not distinguish module U from V . In the case that
neither U nor V is a trivial module of K, S0 and SM are assumed to be expressed as
H/H0 and H/HM , respectively, as homogeneous spaces.

Lemma 5.2.5. If U is not a trivial module of H0, then S0 is a singular H-orbit.

Proof. Since W globally generates a bundle U → G/K, generic sections in W are trans-
verse to the zero section. The hypothesis that W is a representation of spherical type
implies that every section in W except zero is transverse to the zero section. From the
transversality of the section, the normal spaces of S0 can be identified with U . Then the
assumption yields the result by so-called slice theorem.

If we replace U , H0 and S0 by V , HM and SM , respectively, then the same conclu-
sion holds. In this case, by Hsiang-Lawson [14], S0 and SM are minimal submanifolds.
However, we can say more.
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Theorem 5.2.6. The critical submanifolds S0 and SM are totally geodesic submanifolds
of G/K.

Proof. First of all, we can consider a map into a Grassmannian i : G/K → Grp(W ) as
the induced map by (V → G/K,W ) [24, Definition 3.2] (and so, p denotes the dimension
of U). Then i is a totally geodesic immersion from Lemma 5.2.1.

On a Grassmannian Grp(W ), the module U gives the tautological vector bundle S →
Grp(W ) in a similar fashion, whose pull-back bundle by i is naturally identified with
U → G/K. Then the element w ∈ W also gives a section s̃ of S → Grp(W ) and the pull-
back of s̃ is nothing but the section s. Let S̃0 and S̃M be the zero set and the maximum
set of |s̃|2. We take the orthogonal complement space W⊥ of w in W . Then (5.2.1) and
(5.2.2) imply that

S̃0 = Grp(W
⊥), S̃M = Grp−1(W

⊥),

which are totally geodesic submanifolds of Grp(W ).

Then S0 and SM are the intersections of two totally geodesic submanifolds of Grp(W )
respectively (S0 = G/K ∩ S̃0 and SM = G/K ∩ S̃M), which yields the desired result.

We give a table which includes symmetric spaces G/K, representation spaces W ,
stabilizers H, decompositions as K-modules W = U ⊕ V and pairs S0 and SM . We
give a complete list in the table. To do so, we use the coincidences that happen in low
dimensions between the various classical Lie groups, which are listed in the Remark after
the Table 3.2.

G/K W H U ⊕ V S0, SM
SU(n)/SO(n) Cn SU(n− 1) Rn ⊕Rn SU(n− 1)/SO(n− 1)

Grp(C
n) Cn SU(n− 1) Cp ⊕Cq Grp(C

n−1), Grp−1(C
n−1)

Grp(R
n) Rn Spin(n− 1) Rp ⊕Rq Grp(R

n−1), Grp−1(R
n−1)

Sn−1 Rn Spin(n− 1) R⊕Rn−1 Sn−1, 2points

Gr4(R
7) S7 G2 R4 ⊕R4 G2/SO(4), G2/SO(4)

Gr4(R
8) S±

8 Spin(7) R4 ⊕R4 Gr4(R
7), Gr3(R

7)

Gr4(R
9) S9 Spin(7) R8 ⊕R8 Gr4(R

7), Gr3(R
7)

Sp(n)/U(n) C2n Sp(n− 1) Cn ⊕Cn∗
Sp(n− 1)/U(n− 1)

Grp(H
n) Hn Sp(n− 1) Hp ⊕Hq Grp(H

n−1), Grp−1(H
n−1)

G2/SO(4) R7 SU(3) R4 ⊕R3 SU(3)/SO(3), CP 2

•Table 5.2

Remark 10. We now list the coincidences of a pair of symmetric spaces and representations
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W omitted in the table.

(SU(2)/SO(2), su(2)) = (S2,R3),(
SU(4)/SO(4),R6 = ∧2C4R

)
=
(
Gr3(R

6),R6
)
,(

SU(4)/Sp(2),R6
)
=
(
S5,R6

)
,(

Gr4(R
6),C4

)
=
(
Gr2(C

4),C4
)
,(

Gr2(R
5),C4

)
=
(
Sp(2)/U(2),C4

)
,(

SO(6)/U(3),C4
)
= (CP 3,C4),

(Sp(1)/U(1), sp(1)) = (S2,R3).

5.3 Isoparametric functions

Let G/K, W , H and f be as in the previous section. In this section, the level set of
the function f : G/K → R is our main concern. Since H ⊂ G is an isotropy subgroup at
w ∈ W , f is invariant under the action of H. Hence, H acts on the level set of f .

We can easily show

Lemma 5.3.1. If the action of H on G/K is of cohomogeneity one, then f is an isopara-
metric function.

Because |grad f |2 and ∆f are also invariant under the action of H, and so they are
constant functions on the level set of f .

The actions of H are of cohomogeneity one except the following cases:

(SU(n)/SO(n),Cn) ,
(
Sp(n)/U(n),C2n

)
,
(
Gr4(R

9), S9

)
.

In the above cases, the cohomogeneity of the actions are 2, 3 and 2, respectively.
In the case of cohomogeneity one, we can easily describe the level set of f as a unit

sphere bundle of S0 or SM , and show that all level sets are H-orbits, which are left to the
reader.

From now on, we would like to compute geometric invariants of submanifolds, more
precisely, mean curvatures and principal curvatures. These invariants are related to in-
variants of vector bundles.

Theorem 5.3.2. We have

∆s =
n

p
s, ∆t =

n

q
t, n := dimG/K,

for arbitrary s ∈ W ⊂ Γ(U) and t ∈ W ⊂ Γ(V), when W is an orthogonal representation.
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We also have
∆s =

n

2p
s, ∆t =

n

2q
t, n := dimG/K,

for arbitrary s ∈ W ⊂ Γ(U) and t ∈ W ⊂ Γ(V), when W is a unitary representation.

Proof. From Theorem 2.2.2, we see that the mean curvature operators A and B are
parallel. Since U → G/K and V → G/K are irreducible, we have

B = −µIdU , A = −νIdV

for some constant µ and ν. Since i : G/K → Grp(W ) is totally geodesic (hence harmonic),
Theorem 2.2.3 yields that

∆s = µs, ∆t = νt.

Since i : G/K → Grp(W ) is an isometric immersion, the definition of the Riemannian
metric gGr yields that

n =
∑

gGr(ei, ei) = −
∑

trace JeiIei = −traceA = −traceB,

when W is a real representation, and

n = −2traceA = −2traceB,

when W is a complex representation. Hence we have our desired results.

We fix w ∈ W (|w| = 1) again and consider the function f = |s|2.

Theorem 5.3.3. We have that

∆f =
2nN

pq

(
f − p

N

)
,

when W is an orthogonal representation and

∆f =
nN

pq

(
f − p

N

)
,

when W is a unitary representation.

Proof. Notice that w ∈ W also induces a section of S → Grp(W ) denoted by s̃. It
follows that the pull-back section of s̃ is nothing but s ∈ Γ(U). From Proposition 2.1.2,
we see that ∇S s̃ = −Jt̃ on Grassmannian, where t̃ is the corresponding section. Since
i : G/K → Grp(W ) is a totally geodesic immersion and ∇U is regarded as the pull-back
connection of ∇S, we also have ∇Us = −Jt. Then we obtain

|Jt|2 =
∑

gU (Jeit, Jeit) = −gV (At, t) = gV (∆t, t) .
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The well-known formula

∆|s|2 = gU (∆s, s) + gU (s,∆s)− 2|∇Us|2

yields that

∆|s|2 = 2gU (∆s, s)− 2gV (∆t, t) .

Theorem 5.3.2 yields the result.

Hence, the function f always satisfies the condition (2) of the definition of an isopara-
metric function.

However, |grad f |2 = |df |2 does not satisfy the condition (1) in general. We distinguish
the case that the action of H is of the cohomogeneity one from others.

5.3.1 The case of cohomogeneity one

In this subsection, we omit the case that G/K is a sphere. Hence, in the decomposition
W = U ⊕ V , U and V are K-representations of spherical type. Moreover, S0 and SM
are singular H-orbits, which are expressed as H/H0 and H/HM , respectively. Since the
action of H is of cohomogeneity one, U is a representation of H0 of spherical type and V
is a representation of HM of spherical type.

Let n be a unit normal vector field defined by

n =
grad f

|grad f |
,

on the regular point of f . We denote by An the shape operator of f−1(c), where c is a
regular value. By definition, we have that

AnX = −DXn = −X
(

1

|df |

)
grad f − 1

|df |
DXgrad f,

where X is a tangent vector to f−1(c) and D is the Levi-Civita connection on G/K.
Since f is an isoparametric function, the first term of the right-hand-side vanishes. Con-
sequently, we have that

g (AnX,Y ) = − 1

|df |
(DXdf) (Y ),

where X and Y are tangent vectors to f−1(c) and g is the Riemannian metric on G/K.
The definition of f yields that

(DXdf) (Y ) = gU
(
∇U
X

(
∇Us

)
(Y ), s

)
+ gU

(
s,∇U

X

(
∇Us

)
(Y )
)

+ gU
(
∇U
Xs,∇U

Y s
)
+ gU

(
∇U
Y s,∇U

Xs
)
.
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Since W = U ⊕ V is a generalized Cartan decomposition, Proposition 2.1.2 yields that

∇U
Xs = −Jt, ∇U

X

(
∇Us

)
(Y ) = JY IXs,

where t is the corresponding section. It follows that

(DXdf) (Y ) = −gV (IXs, IY s)− gV (IY s, IXs)

+ gU (JXt, JY t) + gU (JY t, JXt) .

We define endomorphisms Ĩ and J̃ of the tangent bundle of G/K by

g(ĨX, Y ) =
1

2
{gV (IXs, IY s) + gV (IY s, IXs)}

and

g(J̃X, Y ) =
1

2
{gU (JXt, JY t) + gU (JY t, JXt)} .

By definition, we obtain

An =
2

|df |

(
Ĩ − J̃

)
. (5.3.1)

We can immediately see

Lemma 5.3.4. The endomorphisms Ĩ and J̃ are H-invariant symmetric operators.

To see properties of Ĩ and J̃ , we give a key algebraic theorem.
We denote by h the corresponding Lie subalgebra to H and a natural projection by

π : G→ G/K.

Theorem 5.3.5. In the case that the H-action on G/K is of cohomogeneity one, for an
arbitrary ξ ∈ m such that ξ⊥h and |ξw| = 1, we have that

ξ2w = −w.

Proof. Let N be the normal space of SM at π(e), where e is a unit element of G. The
subgroup L ⊂ G defined as L := K ∩ H is isomorphic to HM and acts on N as a
representation of spherical type, since the action of H is of cohomogeneity one.

Since W globally generates V → G/K and is a representation of spherical type, t is
transverse to the zero section. Hence we have that

TxSM = Ker∇V t = Ker Is = {X ∈ TxG/K | IXs = 0} .

It follows that Tπ(e)G/K = Ker Is⊕⊥ N .
We may regard Is : Tπ(e)G/K → Vπ(e) as an homomorphism Is : m → V and consider

N ⊂ m. Since s (π(e)) = [e, w], Is is an L-equivariant homomorphism. Hence V is also
an L-representation of spherical type which is isomorphic to N .
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Let ξ ∈ N such that |Iξs| = |ξw| = 1. Then we obtain Lξ ⊂ L as an isotropy
subgroup at ξ and Iξ : U → V is an Lξ-equivariant homomorphism. The endomorphism
JξIξ : U → U can be now regarded as ξ2 : U → U , which is a restriction of ξ2 : W → W
to U ⊂ W . Note that the eigenvalues except zero of ξ2|U are the same as ones of ξ2|V
with multiplicities, since W = U ⊕ V is a generalized Cartan decomposition. Then
Lξ irreducible decompositions of U and V , which are given after the proof, yield that
ξ2w = cw with some constant c ∈ R by Schur’s lemma. It follows that c = 〈ξ2w,w〉 =
−〈ξw, ξw〉 = −1.

We shall exploit Lξ-decomposition in the sequel. We denote by l and lξ the corre-
sponding Lie subalgebras to L and Lξ, respectively.
•Lξ-decomposition of (G/K,W ).
(1)

(
Grp(R

N),RN
)
,

Let e1, · · · , eN be an orthonormal basis of RN such that e1, · · · , ep spans Rp. We take
w = e1 and so, l = so(p− 1)⊕ so(q), where q := N − p. Let ξ be a skew endomorphism
of RN such that

ξe1 = ep+1, ξep+1 = −e1, and ξeA = 0, A 6= 1, p+ 1.

Notice that ξ ∈ m∩h⊥ with |ξw| = 1. It follows that lξ is isomorphic to so(p−1)⊕so(q−1).
Then we have

U = Rp = Rw ⊕Rp−1, V = Rq = Rξw ⊕Rq−1.

(2)
(
Grp(C

N),CN
)
,

Let e1, · · · , eN be a unitary basis of CN such that e1, · · · , ep spans Cp. We take w = e1
and so, l = u(1) ⊕ su(p − 1) ⊕ su(q). Let ξ be a skew Hermitian endomorphism of CN

such that
ξe1 = ep+1, ξep+1 = −e1, and ξeA = 0, A 6= 1, p+ 1.

Notice that ξ ∈ m ∩ h⊥ with |ξw| = 1. It follows that lξ is isomorphic to u(1) ⊕ su(p −
1)⊕ su(q − 1). Then we have

U = Cp = Cw ⊕Cp−1, V = Cq = Cξw ⊕Cq−1.

(3)
(
Grp(H

N),HN
)
,

Let e1, · · · , eN be a quaternion-unitary basis of HN such that e1, · · · , ep spans Hp.
We take w = e1 and so, l = sp(p − 1) ⊕ sp(q). Let ξ be a quaternion-skew Hermitian
endomorphism of HN such that

ξe1 = ep+1, ξep+1 = −e1, and ξeA = 0, A 6= 1, p+ 1.

Notice that ξ ∈ m∩h⊥ with |ξw| = 1. It follows that lξ is isomorphic to sp(p−1)⊕sq(q−1).
Then we have

U = Hp = Hw ⊕Hp−1, V = Hq = Hξw ⊕Hq−1.
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(4) (Gr4(R
7), S7),

The isotropy subalgebra is isomorphic to so(4)⊕sp(1). The Lie algebra so(4) is a direct
sum of two copies of sp(1). To distinguish these copies of sp(1), the isotropy subalgebra
is denoted by sp+(1)⊕ sp−(1)⊕ sp(1).

Under the action of the isotropy subalgebra on S7, we have an irreducible decomposi-
tion:

S7 =
(
C2

+ ⊗C2
)R ⊕

(
C2

− ⊗C2
)R

,

where C2
(±) denote the standard representations of sp(±)(1), respectively and

(
C2

± ⊗C2
)R

denote real invariant spaces of C2
± ⊗C2, respectively.

We pick up a unit vector w ∈
(
C2

+ ⊗C2
)R

and so, l is regarded as the diagonal

subalgebra of sp+(1)⊕ sp(1). Let v ∈
(
C2

− ⊗C2
)R

be a unit vector. Since Lξ (ξ ∈ m∩h⊥

with |ξw| = 1) can be identified with an isotropy subgroup of the L-action on S7 at v,
it follows that lξ is isomorphic to the subalgebra {(X,X,X)} of sp+(1)⊕ sp−(1)⊕ sp(1).
Then we have

U =
(
C2

+ ⊗C2
)R

= Rw ⊕R3, V =
(
C2

− ⊗C2
)R

= Rv ⊕R3,

where R3 denotes the adjoint representation of lξ.
(5) (G2/SO(4),R7),

To distinguish two copies of sp(1), the isotropy subalgebra is denoted by sp+(1) ⊕
sp−(1).

Under the action of the isotropy subalgebra on R7, we have an irreducible decompo-
sition:

R7 =
(
C2

+ ⊗C2
−
)R ⊕ sp−(1),

where C2
± denote the standard representations of sp±(1), respectively and

(
C2

+ ⊗C2
−
)R

denotes a real invariant space of C2
+ ⊗C2

−.

We pick up a unit vector w ∈
(
C2

+ ⊗C2
−
)R

and so, l is regarded as the diagonal
subalgebra ∆ of sp+(1)⊕ sp−(1). Let v ∈ sp−(1) be a unit vector. Since Lξ (ξ ∈ m ∩ h⊥

with |ξw| = 1) can be identified with an isotropy subgroup of L-action on R7 at v, we
have that lξ is isomorphic to u(1) which is the standard subalgebra of ∆. Then we have

U =
(
C2

+ ⊗C2
−
)R

= Rw ⊕R⊕C2, V = sp−(1) = Rv ⊕C2,

where Cα denotes an irreducible representation of u(1) with weight α.

Remark 11. We should consider the case of
(
Gr4(R

8), S±
8

)
. However, the triality gives

the same picture as in the case of (Gr4(R
8),R8), and so we omit it.

Corollary 5.3.6. We can find a geodesic on G/K which intersects all H-orbits orthogo-
nally.
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Proof. For any ξ ∈ m such that ξ⊥h and |ξw| = 1, Theorem 5.3.5 yields that

etξw =
∑ 1

n!
ξnw = cos tw + sin tv,

where we put v := ξw ∈ V . Then, π(etξ) is a geodesic through π(e).
Moreover, we get

s
(
π(etξ)

)
=
[
etξ, πU

(
e−tξw

)]
= cos t

[
etξ, w

]
= cos tetξs (π(e)) .

Hence,
f
(
π(etξ)

)
= cos2 t,

and so, the geodesic π(etξ) meets all H-orbits.
Since ξ⊥h, ξ can be regarded as a normal vector of SM in G/K. We can identify the

normal bundle of an H-orbit with a neighbourhood of the H-orbit G-equivariantly via an
exponential map restricted to the normal space. Hence the geodesic π(etξ) intersects all
H-orbits orthogonally by Gauss’s lemma.

Remark 12. The existence of a geodesic which intersects all orbits orthogonally is well-
known in the case that the action is of cohomogeneity one. However, we exploit our
geodesic π(etξ) to compute submanifold-geometric invariants including principal curva-
tures of the regular level set explicitly. To do so, we fix the notation π(etξ) to express the
specified geodesic.

For simplicity, we put o := π(e) ∈ G/K.

Theorem 5.3.7. The endomorphism Ĩ has only two eigenspaces, which is expressed as
TxG/K = E1 ⊕ E2, where s(x) 6= 0. The eigenspace E1 with zero eigenvalue is indeed
Ker Is, where we regard Is as a homomorphism Is : TG/K → V. Both E1 and E2 can be
identified with ToSM and V , respectively, via a parallel transport along the geodesic π

(
etξ
)

and an action of H, where ξ ∈ m ∩ h⊥.

Proof. As we already show,

ToSM = Ker∇V t =
{
X ∈ ToG/K |∇V

Xt = 0
}
.

It follows from ∇V t = −Is that ToSM is included in the eigenspace of Ĩ with zero eigen-
value.

Let L be an isotropy subgroup of H at o ∈ SM . Then we already see that N(∼= V )
is an irreducible representation of L. From Lemma 5.3.4, V must be an eigenspace of Ĩ,
because L acts on each eigenspace.

Let x ∈ G/K be a point outside SM and suppose that s(x) 6= 0. It follows from
H-invariance of Ĩ that x can be assumed to be joined to o by π(etξ) and x = π(et0ξ) for
some ξ ∈ m ∩ h⊥. If we put g(x) = et0ξ, then x = g(x)o and s(x) = cos t0g(x)s(o).
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Since I is G-invariant, if X and Y ∈ TxG/K, then we obtain

gx

(
ĨX, Y

)
=

1

2
{gVx (IXs(x), IY s(x)) + gVx (IY s(x), IXs(x))}

=
1

2

{
gVx
(
Ig(x)g(x)−1X cos t0g(x)s(o), Ig(x)g(x)−1Y cos t0g(x)s(o)

)
+ gVx

(
Ig(x)g(x)−1Y cos t0g(x)s(o), Ig(x)g(x)−1X cos t0g(x)s(o)

)}
=
f(y)

2

{
gVy
(
g(x)Ig(x)−1Xs(o), g(x)Ig(x)−1Y s(o)

)
+ gVy

(
g(x)Ig(x)−1Y s(o), g(x)Ig(x)−1Xs(o)

)}
=
f(y)

2

{
gVo
(
Ig(x)−1Xs(o), Ig(x)−1Y s(o)

)
+ gVo

(
Ig(x)−1Y s(o), Ig(x)−1Xs(o)

)}
=f(y)go

(
Ĩg(x)−1X, g(x)−1Y

)
.

It follows that TxG/K = g(x)ToSM ⊕ g(x)Vo is the eigenspace decomposition of the
endomorphism Ĩx. It also follows that g(x)ToSM = Ker Is.

Lemma 5.3.8. The normal vector field n belongs to E2, where df 6= 0.

Proof. From Corollary 5.3.6, the velocity vector of the geodesic π(etξ) is a constant mul-
tiple of the unit normal vector field n.

By Theorem 5.3.7, the eigenspace E1 corresponding to zero eigenvalue is the image of
a parallel transport of TSM along π(etξ). Then, we have that n⊥E1. The H-invariance
gives our desired result.

Remark 13. It is well-known (and easily shown) that the unit normal vector field n
generates a geodesic if the function satisfies the condition (1) of Definition 5.1.1.

We denote by λ an eigenvalue of Ĩ whose eigenspace is E2
∼= V .

Theorem 5.3.9. The eigenvalue λ is equal to n
pq
|s|2 when W is real, n

4pq
|s|2 when W is

complex.

Proof. In both cases, we have∑
g(Ĩei, ei) = gV (Ieis, Ieis) = −gU(Bs, s) = gU(∆s, s). (5.3.2)

•W :real. By definition, we have
∑
g(Ĩei, ei) = qλ. From (5.3.2) and Theorem 5.3.2, we

get

qλ =
n

p
|s|2.
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•W :complex. By definition, we have
∑
g(Ĩei, ei) = 2qλ. From (5.3.2) and Theorem

5.3.2, we get

2qλ =
n

2p
|s|2.

In a similar way, we have

Theorem 5.3.10. The eigenspaces of J̃ can be identified with U and TS0 via a parallel
transport along the geodesic π(etξ) and an H-action. The eigenvalue corresponding to the
eigenspace U is n

pq
|t|2 when W is real, n

4pq
|t|2 when W is complex. The eigenspace TS0 is

the kernel of J̃ .

For simplicity, it is said that the eigenspaces of Ĩ are V and TSM and the eigenspaces
of J̃ are U and TS0, when no confusion can arise.

Lemma 5.3.11. The unit normal vector field n is the eigenvector of J̃ which belongs to
U .

We can compute the norm of the velocity vector of the geodesic π(etξ).

Lemma 5.3.12. Let ξ ∈ m ∩ h⊥ with |ξw| = 1. The square of the norm |ξ|2 is equal to
pq
n
, when W is real, 4pq

n
, when W is complex.

Proof. On the one hand, since ξ is a constant multiple of n, we get Ĩξ = λξ, from Lemma
5.3.8, where λ is the eigenvalue different from zero. It follows that

g(Ĩξ, ξ) = λ|ξ|2

On the other hand, the definition gives g(Ĩξ, ξ) = gV (Iξs, Iξs). Since G/K is a totally
geodesic submanifold of Grp(W ), we can compute

Iξs
(
π(etξ)

)
=
[
etξ, ξ cos tw

]
= cos t

[
etξ, ξw

]
.

Since |ξw| = 1, we obtain |Iξs|2 = cos2 t|ξw|2 = |s|2.
We immediately get λ|ξ|2 = |s|2, which provides us with the result by Theorem 5.3.9.

Theorem 5.3.13. The norm of the gradient vector grad f is given by

|df | =

2|s||t|
√

n
pq
, when W is real,

|s||t|
√

n
pq
, when W is complex.
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Proof. Let ξ ∈ m ∩ h⊥ with |ξw| = 1. It is enough to compute the norm on the geodesic
π(etξ) due to H-invariance. Note that the corresponding section t is expressed as

t
(
π(etξ)

)
=
[
etξ,− sin tv

]
= − sin t

[
etξ, v

]
= − sin tetξt (o) .

Moreover, we get from ξv = −w that

Jξt
(
π(etξ)

)
= − sin t

[
etξ, ξv

]
= tan t

[
etξ, w

]
=

|t|
|s|
s
(
π(etξ)

)
.

Then, we have

|df |2 =
∑(

gU
(
∇U
ei
s, s
)
+ gU

(
s,∇U

ei
s
))2

=
∑

(gU (Jeit, s) + gU (s, Jeit))
2

=
∑ |s|2

|t|2
(gU (Jeit, Jξt) + gU (Jξt, Jeit))

2 =
∑

4
|s|2

|t|2
(
g(J̃ei, ξ)

)2
.

We can take en = n and already see that ξ = |ξ|n (up to a sign). Theorem 5.3.10 and
Lemma 5.3.12 yield that

|df |2 = 4
|t|2

|s|2
|ξ|2µ2,

where µ is the eigenvalue of J̃ different from zero.

Remark 14. From Theorems 5.3.3 and 5.3.13, it follows that

∆f =
2nN

pq

(
f − p

N

)
, |df |2 = 4n

pq
f(1− f),

when W is real, and

∆f =
nN

pq

(
f − p

N

)
, |df |2 = n

pq
f(1− f),

when W is complex. If we define a new function f̃ by

f̃ = f − p

N
,

then we have

∆f̃ =
2nN

pq
f̃ , |df̃ |2 = 4n

pq

(
f̃ +

p

N

)( q
N

− f̃
)
,

when W is real, and

∆f̃ =
nN

pq
f̃ , |df̃ |2 = n

pq

(
f̃ +

p

N

)( q
N

− f̃
)
,

when W is complex.
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Let c be a regular value of the function f : G/K → R. We can compute the mean
curvature m of the hypersurface f−1(c). Notice that |s|2 = c and |t|2 =

√
1− c, by

definition. Hence, instead of using c, we employ |s| and |t| to express invariants on
f−1(c).

Theorem 5.3.14. Let m be the mean curvature of the regular level set f−1(c). Then m
is expressed:

m =


1

|s||t|

√
n
pq
{|s|2(q − 1)− |t|2(p− 1)} , when W is real,

1
2|s||t|

√
n
pq
{|s|2(2q − 1)− |t|2(2p− 1)} , when W is complex.

Proof. From (5.3.1), Theorems 5.3.7, 5.3.9 and 5.3.10 and Lemmas 5.3.8 and 5.3.12, it
follows that

m =
n−1∑
i=1

g(Anei, ei) =
2

|df |

{
trace Ĩ − g(Ĩn,n)− trace J̃ + g(J̃n,n)

}
,

where e1, · · · , en = n is an orthonormal basis of TG/K. Using again Lemmas 5.3.8 and
5.3.12, Theorem 5.3.13 yield the result.

Remark 15. Using only the function f , m is described as

m =


√

n
pqf(1−f) {(N − 2)f − (p− 1)} , when W is real,√

n
4pqf(1−f) {2(N − 1)f − (2p− 1)} , when W is complex.

Corollary 5.3.15. There exists one and only one minimal regular level set of the function
f . More precisely, f−1(c) is a minimal hypersurface, where

c =

{
p−1
N−2

, when W is real,
2p−1

2(N−1)
, when W is complex.

Next, we compute principal curvatures, in other words, the eigenvalues of An. From
(5.3.1), we should see how the eigenspaces of Ĩ and J̃ intersect with each other.

As we have already seen, the eigendecomposition of Ĩ is expressed as

ToG/K ∼= m = {X ∈ m |Xw = 0} ⊕⊥ V = TSM ⊕⊥ V.

We put g0 := e
π
2
ξ. In a similar way, we have

g−1
0

(
Tπ(g0)G/K

) ∼= m = {X ∈ m |Xv = 0} ⊕⊥ U = g−1
0

(
Tπ(g0)S0

)
⊕⊥ U.

We use the same notation as in Lξ-decomposition of (G/K,W ) after Theorem 5.3.5.
•Principal curvatures.

By (5.3.1), Theorems 5.3.7, 5.3.9, 5.3.10 and 5.3.13 imply
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Lemma 5.3.16. The shape operator An satisfies

An =



0 (on ToSM ∩ g−1
0 (Tπ(g0)S0))

|s|
a|t|

√
n

pq
(on g−1

0 (Tπ(g0)S0) ∩ V )

− |t|
a|s|

√
n

pq
(on ToSM ∩ U)

|s|2 − |t|2

a|s||t|

√
n

pq
(on U ∩ V ),

where a = 1 (resp. 2) if W is real (resp. complex).

(1)
(
Grp(R

N),RN
)
,

The tangent space m is regarded as Rp ⊗Rq. We get the lξ-decomposition of m:

m =Rw ⊗Rξw ⊕⊥ Rp−1 ⊗Rξw ⊕⊥ Rw ⊗Rq−1 ⊕⊥ Rp−1 ⊗Rq−1

=R⊕⊥ Rp−1 ⊕⊥ Rq−1 ⊕⊥ Rp−1 ⊗Rq−1.

In this decomposition, we can identify:

TS0 =Rq−1 ⊕⊥ Rp−1 ⊗Rq−1, TSM = Rp−1 ⊕⊥ Rp−1 ⊗Rq−1,

U =R⊕⊥ Rp−1, V = R⊕⊥ Rq−1.

Since the both Ĩ and J̃ are lξ-invariant, Schur’s lemma yields the eigendecomposition of
An. Then Lemma 5.3.16 implies

Theorem 5.3.17. The principal curvatures of the regular level set f−1(c) of the function
f are

|s|
|t|
, −|t|

|s|
, 0,

with multiplicities q − 1, p− 1, (p− 1)(q − 1), respectively.

(2)
(
Grp(C

N),CN
)
,

The holomorphic tangent space at o is regarded as Cp∗ ⊗Cq. We identify m with the
holomorphic tangent space at o. We get the lξ-decomposition of m:

m =Cw∗ ⊗Cξw ⊕⊥ Cp−1∗ ⊗Cξw ⊕⊥ Cw∗ ⊗Cq−1 ⊕⊥ Cp−1∗ ⊗Cq−1

=C⊕⊥ Cp−1∗ ⊕⊥ Cq−1 ⊕⊥ Cp−1∗ ⊗Cq−1.

In this decomposition, we can identify:

TS0 =Cq−1 ⊕⊥ Cp−1∗ ⊗Cq−1, TSM = Cp−1∗ ⊕⊥ Cp−1∗ ⊗Cq−1,

U∗ =C⊕⊥ Cp−1∗ , V = C⊕⊥ Cq−1.

Since the both Ĩ and J̃ are lξ-invariant, Schur’s lemma yields the eigendecomposition of
An.

Then Lemma 5.3.16 implies
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Theorem 5.3.18. The principal curvatures of the regular level set f−1(c) of the function
f are

1√
2|s||t|

(|s|2 − |t|2), |s|√
2|t|

, − |t|√
2|s|

, 0,

with multiplicities 1, 2(q − 1), 2(p− 1), 2(p− 1)(q − 1), respectively.

(3)
(
Grp(H

N),HN
)
,

The tangent space m is regarded as Hp ⊗ Hq, in an appropriate sense. We get the
lξ-decomposition of m:

m =Hw ⊗Hξw ⊕⊥ Hp−1 ⊗Hξw ⊕⊥ Hw ⊗Hq−1 ⊕⊥ Hp−1 ⊗Hq−1

=H⊕⊥ Hp−1 ⊕⊥ Hq−1 ⊕⊥ Hp−1 ⊗Hq−1.

In this decomposition, we can identify:

TS0 =Hq−1 ⊕⊥ Hp−1 ⊗Hq−1, TSM = Hp−1 ⊕⊥ Hp−1 ⊗Hq−1,

U =H⊕⊥ Hp−1, V = H⊕⊥ Hq−1.

Since the both Ĩ and J̃ are lξ-invariant, Schur’s lemma yields the eigendecomposition of
An.

Then Lemma 5.3.16 implies

Theorem 5.3.19. The principal curvatures of the regular level set f−1(c) of the function
f are

1

2|s||t|
(|s|2 − |t|2), |s|

2|t|
, − |t|

2|s|
, 0,

with multiplicities 3, 4(q − 1), 4(p− 1), 4(p− 1)(q − 1), respectively.

(4) (Gr4(R
7), S7),

The tangent space m is isomorphic to R4 ⊗R3 as so(4)⊕ sp(1)-module. Note that lξ
is isomorphic to the subalgebra {(X,X,X)} of sp+(1) ⊕ sp−(1) ⊕ sp(1), and so we have
a decomposition of m as lξ-module:

m = R5 ⊕⊥ 2R3 ⊕⊥ R.

Since

TS0 = R5 ⊕⊥ R3, TSM = R5 ⊕⊥ R3, U = R⊕R3, V = R⊕R3,

we can not obtain the same conclusion as before.
We consider a lξ-irreducible decomposition of S7:

S7 = Rw ⊗R3 ⊕ Rv ⊗R3,
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We already see that ξw = v and ξv = −w. Let u1, u2, u3 be an orthonormal basis
of R3 ⊂ U . We can put ξ2ui = xui for i = 1, 2, 3. Using the relation that |ξ|2 =
gV (Iξw, Iξw) +

∑
i gV (Iξui, Iξui), Lemma 5.3.12 yields that

pq

n
= 1− 3x.

If we substitute p, q and n by 4, 4 and 12, then we obtain

x = −1

9
.

Hence we can take an orthonormal basis v1, v2 and v3 of R3 ⊂ V such that

ξui =
1

3
vi, ξvi =

−1

3
ui, i = 1, 2, 3.

Let η be a normal vector of ToSM which is orthogonal to ξ, (which yields that η ∈
R3 ⊂ V ), and satisfies that |ηw| = 1. Theorem 5.3.12 gives

|η|2 = pq

n
=

4

3
.

The relation ξ⊥η yields that ξw⊥ηw. Hence we may suppose that

ηw = v1, ηv =
−1

3
u1.

We put η = η0+η1 according to the decomposition m = TS0⊕U . Note that η0 ∈ R3 ⊂ TS0

and η1 ∈ R3 ⊂ U . Then we have

ηv = η0v + η1v = η1v,

and so, |η1v|2 = 1
9
. Since η1 ∈ U , we get

g(J̃η1, η1) =
n

pq
|t|2|η1|2 =

3

4
|η1|2.

On the other hand, we have

go(J̃η1, η1) = gV (Jη1t, Jη1t) = |t|2|η1v|2 =
1

9
.

Consequently, we have |η1|2 = 4
27
, |η0|2 = 32

27
, and so,

|η0| : |η1| = 2
√
2 : 1.
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Hence, if X is a vector of R3 ⊂ ToSM and X = X0 + X1, where X0 ∈ R3 ⊂ ToS0 and
X1 ∈ R3 ⊂ U , then we have

|X0| : |X1| = 1 : 2
√
2.

Let X1, X2 and X3 be an orthonormal basis of R3 ⊂ ToSM and v1, v2 and v3 an
orthonormal basis of R3 ⊂ V . Then we can take an orthonormal basis Y1, Y2 and Y3 of
(R3 ⊕R3) ∩ ToS0 and an orthonormal basis u1, u2 and u3 of (R3 ⊕R3) ∩ U such that

Xi =
1

3

(
Yi − 2

√
2ui

)
, vi =

1

3

(
2
√
2Yi + ui

)
, i = 1, 2, 3.

It follows from Theorem 5.3.10 that

J̃Xi =
2
√
2

9

n

pq
|t|2
(
2
√
2Xi − vi

)
, J̃vi =

1

9

n

pq
|t|2
(
−2

√
2Xi + vi

)
From (5.3.1) and Theorems 5.3.7, 5.3.9, 5.3.10 and 5.3.13, we need to compute the eigen-
values of

1

9

√
n

pq

1

|s||t|

(
−8|t|2 2

√
2|t|2

2
√
2|t|2 9|s|2 − |t|2

)
to obtain the principal curvatures. Then we have

Theorem 5.3.20. The principal curvatures of the regular level set f−1(c) of the function
f are √

3

12

1

|s||t|

{
3(|s|2 − |t|2)±

√
9− 4|s|2|t|2

}
, 0,

with multiplicities 3, 3, 5, respectively.

(5) (G2/SO(4),R7),
We can proceed in the almost same way as in case of (Gr4(R

7), S7). So we shall sketch
a proof.

The tangent space m is regarded as
(
C2

+ ⊗ S3C2
−
)R

. Since lξ is isomorphic to u(1) ⊂
∆ ⊂ sp+(1)⊕ sp−(1), we get a decomposition of m as lξ-module:

mC = C4 ⊕⊥ 2C2 ⊕⊥ 2C⊕⊥ 2C−2 ⊕⊥ C−4.

Considering real representations, we can take

m = C4 ⊕⊥ 2C2 ⊕⊥ 2R.

Since

TS0 = C4 ⊕C2, TSM = C4 ⊕C2 ⊕R, U = R⊕C2 ⊕R, V = R⊕C2,

we can not obtain the same conclusion as before.
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We consider a u(1)-irreducible decomposition of R7:

R7 = Rw ⊕R⊕C2 ⊕ Rv ⊕C2.

Let u1, u2 be an orthonormal basis of C2 ⊂ U and u3 ∈ R ⊂ U be an unit vector. We
can put ξ2ui = xui for i = 1, 2 and ξu3 = 0. If follows from Lemma 5.3.12 that

pq

n
= 1− 2x,

and so

x = −1

4
.

Let η be a normal vector of ToSM which is orthogonal to ξ, (which yields that η ∈
C2 ⊂ V ), and satisfies that |ηw| = 1. We put η = η0 + η1 according to the decomposition
m = TS0 ⊕ U . Note that η0 ∈ C2 ⊂ TS0 and η1 ∈ C2 ⊂ U . Then we have |η1|2 =
3
8
, |η0|2 = 9

8
, and so,

|η0| : |η1| = 3 :
√
3.

Hence, if X is a vector of C2 ⊂ ToSM and X = X0 + X1, where X0 ∈ C2 ⊂ ToS0 and
X1 ∈ C2 ⊂ U , then we obtain

|X0| : |X1| = 1 :
√
3.

From (5.3.1) and Theorems 5.3.7, 5.3.9, 5.3.10 and 5.3.13, we need to compute the
eigenvalues of

1

4

√
n

pq

1

|s||t|

(
−3|t|2

√
3|t|2√

3|t|2 4|s|2 − |t|2
)

to obtain the principal curvatures. Then we have

Theorem 5.3.21. The principal curvatures of the regular level set f−1(c) of the function
f are

1√
6

1

|s||t|

{
(|s|2 − |t|2)±

√
1− |s|2|t|2

}
, −

√
2

3

|t|
|s|
, 0,

with multiplicities 2, 2, 1 and 2, respectively.

5.3.2 The case of cohomogeneity greater than one

In this subsection, we see that f = |s|2 is not an isoparametic function in each
case. However, if we adopt Wang’s definition of isoparametric functions ([33] or see
also [6, p.55]), it will be shown that we can find a vector valued isoparametirc function
F : G/K → Rk which has f as a component, where k is the cohomogeneity of the
H-action. Every H-orbit is included in a level set of F .
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Moreover, we shall show that there exists a hidden symmetry in each case, in other
words, w ∈ W determines another subgroup of G. We obtain a subgroup H̃ ⊂ G such that
H ⊂ H̃. The action of H̃ on G/K is of cohomogeneity one. Finally, the corresponding
isoparametric functions are specified and we shall detect the relation between w ∈ W and
the new function.

Remark 16. For completeness, we give a definition of an isoparametric function by Wang.
Let f = (f1, · · · , fk) : M → Rk be a function on a Riemannian manifold (M, gM) with
values in Rk. The function f is called an isoparametric function if there exist functions
Fij, Gi : R

k → R (1 ≦ i, j ≦ k) such that

(1) gM(dfi, dfj) = Fij(f1, · · · , fk) (2) ∆fi = Gi(f1, · · · , fk).

This definition is different from a definition of Terng [30]. Though Terng’s definition is
stronger than one of Wang, Terng get a deep and beautiful structural theory. See also
Heintze, Liu and Olmos [11] for isoparametric submanifolds. In both, the principal orbit
of an hyperpolar action is a typical example.

• (SU(n)/SO(n),Cn)
The tangent space m is identified with a representation S2

0R
n of SO(n), where S2

0R
n

denotes the set of tracefree symmetric transformations on Rn. We denote by π0 : Rn ⊗
Rn → S2

0R
n the indicated orthogonal projection.

According to a generalized Cartan decomposition of Cn, we obtain z = x + iy ∈
Rn ⊕ iRn ∼= Rn ⊕ Rn. Hence the vector bundle V → G/K is naturally identified with
U → G/K, and we do not distinguish one from the other.

Let Y be an element of S2
0R

n. Since iY ∈ m ⊂ su(n), we have

(iY )(x+ iy) = −Y y + iY x, and so, Y (x, y) = (−Y y, Y x).

When Cn is regarded as a real representation of SU(n) and the orthogonal projections are
defined as πU(x+ iy) = x and πV (x+ iy) = y, we have

∇π(Lg(iY ))s =
[
g,−(iY )πV (g

−1w)
]
=
[
g, Y πV (g

−1w)
]
,

∇π(Lg(iY ))t =
[
g,−(iY )πU(g

−1w)
]
=
[
g,−Y πU(g−1w)

]
,

where g ∈ G. For simplicity, we identify Y ∈ m with the tangent vector π(LgY ) to G/K
and ∇Y s and ∇Y t are abbreviated to Y t and −Y s, respectively.

Then we get
df = 2gU (∇s, s) = 2gU (Y t, s) = 2gGr(Y, s⊗ t),

where gGr is the Riemannian metric on Grn(R
2n), which is the target of the totally

geodesic immersion of G/K → Grn(R
2n). Hence we obtain

df = 2π0(s⊗ t) = 2

(
s · t− gU(s, t)

n
In

)
,
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where

s · t = 1

2
(s⊗ t+ t⊗ s) ,

and In denotes the identity transformation of U → G/K. Consequently, we have

|df |2 = 2

(
|s|2|t|2 + n− 2

n
gU(s, t)

2

)
,

which shows that f is not an isoparametric function. Note that f is an isoparametric
function in the case that n = 2, since we have(

SU(2)/SO(2),C2
)
=
(
CP 1,C2

)
,

which was already seen in the previous subsection.
We compute

dgU(s, t)(Y ) = gU(Y t, t)− gU(s, Y s) = gGr(Y, t⊗ t− s⊗ s)

and so, we get

dgU(s, t) = π0(t · t− s · s) = t · t− s · s+ |s|2 − |t|2

n
In.

It follows that

|dgU(s, t)|2 = |s|4 − 2gU(s, t)
2 + |t|4 − 1

n

(
|s|2 − |t|2

)2
,

g (df, dgU(s, t)) = −2(n− 1)

n
gU(s, t)

(
|s|2 − |t|2

)
,

Moreover, we have∑
gU(∇eis,∇eit) = −

∑
gU(eit, eis) =

∑
gU(eieit, s) = −gU(∆t, s).

It follows from Theorem 5.3.2 that

∆gU(s, t) =gU(∆s, t)− 2
∑

gU(∇s,∇t) + gU(s,∆t)

=
2(n− 1)(n+ 2)

n
gU(s, t).

Consequently, we obtain an isoparametric function F with values in R2:

F :=
(
|s|2 − |t|2, 2gU(s, t)

)
.

Since gU(s, t) is also H-invariant, the level sets of F consist of H-orbits.
We put f̃ = |F |2 = (|s|2 − |t|2)2 + 4gU(s, t)

2.
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Theorem 5.3.22. The function f̃ is an isoparametric function on the symmetric space
SU(n)/SO(n).

Proof. Combined our direct computations with a well-known formula ∆f 2 = 2 {f∆f − |df |2},
we have

∆f̃ = 4(n+ 1)f̃ − 8.

Moreover, it follows that

|df̃ |2 = 8f̃(1− f̃).

We explain how w ∈ W relates to f̃ . Let h be an invariant Hermitian product on
W ∼= Cn. Then iw ⊗ h(·, w)− i

n
In ∈ W ⊗W ∗ can be considered as an element of su(n).

We have a generalized Cartan decomposition of su(n), which is a standard decomposition
su(n) = so(n) ⊕ m. Hence iw ⊗ h(·, w) − i

n
In determines a section s̃ of the holonomy

bundle SU(n)×SO(n) so(n). Since

s̃ =

[
g, pr

(
g−1

(
iw ⊗ h(·, w)− i

n
In

))]
, g ∈ SU(n),

where pr : su(n) → so(n) is the orthogonal projection and w = s+ it, we have

s̃ = s⊗ gU(·, t)− t⊗ gU(·, s).

Consequently, we obtain

2|s̃|2 = 4
(
|s|2|t|2 − gU(s, t)

2
)
= 1−

{(
|s|2 − |t|2

)2
+ 4gU(s, t)

2
}
= 1− f̃ . (5.3.3)

Since iw ⊗ h(·, w) − i
n
In is invariant under the action of S(U(1) × U(n − 1)) which is

denoted by H̃, we have

Lemma 5.3.23. The function f̃ is invariant under the action of H̃.

If we check the action of H̃ on SU(n)/SO(n) at o infinitesimally, it follows that the
action of H̃ on SU(n)/SO(n) is of cohomogeneity one.

Next, we determine critical points of f̃ . We begin with a simple algebraic lemma,
whose proof is left to the reader.

Lemma 5.3.24. Let u and v be vectors in Rn. Then π0(u ·v) and π0(u2−v2) are linearly
independent if and only if u and v are linearly independent.

We have

df̃ = 8
(
|s|2 − |t|2

)
π0(s · t) + 8gU(s, t)π0(t

2 − s2). (5.3.4)
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Lemma 5.3.25. The set of critical points of f̃ consists of those points in f̃−1(0) and
f̃−1(1).

Proof. From (5.3.4), x ∈ SU(n)/SO(n) is a critical point of f̃ if and only if F (x) = 0 or
π0(s · t)(x) and π0(t2 − s2)(x) are linearly dependent and(

|s|2 − |t|2
)
π0(s · t) + gU(s, t)π0(t

2 − s2) = 0 (5.3.5)

at x.
Of course, F (x) = 0 is equivalent to f̃(x) = 0.
The latter condition yields that s(x) and t(x) are linearly dependent by lemma 5.3.24.

Then the equation (5.3.5) is automatically satisfied. The Cauchy-Schwarz inequality
implies that

f̃ ≦ (|s|2 − |t|2)2 + 4|s|2|t|2 =
(
|s|2 + |t|2

)2
= 1,

where the equality holds if and only if s(x) and t(x) are linearly dependent.

We can describe f̃−1(0) and f̃−1(1) as H̃ ∼= U(n − 1)-orbits, respectively. In fact, we
have

f̃−1(0) = U(n− 1)/U(1)× SO(n− 2) ∼= SU(n− 1)/SO(n− 2),

f̃−1(1) = U(n− 1)/SO(n− 1) ⊃ S0, SM .

We already see that

dF (x) =
(
4π0(s · t), 2π0(t2 − s2)

)
.

If F (x) = 0, then f̃(x) = 0 and so, s(x) and t(x) are linearly independent. Lemma 5.3.24
yields that π0(s · t) and π0(t2− s2) is also linearly independent. Hence x is a regular point
of F . Indeed, from the above description, though f̃−1(0) is a singular orbit of H̃, F̃−1(0)
is not a singular orbit of H.

Lemma 5.3.26. One orbit F−1(0) of the action of H on SU(n)/SO(n), which is not a
singular orbit, is a minimal submanifold of SU(n)/SO(n).

Proof. The orbit F−1(0) is equal to f̃−1(0) and f̃−1(0) is a singular orbit of H̃. The
theorem of Hsiang-Lawson [14] yields the result.

Lemma 5.3.27. The action of H on SU(n)/SO(n) is not a hyperpolar action.

Proof. We can apply [12, Theorem 3.13, p.231] to get the result. (We also refer to [12] to
see the definition of the hyperpolar action.)

Corollary 5.3.28. The submanifold F−1(c), where c is a regular value of F , is not an
equifocal submanifold of SU(n)/SO(n).
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See [31] for the definition of the equifocal submanifold, which is considered as a gen-
eralization of isoparametric hypersurfaces.

Next we focus our attention on f̃−1(1). From (5.3.3), f̃−1(1) is nothing but a zero locus
of the section s̃. In addition, since su(n) = so(n) ⊕ m is a generalized Cartan decompo-
sition, we have a totally geodesic immersion from SU(n)/SO(n) to a real Grassmannian
Grp(su(n)), where p = dimSO(n). Then the same method as in the proof of Theorem
5.2.6 yields

Theorem 5.3.29. The level set f̃−1(1) is a totally geodesic submanifold of SU(n)/SO(n).

• (Sp(n)/U(n),Cn)
The holomorphic tangent space is identified with S2Cn∗

as complex U(n)-module,
where S2Cn∗

denotes a symmetric power of Cn∗
. Hence, S2Cn∗ ⊕ S2Cn is regarded as

the complexification of m, which is denoted by mC. Let σ : mC → mC be the real
structure. If Y ∈ m is a real vector, then there exists a unique Z ∈ S2Cn∗

such that
Y = (Z, σ(Z)) ∈ mC.

Let j : C2n → C2n be an invariant quaternion structure. We regard C2n as a left
H-module with j. As U(n)-module, we have C2n = Cn ⊕Cn∗

. If Z ∈ S2Cn∗
is regarded

as a homomorphism Z : Cn → Cn∗
, then we have σ(Z) = jZj : Cn∗ → Cn, where the

quaternion structure j is restricted to Cn∗
. Consequently, Y ∈ m acts on (u, v) ∈ Cn⊕Cn∗

in the following way:
Y (u, v) = (σ(Z)v, Zu) ,

where Y = (Z, σ(Z)) ∈ mC.
We put U = G×K Cn and V = G×K Cn∗ ∼= U∗. With our convention, we have

∇π(Lg(Y ))s =
[
g,−σ(Z)πV (g−1w)

]
, ∇π(Lg(Y ))t =

[
g,−ZπU(g−1w)

]
,

where g ∈ G. For simplicity, we identify Y ∈ m with the tangent vector π(LgY ) to G/K
and ∇Y s and ∇Y t are abbreviated to −σ(Z)t and −Zs, respectively.

Then we get

df(Y ) =gU (∇Y s, s) + gU (s,∇Y s) = −gU (σ(Z)t, s)− gU (s, σ(Z)t)

=− hGr (σ(Z), gV (·, t)⊗ s)− hGr (gV (·, t)⊗ s, σ(Z)) ,

where hGr is the Hermitian metric on Grn(C
2n), which is the target of the totally geodesic

immersion of G/K → Grn(C
2n).

Hence we obtain

df 1,0 = s · gV (·, t) =
1

2
(s⊗ gV (·, t) + gV (·, t)⊗ s) .

Consequently, we have
|df |2 =

(
|s|2|t|2 + |(s, t)|2

)
,
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where (·, ·) denotes the pairing between U → G/K and V → G/K. This shows that f is
not an isoparametric function.

We compute

d(s, t)(Y ) = −(σ(Z)t, t)− (s, Zs) = −(σ(Z), t⊗ t)− (s⊗ s, Z),

where (·, ·) in the right-hand-side denotes the obvious pairing. It follows that

d(s, t) = −t · t− s · s.

As a result, we have

|d(s, t)|2 = |s|4 + |t|4,
h (d(s, t), df) = −

(
|s|2 + |t|2

)
(s, t) = −(s, t),

Moreover, we have ∑
(∇eis,∇eit) = −(∆t, s).

It follows from Theorem 5.3.2 that

∆(s, t) = (∆s, t)− 2
∑

(∇s,∇t) + (s,∆t) = 2(n+ 1)(s, t).

Consequently, we obtain an isoparametric function F with values in R3:

F :=
(
|s|2 − |t|2, 2(s, t)

)
.

Since (s, t) is also H-invariant, the level sets of F consists of H-orbits.
We put f̃ = |F |2 = (|s|2 − |t|2)2 + 4|(s, t)|2.

Theorem 5.3.30. The function f̃ is an isoparametric function on the symmetric space
Sp(n)/U(n).

Proof. In a similar computation to one in a proof of Theorem 5.3.22, we have

|df̃ |2 = 4f̃(1− f̃),

and
∆f̃ = 2(2n+ 1)f̃ − 6.

We discuss a relation between w ∈ W and f̃ . Let ω be an invariant symplectic
form on W ∼= C2n and we do not distinguish between C2n and C2n∗

. We can consider
w ∧ jw ∈ ∧2C2n. We have an irreducible decomposition ∧2C2n = ∧2

0C
2n ⊕Cω as Sp(n)-

module, and so we define the orthogonal projection π0 : ∧2C2n → ∧2
0C

2n. As a U(n)-
module, we have ∧2

0C
2n = ∧2Cn ⊕ ∧2Cn∗ ⊕ su(n)C. Taking a real part, we get the
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orthogonal projection pr : (∧2
0C

2n)
R →

(
∧2Cn ⊕ ∧2Cn∗)R

. Hence w ∧ jw determines a

section s̃ of the bundle Sp(n)×U(n)

(
∧2Cn ⊕ ∧2Cn∗)R

. Since

s̃ =
[
g, pr

(
g−1π0 (w ∧ jw)

)]
, g ∈ Sp(n),

we have
s̃ = −s⊗ gV (·, t)− t⊗ gU(·, s).

Consequently, we obtain

2|s̃|2 = 4
(
|s|2|t|2 − |(s, t)|2

)
= 1−

{(
|s|2 − |t|2

)2
+ 4|(s, t)|2

}
= 1− f̃ .

Since w ∧ jw is invariant under the action of Sp(1) × Sp(n − 1) which is denoted by H̃,
we have

Lemma 5.3.31. The function f̃ is invariant under the action of H̃.

From the infinitesimal action of H̃ on Sp(n)/U(n) at o, it follows that the action of
H̃ on Sp(n)/U(n) is of cohomogeneity one.

Remark 17. From the viewpoint of Sp(1), the function F is a moment map for the action
of Sp(1) on Sp(n)/U(n). Hence Sp(n−1) acts on the Kähler quotient. Indeed, the Kähler
quotient is identified with a flag manifold Sp(n− 1)/S (U(n− 2)× U(1)× U(2)).

Next, we determine critical points of f̃ . We have

df̃ 1,0 = 4
(
|s|2 − |t|2

)
s · gV (·, t)− 4(s, t)s2 + 4(s, t)gV (·, t)2. (5.3.6)

Lemma 5.3.32. The set of critical points of f̃ consists of those points in f̃−1(0) and
f̃−1(1).

Proof. If s and gV (·, t) are linearly dependent, then we have df̃ 1,0 = 0 by (5.3.6).
Suppose that s and gV (·, t) are linearly independent. Then, s · gV (·, t), s2 and gV (·, t)2

are linearly independent. It follows from (5.3.6) that df̃ 1,0 = 0 if and only if f̃ = 0.
Since (s, t) = gU (s, gV (·, t)), the Cauchy-Schwarz inequality implies that

f̃ ≦ (|s|2 − |t|2)2 + 4|s|2|t|2 =
(
|s|2 + |t|2

)2
= 1,

where the equality holds if and only if s and gV (·, t) are linearly dependent.

We can describe f̃−1(0) and f̃−1(1) as H̃-orbits, respectively. In fact, we have

f̃−1(0) = Sp(1)× Sp(n− 1)/Sp(1)× U(n− 2) ∼= Sp(n− 1)/U(n− 2),

f̃−1(1) = S2 × Sp(n− 1)/U(n− 1) ⊃ S0, SM .

In similar ways in the case of (SU(n)/SO(n),Cn), we have
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Lemma 5.3.33. One orbit F−1(0) of the action of H on Sp(n)/U(n), which is not a
singular orbit, is a minimal submanifold of Sp(n)/U(n).

Lemma 5.3.34. The action of H on Sp(n)/U(n) is not a hyperpolar action.

Corollary 5.3.35. The submanifold F−1(c), where c is a regular value of F , is not an
equifocal submanifold of Sp(n)/U(n).

Theorem 5.3.36. The level set f̃−1(1) is a totally geodesic submanifold of Sp(n)/U(n).

• (Gr4(R
9), S9)

Since S9 = S+
4 ⊗ S5 ⊕ S−

4 ⊗ S5 as Spin(4)× Spin(5)-module, we put U = S+
4 ⊗ S5 and

V = S−
4 ⊗ S5. More precisely, though we need to take a real part of each space, we omit

the notation to indicate it. According to the decomposition

U ⊗ V = R4 ⊗
(
R⊕R5 ⊕ so(5)

)
,

we define two orthogonal projections π0 : U ⊗ V → R4 and πT : U ⊗ V → R4 ⊗R5. Note
that R4 and R4⊗R5 can also be considered as the tautological bundle and the cotangent
bundle on Gr4(R

9) with our convention.
We have

d|s|2 = 2s⊗ t

on Gr8(S9), where s and t are regarded as sections of the tautological bundle and the
universal quotient bundle on Gr8(S9), respectively. Since S ⊗ Q can be regarded as the
cotangent bundle on Gr8(S9), using a totally geodesic immersion i : Gr4(R

9) → Gr8(S9),
we obtain

df = 2πT (s⊗ t).

Lemma 5.3.37. We have

|df |2 = 2
(
|s|2|t|2 − 6 |π0(s⊗ t)|2

)
.

Proof. First of all, we pay attention on Spin(5)-modules. We identify Spin(5) with Sp(2).
Then S5 is recognized with the standard representation C4 with an invariant symplectic
form ω of Sp(2) and we have C4 ⊗C4 = Cω ⊕ ∧2

0C
4 ⊕ so(5)C. If u, v ∈ C4, then, under

the decomposition

u⊗ v = u ∧ v + u · v, u ∧ v =
1

2
(u⊗ v − v ⊗ u) , u · v =

1

2
(u⊗ v + v ⊗ u) ,

we have
u ∧ v ∈ Cω ⊕ ∧2

0C
4, u · v ∈ so(5)C.

It follows that

|u ∧ v|2 = 1

2

(
|u|2|v|2 − |h(u, v)|2

)
,
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where h(·, ·) is an invariant Hermitian product on C4.
We denote two orthogonal projections by p0 : ∧2C4 → Cω and pT : ∧2C4 → ∧2

0C
4,

respectively. It follows from |u ∧ v|2 = |p0(u ∧ v)|2 + |pT (u ∧ v)|2 that

|p0(u ∧ v)|2 + |pT (u ∧ v)|2 =
1

2

(
|u|2|v|2 − |h(u, v)|2

)
. (5.3.7)

Since |ω|2 = 4, we get

p0(u ∧ v) =
1

4
ω(u, v)ω, |p0(u ∧ v)|2 =

1

4
|ω(u, v)|2 .

It follows that

|pT (u ∧ v)|2 =
1

2

(
|u|2|v|2 − |h(u, v)|2

)
− 1

4
|ω(u, v)|2. (5.3.8)

The subgroup Spin(4) is now identified with Sp+(1) × Sp−(1). Let C2
± be standard

representations with invariant quaternion structures j± of Sp±(1), respectively. Note that
C2

± are equivalent to S±
4 , respectively. We denote by e1, e2 the standard basis of C2

+.
This means that e1, e2 is a unitary basis with e2 = j+e1. The standard basis of C2

− is
denoted by f1, f2. Let a = e1⊗u1+ e2⊗u2 be a real vector in C2

+⊗C4. This yields that

ju1 = u2,

where j is an invariant quaternion structure on C4. We denote a real vector in C2
− ⊗C4

by b = f1 ⊗ v1 + f2 ⊗ v2 with jv1 = v2. We have

a⊗ b =
∑

(ei ⊗ fj)⊗ (ui ⊗ vj) .

By definition, we get

πT (a⊗ b) =
∑

(ei ⊗ fj)⊗ pT (ui ∧ vj) ,

and so,

|πT (a⊗ b)|2 =
∑

|pT (ui ∧ vj)|2 . (5.3.9)

Since a and b are real vectors, we have, for instance,

h(u1, v1) = −h(u1, jv2) = ω(u1, v2).

Consequently, it follows from (5.3.8) that

|pT (u1 ∧ v1)|2 =
1

2

(
|u1|2|v1|2 − |ω(u1, v2)|2

)
− 1

4
|ω(u1, v1)|2.

65



and so, (5.3.9) yields that

|πT (a⊗ b)|2 = 1

2

(
|u1|2 + |u2|2

) (
|v1|2 + |v2|2

)
− 3

4

∑
|ω(ui, vj)|2. (5.3.10)

The definition yields that

π0(a⊗ b) =
∑

(ei ⊗ fj)⊗ p0 (ui ∧ vj) , (5.3.11)

and so,

|π0(a⊗ b)|2 =
∑

|p0 (ui ∧ vj)|2 =
1

4

∑
|ω(ui, vj)|2 . (5.3.12)

It follows from (5.3.10) and (5.3.12) that

|πT (a⊗ b)|2 = 1

2
|a|2|b|2 − 3 |π0(a⊗ b)|2 ,

which yields the result.

If π0(s ⊗ t) 6= 0, then it follows that f is not an isoparametric function on Gr4(R
9).

Since π0(s ⊗ t) is a section of R4 determined by w ∈ S9, we need to see how π0(s ⊗ t)
corresponds to w. Note that w⊗w is an element of S2S9 the symmetric power of S9. As
Spin(9)-module, we have a decomposition S2S9 = R ⊕R9 ⊕ ∧4R9. Let Π : S2S9 → R9

be the orthogonal projection. We define a Spin(9)-equivariant map α : S9 → R9 as

α(w) = Π(w ⊗ w).

To describe α : S9 → R9 explicitly, we use a diagonal subgroup ∆ ⊂ Sp+(1)×Sp−(1) and
regard S9 and R9 as ∆× Sp(2)-modules:

S9 =
(
C2 ⊗C4

)R ⊕
(
C2 ⊗C4

)R
, R9 = R⊕

(
S2C2

)R ⊕
(
∧2

0C
4
)R

,

where C2 denotes the standard representation of ∆. We use ∆ to define a quaternion
structure on (C2 ⊗C4)

R
and so, R ⊕ (S2C2)

R ⊂ R9 is identified with a scalar field H.
Then we have

S9 = H2 ⊕H2, R9 = H⊕
(
∧2

0C
4
)R

.

Using a quaternion structure, we can also show

Lemma 5.3.38. For an arbitrary (u, v) ∈ S9 = H2 ⊕H2, α : S9 → R9 can be expressed
as:

α(u, v) = c (hH(u, v), pT (u ∧ ju)− pT (v ∧ jv)) ,

where c is a real non-zero constant and hH denotes a quaternion hermitian inner product
on H2.
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The sections s and t are locally expressed as

s = e1 ⊗ s1 + e2 ⊗ s2, t = f1 ⊗ t1 + f2 ⊗ t2,

where {e1, e2} and {f1, f2} are now regarded as local standard frames. Since s and t are
real sections, we have

js1 = s2, jt1 = t2.

Under the identification S9 = H2 ⊕H2, this yields that

g−1w =
√
2(s1, t1) ∈ H2 ⊕H2, g ∈ Spin(9).

It follows from (5.3.11) and our identification R4 ∼= H that

π0(s⊗ t) =
√
2hH(s1, t1), (5.3.13)

which is nothing but the section of the tautological bundle corresponding to α(w) (up
to constant) by Lemma 5.3.38. Consequently, f is not an isoparametric function on
Gr4(R

9), but a new function f̃ := |π0(s⊗ t)|2 is an isoparametric function considered in
the previous subsection. We have a subgroup Spin(8) ⊂ Spin(9) as an isotropy subgroup
at α(w), which is denoted by H̃. Of course, f̃ is invariant under the action of Spin(8).
Since |s|2 = |s1|2 + |s2|2 = 2|s1|2 and |t|2 = 2|t1|2, the Cauchy-Schwarz inequality implies
that

|π0(s⊗ t)|2 ≦ 1

2
|s|2|t|2 = 1

8

{
1−

(
|s|2 − |t|2

)2}
,

where the equality holds if and only if |s|2 = |t|2 = 1
2
. In particular, the maximum value

of f̃ is 1
8
. This yields that |α(w)|2 = 1

8
. Hence we have

α(u, v) =
√
2 (hH(u, v), pT (u ∧ ju)− pT (v ∧ jv)) . (5.3.14)

It follows that

f̃−1(0) = Gr4(R
8) ⊃ S0, SM , f̃−1

(
1

8

)
= Gr3(R

8).

We define a function F : Gr4(R
9) → R2:

F :=
(
|s|2 − |t|2, f̃

)
.

Lemma 5.3.39. The function F is an isoparametric function.

Proof. From Lemma 5.3.37, we get∣∣d (|s|2 − |t|2
)∣∣2 = 1

2

{
1−

(
|s|2 − |t|2

)2 − 6f̃
}
.
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We need to compute g
(
d (|s|2 − |t|2) , df̃

)
. Since π0(s⊗ t) is a section of the tautological

bundle corresponding to α(w), it follows from (5.3.14) that

df̃ = 4hH(s1, t1)⊗ {pT (s1 ∧ s2)− pT (t1 ∧ t2)} .

On the other hand, we see that

d
(
|s|2 − |t|2

)
= 2df = 4πT (s⊗ t) = 4

∑
(ei ⊗ fj)⊗ pT (si ∧ tj) .

It follows from R4 ∼= H that

1

4
g
(
df̃ , πT (s⊗ t)

)
=ω(s1, t1)g (pT (s1 ∧ s2)− pT (t1 ∧ t2), pT (s1 ∧ t1))
+ω(s1, t1)g (pT (s1 ∧ s2)− pT (t1 ∧ t2), pT (s2 ∧ t2))
+h(s1, t1)g (pT (s1 ∧ s2)− pT (t1 ∧ t2), pT (s1 ∧ t2))
−h(s1, t1)g (pT (s1 ∧ s2)− pT (t1 ∧ t2), pT (s2 ∧ t1))

=
1

4

(
|s|2 − |t|2

)2
f̃ .

Since F−1
(
0, 1

8

)
= f̃−1

(
1
8

)
, we obtain

Lemma 5.3.40. One orbit F−1
(
0, 1

8

)
of the action of H on Gr4(R

9) is a totally geodesic
submanifold of Gr4(R

9).

Remark 18. From F−1
(
0, 1

8

)
= f̃−1

(
1
8

)
, we can get the well-known fact that Spin(7)/Sp(1)×

Sp(1) ∼= Gr3(R
8).

Lemma 5.3.41. The action of H on Gr4(R
9) is not a hyperpolar action.

Corollary 5.3.42. The submanifold F−1(c), where c is a regular value of F , is not an
equifocal submanifold of Gr4(R

9).

5.4 Radon transforms

We obtained isoparametric functions f̃ in the previous section. In the case that the
action of H is of cohomogeneity one, f̃ is invariant under the action of H. Otherwise, f̃ is
invariant under the action of H̃. In both cases, if we pull back f̃ to G under the natural
fibration π : G → G/K, then the pull-back function π∗f̃ is invariant under the action of
H × K on G, where H acts on G on the left and K on the right. Hence, we can push
down π∗f̃ to get a function on H\G.
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To be more precise, we introduce the Radon transform. Let ψ : G → H\G be a
natural fibration and dµ is the normalized Haar measure on H. We use the same notation
to denote the measure on the fiber of ψ : G → H\G induced by dµ. We define a Radon
transform R : C∞(G/K) → C∞(H\G) for an arbitrary function f on G/K as

R(f)(x) =

∫
ψ−1(x)

π∗fdµ, x ∈ H\G.

By definition, the Radon transform is a G-equivariant linear map.

5.4.1 The case of cohomogeneity one

Let f̃ = |s|2 − p
N

be an isoparametric function defined in the Remark after Theorem
5.3.13. Let {e1, · · · , eN} be an orthogonal basis of a real representation W such that
{w = e1, · · · , ep} is a basis of U and {ep+1, · · · , eN} is a basis of V . By definition, we have

f̃(π(g)) =
∣∣πU (g−1w

)∣∣2 − p

N
, g ∈ G.

Let {x1, · · · , xN} be the standard coordinate functions with respect to e1, · · · , eN on W .
We get

∣∣πU (g−1w
)∣∣2 − p

N
=

p∑
i=1

xi(g
−1w)2 − p

N

N∑
A=1

xA(g
−1w)2

=
1

N

{
q

p∑
i=1

xi(g
−1w)2 − p

N∑
α=p+1

xα(g
−1w)2

}
,

and so,

R(f̃) =
1

N

{
q

p∑
i=1

xi(g
−1w)2 − p

N∑
α=p+1

xα(g
−1w)2

}
.

If a real representation is replaced by a complex representation, then we have a similar
result.

Theorem 5.4.1. The Radon transform of f̃ in the case of cohomogeneity one is an
isoparametric function on a unit sphere of W which induces an isoparametric hypersurface
of a sphere with two distinct principal curvatures.

5.4.2 The case of cohomogeneity greater than one

We obtain Radon transforms of f̃ on case-by-case computations.
• (SU(n)/SO(n),Cn) n ≧ 3.
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Let {e1, Je1, · · · , en, Jen} be an orthogonal basis of a real representation Cn = (R2n, J)
such that {w = e1, · · · , en} is a basis of U and {Je1, · · · , Jen} is a basis of V . Since
f̃ = (|s|2 − |t|2)2 + 4g(s, t)2, by definition, we have

f̃(π(g)) =
(∣∣πU (g−1w

)∣∣2 − ∣∣πV (g−1w
)∣∣2)2 + 4g

(
πU
(
g−1w

)
, πV

(
g−1w

))2
,

where we identify U with V in a standard way and g ∈ SU(n). Let {x1, y1, · · · , xn, yn}
be the standard coordinate functions with respect to e1, Je1, · · · , en, Jen on W . It follows
that

R(f̃)(x, y) =

(
n∑
i=1

xi(g
−1w)2 −

n∑
i=1

yi(g
−1w)2

)2

+ 4

(
n∑
i=1

xi(g
−1w)yi(g

−1w)

)2

.

Theorem 5.4.2. In the case of (SU(n)/SO(n),Cn) (n ≧ 3), the Radon transform of f̃ is
an isoparametric function defined by Nomizu [25] on a unit sphere of Cn which induces
an isoparametric hypersurface of a sphere with four distinct principal curvatures.

• (Sp(n)/U(n),C2n) n ≧ 2.
Let {e1, je1, · · · , en, jen} be a unitary basis of a complex representation C2n such that

{w = e1, · · · , en} is a basis of U ∼= Cn and {je1, · · · , jen} is a basis of V ∼= Cn∗
. Since

f̃ = (|s|2 − |t|2)2 + 4|(s, t)|2 by definition, we have

f̃(π(g)) =
(∣∣πU (g−1w

)∣∣2 − ∣∣πV (g−1w
)∣∣2)2 + 4

∣∣(πU (g−1w
)
, πV

(
g−1w

))∣∣2 ,
where g ∈ Sp(n). Let {z1, w1, · · · , zn, wn} be the standard coordinate functions with
respect to e1, Je1, · · · , en, Jen on W . It follows that

R(f̃)(z, w) =

(
n∑
i=1

|zi(g−1w)|2 −
n∑
i=1

|wi(g−1w)|2
)2

+ 4

∣∣∣∣∣
n∑
i=1

zi(g
−1w)wi(g

−1w)

∣∣∣∣∣
2

.

Theorem 5.4.3. In the case of (Sp(n)/U(n),C2n) (n ≧ 2), the Radon transform of f̃
is an isoparametric function on a unit sphere of C2n which induces an isoparametric
hypersurface of a sphere with four distinct principal curvatures.

From [9, Satz in §6.1], we have

Theorem 5.4.4. In each case, every isoparametric hypersurface of a sphere in a family
defined by R(f̃) is homogeneous, in the sense that it is an orbit of the action of isometry
group.

• (Gr4(R
9), S9)

We use an identification between S9 and H2 ⊕H2 in the previous section. It follows
from (5.3.13) that

R(f̃)(u, v) = 2 |hH(u, v)|2 .
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Theorem 5.4.5. The Radon transform of f̃ is an isoparametric function on a unit sphere
of S9 which induces a family of isoparametric hypersurfaces of a sphere with four distinct
principal curvatures. Every isoparametric hypersurface in our family is homogeneous.

We will postpone a proof until the last paragraph.
Since f̃ is also invariant under H̃, we can easily obtain a Radon transform of f̃ on

H̃\G, which is denoted by R̃(f̃). In each case, we also have a fibration ψ̃ : H\G→ H̃\G
with totally geodesic fibers. More concretely, we have

S2n−1 → CP n−1, S4n−1 → HP n−1, and S15 → S8.

Using the normalized Haar measure on H̃, we have

ψ̃∗R̃(f̃) = R(f̃).

Since R(f̃) is constant on the fiber of ψ̃ : H\G → H̃\G, it follows from Theorems 5.4.2,
5.4.3 and 5.4.5 that

Theorem 5.4.6. The Radon transform R̃(f̃) is an isoparametric function on H̃\G.

We describe R̃(f̃) in the last case. To do so, we “normalize” f̃ to get an eigenfunction.
Since π0(s ⊗ t) is the corresponding section to α(w) ∈ R9 with |α(w)|2 = 1

8
, it follows

from the Remark after Theorem 5.3.13 that f̂ := f̃ − 1
18

is an eigenfunction. According to
the SO(4) × SO(5) decomposition of R9, we put (ũ, ṽ) ∈ R4 ⊕R5 = R9. Then Theorem
5.4.1 yields that 5|ũ|2 − 4|ṽ|2 is an isoparametric function. If α is restricted to the unit
sphere of S9, we have that ψ̃ = α, It follows from (5.3.14) that

R̃(f̂)(α(u, v)) =
2

72

[
5 |hH(u, v)|2 − 4

{
1

4
(|u|2 + |v|2)2 − |hH(u, v)|2

}]
=

1

36

{
9 |hH(u, v)|2 − (|u|2 + |v|2)2

}
.

From [9, Satz in §6.4], Theorem 5.4.5 holds. We can directly check that (|u|2 + |v|2)2 −
9 |hH(u, v)|2 is a harmonic function on S9, but in [9], a polynomial (|u|2 + |v|2)2 −
8 |hH(u, v)|2 is introduced as an isoparametric function, which is called a Cartan-Münzner
polynomial.
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