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Chapter 1

Introduction

In this thesis, we study submanifolds of Riemannian symmetric spaces by vector
bundles. We get new viewpoints in geometry of submanifolds using vector bundles. In
particular, we attack three problems: holomorphic isometric embeddings of the projective
line into quadrics, killing vector fields on complex hypersurfaces in the complex projective
space, and isoparametric functions on Riemannian symmetric spaces.

So, this article has three parts. In Chapter 2, we explain Nagatomo’s results about
harmonic maps into Grassmann manifolds [24]. These are the main tools in this thesis.
Then, we discuss holomorphic isometric embeddings of the projective line in quadrics in
Chapter 3, killing vector fields on complex hypersurfaces in the complex projective space
in Chapter 4, and isoparametric functions on Riemannian symmetric spaces in Chapter
D.

The study of harmonic maps from the complex projective line into complex quadrics
has a long history and has been pursued by various authors in different ways, e.g. [4, 8,
20, 34]. Our particular standpoint is a generalization by Nagatomo [24] of the methods
of Takahashi [29] and of do Carmo and Wallach [5], which can be summarized as follows:
A well-known theorem by Takahashi [29, Theorem 3] proves that an isometric immersion
of a Riemannian manifold in Euclidean space is an eigenvector for the Laplacian if and
only if it is a minimal immersion in some Euclidean sphere. The energy density of maps
is then related to the corresponding eigenvalue. A generalization of this result via vector
bundles can be found in [24, Theorem 3.5]. The statement is that a smooth map f of
a Riemannian manifold into the Grassmannian Gr,(W), where W is a real or complex
vector space with a scalar product, is harmonic if and only if W satisfies the zero property
for the Laplacian: for arbitrary t € W C I'(f*Q), At = —At, where Q — Gry(W) is
the universal quotient bundle, A is the Laplace operator acting on sections and A is the
mean curvature operator (defined in [24, §2]) related to the energy density of f. This
viewpoint leads to a description in which a harmonic map from a Riemannian manifold
into a Grassmannian is induced by a triple composed by a vector bundle, a space of



sections of this bundle and a Laplace operator.

A celebrated example of such induced maps is Kodaira’s embedding of an algebraic
manifold into complex projective space [18], which in the aforesaid description is induced
by a holomorphic line bundle and the space of holomorphic sections.

Takahashi’s original result finds major application in do Carmo and Wallach [5] under-
taking of the classification of minimal (isometric) immersions of spheres into spheres. A
key role in do Carmo—Wallach theory is played by certain symmetric positive semi-definite
linear operators [5, Proposition 1.3] interweaving minimal immersions: finding the space
of the image-inequivalent operators amounts to describe the moduli space, an endeavour
which is dealt successfully with representation theory.

From the generalized version of the theorem of Takahashi [24, Theorem 3.5], a gener-
alisation of do Carmo-Wallach theory in terms of vector bundles is possible [24, Theorem
5.5]. We recall its principal features in Theorem 2.3.4 below. In essence, the theorem af-
firms that the harmonic induced map f of a Riemannian manifold into the Grassmannian
Gr,(W) by the aforementioned harmonic triple is naturally equipped with a family of
symmetric positive semi-definite operators determining the moduli space, as in the classi-
cal do Carmo-Wallach theory. Uniqueness of the associated symmetric operator reduces
the moduli to a single point yielding rigidity of the induced map: this is the case of the
real standard map of our Theorem 3.3.4.

For the second problem, totally geodesic submanifolds of a Riemannian manifold
have the following distinct property. Let S be a totally geodesic submanifold of a Rieman-
nian manifold M. For a Killing vector field X on M, the tangent part of the restriction
of X to S is also a Killing vector field.

Then, we determine submanifolds satisfying such a property. In particular, we study
the induced metrics with non-trivial Killing vector fields on complex hypersurfaces in the
complex projective space.

For the third problem, we construct isoparametric functions on symmetric spaces
of compact type systematically. The research of an isoparametric hypersurface, which is
the regular level set of an isoparametric function, has a long history, going back to Levi-
Civita and E.Cartan. We have a lot of literatures about isoparametric hypersurfaces of
spaces of constant curvatures, which have constant principal curvatures. We denote by ¢
the number of distinct principal curvatures. Amongst all, the research of an isoparametric
hypersurface of a sphere is extensive and well-known. Substantial results are exhibited in
(3], [9], [22], [26] and [27], etc. In [22], Miinzner shows that g = 1,2,3,4,6 and in [9], a
lot of isoparamertric functions on a sphere are systematically constructed by an algebraic
method, which are called isoparametric functions of OT-FKM type. By contrast, we have
few explicit examples of isoparametric functions on general Riemannian manifolds.

We utilize a homogeneous vector bundle and a section to construct an isoparametric
function on an irreducible symmetric space, say G/K. To choose a vector bundle and
a section, we consider an irreducible G-module W of spherical type. This means that
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the principal orbits are hyperspheres of W and so, we obtain a subgroup H C G as a
stabilizer. If the representation is restricted to a subgroup K, then K-submodules of W
induce homogeneous vector bundles over G/K. Using an invariant metric on the bundle,
we define a function f: G/K — R as the square of the norm of the section.

If the action of H on G/ K is of cohomogeneity one, then f is an isoparametric function.
The mean curvature of the level hypersurface is also computed (Theorem 5.3.14). We
have common description of |df|? and the mean curvature on any pairs (G/K,W). As
a by-product, we can specify the precise value whose inverse image of f is a minimal
hypersurface in a family given by the isoparametric function. On the contrary, when
we compute the principal curvature, we have distinct difference between pairs and no
unified way (Theorems 5.3.17, 5.3.18, 5.3.19, 5.3.20 and 5.3.21). In those computations,
the second fundamental forms of vector bundles [16] play essential roles and the theory
developed by Nagatomo in [24] provides us with a unified method.

If the cohomogeneity of the action of H on G/K is greater than one, then the function
f : G/K — R is not an isoparametric function. However, we can construct a new
isoparametric function F' : G/K — R in the sense of Wang [33] (see also [6, p.55]),
where k& denotes the cohomogeneity of H-action. One component of F' consists of the
function f. In the case that a chosen pair is (Sp(n)/U(n),C*"), F coincides with a
moment map for an Sp(1)-action on Sp(n)/U(n).

Moreover, we can find a new isoparametric function f : G /K — R. The function f
has a larger symmetry than the original f. In short, a subgroup H C G such that H ¢ H
enters into our theory and f is invariant under the action of H. The appearance of f and
H is not accidental. We use other vector bundles and spaces of sections to explain in an
algebraic and geometric way that the chosen section in §3 has really a hidden symmetry
H C G. The H-action on G /K turns out to be of cohomogeneity one. The relation
between f and F makes some properties of H-action and level sets of F' transparent. In
particular, any submanifold in our family induced by F'is not an equifocal submanifold
in the sense of Terng-Thorbergsson [31].

In the final section, we interpret the reason that representations of spherical type
are chosen. One of our aims in the present paper is to provide a geometric mean of
constructing an isoparametric function on a sphere.
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Chapter 2

Preliminaries

2.1 Geometry of Grassmannian manifolds

We review geometry of Grassmannian manifolds, in order to fix notation and our
convention in this paper. For proofs, see [24].

Let W be an N-dimensional vector space. In the case that W is a real vector space,
we also consider the orientation of W.

Let Gr,(W) be a Grassmannian manifold of (oriented) p-planes in W and S — Gr,(WW)
a tautological vector bundle. Since S — Gr,(WW) is regarded as a subbundle of a trivial
vector bundle W — Gr,(W) of fiber W, we have an exact sequence of vector bundles:

O—>Si—5>wﬁ—Q>Q—>0.

The quotient bundle @ — Gr,(W) is called the universal quotient bundle. The tangent
bundle is identified with S* ® Q. (More precisely, the holomorphic tangent bundle is
identified with S* ® @ in case of complex Grassmannian.)

We fix a scalar product (-,-) on W. On the one hand, the orthogonal projection gives
a bundle surjection 7g : W — S. On the other hand, ) — Gr,(WW) is regarded as the
orthogonal complementary bundle S* — Gr,(W) to S — Gr,(W), and so we obtain a
bundle injection ig : Q@ — W. The vector bundles S — Gr,(W) and @ — Gr,(W) are
equipped with metrics gg and gg, respectively.

We can define a connection V¥ on @ — Gr,(W) using a trivialization of W — Gr, (W)
with an orthonormal basis. If ¢ is a section of @ — Gr,(W), then ig(t) is considered as
a W-valued function. Then we have

d(iq(t)) = ms (d (iq(1))) + mq (d (ig(1))) -

The connection V¥t = mg (d (ig(t))) is nothing but the canonical connection. The other
term in right hand side 7g (d (ig(t))) is a 1-form with values in Hom(Q,S) = Q* ® S
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which is called the second fundamental form in the sense of Kobayashi [16] and denoted
by J.
In a similar way, if s is a section of S — Gr,(WV), then we have

d(is(s)) = ms (d(is(s))) + mq (d (is(s))) -

The canonical connection is expressed as Vs = mg (d (is(s))) and we define the second
fundamental form I = mgdig, which is a 1-form with values in Hom(S, Q) = S* ® Q.

In the case of a complex Grassmannian, we can also consider complex analytical
structures. Canonical connections give holomorphic structures to S — Gr,(W) and Q —
Gr,(W). In particular, W can be regarded as the space of holomorphic sections of @) —
Gr,(W) by a theorem of Borel-Weil. The second fundamental form I € Q'(Hom(S,Q))
is of type (1,0) and The second fundamental form J € Q'(Hom(Q, S)) is of type (0, 1).

Since the (holomorphic) tangent bundle is identified with S* ® @), we can induce a
Riemannian metric gg, on a Grassmannian.
ereal case We have

gor(X,Y) = —trace Jy Ix = —trace Iy Jyx,

where X and Y are tangent vectors.
e complex case Let hg,. be the Hermitian metric on the holomorphic tangent bundle
Ti induced by Hermitian metrics gs and gg. The definition yields that

her (Z,W) = —trace Jy-lz,
where Z and W are (1, 0)-vectors. Consequently we have

9or(X,Y) = — trace Jy Ix — trace Jx Iy

= — trace Iy JJx — trace I[x Jy,

where X and Y are (real) tangent vectors.
The Levi-Civita connection D is nothing but a connection induced by V* and V¥.

Proposition 2.1.1. The second fundamental forms I and J are parallel.

For a vector w € W, we have two sections s = mg(w) and t = mg(w), each of which is
sometimes called the section corresponding to w. Obviously, we have

Proposition 2.1.2. If s and t are the sections corresponding to w € W, then
Vs =—Jt, V9=—Is.
Lemma 2.1.3. The second fundamental forms I and J satisfy
go(Is,t) = —gs(s, Jt).
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We now can easily compute (V*)? and (V?)2. If s and ¢ are the corresponding sections
tow € W, then we have

(V)25 = Vo (=Jt) = —(VJ)(t) — J(VO) = JIs,

(V2 =V (—Is) = —(VI)(s) — [(Vs) = LJt.

More precisely, we have
VS(VEs)(Y) = Jylxs, VLVO)(Y) = IyJxt.

For instance, we take the trace of (V¥)? to define the Laplace operator: As = — """ | VI (V7s)(e;).
We see that sections s and ¢ are eigensections of the Laplacian (As = ¢s, At = pt, where

¢=N—p)

2.2 Totally geodesic immersions into Grassmannians

Let (G, K) be an irreducible symmetric pair of compact type, where G is a simply-
connected compact Lie group and K is a closed subgroup of G. We denote by g and ¢ the
corresponding Lie algebras. The standard decomposition is expressed as g = € G m.

Let 0 : G — GL(W) be an irreducible representation with an G-invariant scalar prod-
uct. For simplicity, we do not distinguish a representation ¢ : G — GL(W) from the
representation space W. We assume that W has a non-trivial K-invariant orthogonal
decomposition W = U @ V such that mU C V and mV C U. (Non-trivial decomposi-
tion means that neither U nor V' is zero-dimensional.) Such a decomposition is called a
generalized Cartan decomposition of W. More generally, we define

Definition 2.2.1. Let p : G — GL W be an orthogonal or unitary representation of G.
The (o, W) has a generalized Cartan decomposition (for the symmetric pair (G, K)) if W
is decomposed into two non-zero K-modules W = U, & V; over the same coefficient field
as that of W under the restriction of the homomorphism p to a subgroup K, in such a
way that

o(m)Up C Vo, o(m)Vy CUp, UplVh,

and neither Uy or Vj is a G-module (in other words, o(m)U, # {0} and o(m)Vy # {0}).
The decomposition W = Uy @ Vj is called a a generalized Cartan decomposition, more
accurately, a real generalized Cartan decomposition or a complex generalized Cartan
decomposition according to the coefficient field of W.

Assume that W has a generalized Cartan decomposition : W =U @& V. Let dimU = p
and dim V' = ¢. We define an immersion i : G/K — Gr,(W) by

i(9K) = o(g)U, g€G.
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We assume throughout this paper that a Riemannian metric on G/K is provided in
such a way that the immersion i : G/K — Gr,(W) is an isometric immersion. Then
i: G/K — Gry(W) is indeed a totally geodesic immersion.

We can define two homogeneous vector bundles G x g U and GG X V' with canonical
connections, which are denoted by U — G/K and V — G/K. Frobenius reciprocity
yields that W can be regarded as a finite dimensional space of sections of U — G/K
and V. — G /K. More precisely, 7y : W — U and 7y : W — V denote the orthogonal
projections. For w € W, we put

s(lg]) = g, mu(g™ w)],  t(lg]) = [g, v (97 w)],

where g € G and [g] € G/K. The sections s € I'(U) and ¢ € I'(V) are also called the
corresponding sections to w € W.

From the construction, U — G/K and V — G/K are pull-back bundles of the
tautological bundle and the universal quotient bundle over Gr,(W), respectively. Then
the pull-back connections are the same as the canonical connections. We can also pull-
back the second fundamental forms / and J which are sections of i*T* @ Hom(U, V)
and *T* ® Hom(V, U), respectively, where T™ is the cotangent bundle of Grassmannian.
Using the projection *T* — T*G/ K, the pull-backs of I and J are the second fundamental
forms of vector bundles, and so we denote by the same symbol the pull-backs of the second
fundamental forms.

Theorem 2.2.2. [24, Lemma 4.1] A map f : G/K — Gr,(W) is totally geodesic
(i.e.NVdf = 0) if and only if the second fundamental form I of vector bundles is paral-
lel.

Proof. Since we have a fundamental relation VI = Iy, the result follows. O]

We define an endomorphism A € T" (End (V)) by

A= ZIezJei, n=dimG/K,

=1

where ey, - - - , €, is an orthonormal basis of the tangent space of G/K. We call A the mean
curvature operator. Notice that A can be defined in a similar way, even if the domain is
a Riemannian manifold [24]. Then we have

Theorem 2.2.3. [24, Theorem 3.5] Let (M, g) be an n-dimensional Riemannian manifold
and F : M — Grpy(W) a smooth map. We fix an inner product or a Hermitian inner
product (-,-) on W.

Then, the following two conditions are equivalent.

1. F: M — Gry,(W) is a harmonic map.
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2. At+ At =0 for an arbitrary t € W, where the vector space W 1s regarded as a space
of sections of the pull-back bundle F*(Q) — M.

Under these conditions, we have
|df|* = —trace A.

The role of the universal quotient bundle in Theorem 2.2.3 can be replaced by the
tautological bundle. To do so, we define an endomorphism B of U — G/K by

B = i Jei[eia
=1

which is also called the mean curvature operator.

2.3 The generalization of the theorem of do Carmo—
Wallach

In this section we give a short account of results in [24] needed to state a version of the
generalization of the theorem of do Carmo—Wallach (Theorem 2.3.4), whose implications
will be applied later in this article.

Suppose V. — M is a complex (resp. real/real oriented) vector bundle of rank ¢ and
consider an N-dimensional space of sections W C I'(V). By definition of W — M, there
is a bundle homomorphism ev : W — V| called evaluation, defined by (z,t) — t(x) for
all t € W,x € M. The vector bundle V. — M is said to be globally generated by W if the
evaluation is surjective. Under this hypothesis, there is a map f : M — Gr,(W), where
Gr,(W) is a complex (resp. real/real oriented) Grassmannian and p = N — ¢, defined by

f(z) =Kerev, ={t € W|t(z) =0},

where ev, = ev(z,-). The map f is said to be induced by the couple (V — M, W), or
simply by W if the vector bundle V. — M is specified (cf. [24]).

Notice that, by the definition of induced map, V. — M can be naturally identified
with f*@Q — M. Therefore, given a smooth map f : M — Gr,(W), it can be regarded
as the induced map determined the by the couple (f*@Q — M, W). If the linear map of
W c I'(V) into I'(f*Q) is injective, we say that the map f is full [24, Definition 5.2].
This definition of fullness coincides with the ones used in [5] when the target space is the
sphere or complex projective space.

Moreover, assume M to be Riemannian and V. — M to be equipped with a fiber-
metric and a connection. From these data a Laplace operator acting on sections can be
defined.
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The model special case is that in which M is a compact reductive homogeneous space
G/K (where G is a compact Lie group and K is a closed subgroup of G), and V. — M
is a homogeneous complex (resp. real) vector bundle of rank ¢, i.e. V= G X Vj where
Vo is a g-dimensional complex (resp. real) K-module (cf. [24]). If additionally V; admits
a K-invariant Hermitian (resp. symmetric) inner product, V.— M inherits a G-invariant
Hermitian (resp. symmetric) fiber-metric.

Because of reductivity, V. — M is equipped with a canonical connection too, the one
for which the horizontal subspace on the principal K-bundle G — M is given by the
complement m to ¢ = L(K) in g = L(G).

Using the Levi-Civita connection and the canonical connection, I'(V) can be decom-
posed into eigenspaces of the Laplacian each being a finite-dimensional not necessarily
irreducible G-module and equipped with a G-invariant L?-inner product. Then, we say
that the induced map by (V — M, W) is standard if a G-submodule W C W, globally
generates the bundle, where W, is the eigenspace of the Laplacian with eigenvalue f.

Evidently, the definition of standard map generalizes the special homogeneous case.
However, the homogeneous setting will be enough for the purposes of the present work.

The spaces of sections inducing standard maps have the following interesting property
which will be useful later:

Lemma 2.3.1 ([24, Lemma 5.17]). Let W be a G-subspace of W,. If W globally generates
V — G/K, then Vyy can be regarded as a subspace of W.

Denote by Uy the orthogonal complement of V;, in W. Then, the induced standard map
fo: M — Gry,(W) is expressed as

fo(lg]) = gUs C WV,

for all [g] € G/K, and is G-equivariant.

Notice that, besides its assumed fiber-metric and connection, V. — M is endowed with
a secondary couple of fiber-metric and connection inherited from the natural identification
¢: V= f*Q, i.e. the fiber-metric and canonical connection on ) — Gr,(W') pulled-back
to f*QQ — M. In general, these structures do not need to be gauge equivalent unless the
splitting W = Uy @+ V; satisfies extra conditions:

Lemma 2.3.2 ([24, Lemma 5.18]). The pull-back connection is gauge equivalent to the
canonical connection if and only if
m‘/o C Uo.

Lemma 2.3.3 ([24, Lemma 5.19]). If a G-representation W C W, globally generates
V — M and satisfies the condition mVy C Uy, then the standard map fo : M — Gry,(W)
is harmonic with constant energy density e(fo) = qu and the mean curvature operator is
proportional to the identity A = —uldy.
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Let us introduce the two increasingly stronger equivalence relations [24, Definitions
5.3 and 5.4], up to which we shall later define moduli spaces of maps. Let f; and f5 :
M — Gr,(W). Then f; is called image equivalent to fy if there exists an isometry ¢ of
Gr,(W) such that fo = ¢ o f1. Next, we fix a vector bundle V. — M, a fiber metric and a
connection compatible with the metric. Furthermore, denote by ¢ the bundle isomorphism
of @ — Gr,(W) which covers the isometry ¢ of Gr,(W). Then, the pair (fi, ¢1) is said to
be gauge equivalent to (fa, ¢2), where ¢; : V. — f*Q(i = 1,2) are bundle isomorphisms, if
there exists an isometry ¢ of Gr,(W) such that f, = v o f; and ¢ = 1) 0 ¢y.

Aside from the geometric background, some algebraic preliminaries regarding Hermi-
tian /symmetric operators are needed.

Let G be a compact Lie group, W a complex G-module together with an invariant
Hermitian product (, ), and denote by H(WW) the set of Hermitian endomorphisms of W.
We equip H(W) with a G-invariant inner product (A, B),, = trace AB, for A, B € H(W).
Define a Hermitian operator H(u,v) for u, v € W as

H(u,v) := %{u@ () T (u)y,t-

If U and V are subspaces of W, we define a real subspace H(U, V') C H(W) spanned by
H(u,v) where u € U and v € V. In a similar fashion, GH(U, V') denotes the subspace of
H(W) spanned by gH(u,v), where g € G.

If W is a real G-module together with an invariant inner product, then symmetric
endomorphisms take the place of Hermitian ones and we get analogous definitions of
S(W), S(u,v), S(U,V), GS(U,V).

Now we have all the needed ingredients to introduce a version of the generalization of
the theorem of do Carmo—Wallach for holomorphic maps.

Theorem 2.3.4. Let M = G /K be a compact irreducible Hermitian symmetric space with
decomposition g = € & m and fix a complex homogeneous line bundle V = G x g Vi over
M with invariant metric h and canonical connection V. Regard V. — M as a real vector
bundle with complex structure J¢. Finally, let f: M — Gr,(R"™2) be a full holomorphic
map satisfying the following two conditions:

(G) The pull-back f*Q — M of the universal quotient bundle Q — Gr,(R™"?) with the
pull-back metric, connection and complex structure is gauge equivalent to V.— M

with h, V and J°.

(EH) The mean curvature operator A € I'(End V) of f is expressed as —u Idy with some
positive real number i, and so e(f) = 2.

Hence the space of holomorphic sections W = H°(V) C T'(V) is also an eigenspace of
the Laplacian with eigenvalue p. Regard W as a real vector space with L*-inner product
(-,*)y induced from the L?-Hermitian product. Then, there exists a positive semi-definite
symmetric endomorphism T € S (W) such that the pair (W, T') satisfies the following three
conditions:

15



(I) The vector space R"™ is a subspace of W with the inclusion ¢ : R""* — W
preserving the orientation, and V — M is globally generated by R™"*2.

(I1) As a subspace, R"*? = KerT+ and the restriction of T is a positive definite
symmetric endomorphism of R"2.

(III) The endomorphism T satisfies the orthogonality conditions

(T? — Idw, GH(Vy, Vo)) ,, = 0, (7%, GH(mVp, Vp)) ,, = 0. (2.3.1)

By (I), (I1) and (IIT), the endomorphism T provides the following.

(a) A holomorphic totally geodesic embedding of Gr,(R"™2) into Gr, (W) by U
U @ KerT where n' =n + dim Ker T’

(b) A bundle isomorphism ¢ = T o ev* : V — f*Q which preserves the metric h
and the connection NV where ev* is the adjoint bundle map of ev with respect to h
and (-, )w. We consider that T o ev* is a map of V. — f*Q by the identification
(f*Q). = (Kerev,)* (v € M).

(c) A expression of f: M — Gr,(R""?),

flgh) = @T)™ (fo(lg) NKer T) (2.3.2)

where 1* denotes the adjoint operator of v under the induced inner product on R"?
from (-, )w on W and fy is the standard map by W.

Moreover two such pairs (f;, ;), (i = 1,2) are gauge equivalent if and only if Ker Ty =
Ker Ty and (iT1t1 = 13Tote, where (T, 1;) correspond to f; (i = 1,2) under the expression
in (2.3.2), respectively.

Conversely, suppose that a vector space R""2, the space of holomorphic sections W C
['(V) regarded as real vector space and a positive semi-definite symmetric endomorphism
T € S(W) satisfying conditions (1), (II) and (III) are given. Then we have a unique
holomorphic embedding of Gr,(R""2) into Gr,, (W) and the map f : M — Gr,(R"™)
defined by (2.3.2) is a full holomorphic map into Gr,(R""?) satisfying conditions (G) and
(EH) with bundle isomorphism V = f*Q).

Proof. This is obtained by a combination of Theorems 5.16 and 5.20 in [24], themselves
refinements and following the same proof as that of Theorem 5.5. O]

Remark 1. Conditions (G) and (EH) in the theorem are named respectively gauge and
Einstein—Hermitian conditions.
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Chapter 3

Holomorphic isometric embeddings
of the projective line into quadrics

3.1 Holomorphic isometric embeddings

The aim of this section is to introduce holomorphic isometric embeddings from CP*
into Gr,(R"?) and to show that they satisfy the hypothesis of Theorem 2.3.4. Then
the universal quotient bundle has a holomorphic bundle structure. Notice that the cur-
vature two-form R of the canonical connection on the universal quotient bundle is the
fundamental two-form wg on Gr,(R™*?) up to a constant multiple:

R = —27T\/ —1WQ.

Denote by wy the fundamental two-form on CP!. When R; denotes the curvature two-
form of the canonical connection on the hyperplane bundle O(1) — CP?' (cf. [10, p.
145]), we also have R; = —2my/—1wy. In what follows, we will denote by O(k) — CP!
the k-th tensor power of the hyperplane bundle.

Definition 1. Let f : CP! < Gr,(R""?) be a holomorphic embedding. Then f is called
an isometric embedding of degree k if f*wg = kwy (and so, k must be a positive integer).

In order to show that holomorphic isometric embeddings CP! — Gr,(R"*?) satisfy
the conditions of Theorem 2.3.4 we need the following two lemmas. Their proofs rely heav-
ily on properties of the (unique) Einstein-Hermitian connection. For additional details
we refer the interested reader to the excellent book by Kobayashi [16, Ch. IV].

Lemma 3.1.1. Let f : CP! — Gr,(R"™) be a holomorphic embedding. Then f is an
isometric embedding of degree k if and only if the pull-back bundle f*@Q — CP' with the
pull-back connection is gauge equivalent to O(k) — CP! with the canonical connection.

Proof. 1f the degree of the isometric embedding f equals k, the pull-back of the universal
quotient bundle is holomorphically isomorphic to the holomorphic line bundle of degree
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k on CP! (by uniqueness of the holomorphic bundle structure), which by homogeneity
admits a unique Einstein—Hermitian structure up to homotheties of the fiber-metric (cf.
[16, Proposition IV.6.1]). Uniqueness of the Einstein—Hermitian connection yields the
result.

Conversely, if the pull-back of the universal quotient bundle is holomorphically iso-
morphic as Einstein—-Hermitian bundle to the holomorphic line bundle, the pull-back
fiber-metric and the Einstein—-Hermitian connection coincide up to homothety, and the
statement in the lemma follows. ]

Lemma 3.1.2. Let f : CP! — Gr,(R"™) be a holomorphic isometric embedding of
degree k. Then, the mean curvature operator A € I'(V) of f is the identity on V up to a
negative real constant.

Proof. Tt is well-known that every holomorphic section ¢ of O(k) — CP! satisfies At —
Kgpt = 0 (cf. [24, Lemma 4.2]), where the Laplacian is defined through a compatible
connection, and Kgg is the mean curvature arising from the Hermitian structure in the
sense of Kobayashi [16, p. 99]. Since the canonical connection is the Einstein-Hermitian
connection, Ky = pld.

On the other hand, a generalization of the theorem of Takahashi (Theorem 2.2.3) yields
that At + At = 0 for t € R""2. Regarding R"™ as a subspace of H° (CP!, O(k)), then
R globally generates O(k) — CP!. Therefore Kgy = —A, and the lemma follows. [

These two lemmas amount to say that the holomorphic embedding f is isometric if
and only if it satisfies the gauge condition (G), and then the (EH) condition is automat-
ically satisfied. Hence we can apply Theorem 2.3.4 to obtain the moduli space M, of
holomorphic isometric embeddings of degree k by the gauge equivalence of maps.

3.2 Hermitian/Symmetric endomorphisms

In order to apply the generalized do Carmo—Wallach theory we need a deeper under-
standing of the space of symmetric endomorphisms of the space of holomorphic sections
of the bundles of interest. Since in the present work the spaces of holomorphic sections
are real SU(2)-modules, in this section we describe how the space of symmetric endomor-
phisms of a real irreducible SU(2)-module splits into irreducible components. To do so we
need certain spectral formulae for decomposing tensor products of real SU(2)-modules.
Being standard, proofs of the spectral formulae (Lemmas 3.2.4-3.2.6) are ommitted. The
interested reader might consult [1].

Let W be a C-vector space with a Hermitian inner product and write Wg for the
underlying R-vector space naturally equipped with the complex structure J¢. The Her-
mitian inner product induces a symmetric inner product on Wg, simply by taking the
real part.

If H(W) denotes the R-vector space of Hermitian endomorphisms on W and S(Wg)
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the R-vector space of all symmetric endomorphisms on Wy, it follows from general con-
siderations above that H(W) C S(WR), while C-linearity of A € H(W) is reflected in
S(Wgr) by commutation of A and J¢.

Suppose that TV has a real (resp. quaternionic) structure denoted by o compatible with
the Hermitian inner product. Then H(WW') has a regular action of ¢ such that A — cAo,
where A is a Hermitian endomorphism. Hence, we can define the subspaces Hi (W) of
H(W) as the set of invariant/anti-invariant Hermitian endomorphisms with respect to o.
The action of o extends to S(Wg) in the obvious way.

Lemma 3.2.1. If A € H (W), then real endomorphisms cA and J°cA are symmetric
endomorphisms on Wg.

Proof. For simplicity, we assume that o is a real structure. If ¢ is a quaternionic structure
the proof goes along the same lines.

Let A € H (W) so that cA = Ao. Also, denote the Hermitian inner product on W
by (', ), with the convention in which it is C-linear in the first argument, and let { , ) be
the induced symmetric inner product on Wgr. Then, for u,v € W = Wy,

(cAu,v) = Re(cAu,v) = Re(Au,ov) = Re(u, Aov)
= Re(Aov,u) = Re(cAv,u) = (0 Av, u).

Therefore, 0 A € S(Wr). The proof for J°¢ A is analogous. n

Notice that ¢ A (resp. J°0 A) above is not a Hermitian operator since o is by definition
conjugate-linear. We put

oH (W) :={oA[A € H (W)} CS(Wr),
JoH (W) :={J0A|Aec H (W)} C S(Wr).
A characterization of these subspaces is given as follows:
Lemma 3.2.2. Let B be a symmetric endomorphism of Wr. Then,
1. B belongs to cH (W) if and only if J°B = —BJ° and o Bo = B;
2. B belongs to J°oH (W) if and only if J°B = —BJ° and cBo = —B.

Proof. For Bin cH (W) (resp. in J°cH(W)), there exists A € H, (W) such that B = 0 A
(resp. J°oA). Writing BJ¢, oBo in terms of A, then commutation relations for A, J¢, o
yield the implications.

Conversely, condition J°B = —BJ¢ implies that B is not Hermitian. Hence, A := oB

(resp. A := J° B) is Hermitian, for commutation relations between J¢ and o lead to
AJ¢ = J°A. Invariance under the regular action of o on H(W) shows A € H, (W),
therefore B belongs to cH (W) (resp. J°oH(W)). O
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Subspaces cH (W) and J°cH, (W) are orthogonal with respect to the inherited inner
product on S(Wg), Then, counting dimensions we have

Corollary 3.2.3. We have a decomposition of S(Wg):
SWr)=H,(W)®eH_-(W)®cH, (W) & JoH.(W).

Remark 2. As a result, the orthogonal complement of H(W) in S(Wgr) has the induced
complex structure.

Let S*C? be the k-th symmetric power of the standard complex SU(2)-module C2.
Since C? has an invariant quaternionic structure j, S?*C? inherits an invariant real struc-
ture o = 52, while S?**1C? is equipped with an induced invariant quaternionic structure
j2k+1 We shall denote the standard real SO(3)-module by R? and its [-th symmetric
power by S'R?.

The fundamental relation between real irreducible SU(2)- and SO(3)-modules is as
follows.

Lemma 3.2.4. For k 2> 2, S*R? admits the following decomposition:
S'R’ = SR® @ S* R’
where
S(I;:RZS — (52kc2)R
is the real irreducible SU(2)-module defined as the o-invariant real subspace of S*C2.
Once we have identified the real irreducible SU(2)-modules we would like to have a

spectral formula for the tensor product. To that end, it is enough to restrict to the real
stable subspace of the real structure.

Lemma 3.2.5. For k = [, we have

2l
SiR* @ SIR? = P S§TR?, (3.2.1)

r=0

Any complex irreducible SU(2)-module S"C? can be interpreted as a real module by
considering its underlying R-vector space R***2. For odd n, this is a real irreducible
module. When n is even, this is reducible and we have further splittings into the stable
subspaces for the action of the induced real structure.

It will be useful to have a spectral formula for the decomposition of tensor products

of the underlying R-vector spaces of a given complex SU(2)-module into real irreducible
ones.
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Lemma 3.2.6. When we regard S**C? as a real SU(2)-module R¥**2 the second sym-
metric power S?R**2 has the following irreducible decomposition:

k k—1
S2RAk+2 _ 3 (@ S(Q)erR?;) ® (@ S((]2k—1)—2rR3> ) (322)
r=0 r=0

When we regard S*T1C? as a real SU(2)-module R**4, the second symmetric power
S2R*+4 has the following irreducible decomposition:

k k—1
S2RAH _ 3 (@ S(()2k+1)—2rR3) & (@ S(Z)ker?)) . (3.2.3)
r=0 r=0

Applying Corollary 3.2.3 to the real SU(2)-modules discussed in the previous three
lemmas yields

Proposition 3.2.7.

k k—1
H+(S2k02) _ @ Sgk_QTRS, H_(schQ) _ @Sgk—1—2rR37
r=0 r=0
k k
H+(52k+102) _ @ Sgk+1_2TR3, H_(s?k-i—lc?) _ @Sgk_2rR3.
r=0 r=0

3.3 Rigidity of the real standard map

Let G be a compact Lie group. An irreducible G-module is said to be a class-one
representation of (G, K), for K a closed subgroup of G, if it contains non-zero K-invariant
elements.

Essential at this stage is to prove Proposition 3.3.3 (and its real invariant counterpart
Proposition 3.3.5). This is a technical result that states in short that if each factor in
the normal decomposition of a G-module W is inequivalent as a K-module to any other
factor, there is a certain G-orbit in H(WW') which contains all class-one representations of
(G, K). Since in our case H(W) itself is composed of class-one representations only, the
G-orbit mentioned earlier fills H(W).

The proposition has a practical reading: the Hermitian/symmetric operators parametris-
ing the moduli spaces belong to the orthogonal complement in H(W) to the aforesaid
G-orbit, but in the present situation this space is null. Therefore the induced map will
be rigid. We use this information to study the real standard map, the outcome naming
the section (Theorem 3.3.4).

A detailed description of the normal decomposition can be found in [5]. Let us sketch
the central ideas: Consider the situation described in §2, i.e. W C I'(V) is a space of
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sections of the vector bundle V.— M, M = (/K associated to the principal homogeneous
bundle G — G/K with standard fiber the irreducible K-module Vj C W. Furthermore,
suppose V. — M to be equipped with its canonical connection. Let f: G/K — Gr,(W)
be the corresponding induced map by (V — M, W). The space of sections W splits into
Vo and its orthogonal complement Ny = Uy. Assume the condition of Lemma 2.1, i.e.
mVy C Uy such that the canonical connection and the pull-back connection coincide.

From now on, our considerations will be restricted at a point o € M for the sake of
simplicity. The second fundamental form K at o € M is an element of T)M ® Vi ® Uy
so that for all X € T,M, v € V, (Kx(v)), € Up. The image of this mapping, also
designated by Bj, is a well-defined subspace of Ny and thus gives a further orthogonal
decomposition of W as Vo ® ImB; & (Vy @ ImBl)l. Call N; = (Vo @ ImBy)* the first
normal subspace. Applying the connection to the second fundamental form at the point
0 € M we have VK € S?*T*M ® V; ® Uy (where symmetrization follows from Gauss—
Codazzi equations and flatness of the connection on W). If m; denotes the orthogonal
projection 7y : W — Ny, then B, is defined as m o VK € S?T:M ® Vo ® Ny, and we
have W =V, @ ImB; & ImBy & Ny where Ny is the second normal subspace. Recursively,
B, =m, 10 VP IK € SPTIM ® Vy @ N,_1. This reiterative process leads to

W=VieImB &dImB, ®---@®Im B, & N,,.

If N,, = 0 this is called the normal decomposition of W with respect to V.
Let us enunciate without proof two results regarding the normal decomposition which
are needed in the sequel to establish Proposition 3.3.3.

Proposition 3.3.1 ([24, Prop. 7.7]). If W s an irreducible G-module, then for any
K-module, Vo C W there exists a positive integer n such that N, = 0, i.e.

W=V@&lmB, &---®ImB, (3.3.1)

which is a normal decomposition of (W, V).

Proposition 3.3.2 ([24, Prop. 7.8]). Let W be a G-module and Vo C W a K-module.
Suppose that (W, Vy) has a normal decomposition. Assume that each term in the de-
composition (3.3.1) shares no common K-irreducible factor with any other term in the
decomposition. Let T be a non-negative Hermitian endomorphism of W which satisfies
(T'gv1, T'guve) = (v1,v9) for all g € G, v1,v3 € Vy. Then, if T is K-equivariant, T = Idy .

Remark 3. See also Lemma 4.2 in [5].

Hereafter, we assume G = SU(2)), during this chapter. Then, we can state the
following

Proposition 3.3.3. Let W = H°(CP',O(k)) and Vj the K-module regarded as the stan-
dard fiber for O(k) — CP'. Then, GH(Vy, V) = H(W).
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Proof. By Borel-Weil theorem, W is identified with the SU(2)-module S*C? and, using
Lemma 2.3.1, Vj can be regarded as a subspace of W. The space W decomposes under
the U(1)-action as

W=C_,®C_j2® - &C,

where C; denotes the irreducible U(1)-module of weight [. Indeed, this is the normal
decomposition by Proposition 3.3.1 where Vy = C_y.

Let H be a class-one subrepresentation of (G,K) in H(W). Suppose that H ¢
GH(Vy, Vo). Then, by a standard argument, we can assume that H LGH(V;, V). Since H
is a class-one representation, there exists a non-zero C' € H such that kCk™! = C for all
k € K. It follows from the orthogonality assumption that

0 =(C, gH (v1,v2))uw) = (C, H(gv1, gva))uw)

1
=5 {(Cgv1, gva2)w + (Cguvz, gv1)w},
for arbitrary g € G and vy, v, € Vi C W. Polarization gives
0= (Ogvlagv2>7 g€ G) U1, V2 € ‘/0

If C is sufficiently small, then I'd + C' > 0 and so, we can define a positive Hermitian
operator T satisfying 7? = Id + C. Then we have

(T'gvy, Tgvy) = (v1,v2) g € G, v1,v9 € V.

Since T is also K-equivariant, Proposition 3.3.2 yields that T' = Id and so, C' = 0, which is
a contradiction. Hence, every class-one subrepresentation of (G, K) in H(W) is included
in GH(Vp, Vo). However, it follows from the Clesbsch-Gordan formulae that H(W) is
composed by class-one representation of (G, K') only, therefore GH(Vy, Vo) = H(W). O

Remark 4. A more general version of our Proposition 3.3.3 can be found in [24, Proposition
7.9]. Our proof is essentially the same with the obvious particularizations.

We shall prove the following interesting result.

Theorem 3.3.4. Let W = S*C? such that WR = S}R? = R?*L [f f . CP! —
Grop_1(R?***Y) is a holomorphic isometric embedding of degree 2k, then f is the standard
map by WR up to gauge equivalence.

Before proving Theorem 3.3.4, let us clarify the construction of the mapping f :
CP! — Gry,_1(R?**1) from the vector bundle viewpoint.

If we regard the complex projective line as the symmetric space G/K where G = SU(2)
and K = U(1), then by Borel-Weil theorem the space of sections I'(O(2k)) becomes a
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G-module such that W = HY(CPY; O(2k)) = S?*C2. The decomposition of S?**C? into
irreducible U(1)-modules is as follows:

2k
S*C? = P Cop—ar- (3.3.2)
r=0

The typical fiber of O(2k) — CP! is regarded as a subspace C_y;, in the decomposition
by Lemma 2.3.1.

Since W has an invariant real structure, we have an invariant real subspace denoted by
WR = (52C?)R =~ SER3 of real dimension 2k+1. The real structure descends to the split-
ting (3.3.2) but now each irreducible U(1)-module is not invariant under the real structure,
but o(Cog_2,) = C_ok12,. Therefore for each r =0, ..., k the space (Cog_a, ® C_ox12,) is
stable under the real structure and decomposes in two real isomorphic irreducible U(1)-
modules, denoted by (Cop_a, ® C_ogy2,)®, such that (3.3.2) would be rewritten as

2k
SiR? = @D (Corar & Cgpaar)™. (3.3.3)

r=0

This implies that O(2k) — CP! is globally generated by W®. Thus, we can define a real
standard map fo : CP* — Gry,_1(R?**1) by WR which turns out to be a holomorphic
isometric embedding of degree 2k by Lemma 2.3.3. Using the inner product on W® and
the fiber-metric on O(2k) — CP?!, it is possible to define the adjoint of the evaluation
which at the identity of G/K determines a mapping ev},) : O(2k) — WR whose image is
just (Co @ C_gp)R.

Within this framework we have a real version of Proposition 3.3.3, which is the core
of the proof of Theorem 3.3.4:

Proposition 3.3.5. Let W = HY(CP', O(2k)) and Vy the K-module regarded as the
standard fiber for O(2k) — CP. Then, GS(V, Vy) = S(WR),

Proof. Equation (3.3.3) gives the normal decomposition of W® where now Vy = (C_g;, &
Car)®. The space of symmetric endomorphisms of W® can be identified by decomposing
first the tensor product using Lemma 3.2.1, and identifying the symmetric components

k 2k
S(WR) — @ S(A)Lk—4T'R3 C ®2wR — @ Sék_2TR3.
r=0 r=0

Notice that all these modules are class-one representations. Then, a similar argument as
the one in the proof of Proposition 3.3.3 yields the desired result. m

We can now proceed to prove Theorem 3.3.4.
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Proof. Consider the real standard map by the holomorphic line bundle O(2k) — CP!
and W® as depicted above. Therefore by Proposition 3.3.5, S(W®) = GS(V;, V,) and
replacing R"*2 by WR in Theorem 2.3.4 the real standard map admits no deformations
as holomorphic isometric embedding of degree 2k into Grop_; (R?***1). O

Remark 5. If the target space is replaced by a higher-dimensional Grassmannian including
Grop_1(R*T1) as a totally geodesic submanifold the resulting moduli space could be non-
trivial. This situation will be discussed in the next section.

3.4 Moduli space by gauge equivalence

We undertake now the task of giving an accurate description of the moduli space
of holomorphic isometric embeddings CP! — Gr,(W) up to gauge equivalence. Our
strategy will be to capitalize on the representation-theoretic formulae of §4 to explicitly
determine the subspaces of linear operators in S(W) which specify the moduli. Such
subspaces are sharply characterized by condition (III) in Theorem 2.3.4. This is achieved
after a sequence of stepping-stone results culminating in Lemma 3.4.2 and its Corollary,
which allows to compute the moduli dimension.

As indicated Theorem 2.3.4, the gauge equivalence relation is to be taken into account
to obtain the moduli space and to give a geometric meaning to its compactification in the
natural L?-topology. A qualitative description of these spaces is given in Theorem 3.4.4.

Let W be the space of holomorphic sections of O(k) — CP! which, by Borel-Weil
theorem, is identified with the SU(2)-module S*C?. Equation (3.3.2) gives a weight decom-
position of W with respect to U(1). When O(k) — CP" is regarded as the homogeneous
line bundle SU(2) xy(1y Vo — CP*, then V; is identified with the U(1)-irreducible subspace
C_; of W by Lemma 2.3.1.

In order to apply Theorem 2.3.4 we shall regard the universal quotient bundle as a
real vector bundle of rank 2. Following the generalization of do Carmo—Wallach theory,
we must determine the subspaces GS(Vp, Vo) and GS(mVp, V) of S(W).

From now on V; and W shall stand either for the complex modules or for their under-
lying R-vector spaces whenever the meaning is clear, avoiding the heavier notation (Vy)r
or Wgr. In the remaining sections, we will adopt this convention.

Since GH(Vj, Vp) is a proper subspace of GS(Vp, Vp), we have that H(W) C GS(Vp, V).
We must determine the intersection between GS(Vp, V4) and subspaces cH, (W)®JoH, (W)
appearing in Corollary 3.2.3. The same is true for the intersection GS(mVy, Vy) with
oH, (W) & JoH, (W) as we shall consider immediately.

Lemma 3.4.1. mV = C_; _,.

Proof. By the decomposition of S?C? into irreducible U(1)-modules S*?C? = C, & Cy ®
C_, and using the real structure we have (S?C?)R = su(2), (Co)® = u(1) therefore
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(Cy ® C_5)R ~m. Then,
mRVy=(Co®C_y)®C_;, =C_p10®C_jn.
The action of m on V; is then obtained by projecting m ® V; back to S*C?. Therefore
mVy = (m® V) N S*C? = C_j0e.
O

Lemma 3.4.2. GS(mVy, Vo) NoH (W) & JoH (W) is the highest weight representations
of SU(2) appeared in Proposition 3.2.7.

Proof. Let u_j and u_j o be unitary bases for the complex one-dimensional U(1)-modules
Vo = C_j and mV = C_ o, respectively. Then, the space H(mVp, V) = H(C_x12,C_4)
is the real span of

2H(u gy, u—p) = U g2 @ (5 Uk)y Uk @ (4 U_pi2)y

where (,),, denotes the Hermitian inner product on S*C2. When C_j;, and C_, are
regarded as their underlying two-dimensional R-vector spaces R and R _,, real bases are
given respectively by {u_g, Ju_} and {u_jyo, J°U_j2} where J€ is the almost complex
structure induced by the multiplication by the imaginary unit. Using these real bases the
complex form 2H(u_j 2, u_) can be rewritten as a real operator

2H(u pyo, u—i)| R = U_pyo @ (- u—p)y + U2 @ (-, JU_p),,
Fu_g @ (- Upir2)y + T U @ (-, JU_gt2)y,

where (,),, is the inner product on Wx induced from the Hermitian inner product on
W. Write the basis for S(mVp, Vo) = S(R2,,,,R2,) as {S(u_gsa, u—g), S(JU_p2,u_y),
S(u_gy2, JU_k), S(Ju_gi2, JU_g)}, e.g. ,

2S(U—pro, U—g) = U—gro @ (-, U_k)yy + Uk @ (-, U_p42)y,, etC.
Comparing both equations we have that
H(u_gr2,u_g)|R = S(u_pyo, u_p) + S(JU_pyo, JU_k).
Analogously,
H(u_gyo,iu_)|R = S(u_gr2, JU_g) — S(JU_g12,u_).
Let us define a new elements {X,Y}

X = S(U,kJrg, u,k) — S(qu,kJrQ, JC'LL,]Q,
Y = S(u,kJrg, qu,k) + S(JCU,]CJFQ, u,k).
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X,Y € S(Wgr) are orthogonal to the subspace of Hermitian matrices H(W) C S(Wr),
therefore they belong to o H (W) & JoH, (W) according to Corollary 3.2.3.

Let us consider the contragredient action of the structure map o on X, the case of Y’
being analogous. Firstly,

c(u®(,v),)o=0u® (o-,v), =0cu®(,ov),

and as such oS(u,v)o = S(ou, ov).

Secondly, the U(1)-modules C; are not o-invariant but 0(Cy;) = Cx;, for all ¢ that is,
OUy; = u;. which, together with conjugate-linearity of the structure map yields o(R%,;) =
RZ, : {ux, JUsi} — {uzi, —Juz;}. Hence we have

X7 =0Xo = S(ou_gio,0u_y)—S(0JU_g19,0]U_})
= S(uk_g,uk) — S(quk_g, quk)-
This is not an element of S(mVj, V) = S(R2,_,,R?,) but X7 € S(R{_,, R}). Note that
we can find g € SU(2) such that S(ug_o,ur) = S(gu_gio,9u_) = g - S(u_gi2,u_g) €
GS(mVp, Vp) up to a sign. Let us add Y7 = S(ug_2, Jug) + S(Jug_2, ug) for the sake of
completeness.

The preceding argument also shows that a subspace of GS(mVp, V) is spanned by
{S(up—2, u), S(up—2, Juy), S(JUr—2,ur), S(JUp—2, Jou)}.

Moreover, using the characterization given in Lemma 3.2.2 we have

X+ X7 eoH (W), X —X°¢€JoH. (W)

The same inclusions are also true for Y £ Y.
From the expression of the action of o on H(u,v)

O"H(U,U) = U(U@(-,U)W+U®(-7U)W)O':O'U®(O'-,U)W+O"U®(O'-,U)W
= ou® (-,0v), +ov® (-, ou),,

it is easy to write X + X7 back in terms of Hermitian operators as
X+ X7 =0 (H(ug_o,u_p) = H(u_gy2,uz)) |R.
The toral action of a U(1)-element of SU(2) on iy, Ui (k—2) yields
exp(i0) - uyy = exp(£ikl)usg, exp(i0) - ug(k—2) = exp(Fi(k — 2)0)ur(p—2)

and as such, X X7 (considered as the Hermitian operators above) have weight 4(2k—2).
However, from Corollary 3.2.7 we know that the only component in the real decomposition
of cH{ (W) and J°cH, (W) (both isomorphic to H, (W)) which can host such a vector is
the top term SYR3 on each space. Therefore

GS(mVp, Vo) NoH, (W) = SER®  (resp. for JSoH (W)).
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And as a result
GS(mVp, Vo) = H(W) @ SiR* @ SER?.

In other words, we obtain

Corollary 3.4.3. The orthogonal complement to GS(mVy, Vo) @ R Id in S(W) is

k>2r

2€P SER?.
r=1

This follows from applying the previous lemma to the explicit expressions for the
components of S(W) as described in Proposition 3.2.7, and accounts for the space of
symmetric operators 7' described by the second relation in (2.3.1), i.e. condition (III) in
Theorem 2.3.4.

Remark 6. The first condition in (2.3.1) is for all our purposes inessential. Let GSo(Vp, Vo)
be the orthogonal complement of the G-invariant, irreducible subrepresentation generated
by the identity in GS(Vg, V). We denote by So(W) the set of tracefree symmetric operators
on W with the induced inner product from S(W). Then,

GSO(%? %) C GS(m‘/O, %)7

which stems from an analogous result to Lemma 3.4.2 applied to GSo(Vp, Vo). The proof
is equivalent, changing the weight +(2k — 2) by £+2k in the crucial final step.

Condition (IIT) in Theorem 2.3.4 is fulfilled by the family of operators in Corollary
3.4.3 (see remark above) thus accounting for all holomorphic embeddings f : CP! —
Gr,(RP™?) up to possible degeneracies. Quantitative information about the moduli (i.e.
its dimension) can therefore be derived from the Corollary:

dimR Mk; = k‘(k‘ - 1). (341)

The following theorem summarizes the qualitative information about the moduli space
and gives a neat geometric interpretation to its compactification.

Theorem 3.4.4. If f : CP! — Gr,,(R"™2) is a full holomorphic isometric embedding of
degree k, then n < 2k.

Let My, be the moduli space of pairs (f,¢) by the gauge equivalence, where f is a
full holomorphic isometric embeddings of degree k of the complex projective line into
Grop(R?***2) and ¢ is the bundle isomorphism O(k) — f*Q in Theorem 2.5.4. Then,
M. can be regarded as an open bounded convex body in 2 @E? S§_2TR3.

Let My, be the closure of the moduli M, by the inner product. Boundary points of
M|, describe those maps whose images are included in some totally geodesic submanifold
Gr,(RP*2) of Grop(R*12), where p < 2k.

The totally geodesic submanifold Gr,(RP*?) can be regarded as the common zero set
of some sections of Q — Grop(R**2), which belongs to R**+2.
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Proof. The restriction n < 2k follows from (I) in Theorem 2.3.4 and Borel-Weil theorem.

It is evident from (III) in Theorem 2.3.4 that GS(mVp, Vp)* is a parametrization of
the space of full holomorphic isometric embeddings f : CP! — Grop(R?***2) of degree k.
Positivity of T' being guaranteed by fullness, we can apply the original do Carmo—Wallach
argument [5, §5.1], to conclude that My is a bounded connected open convex set in H(1V)
with the topology induced by the L? scalar product.

Under the natural compactification in the L2-topology, the boundary points corre-
spond to operators T which are not positive definite, but positive semi-definite. It follows
from Theorem 2.3.4 that each of these operators defines in turn a full holomorphic iso-
metric embedding CP!' — Gr,(RP*?), of degree k with p = 2k — dim Ker T, whose
target embeds in Grop(R*72) as a totally geodesic submanifold. The image Z of the
embedding Gr,(RP™2) < Gry,(R?*"?) is determined by the common zero-set of sections
in Ker 7. O

3.5 Moduli space by image equivalence

The moduli space M, has a natural complex structure induced by that on @ —
Grar(R?***2) which coincides with the one in Remark 2. Hence, M;, can be regarded as
holomorphically included in the C-vector space ©F=2"S2=4C2. We can show that the

centralizer of the holonomy group acts on M, with weight —k. Hence we have

Theorem 3.5.1. Let My, be the moduli space of holomorphic isometric embeddings of the
complex projective line into Gra,(R?***2) of degree k by the image equivalence of maps.
Then we have My = M /S*.

Proof. Assume two full holomorphic isometric embeddings CP! < Gro(R?**2) of degree
k to be image equivalent. They may represent distinct points in Mj. By definition
of image equivalence, there is an isometry ¢ of Grox(R**2) such that f, = 9 o fi,
then f5Q) = fl*TZJQ as sets. Using the natural identifications ¢q, ¢o of Theorem 2.3.4 we
introduce new bundle isomorphisms O(k) — f5( defined by Yoy and ¢y. Hence, we have
a gauge transformation ¢, 11/;¢1 on the line bundle O(k) — M preserving the metric and
the connection. By connectedness of CP! such a gauge transformation is regarded as an
element of the centralizer of the holonomy group of the connection in the structure group
of V, ie. U(1) = S* acting with weight —k on the standard fiber Vj = C_;. Modding out
the S'-action yields the true moduli space by image equivalence Mj,. O]

Remark 7. The moduli space My has a complex structure (see remark in §4) and a
metric induced by the inner product both preserved by the S-action. Hence, it is a
Kihler manifold together with an S'-action preserving the Kahler structure. Therefore,
M, is naturally equipped with a moment map u : My — R expressed as u = |T?.
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Corollary 3.5.2. There exists a one-parameter family { f;}, t € [0,1], of SU(2)-equivariant
image-inequivalent holomorphic isometric embeddings of even degree of CP! into complex
quadrics, where fo corresponds to the standard map and fy is the real standard map.

Proof. The moduli space by gauge equivalence M sits in @EfTSQk_“’"CQ. For even k
this last expression includes the trivial representation C, which using the real structure
can be described as C = Ro ® RJ%. Let C € C C @FZ}S%—4C2 If it is small
enough, then by Theorem 2.4, Id + C determines a holomorphic isometric embedding
into Gra,(R?**2). The group SU(2) acts on each component of Id + C' trivially, so the
associated holomorphic isometric embedding is SU(2)-equivariant. The S! action of the
centralizer of the holonomy group acts on C with weight —k& (see proof of Theorem 3.5.1)
therefore, taking quotient by the S!'-action, we obtain a half-open segment parametrising
the described maps, which becomes a closed segment under the natural compactification
in the L2-topology. Let C' = to + sJ . Then we can show that Id + C is positive if and
only if * + s> < 1. Suppose that ¢* + s* = 1. Then (f + sJ¢)o is also an invariant real
structure on S?*C2. Hence we may consider only the case that ¢ = 1 and s = 0. Since the
kernel of Id+ o is J*W®R, Theorem 2.3.4 implies that Id + o determines a totally geodesic
submanifold Gryy_1(R*™1) of Gry,(R**2) and a holomorphic isometric embedding into
the submanifold Gryy_; (R?*1) represented by 2 Idyr. This map is nothing but the real
standard map by W®, because constant multiples of the identity give the same subspace
of W, O]
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Chapter 4

Killing vector fields on complex
hypersurfaces in the complex
projective space

4.1 Main theorem

In this chapter, we identify CP"™! with Gr,,1(C"*?"). In this case, CP""! is regarded
as the Hermitian symmetric space SU(n 4 2)/U(n + 1). Hence the Lie algebra of Killing
vector fields is su(n + 2).

We have the short exact sequence of holomorphic vector bundles:

0— S —C""% —Q—0, (4.1.1)

where @ — CP™*! is the universal quotient bundle O(1) — CP"*'. § — CP""! and
Q — CP""! can be recognized as homogeneous vector bundles:

S = SU(TL + 2) XU(n+1) ES, Q = SU(TL + 2) XU(n+1) LS,

Though we are mainly interested in various induced metrics on the complex quadric
hypersurface in CP"™!, the complex quadric is regarded as an oriented real 2-plane Grass-
mannian Gr,(R"™?) = SO(n+2)/SO(n) x SO(2). Thus the complex quadric has SO(n+2)
invariant Kahler metric, which is unique up to a constant multiple. In this case, the Lie
algebra of Killing vector fields on the complex quadric is regarded as the Lie algebra
so(n + 2) of SO(n + 2).

In order to state the main theorem of this chapter, we denote by P"™2 the set of
diagonal matrices with positive entries. A subset D of P"*? and the interior D of D are
defined by

D = {diag()\h"' Ang2) EPM L0 <A S0 S Ao, Z)\i = n+2} ) (4.1.2)
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lo):{diag(Al,--- Ansa) €D O<)\1<-~</\n+2}.

Notice that D is a subset of the space of real symmetric matrices which is a representation
space of SO(n + 2).

Theorem 4.1.1. Let S be a compact connected complex hypersurface in CP™ with the
Fubini-Study metric. If the induced metric on S admits a non-trivial Killing vector field,
then S is a hyperplane CP™ or a complex quadric hypersurface Gr,(R"?) as a complex
manifold.

When S = CP", the induced metric is the Fubini-Study metric and the Lie algebra of
Killing vector fields is su(n + 1).

When S = Gro(R™2), D\ D can be regarded as the moduli space of the induced
metrics with non-trivial Killing vector fields. The space of Killing vector fields of the
metric corresponding to T in D'\ D is the Lie algebra of Lie subgroup of SO(n+2), which
1s the stabilizer of T'.

In each case, the Lie algebra of Killing vector fields is a subalgebra of su(n+2), which
is the Lie algebra of Killing vector fields on CP™ "1,

In this chapter, we prove this theorem.

Remark 8. The set of induced metrics on Gr,(R™"?) is in one-to-one correspondence with
D. The metric in D has no non-trivial Killing vector field. The metric corresponding to
diag(1,---,1) has the Lie algebra of SO(n + 2) as the space of Killing vector fields.

4.2 Proof of Theorem 4.1.1

A compact connected complex hypersurface in CP"*! of degree d is obtained by zero

locus of a holomorphic section which is transverse to the zero section of the holomorphic

line bundle O(d) — CP" ! of degree d. Such a section will be called a generic section.
First of all, we refer to the following result of K. Yano (see also [15, Theorem 4.3]).

Theorem 4.2.1. [35] Let M be a compact Kéihler manifold and Z = X — /—1JX a
complex vector field of type (1,0) with real part X. Then X is a Killing vector field if and
only if Z is holomorphic and divX = 0.

Due to Theorem 4.2.1, we focus on the complex Lie algebra of holomorphic vector
fields on a hypersurface instead of the Lie algebra of Killing vector fields. For the space
of holomorphic vector fields on a hypersurface in CP"™!, K. Kodaira and D. C. Spencer

have proved the following result. This is also obtained by a theorem of H. Matsumura
and P. Monsky in [21].

Theorem 4.2.2. [19] Let S be a non-singular hypersurface in CP™ of degree d. If
n =2 and d = 3, then S admits no non-trivial holomorphic vector field.
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We are therefore concerned with the induced metrics on hypersurfaces of degree one
or two.

Since a complex hypersurface of degree one is a totally geodesic submanifold CP",
the induced metric on CP" is the Fubini-Study metric. Hence the Lie algebra of Killing
vector fields on CP" is a subalgebra of su(n +2) and so every Killing vector field on CP"
can be obtained by restriction.

To consider the case of degree two, let H°(CP™*1; O(2)) be the space of holomorphic
sections of O(2) — CP™"!. Tt follows from Borel-Weil theory that H°(CP"; O(2)) is
identified with the space S2C"*?" of symmetric quadratic forms on C"*2 as SU(n + 2)-
modules. Thus every generic holomorphic section ¢t of O(2) — CP"*! corresponds to a
non-degenerate quadratic form on C"*2, which is also denoted by the same symbol. The
zero locus of ¢ is denoted by Z;, which is expressed as

7, = {x c Cprt!

t(v,v) =0, v e x}

Recall that (-, )42 is the Hermitian inner product on C"2, We denote by e1, -+ , €49
a unitary basis on C"*2 and by e!,--- , "2 its dual. An element ¢ in S2C"*?" is written
as
n+2
t= Zaijei@)ej, al-j:aﬁEC.
ij=1

We denote by to € H°(CP™1; O(2)) the holomorphic section corresponding to the normal
form Z?:f ¢! ® e'. An involutive anti-linear endomorphism o is induced from ¢, and
SU(n + 2)-structure, which satisfies

to(v,w) = (v, 0(w))ni2, for any v,w € C"*2,
We call o a real structure on C""2. We have the decomposition of C"*:
Cn+2 — Rn+2 D \/—_an+2

where R"*2 and +/—1R"*? are eigenspaces of o with eigenvalues 1 and —1, respectively.
The restriction of (-, )12 on C" to R™"? induces an inner product, which is denoted
by the same symbol. Thus we have a subgroup SO(n + 2) of SU(n + 2).

The special unitary group SU(n + 2) acts on S?C"*?" by

1

(9-t)(u,v) =t(g u, g~ 'v),

where g € SU(n +2), t € S?C™? and u,v € C"*2. An element g € SU(n + 2) preserves
to if and only if ¢ € SO(n + 2). Thus SO(n + 2) acts on Z;,. Therefore the induced
metric on Zy, is SO(n + 2) invariant. Consequently, Z;, is the complex quadric equipped
with the standard Kahler metric wy. The Lie algebra of Killing vector fields on Z;, is the
corresponding Lie algebra so(n + 2).
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Let ¢ be a generic element in H(CP"1; O(2)) = S2C"**. Then we have an A; €
GL(n + 2;C) such that

t(u,v) = to(Apu, Aw), for any u,v € C"™2.
Since g is symmetric, we have
to(Agu, Apw) = to(*As A, v).

The matrix *A; A, is a symmetric matrix with complex entries. Then a result of T. Takagi
[28] yields that there exist a unitary matrix U; and uniquely determined positive real
numbers Ay, - -+, A\, 19 such that

WA= UTH, Ty = ding (VO VeV Az ), 0< M S S A

Therefore we obtain
t(u,v) = to("U T Usu, v) = to(TyUsu, T,Upv),

and so Z, = U "I, 'Z,,. Since a unitary matrix U; ' induces a holomorphic isometry
on CP"*! the zero locus Z, is congruent to Tt’thO. Moreover, since Z; = Z for any
constant ¢, we may suppose that Trace T? = n + 2.

To identify the induced metric on Zt, we consider ¢t € S2C"*2?" corresponding to

T, = dlag VAL o/ Ana2), 0 < A S -0 S Ao, Z"H)\ = n + 2. We denote by
fo : (R”“) <5 CP"™1 the natural inclusion of Gr,(R"?) = Z,,. Then f; is an

SO(n + 2)-equivariant holomorphic isometric embedding. Since Z; is T, 'Z;, and T, ! is
holomorphic transformation on CP"*!, Z, is the image of the holomorphic embedding
“1o fy: Gro(R™?) — CP"!. It follows that the Kihler manifold Z, with the induced

metric is isometric to Gr,(R"*?) with the induced metric by 7, o f,. Since T} is the
positive real diagonal matrix, the rigidity theorem of Calabi [2] implies that the moduli
space of induced metrics is identified with D in (4.1.2).

To compute the Kéhler form, we may consider the fiber metric on the pull-back vector
bundle of Q — CP"*! by T, ' o f,.

At first we pull back (4.1.1) by fy to obtain the short exact sequence of holomorphic
vector bundles:

0 — fr8 -2 Gr,(R™?) x C™2" 22 £ — 0.

Since the Chern class of fiQ — Gr,(R""?) is the positive generator of H*(Gr,(R"?)),
f3Q is denoted by O(1) — Gr,(R"?). For simplicity, f;S — Gr,(R""?) is denoted by
F — Gr,(R"?) when regarded as C* complex vector bundle. Since fy is SO(n + 2)-
equivariant, F — Gr,(R"™) and O(1) — Gr,(R""?) can also be recognized as homoge-
neous vector bundles:

F =80(n + 2) Xsom)xso@) £;, O(1) = SO(n + 2) Xsom)xso(2) Lg-
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An element in ' — Gr,(R"™) (resp. O(1) — Gr,(R"?)) can be expressed as [g, u]
(resp. [g,v]) for g € SO(n + 2) and u € Ef, (resp. v € L§). Then the homomorphisms
io : F' — Gr,(R"?) x C"*%" and evy : Gr,(R""?) x C"*?" — (O(1) are written in the
form:

io([g,u]) = ([g]uqu)’ GUO(([9]7w)) = [97W0(g_1w)}7

where g € SO(n +2), u € E}, w € C"*% and 7 is the orthogonal projection of C"+?"
onto Lg.

Let ¢ be the holomorphic section of O(2) — CP™*! corresponding to a positive diag-
onal matrix 7} such that 7? € D. We use a monomorphism 7} * 0 iy and an epimorphism
evg o Ty to obtain a short exact sequence of complex vector bundles

—1
00— F 1

otg
\

Grp(R"?) x ¢+ 22Tty (1) — 0, (4.2.1)

where T, and T, ! are regarded as automorphisms of a vector bundle Gr,, (R"+?)x C"*2" —
Gr,(R"2). Since fo(z) = Kerevy,, (4.2.1) can also be considered as the pull-back of
(4.1.1) by T, o fo.

The induced Kihler form wy, on Gr,(R"*2) by T, ! o f; is the curvature form of the
Hermitian metric g7, of O(1) — Gr,(R""?) induced by evyoT; up to a constant multiple.
Since Ker(evy o Ty) = Im(T! o dgy) = T 'gE; at a point [g] € Gr,(R"?), where
g € SO(n + 2), we see

(Ker(evg o Tt[g]))L =T,gL}.

Therefore for a unit vector v € L§ we have

gr,((ev o Ti)([g], Trgv), (ev o Ty)([g], Tigv)) = (Tigv, Tigv)nta-

Since Lg is of complex dimension one, we obtain

ev o Ty([g], Tigv) = [g, (g~ T2 gv)] = 9, (97 T v, v)nsav],

and so
1 1

(0.6, (g, — _ ' 4.2.2
grlo. ) o) = 7 = g v (42.2)

Since we have a decomposition C""? = R"™ @ 1/—1R"*? as a real SO(n + 2)-module,
the space Herm(C™*?) of Hermitian endomorphisms of C"™ has the decomposition of
irreducible modules:

Herm(C"*?) = R @ S;R™"? @ A*R™2. (4.2.3)

Notice that the second symmetric power S?R™"? has the one-dimensional irreducible
component R generated by the identity endomorphism. Its orthogonal complement is
denoted by SZR™"2 which is a class one representation space of (SO(n+2), SO(n)xSO(2)).
An SO(n) x SO(2)-invariant vector Gy € S§R™*? gives a function o = (C, gCo) szrn+2 on
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Grn(R™?), where g € SO(n+2) and (-, -)segn+2 is the inner product on SFR™*? inherited
from (-, -)p42.

According to (4.2.3), T7 is decomposed into T? = Id + C, where C' € S2R™ 2. Substi-
tuting 72 = Id + C into (4.2.2), we obtain

1
14 (g7'Cgv,v)nse

th([gva [g,v])

for a unit vector v in L. Tt is easily seen that pc([g]) coincides with (¢7'Cgv,v), 19 up
to a constant multiple. Therefore, with an appropriate choice of Cy, we have

orlg- vl lg.1) = T3
It follows that
wr, = wo = V=109(1 + o). (4.2.4)

Remark 9. Since v/—1C' is an element in su(n + 2), v—1pc([g]) can be regarded as the
restriction to Gr,(R"™2) of a moment map on CP"*!.

Finally, we specify the Lie algebra g of Killing vector fields on the hypersurface Z;. By
Theorem 4.2.1, g coincides with the Lie algebra of the group G of holomorphic isometric
transformations on Z;. Since Z; is holomorphically isomorphic to Gr,(R™*?), the group
of holomorphic transformations of Z; is SO(n + 2, C) for any generic holomorphic section
t of O(2) — CP""!. Thus G is a subgroup of SO(n + 2, C), which preserves wr,. Notice
that wr, belongs to the complexification of R SFR™ 2, which is an SO(n+2, C)-module.
It follows from (4.2.4) that ¢ € SO(n + 2, C) preserves wr if and only if both of wy and
¢ are preserved by ¢. This means that ¢ preserves wy, if and only if ¢» € SO(n +2) and
YT% = T. Hence G is the stabilizer of T; in SO(n+2). Thus g is a non-trivial subalgebra
of so(n + 2) if and only if T, € D\ D.

Since SO(n + 2) is a subgroup of SU(n + 2), G can also be regarded as a subgroup of
SU(n + 2). Therefore g is a subalgebra of su(n + 2).
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Chapter 5

Isoparametric functions and Radon
transforms on symmetric spaces

5.1 Definition of isoparametric functions

First of all, we give a definition of an isoparametic function on a Riemannian manifold in
this paper.

Definition 5.1.1. Let f : M — R be a function on a Riemannian manifold (M, gy).
The function f is called an isoparametric function if there exist functions F,G : R — R
such that

(1) gu(df,df) = F(f), (2) Af = G()).

The regular level set of an isoparametric function is called an isoparametric hypersur-
face. We recommend [32] for a review of isoparametric hypersurfaces.

Amongst isoparametric hypersurfaces, an isoparametric hypersurface of a sphere is
well-known and has been researched for a long time. An isoparametric hypersurface of a
sphere has ¢ distinct constant principal curvatures, where g = 1,2,3,4,6 [22]. We give
examples of isoparametric functions on a sphere.

Ezample. (g = 2) Let S¥~' C R be a unit sphere. If we denote a standard coordinate
functions on R™ by (xy,--- ,zy), then

1 p q
i -r3al
=1 a=1

where 2 < p < N — 2 and p+ g = N, is an isoparametric function. The regular level set
is identified with SP=1 x S971,

Each isoparametic hypersurface with ¢ = 1,2,3 is homogeneous in the sense that
it is one of orbits of an isometry group of a sphere. Such homogeneous isoparametric
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hypersurfaces of a sphere are completely classified in Takagi-Takahashi [27] using a re-
sult in Hsiang-Lawson [14]. However, there exist a lot of examples of non-homogeneous
isoparametric hypersurfaces of a sphere with g = 4.

First of all, Nomizu [25] found an isoparametric function with g = 4.

Ezample. (g = 4) Let S?Y~1 C CV (N = 3) be a unit sphere. If a standard coordinate
functions on CV are denoted by (x; + iy, -+ ,xn + iyn), then

(Z r— Z yf) +4 (Z Ifiyi)
=1 =1 =1

is an isoparametric function.

The regular level set is homogeneous in this example.

Ozeki and Takeuchi [26] gave first examples of non-homogeneous isoparametric hy-
persurfaces with ¢ = 4 and Ferus, Karcher and Miinzner systematically constructed such
hypersurfaces [9], which are nowadays called of OT-FKM type.

5.2 Critical Submanifolds

Let (G, K) be an irreducible symmetric pair of compact type, where G is a simply-
connected compact Lie group and K is a closed subgroup of G. The standard involution
gives a decomposition g = € @& m, where g and £ are the corresponding Lie algebras of G
and K, respectively.

We denote by W an irreducible G-module with a G-invariant scalar product, which
has a hypersphere as a principal orbit. Such a representation W is called a representation
of spherical type. Those are classified in Hsiang-Hsiang [13].

G SU(n) | Spin(n) | Spin(7) | Spin(9) Sp(n)
W | Cr Cv R" Sy So Cn > ™™
G | Spin(8) | Ga
W | Sg, Sg | RT
e Table 5.1

In this table, S, denotes a spin representation of Spin(n) and ST denote half-spin
representations of Spin(n).

Then, it is easily checked that the following happens: either W is decomposed into two
irreducible components as K-module W = U &V, or W itself is an irreducible K-module.
We consider only the former cases. Then on a case-by-case basis, we can show

Lemma 5.2.1. The decomposition W = U @&V is a generalized Cartan decomposition.
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We define two irreducible vector bundles G x g U and G' X V', which are denoted by
the same symbols U — G/K and V — G/K, with canonical connections VY and V",
respectively.

Fix an element w € W such that |w| = 1 and consider the corresponding section
s € I'(U). Denote by H the isotropy subgroup of G at w € W. Our assumption yields
that the homogeneous space G/H is a unit sphere in W.

The square of a pointwise norm f([g]) = |s|?([g]) (¢ € G) of the section s is a function
on G/K. Here, we can take w € U C W without loss of generality, since W is of spherical
type.

First of all, we can show

Lemma 5.2.2. Only the zero set Sy and the set Sy where the function f attains the
mazimum value (, which is called the mazimum set) are critical submanifolds of f :

G/K — R.

Lemma 5.2.3. If neither U nor V' is a trivial representation of K, then both sets Sy and
Sy are connected and H-orbits.

Lemma 5.2.4. The function is a Morse-Bott function.

For proofs, see [23] Lemmas 7.3, 7.8 and 7.10. The assumption that W is a G-
representation of spherical type is exploited in proofs and we have that K-modules U
and V are K-representations of spherical type, if they are not trivial representations of
dimension 1. Indeed, we obtain

So ={lg] € G/K |my([g'w]) =0}, (5.2.1)
Su ={lg] € G/K|my(lg"'w]) = 0}.

If we denote by Ty the zero set and by Tj; the maximum set of [¢t|?, then Ty = Sy,
and Ty = Sy. For this duality, we do not distinguish module U from V. In the case that
neither U nor V is a trivial module of K, Sy and S); are assumed to be expressed as
H/Hy and H/H )y, respectively, as homogeneous spaces.

Lemma 5.2.5. If U is not a trivial module of Hy, then Sy is a singular H-orbit.

Proof. Since W globally generates a bundle U — G /K, generic sections in W are trans-
verse to the zero section. The hypothesis that W is a representation of spherical type
implies that every section in W except zero is transverse to the zero section. From the
transversality of the section, the normal spaces of Sy can be identified with U. Then the
assumption yields the result by so-called slice theorem. O]

If we replace U, Hy and Sy by V', Hy; and Sy, respectively, then the same conclu-
sion holds. In this case, by Hsiang-Lawson [14], Sy and S); are minimal submanifolds.
However, we can say more.
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Theorem 5.2.6. The critical submanifolds Sy and Sy, are totally geodesic submanifolds

of G/K.

Proof. First of all, we can consider a map into a Grassmannian i : G/K — Gr,(W) as
the induced map by (V — G/K, W) [24, Definition 3.2] (and so, p denotes the dimension
of U). Then i is a totally geodesic immersion from Lemma 5.2.1.

On a Grassmannian Gr,(WW), the module U gives the tautological vector bundle S —
Gr,(W) in a similar fashion, whose pull-back bundle by ¢ is naturally identified with
U — G/K. Then the element w € W also gives a section § of S — Gr,(W) and the pull-
back of § is nothing but the section s. Let Sy and Sy, be the zero set and the maximum
set of |3]?. We take the orthogonal complement space W+ of w in W. Then (5.2.1) and
(5.2.2) imply that

So = Gry(WH), Sy = Grp (W),

which are totally geodesic submanifolds of Gr,(W).

Then Sy and Sy are the intersections of two totally geodesic submanifolds of Gr, (W)
respectively (So = G/K NSy and Sy = G/K N Sy), which yields the desired result. [

We give a table which includes symmetric spaces G/K, representation spaces W,
stabilizers H, decompositions as K-modules W = U & V and pairs Sy and Sy;. We
give a complete list in the table. To do so, we use the coincidences that happen in low
dimensions between the various classical Lie groups, which are listed in the Remark after
the Table 3.2.

G/K W 2 Y So. Sur
SU(n)/SO(n) | C* | SU(n—1) | R"®R" | SU(n—1)/SO(n —1)
Gr,(C") C" | SU(n—1) | CP&C? | Gr,(C™!), Gr,,(C™ 1)
Gr,(R™) R" | Spin(n—1) | RF®R? | Gr,(R™™), Gr,_1(R™1)
Sn—t R" | Spin(n—1) | R®@R"! Sn=1 2points
Gra(R) | 5 Gy RIGR' | Gy/SO(4), Ga/SO(4)
Gry(R?) Sy Spin(7) R'o R* Gry(R7), Grs(R7)
Gry(R?) Sy Spin(7) R® @ RS Gry(R7), Gr3(R7)
Sp(n)/U(n) | C* | Sp(n—1) | C"@® C™ Sp(n —1)/U(n — 1)
Gr,(H") H" | Sp(n—1) | HP @ H? | Gr,(H" ), Gr,_1(H" 1)
G,/SO(4) | R7 | SUB) | R'f@R’ | SU(3)/SO(3), CP?
e Table 5.2

Remark 10. We now list the coincidences of a pair of symmetric spaces and representations
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W omitted in the table.

(SU(2)/50(2),5u(2)) = (5% R?),
SU(4)/SO(4), R® = /\2C4R> — (Grs(R),RY) ,

(SU(4 /sp R’%) = (5°,RY),
(Gra(R ) (Gro(C*), CY),
(Gry(R?),CY) = (Sp(2)/U(2),CY),
(SO(6)/U(3),C") = (CP?,CY),
(Sp(1 )/U( ),sp(1)) = (S, R?).

5.3 Isoparametric functions

Let G/K, W, H and f be as in the previous section. In this section, the level set of
the function f : G/K — R is our main concern. Since H C G is an isotropy subgroup at
w € W, f is invariant under the action of H. Hence, H acts on the level set of f.

We can easily show

Lemma 5.3.1. If the action of H on G/K is of cohomogeneity one, then f is an isopara-
metric function.

Because |grad f|*> and Af are also invariant under the action of H, and so they are
constant functions on the level set of f.
The actions of H are of cohomogeneity one except the following cases:

(SU(n)/SO(n),C™), (Sp(n)/U(n),C*"), (GryR’),S,).

In the above cases, the cohomogeneity of the actions are 2, 3 and 2, respectively.

In the case of cohomogeneity one, we can easily describe the level set of f as a unit
sphere bundle of Sy or S);, and show that all level sets are H-orbits, which are left to the
reader.

From now on, we would like to compute geometric invariants of submanifolds, more
precisely, mean curvatures and principal curvatures. These invariants are related to in-
variants of vector bundles.

Theorem 5.3.2. We have

n

As = —s, Atzﬁt, n:=dimG/K,
p q
for arbitrary s € W C I'(U) andt € W C I'(V), when W is an orthogonal representation.
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We also have

n n
As = — At = —t
s 2p8’ 2"

for arbitrary s € W C I'(U) and t € W C I'(V), when W is a unitary representation.

n:=dimG/K,

Proof. From Theorem 2.2.2, we see that the mean curvature operators A and B are
parallel. Since U — G/K and V — G/K are irreducible, we have

B = —ﬂIdU, A= —VIdV

for some constant p and v. Since i : G/K — Gr,(W) is totally geodesic (hence harmonic),
Theorem 2.2.3 yields that
As = pus, At =uvt.

Since i : G/K — Gry(W) is an isometric immersion, the definition of the Riemannian
metric gq, yields that

n= ZgGT(ei, €)= — Ztraee Je,I., = —trace A = —trace B,

when W is a real representation, and
n = —2trace A = —2trace B,

when W is a complex representation. Hence we have our desired results. O
We fix w € W (Jw| = 1) again and consider the function f = |s|?.
Theorem 5.3.3. We have that

s (g,

when W is an orthogonal representation and
nN P
ar="2(r-%),
pq N

when W 1is a unitary representation.

Proof. Notice that w € W also induces a section of S — Gr,(W) denoted by 5. It
follows that the pull-back section of § is nothing but s € I'(U). From Proposition 2.1.2,

we see that V5 = —.Jt on Grassmannian, where ¢ is the corresponding section. Since
i:G/K — Gry(W) is a totally geodesic immersion and VY is regarded as the pull-back
connection of V¥, we also have VYs = —Jt. Then we obtain

|‘]t|2 = ZgU (Jez‘ta Jeit) = —gv (Atat) = gv (Ata t) .
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The well-known formula
A]s]Q = gu (As,s) + gu (s, As) — Z\VUS\Q

yields that
Als]* = 2gy (As, ) — 2gy (At,t).

Theorem 5.3.2 yields the result. [l

Hence, the function f always satisfies the condition (2) of the definition of an isopara-
metric function.

However, |grad f|> = |df|* does not satisfy the condition (1) in general. We distinguish
the case that the action of H is of the cohomogeneity one from others.

5.3.1 The case of cohomogeneity one

In this subsection, we omit the case that G/ K is a sphere. Hence, in the decomposition
W =U@@®YV, U and V are K-representations of spherical type. Moreover, Sy and Sy,
are singular H-orbits, which are expressed as H/H, and H/H);, respectively. Since the
action of H is of cohomogeneity one, U is a representation of Hy of spherical type and V'
is a representation of H); of spherical type.

Let n be a unit normal vector field defined by

grad f
lgrad f|’

on the regular point of f. We denote by A, the shape operator of f~!(c), where c is a
regular value. By definition, we have that

1
|df |
where X is a tangent vector to f~!(c) and D is the Levi-Civita connection on G/K.

Since f is an isoparametric function, the first term of the right-hand-side vanishes. Con-
sequently, we have that

ApX = —Dxn=-X ( ) grad f — Dxgrad f,

L
|df |

1
|df |

where X and Y are tangent vectors to f~!(c) and ¢ is the Riemannian metric on G/K.
The definition of f yields that

9(AnX,Y) = (Dxdf) (Y),

(Dxdf) (Y) = gu (V& (V7s) (Y),5) + gu (5, VX (V7s) (V)
+ gu (Vs VYs) + gu (Vs Vs).
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Since W = U &V is a generalized Cartan decomposition, Proposition 2.1.2 yields that
Vis=—Jt, V5 (VYs)(Y) = Jylxs,
where t is the corresponding section. It follows that

(Dxdf) (Y) = —gv (Ixs,Iys) — gv (Iys, Ixs)
+ gu (Jxt, Jyt) + gu (Jyt, Jxt).

We define endomorphisms I and J of the tangent bundle of G /K by

- 1
g(IX,Y) = 3 {ov Uxs, Iys) + gv (Iys, Ixs)}

and

1
g(JX, Y) = 5 {gU (th, Jyt) + gu (Jyt, JXt)} .
By definition, we obtain
2 s
Ap = — (I - J) . (5.3.1)

We can immediately see

Lemma 5.3.4. The endomorphisms I and J are H-invariant symmetric operators.

To see properties of I and J, we give a key algebraic theorem.
We denote by § the corresponding Lie subalgebra to H and a natural projection by
7:G— G/K.

Theorem 5.3.5. In the case that the H-action on G/K is of cohomogeneity one, for an
arbitrary & € m such that £ Lh and |Sw| = 1, we have that

Ew = —w.

Proof. Let N be the normal space of Sy at 7(e), where e is a unit element of G. The
subgroup L C G defined as L := K N H is isomorphic to Hy; and acts on N as a
representation of spherical type, since the action of H is of cohomogeneity one.

Since W globally generates V. — /K and is a representation of spherical type, ¢ is
transverse to the zero section. Hence we have that

TSy =KerVVt = KerIs = {X € T,G/K | Ixs = 0}.

It follows that T G/K = KerIs @, N.

We may regard Is : Ty )G /K — Vz(e) as an homomorphism Is : m — V' and consider
N C m. Since s(n(e)) = [e,w], Is is an L-equivariant homomorphism. Hence V is also
an L-representation of spherical type which is isomorphic to V.
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Let £ € N such that |I¢s| = |[w| = 1. Then we obtain L C L as an isotropy
subgroup at £ and I : U — V is an L¢-equivariant homomorphism. The endomorphism
JeIg : U — U can be now regarded as &2 : U — U, which is a restriction of &2 : W — W
to U C W. Note that the eigenvalues except zero of £2|y are the same as ones of &3]y
with multiplicities, since W = U @ V is a generalized Cartan decomposition. Then
L¢ irreducible decompositions of U and V', which are given after the proof, yield that
&?w = cw with some constant ¢ € R by Schur’s lemma. It follows that ¢ = (£%w,w) =
—(&w, &w) = —1. O

We shall exploit L¢-decomposition in the sequel. We denote by [ and [¢ the corre-
sponding Lie subalgebras to L and Lg, respectively.
o L¢-decomposition of (G/K,W).
(1) (Gry(RY).RY),

Let €1, -+ ,ex be an orthonormal basis of RY such that ey, - - , e, spans RP. We take
w = ey and so, [ = so(p — 1) ® s0(q), where ¢ := N — p. Let £ be a skew endomorphism
of R™ such that

§er = epr1, Sepr1 = —ej,and feq =0, A# 1,p+ 1.

Notice that & € mnht with [§w| = 1. Tt follows that [ is isomorphic to so(p—1)@se(g—1).
Then we have
U=R’=RuaR!', V=R'=RéwadR" .
(2) (Gry(CY),CN),
Let ey, -+, ex be a unitary basis of C™ such that ey, - - - , e, spans C?. We take w = e;

and so, [ = u(1) ® su(p — 1) ® su(q). Let £ be a skew Hermitian endomorphism of C¥
such that

§er = epi1, Sepr1 = —er,and Leq =0, AF# L,p+ 1.
Notice that £ € m N b+ with [fw| = 1. Tt follows that [¢ is isomorphic to u(1) & su(p —
1) @ su(q — 1). Then we have
U=C'=CuwdCr'!, V=Ci=ClwspCi

(3) (Gry(HY), HY),

Let €1, ,ey be a quaternion-unitary basis of HY such that ej,--- ,e, spans H?.
We take w = e; and so, [ = sp(p — 1) @ sp(q). Let & be a quaternion-skew Hermitian
endomorphism of HY such that

§er =epr1, Sepr1 = —ep,and Lea =0, A# 1,p+ 1.

Notice that & € mNb* with |fw| = 1. Tt follows that I¢ is isomorphic to sp(p—1)@sq(qg—1).
Then we have
U=H =HwoH!, V=H'=HwaoH"
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(4) (Gra(R7), 57),

The isotropy subalgebra is isomorphic to s0(4)@®sp(1). The Lie algebra so(4) is a direct
sum of two copies of sp(1). To distinguish these copies of sp(1), the isotropy subalgebra
is denoted by sp, (1) @ sp_(1) @ sp(1).

Under the action of the isotropy subalgebra on S;, we have an irreducible decomposi-
tion:

S1=(Cloc) e (C o),

where C% .y denote the standard representations of sp.(1), respectively and (Ci® CQ)R
denote real invariant spaces of C%2y ® C?, respectively.

We pick up a unit vector w € (Ci ® CQ)R and so, [ is regarded as the diagonal
subalgebra of sp, (1) ®sp(1). Let v € (C* ® CZ)R be a unit vector. Since L¢ (€ € mNbh*
with |w| = 1) can be identified with an isotropy subgroup of the L-action on S; at v,
it follows that l¢ is isomorphic to the subalgebra {(X, X, X)} of sp_, (1) @ sp_(1) @ sp(1).
Then we have

U=(C2eC)*=RuaR? V= (CaC)¥=RuaR’

where R? denotes the adjoint representation of [
(5) (G2/S0(4),R7),
To distinguish two copies of sp(1), the isotropy subalgebra is denoted by sp (1) &
sp_(1).
Under the action of the isotropy subalgebra on R’, we have an irreducible decompo-
sition:
R = (C2C*)" @ sp_(1),

where C% denote the standard representations of sp_ (1), respectively and (Ci ® C2_)R
denotes a real invariant space of C?, @ C?.

We pick up a unit vector w € (Ci ® C%)R and so, [ is regarded as the diagonal
subalgebra A of sp, (1) ®sp_(1). Let v € sp_(1) be a unit vector. Since L¢ (€ € m N ht
with |€w| = 1) can be identified with an isotropy subgroup of L-action on R” at v, we
have that [¢ is isomorphic to u(1) which is the standard subalgebra of A. Then we have

U=(C20C )" =RweR®C,, V=sp_(1)=RvaCy,

where C, denotes an irreducible representation of u(1) with weight a.

Remark 11. We should consider the case of (Gr4(R8), Sgt). However, the triality gives
the same picture as in the case of (Gry(R?), R®), and so we omit it.

Corollary 5.3.6. We can find a geodesic on G /K which intersects all H-orbits orthogo-
nally.
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Proof. For any & € m such that £ Lh and |§w| = 1, Theorem 5.3.5 yields that
1
73 _ n o :
ecw = E —n!§ w = costw + sin tv,

where we put v := £w € V. Then, 7(e) is a geodesic through 7(e).
Moreover, we get

s (m(e®)) = [e, my (e %w)] = cost [e", w] = coste’s (m(e)).

Hence,
f(m(e")) = cos’t,

and so, the geodesic 7(e®) meets all H-orbits.

Since £1b, £ can be regarded as a normal vector of Sy, in G/K. We can identify the
normal bundle of an H-orbit with a neighbourhood of the H-orbit G-equivariantly via an
exponential map restricted to the normal space. Hence the geodesic 7(e') intersects all
H-orbits orthogonally by Gauss’s lemma. m

Remark 12. The existence of a geodesic which intersects all orbits orthogonally is well-
known in the case that the action is of cohomogeneity one. However, we exploit our
geodesic m(e'®) to compute submanifold-geometric invariants including principal curva-
tures of the regular level set explicitly. To do so, we fix the notation m(e%) to express the
specified geodesic.

For simplicity, we put o := 7(e) € G/K.

Theorem 5.3.7. The endomorphism I has only two eigenspaces, which is expressed as
T.G/K = Ey ® E,, where s(x) # 0. The eigenspace E; with zero eigenvalue is indeed
Ker I's, where we regard Is as a homomorphism Is : TG/K — V. Both E, and Es can be
wdentified with T,Sy and V', respectively, via a parallel transport along the geodesic (eté)
and an action of H, where £ € m N h*.

Proof. As we already show,
T,Su =KerVVt = {X € T,G/K |Vt =0} .

It follows from V"t = —Is that 7,5, is included in the eigenspace of I with zero eigen-
value.

Let L be an isotropy subgroup of H at o € Sy;. Then we already see that N(= V)
is an irreducible representation of L. From Lemma 5.3.4, V must be an eigenspace of I,
because L acts on each eigenspace.

Let x € G/K be a point outside Sy, and suppose that s(x) # 0. It follows from
H-invariance of I that x can be assumed to be joined to o by 7(e*) and z = w(e'¢) for
some £ € mN bt If we put g(z) = €%, then z = g(x)o and s(x) = costog(x)s(o).
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Since [ is G-invariant, if X and Y € T,G/K, then we obtain

g (1X.Y) = 5 4w, (Txs(a), Tys(@) + gv, (Iys(a), Lxs(@)

1

=3 {gvx (Ig(z)g(m)flx costog(z)s(o), Ly(2)g()-1y COS tog(x)s(o))

+9v, (Ig(w)g(x)fly costog(z)s(o), Ly(2)g()-1 x COS tog(:v)s(o)) }

:@{gw (9(2) Iy()-1x5(0), 9(2) Iy(a)-1v5(0))

+ gv, (g(l‘)lg(x)*lYS(O)7 g(x)]g(:c)*lX5<O>) }

:¥{9V0 (Ig(“’)*lx‘s(oh [g(I)’lYS(O)) +9v, (Ig(a:)ﬂYS(O), ]g(x)ﬂXS(O))}

=FW)go (Ig(@) ' X, 9(@) 'Y )

It follows that T,G/K = g(x)T,Su ® g(v)V, is the eigenspace decomposition of the
endomorphism I,. It also follows that ¢g(z)7,Sy = Ker Is. O

Lemma 5.3.8. The normal vector field n belongs to Eo, where df # 0.

Proof. From Corollary 5.3.6, the velocity vector of the geodesic 7(e*) is a constant mul-
tiple of the unit normal vector field n.

By Theorem 5.3.7, the eigenspace F; corresponding to zero eigenvalue is the image of
a parallel transport of T'Sy; along m(e%). Then, we have that nl E;. The H-invariance
gives our desired result. O]

Remark 13. It is well-known (and easily shown) that the unit normal vector field n
generates a geodesic if the function satisfies the condition (1) of Definition 5.1.1.

We denote by A an eigenvalue of I whose eigenspace is Ey = V.

Theorem 5.3.9. The eigenvalue X is equal to pﬂq\s\z when W is real, ﬁ\s? when W is
comple.

Proof. In both cases, we have

Zg(_fei, e;) = gv (Ie;s,1.,8) = —gu(Bs, s) = gu(As, s). (5.3.2)
e W:real. By definition, we have 3" g(Ie;, e;) = g\. From (5.3.2) and Theorem 5.3.2, we
get
n
gh = —s|*.
p
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e W:complex. By definition, we have Zg(fei,ei) = 2¢gX. From (5.3.2) and Theorem
5.3.2, we get

n
2q\ = —|s|*.
q 2p|8|

In a similar way, we have

Theorem 5.3.10. The eigenspaces of J can be identified with U and TSy via a parallel
transport along the geodesic w(e'*) and an H-action. The eigenvalue corresponding to the
eigenspace U is I%]t\z when W is real, ﬁ\tﬁ when W is complex. The eigenspace T'Sy is

the kernel of J.

For simplicity, it is said that the eigenspaces of I are V and T'Sy; and the eigenspaces
of J are U and T'Sy, when no confusion can arise.

Lemma 5.3.11. The unit normal vector field n is the eigenvector of J which belongs to
U.

We can compute the norm of the velocity vector of the geodesic 7(e').

Lemma 5.3.12. Let £ € mN bt with |¢w| = 1. The square of the norm |&|? is equal to

P4 when W is real, 4%‘7, when W is complew.

Proof. On the one hand, since £ is a constant multiple of n, we get 1€ = A&, from Lemma
5.3.8, where A is the eigenvalue different from zero. It follows that

g(1€,€) = M¢|?

On the other hand, the definition gives g(I€,€) = gv (I¢s, I¢s). Since G/ K is a totally
geodesic submanifold of Gr,(W), we can compute

Ies (m(e%)) = [€%, & costw] = cost [, Ew] .

Since [€w| = 1, we obtain |I¢s|? = cos? t|Ew]?* = |s|?.
We immediately get A|¢]? = |s|?, which provides us with the result by Theorem 5.3.9.
0

Theorem 5.3.13. The norm of the gradient vector grad f is given by

2[s|[t]\ /e, when Wis real,
|df| =

|s||t| oo, when Wis comple.
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Proof. Let € € mN bt with [€éw| = 1. It is enough to compute the norm on the geodesic
7(e) due to H-invariance. Note that the corresponding section t is expressed as

t(m(e)) = [, —sintv] = —sint [e*,v] = —sinte™™t (o).

Moreover, we get from v = —w that

Jet (m(e")) = —sint [e¥, v] = tant [¢", w] = {ﬂs (m(e%)).

|

Then, we have

df? =" (90 (VEs,5) + gu (5. VEls))”
:Z gU Jeit S) + gu (87 Jeit))z

Z‘SP (Jut, Jet) + g (Jet, Jut) 24‘9'2( ))2
- |t|2 gU e; 13 gU I3 e; |t|2 ’L) .

We can take e, = n and already see that £ = |[¢|n (up to a sign). Theorem 5.3.10 and

Lemma 5.3.12 yield that
t?
|df|2 - 4‘ ‘2 |£|2:u27

where 4 is the eigenvalue of J different from zero. m

Remark 14. From Theorems 5.3.3 and 5.3.13, it follows that

2nN 4
A== (f o) WP = r ),

when W is real, and
~nN P 9 _
AP="(F- ) P = ),

when W is complex. If we define a new function f by

f=f-+
then we have on N A
Af== S daiP = (P ) ()
when W is real, and
AF="2F 14 =2 (F ) (5 - 7).

when W is complex.
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Let ¢ be a regular value of the function f : G/K — R. We can compute the mean
curvature m of the hypersurface f~'(c). Notice that |s|* = ¢ and |t|*> = V1 —¢, by
definition. Hence, instead of using ¢, we employ |s| and |t| to express invariants on

fHe).

Theorem 5.3.14. Let m be the mean curvature of the reqular level set f~'(c). Then m
1S expressed:

s/ e UslP@ =1 = [tP(p = D}, when Wis real
m\/ pa {Is|*(2¢ — 1) = [t*(2p — 1)}, when W is complex.

Proof. From (5.3.1), Theorems 5.3.7, 5.3.9 and 5.3.10 and Lemmas 5.3.8 and 5.3.12, it
follows that

n—1
m = Zg(AneZ, ei) = Il {trace] g(In,n) — trace J + g(Jn, )} :
i=1
where ey, ,e, = n is an orthonormal basis of TG /K. Using again Lemmas 5.3.8 and
5.3.12, Theorem 5.3.13 yield the result. O

Remark 15. Using only the function f, m is described as

qu(q—f) {(N - 2)f - (p — 1)}, when W is real,
el (=7) {2(N-1)f = (2p—1)}, when Wis complex.

Corollary 5.3.15. There exists one and only one minimal reqular level set of the function
f. More precisely, f~'(c) is a minimal hypersurface, where

2p—1

]’\’,;12, when W is real,
c= .
2(N—1)°

when W is complex.

Next, we compute principal curvatures, in other words, the eigenvalues of A,. From
(5.3.1), we should see how the eigenspaces of I and J intersect with each other.
As we have already seen, the eigendecomposition of I is expressed as

7}(;/](5§lﬂv:2{)((ETU|}(U)::O}GBL‘/ZZiFSW[GiL‘(
We put g := e2¢. In a similar way, we have
90" (TrigG/K) 2m={Xem|[Xv=0}®, U=g5" (Tr(g)%) ®1 U.

We use the same notation as in L¢-decomposition of (G/K, W) after Theorem 5.3.5.
e Principal curvatures.

By (5.3.1), Theorems 5.3.7, 5.3.9, 5.3.10 and 5.3.13 imply
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Lemma 5.3.16. The shape operator A, satisfies
0 (on T,8m N gy (Tr(g0)S0))

|| n 1
/= TrtanSo) NV
a|t| pq (On gO ( (90) 0) )
= t
An _a (on T,Sy NU)
als|'\ pq

P e
[ — unv
s Vg YY)

where a =1 (resp. 2) if W is real (resp. complez).
(1) (Grp(RY), RY),
The tangent space m is regarded as R” ® R?. We get the [,-decomposition of m:
m=Rw@R&wd, RF'oRwd, Ru@R '@, RF'@RI!
=Re, RP'a, R"7'a, RFToRIL
In this decomposition, we can identify:
TSy=R"™' o, R '@RT!, TSy=R"'®, RF'@RI,

U=R&, R, V=Re, R

Since the both I and J are [¢-invariant, Schur’s lemma yields the eigendecomposition of
A,. Then Lemma 5.3.16 implies

Theorem 5.3.17. The principal curvatures of the reqular level set f~1(c) of the function

f are
t

ﬂa _|_|a Oa

i 5]
with multiplicities ¢ — 1, p— 1, (p — 1)(q — 1), respectively.
(2) (Gry(C7),CY),

The holomorphic tangent space at o is regarded as C?" ® C?. We identify m with the

holomorphic tangent space at 0. We get the [¢-decomposition of m:

m=Cuw* ®Céwd, CP V" @ Céwd, Cu*@CI e, Cr " gCi!
=Ca, C" Vg, C'a, CP CTL
In this decomposition, we can identify:
TSy =Ci o, crVecCct! TSy=CYao CrVecr?
Ur=Ceo,C", V=Ca, C".
Since the both I and J are [-invariant, Schur’s lemma yields the eigendecomposition of

A,
Then Lemma 5.3.16 implies
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Theorem 5.3.18. The principal curvatures of the reqular level set f~'(c) of the function

f are
1 sl i

(Is* = [¢*), ;= 0
V2s|lt V2t V2]

with multiplicities 1, 2(q — 1), 2(p — 1), 2(p — 1)(q¢ — 1), respectively.

(3) (GTP(HN)aHN)y
The tangent space m is regarded as H? ® HY?, in an appropriate sense. We get the
[-decomposition of m:

m=HuwoHéwo, HF 'oHéw e, HuvoH ' ¢, HP ' @ H!
—Ho, HP ', H" ', HP '@ HI L

In this decomposition, we can identify:

TSy=H"'@, H '@H"! TSy=H'e, H'oH!
U=H¢ H' V=He H.

Since the both I and J are [-invariant, Schur’s lemma yields the eigendecomposition of
An.
Then Lemma 5.3.16 implies

Theorem 5.3.19. The principal curvatures of the reqular level set f~1(c) of the function

f are
1 5| I
(s =1t 570 —5r70 O
2]s]|t] 2]t 2]s]
with multiplicities 3, 4(q — 1), 4(p — 1), 4(p — 1)(q — 1), respectively.
(4) (Gry(R7), S7),
The tangent space m is isomorphic to R* ® R? as s0(4) & sp(1)-module. Note that [

is isomorphic to the subalgebra {(X, X, X)} of sp, (1) @ sp_(1) @ sp(1), and so we have
a decomposition of m as [c-module:

m:R5€BL2R3@J_R.
Since
TSy, =R°® R? TSy=R°@®, R} U=R&R?’ V=RaR?

we can not obtain the same conclusion as before.
We consider a [¢-irreducible decomposition of S7:

S:=Rw®R?®® Rv®R?,
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We already see that éw = v and v = —w. Let u,us,u3 be an orthonormal basis
of R® C U. We can put &%u; = zu; for ¢ = 1,2,3. Using the relation that |[£]? =
gv(Tew, Iew) + >, gv (Iewi, Ieu;), Lemma 5.3.12 yields that

p—q:1—3x.
n

If we substitute p, ¢ and n by 4, 4 and 12, then we obtain

1
r=——.
9
Hence we can take an orthonormal basis v;, vy and v5 of R? C V such that

1 —1
—U;, 57}7; = —(— Uy, 1= 1,273.

=3 3

Let n be a normal vector of 7,5y, which is orthogonal to &, (which yields that n €
R3 C V), and satisfies that [yw| = 1. Theorem 5.3.12 gives

2 _pg _ 4

The relation £ 17 yields that &w Lnw. Hence we may suppose that

-1
nw = vy, NV = —1uj.

3

We put 1 = n9-+n; according to the decomposition m = T'Sy®U. Note that o € R® C T'S,
and 7, € R® C U. Then we have

nuv = 1MoV + MU = M,

and so, [nv|* = 5. Since n € U, we get
7 N0 2 3 o
g(Jm,m) = —|t]*m|” = —|m|".
( ) pql I ]* = 7 lml
On the other hand, we have

90(jn17771) = gV(‘]nlt7 Jmt) = |t|2|7717j|2 =5

=2, |nl?> =2, and so,

Consequently, we have | 77 27

ol = [m| =2v2: 1.
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Hence, if X is a vector of R* € 7,5y and X = X, + X, where X, € R?® C 7,5, and
X, € R?® C U, then we have
‘Xol . |X1| = 1 . 2\/5

Let X;, X, and X5 be an orthonormal basis of R® C 7,5y and vy, v and v5 an
orthonormal basis of R* C V. Then we can take an orthonormal basis Y;, Y5 and Y5 of
(R3*® R3) NT,Sy and an orthonormal basis uy, us and us of (R* @ R3) N U such that

1
XZ»:§<Y;-—2\/§U1‘>, v; = <2\/§Yi+ui>; 1=1,2,3.

It follows from Theorem 5.3.10 that

- 22 ~ 1
JX; = f 1 w? (2\/’)( - vl> o Jui = §ﬁw? (—2\/§XZ- + vi)
pq

1
3

From (5.3.1) and Theorems 5.3.7, 5.3.9, 5.3.10 and 5.3.13, we need to compute the eigen-

values of
1 EL(—SW 2\/§|t|2)
9V pals||t] \2v2[t|* 9|s> — |t>

to obtain the principal curvatures. Then we have

Theorem 5.3.20. The principal curvatures of the regular level set f~1(c) of the function

f are
V3 1
VO 312 — 1) + /9 —4 2t2} 0
12 T 12087 — 1) P}, o,

with multiplicities 3, 3, 5, respectively.
(5) (G2/SO(4), R7),

We can proceed in the almost same way as in case of (Gr4(RT), S7). So we shall sketch
a proof.

The tangent space m is regarded as (Ci ® 5303)R. Since [¢ is isomorphic to u(1) C
A Csp, (1) @sp_(1), we get a decomposition of m as le-module:

€=Cy®,2C,8,2CH, 2C_,®, C_y.
Considering real representations, we can take
m=C,P, 2C, &, 2R.
Since
TSy=C,8Cy, TSy=C,C;, &R, U=R®eCydR, V=RpC,,

we can not obtain the same conclusion as before.
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We consider a u(1)-irreducible decomposition of R:
R'=Rwa®R®C; & Rua C,.

Let uy,us be an orthonormal basis of Cy C U and ug € R C U be an unit vector. We
can put £2u; = xu; for i = 1,2 and Eug = 0. If follows from Lemma 5.3.12 that

L
n

and so
1
r=——.
4

Let n be a normal vector of T,Sy; which is orthogonal to &, (which yields that n €
C, C V), and satisfies that [nw| = 1. We put n = ng + n; according to the decomposition
m =TS, ® U. Note that g € C, C T'Sy and 1, € Cy C U. Then we have |n;|* =
3. Inol* =3, and so,

ol = Im| =3: V3.
Hence, if X is a vector of Cy, C T,5) and X = Xy + X;, where Xy € Cy C 1,5, and
X, € Gy, C U, then we obtain

|X0| . |X1| = 1 . \/g

From (5.3.1) and Theorems 5.3.7, 5.3.9, 5.3.10 and 5.3.13, we need to compute the

eigenvalues of
1 /n 1 (—3|f|2 V[t )
A\ pq |sl|t] \V3[t]* 4|s|* — |t|?

to obtain the principal curvatures. Then we have

Theorem 5.3.21. The principal curvatures of the reqular level set f~'(c) of the function
f are
1 1

Jara LS = 1Py VI=TSPTeE

with multiplicities 2, 2, 1 and 2, respectively.

2 |¢]
3|S|7 Y

5.3.2 The case of cohomogeneity greater than one

In this subsection, we see that f = |s|? is not an isoparametic function in each
case. However, if we adopt Wang’s definition of isoparametric functions ([33] or see
also [6, p.55]), it will be shown that we can find a vector valued isoparametirc function
F : G/K — RF which has f as a component, where k is the cohomogeneity of the
H-action. Every H-orbit is included in a level set of F'.
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Moreover, we shall show that there exists a hidden symmetry in each case, in other
words, w € W determines another subgroup of G. We obtain a subgroup H C G such that
H C H. The action of H on G /K is of cohomogeneity one. Finally, the corresponding
isoparametric functions are specified and we shall detect the relation between w € W and
the new function.

Remark 16. For completeness, we give a definition of an isoparametric function by Wang.
Let f=(f1,---,fr) : M — R be a function on a Riemannian manifold (M, gps) with
values in R¥. The function f is called an isoparametric function if there exist functions

Fi;,G; :R¥ - R (1 £ 4,5 < k) such that

(1) gM(dfiadfj) = Fz‘j(fb o fk) (2) Afi=Gilf e i)

This definition is different from a definition of Terng [30]. Though Terng’s definition is
stronger than one of Wang, Terng get a deep and beautiful structural theory. See also
Heintze, Liu and Olmos [11] for isoparametric submanifolds. In both, the principal orbit
of an hyperpolar action is a typical example.

e (SU(n)/SO(n),C")

The tangent space m is identified with a representation S2R" of SO(n), where SZR™
denotes the set of tracefree symmetric transformations on R™. We denote by 7y : R" ®
R" — S2R™ the indicated orthogonal projection.

According to a generalized Cartan decomposition of C", we obtain z = z 4 iy €
R" @ iR" =2 R" @ R". Hence the vector bundle V. — G/K is naturally identified with
U — G/K, and we do not distinguish one from the other.

Let Y be an element of S?R". Since iY € m C su(n), we have

(1Y)(z+iy) = —Yy+iYz, andso, Y(x,y)=(-Yy,Yx).

When C" is regarded as a real representation of SU(n) and the orthogonal projections are
defined as 7y (z + iy) = x and 7y (x + iy) = y, we have

VL, iv)s = ¢, — (Y )mv (g7 w)] = [9,Ymv (9 w)]
Ve, rpt = [9, = (1Y )mu (97 w)] = g, ~Y7u (g™ 'w)]

where g € G. For simplicity, we identify Y € m with the tangent vector m(L,Y’) to G/K
and Vys and Vyt are abbreviated to Yt and —Y's, respectively.
Then we get
df =2gu (Vs,s) =2gu (Yt,s) =296 (Y,s ®1),

where g, is the Riemannian metric on Grn(RQ”), which is the target of the totally
geodesic immersion of G/K — Gr,(R*"). Hence we obtain

df:2ﬂo<8®t):2(5t—@[n)>
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where

1
S't:§(8®t+t®8),

and I,, denotes the identity transformation of U — /K. Consequently, we have

n

-2
|df|* =2 <|s|2|t|2 + - gU(s,t)2) ,

which shows that f is not an isoparametric function. Note that f is an isoparametric
function in the case that n = 2, since we have

(SU(2)/80(2),C%) = (CP',C?),

which was already seen in the previous subsection.
We compute

dgy (s, t)(Y) = gu(Yt,t) — gu(s,Ys) = ga- (Y, 1 @t — s ® s)
and so, we get

2—t2
52— 1

n-

dgy(s,t) =m(t-t—s-s)=t-t—s-s+
n

It follows that
1
[dgo(s, ) = |sl* = 290 (s, )" + 1¢]* = — (15 = [t1%)”

g (df dau(s, ) = — 2D g 6,0) (15 = 117)

Moreover, we have

ZQU(Ve,-S, Vet) = — ZQU(GJ, €is) = ZQU(Q‘@J, s) = —gu(At, s).
It follows from Theorem 5.3.2 that

Agy(s,t) =gu(As,t) — 2 ZQU(VS, Vi) + gu(s, At)

:2(n — D+ 2)gU(s, t).

Consequently, we obtain an isoparametric function F' with values in R?:
F = (\s|2 — ]t|2,2gU(s,t)) .

Since gy (s, t) is also H-invariant, the level sets of F' consist of H-orbits.
We put f = |F|* = (|s|* = [t[*)* + 4gu (s, ).
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Theorem 5.3.22. The function f s an isoparametric function on the symmetric space

SU(n)/SO(n).

Proof. Combined our direct computations with a well-known formula A f2 = 2 { fAf — |df|*},
we have

Af=4(n+1)f -8,

Moreover, it follows that ) ) )
|df|* =8f(1— f).
O

We explain how w € W relates to f . Let h be an invariant Hermitian product on
W 2 C". Then iw ® h(-,w) — I, € W ® W* can be considered as an element of su(n).
We have a generalized Cartan decomposition of su(n), which is a standard decomposition
su(n) = so(n) ® m. Hence iw ® h(-,w) — LI, determines a section § of the holonomy
bundle SU(n) xgo(m) s0(n). Since

5= [g,pr (g_l (z’w ® h(-,w) — %]O)} , g €SU(n),

where pr : su(n) — so(n) is the orthogonal projection and w = s + it, we have
S=s@gu(-,t) —t@gul(-s).
Consequently, we obtain
215 = 4 (|s*[t]> — gu(s,1)%) = 1 - {(|s|2 —|t[)* + 4gU(s,t)2} —1-f.  (53.3)
Since iw @ h(-,w) — 1], is invariant under the action of S(U(1) x U(n — 1)) which is
denoted by H, we have
Lemma 5.3.23. The function f is invariant under the action of H.

If we check the action of H on SU(n)/SO(n) at o infinitesimally, it follows that the
action of H on SU(n)/SO(n) is of cohomogeneity one.

Next, we determine critical points of f. We begin with a simple algebraic lemma,
whose proof is left to the reader.

Lemma 5.3.24. Let u and v be vectors in R™. Then mo(u-v) and mo(u? —v?) are linearly
independent if and only if u and v are linearly independent.

We have
df =8 (Is]” = [t?) mo(s - t) + 8gu (s, t)mo(t* — s7). (5.3.4)
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Lemma 5.3.25. The set of critical points of f consists of those points in f‘l(O) and
).

Proof. From (5.3.4), z € SU(n)/SO(n) is a critical point of f if and only if F(z) = 0 or
mo(s - t)(z) and mo(t* — s?)(z) are linearly dependent and

(Isf> = [t[*) mo(s - t) + gu(s, t)mo(t> — s*) =0 (5.3.5)

at x.

Of course, F(z) = 0 is equivalent to f(z) = 0.

The latter condition yields that s(x) and ¢(x) are linearly dependent by lemma 5.3.24.
Then the equation (5.3.5) is automatically satisfied. The Cauchy-Schwarz inequality
implies that

TS s = 1% + 4lsP1e* = (Isf* + 1) = 1,

where the equality holds if and only if s(z) and ¢(z) are linearly dependent. O

We can describe f~1(0) and f~'(1) as H = U(n — 1)-orbits, respectively. In fact, we
have
F7H0)=U(n—1)/U(1) x SO(n —2) = SU(n —1)/SO(n — 2),
1) =U(n—-1)/SO(n—1) D Sy, Sus.
We already see that
dF (z) = (4mo(s - t), 2mo(¢* — s7)) .

If F(z) = 0, then f(z) = 0 and so, s(x) and t(z) are linearly independent. Lemma 5.3.24
yields that m(s-t) and my(t* — s?) is also linearly independent. Hence z is a regular point
of F'. Indeed, from the above description, though f‘l(O) is a singular orbit of H, F~1(0)
is not a singular orbit of H.

Lemma 5.3.26. One orbit F~1(0) of the action of H on SU(n)/SO(n), which is not a
singular orbit, is a minimal submanifold of SU(n)/SO(n).

Proof. The orbit F~1(0) is equal to f~1(0) and f~'(0) is a singular orbit of H. The
theorem of Hsiang-Lawson [14] yields the result. O

Lemma 5.3.27. The action of H on SU(n)/SO(n) is not a hyperpolar action.

Proof. We can apply [12, Theorem 3.13, p.231] to get the result. (We also refer to [12] to
see the definition of the hyperpolar action.) [

Corollary 5.3.28. The submanifold F~(c), where ¢ is a regular value of F, is not an
equifocal submanifold of SU(n)/SO(n).
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See [31] for the definition of the equifocal submanifold, which is considered as a gen-
eralization of isoparametric hypersurfaces.

Next we focus our attention on f~'(1). From (5.3.3), f~!(1) is nothing but a zero locus
of the section §. In addition, since su(n) = so(n) @ m is a generalized Cartan decompo-
sition, we have a totally geodesic immersion from SU(n)/SO(n) to a real Grassmannian
Gry(su(n)), where p = dimSO(n). Then the same method as in the proof of Theorem
5.2.6 yields

Theorem 5.3.29. The level set f~1(1) is a totally geodesic submanifold of SU(n)/SO(n).

 (Sp(n)/U(n), C")

The holomorphic tangent space is identified with S2C™ as complex U(n)-module,
where S2C™ denotes a symmetric power of C*". Hence, S2C" @ S2C" is regarded as
the complexification of m, which is denoted by m€. Let ¢ : m€ — m®€ be the real
structure. If Y € m is a real vector, then there exists a unique Z € S2C™ such that
Y = (Z,0(Z)) € mC.

Let j : C* — C?" be an invariant quaternion structure. We regard C?" as a left
H-module with j. As U(n)-module, we have C?" = C" @ C". If Z € S?2C"™ is regarded
as a homomorphism Z : C* — C" | then we have o(Z) = jZj : C¥ — C", where the
quaternion structure j is restricted to C"". Consequently, Y € m acts on (u,v) € C*@®C™
in the following way:

Y (u,v) = (o(2)v, Zu),
where Y = (Z,0(Z)) € m€.
We put U =G xx C" and V = G xx C* = U*. With our convention, we have

V”(Lg(y))s = [g’ _U(Z)Wv(gilw)} ) vw(Lg(Y))t - [g, _ZWU(gil'w)] ,

where g € G. For simplicity, we identify ¥ € m with the tangent vector 7(L,Y) to G/K
and Vys and Vyt are abbreviated to —o(Z)t and —Zs, respectively.
Then we get

df (Y) =gu (Vys,s) + gu (s, Vys) = —gu (a(Z2)t,s) — gu (s,0(2)t)
= - hGT‘ (U<Z>7 gV(‘? t) ® S) - hGT (gV<'7 t) & S, O-(Z)) )
where hg, is the Hermitian metric on Gr,,(C?"), which is the target of the totally geodesic

immersion of G/K — Gr,(C?").
Hence we obtain

df'' = s gv(-t) = - (s@gv(-,t) + gv(-,t) ®s).

N —

Consequently, we have
|df? = ([Pt + [(s. 1))
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where (-, -) denotes the pairing between U — G/K and V — G/K. This shows that f is
not an isoparametric function.
We compute

d(s,t)(Y) = —(a0(2)t,t) — (s, Zs) = —(0(Z),t@1t) — (s® s, Z),
where (+,-) in the right-hand-side denotes the obvious pairing. It follows that
d(s,t)=—t-t—s-s.
As a result, we have

(s, t)[* = |s[* + [t[*,
h(d(s,t),df) =— (lsl2 + \t|2) (s,t) = —(s,1),

Moreover, we have
D (Ves,Vet) = —(At, ).

It follows from Theorem 5.3.2 that
Afs,t) = (As,t) =2 (Vs, Vi) + (s, At) = 2(n + 1)(s, 1).
Consequently, we obtain an isoparametric function F' with values in R?:
F = (|5]2 — |t|2,2(s,t)) .

Since (s,t) is also H-invariant, the level sets of F' consists of H-orbits.
We put f=|F|> = (s]” = [t*)" + 4|(s, )"

Theorem 5.3.30. The function f is an isoparametric function on the symmetric space

Sp(n)/ U(n).

Proof. In a similar computation to one in a proof of Theorem 5.3.22, we have
df|> =4f(1—f),

and

Af=202n+1)f —6.
O

We discuss a relation between w € W and f. Let w be an invariant symplectic
form on W = C?" and we do not distinguish between C?"* and C?*". We can consider
w A jw € A2C?". We have an irreducible decomposition A2C?*" = A2C*" & Cw as Sp(n)-
module, and so we define the orthogonal projection my : A2C** — A2C?*". As a U(n)-
module, we have AZC*™ = A2C" @ A2C™ @ su(n)C. Taking a real part, we get the
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orthogonal projection pr : (A2C2")® — (n2Cr @ /\QC”*)R. Hence w A jw determines a
section § of the bundle Sp(n) xy@) (A*C" @ /\QC”*)R. Since
§=lg.pr (g 'mo (wAjw))], geSpn),

we have
§=—-s®@gy(,t)—t®gul:s).

Consequently, we obtain
~ 2 ~
2152 = 4 (|s 2t = |(s, ) = 1= { (15 = 1t1%)" + 4l(s, 012} =1 T.
Since w A jw is invariant under the action of Sp(1) x Sp(n — 1) which is denoted by H,
we have
Lemma 5.3.31. The function f is invariant under the action of H.

~ From the infinitesimal action of H on Sp(n)/U(n) at o, it follows that the action of
H on Sp(n)/U(n) is of cohomogeneity one.

Remark 17. From the viewpoint of Sp(1), the function F' is a moment map for the action
of Sp(1) on Sp(n)/U(n). Hence Sp(n —1) acts on the Kéhler quotient. Indeed, the Kahler
quotient is identified with a flag manifold Sp(n — 1)/S (U(n —2) x U(1) x U(2)).

Next, we determine critical points of f. We have
dft0 =4 (|3\2 — ]t\z) s-gy(-,t) —4(s,t)s* +4(s,t)gv (-, 1) (5.3.6)

Lemma 5.3.32. The set of critical points of f consists of those points in f‘l(O) and
).

Proof. If s and gy (-,t) are linearly dependent, then we have df* = 0 by (5.3.6).
Suppose that s and gy (-, t) are linearly independent. Then, s- gy (-, t), s*> and gy (-, t)?

are linearly independent. It follows from (5.3.6) that df“* = 0 if and only if f = 0.
Since (s,t) = gu (s, gv (-, t)), the Cauchy-Schwarz inequality implies that

FE (sl = 1) + 4lsPleP = (Is” + 14P)* = 1,
where the equality holds if and only if s and gy (-,¢) are linearly dependent. O]
We can describe f ~10) and f ~1(1) as H-orbits, respectively. In fact, we have

F71(0) =Sp(1) x Sp(n — 1)/Sp(1) x U(n — 2) = Sp(n — 1)/U(n — 2),
FH1) = S x Sp(n — 1)/U(n — 1) O So, Sas.

In similar ways in the case of (SU(n)/SO(n), C"), we have
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Lemma 5.3.33. One orbit F~1(0) of the action of H on Sp(n)/U(n), which is not a
singular orbit, is a minimal submanifold of Sp(n)/U(n).

Lemma 5.3.34. The action of H on Sp(n)/U(n) is not a hyperpolar action.

Corollary 5.3.35. The submanifold F~(c), where ¢ is a regular value of F, is not an
equifocal submanifold of Sp(n)/U(n).

Theorem 5.3.36. The level set f~'(1) is a totally geodesic submanifold of Sp(n)/U(n).

* (Gry(R?), Sy)

Since Sy = S ® S5 ® S; ® S5 as Spin(4) x Spin(5)-module, we put U = S; ® S5 and
V =5, ®S5. More precisely, though we need to take a real part of each space, we omit
the notation to indicate it. According to the decomposition

UV =R'®RaR’®so(5)),

we define two orthogonal projections 7y : U®V — R*and 7 : U®V — R*® R®. Note
that R* and R* @ R® can also be considered as the tautological bundle and the cotangent
bundle on Gr,(R?) with our convention.
We have
dis?=2s®t

on Grg(Sg), where s and t are regarded as sections of the tautological bundle and the
universal quotient bundle on Grg(Sy), respectively. Since S ® @) can be regarded as the
cotangent bundle on Grg(Sy), using a totally geodesic immersion i : Gry(R%) — Grg(Sy),
we obtain

df =2mp(s®1).

Lemma 5.3.37. We have
jdf1> =2 (Is[t]* = 6 |mo(s @ 1)[*) -

Proof. First of all, we pay attention on Spin(5)-modules. We identify Spin(5) with Sp(2).
Then S is recognized with the standard representation C* with an invariant symplectic
form w of Sp(2) and we have C* ® C* = Cw & AZC* @ 50(5)€. If u,v € C*, then, under
the decomposition

1 1
URUV=uAv+u-uv, u/\vzé(u@)v—v@u), U'U:§(U®’U—|—U®u),

we have
uNveE Cw®AC, u-veso(5)C.

It follows that
(lul?lv[* = [A(u,v)]?)

N | —

lu A vf? =

64



where h(-,-) is an invariant Hermitian product on C*.
We denote two orthogonal projections by py : A2C* — Cw and pr : A2C* — AZCH,
respectively. It follows from |u A v|? = |po(u A v)|? + |pr(u A v)|? that

[po(u A )[* + [pr(u Av)* = 5 ([ul*o* = [h(u,0)[%) . (5.3.7)

N | —

Since |w|? = 4, we get

1 1
po(u Av) = qw(uv)w,  |po(uAv)l* = 7 lw(u,v)f.

It follows that

(P lof? = 1o, o)) = Flolos )2 (5.3.8)

N —

lpr(uAv)]* =

The subgroup Spin(4) is now identified with Sp, (1) x Sp_(1). Let C% be standard
representations with invariant quaternion structures ji of Sp, (1), respectively. Note that
C2 are equivalent to Si, respectively. We denote by ey, ey the standard basis of C2.
This means that e, e, is a unitary basis with e; = j,e;. The standard basis of C? is
denoted by fi, fo. Let a = €1 ® u; + e @ up be a real vector in C3 @ C*. This yields that

Jur = Uz,

where j is an invariant quaternion structure on C*. We denote a real vector in C% @ C*
by b = fi ® v1 + fo ® vy with ju; = vy. We have

a®b22(6i®fj)®<ui®vj)‘
By definition, we get
mr(a ®b) = Z (e; ® fj) @ pr (u; Avj),

and so,
mr(a @b)* = |pr (us Avy)|*. (5.3.9)

Since a and b are real vectors, we have, for instance,
h(uy,v1) = —h(uy, jvo) = wlug, va).

Consequently, it follows from (5.3.8) that

1
[pr (ur A Ul)|2 = (!U1|2’U1!2 - |w(U17U2)’2) - Z\M(U17U1)|2-

N | —

65



and so, (5.3.9) yields that

1 3
rr(a@b)|* = 5 (lal* + [wof*) (for + [eal®) = 5 > lw(us, v;)[” (5.3.10)
The definition yields that

To(a ®@b) = Z (e: ® fj) @ po (u; Avy), (5.3.11)

and so,
1
mo(a @ b)[* =) [po (i Avy)[* = T > Jwlui,vy)) (5.3.12)
It follows from (5.3.10) and (5.3.12) that

1
mr(a @ 0)|” = Slal’lbl* = 3|mo(a @ DI,

which yields the result. O]

If mo(s @ t) # 0, then it follows that f is not an isoparametric function on Gry(R?).
Since (s @ t) is a section of R* determined by w € SY, we need to see how my(s @ t)
corresponds to w. Note that w ® w is an element of S?Sy the symmetric power of Sy. As
Spin(9)-module, we have a decomposition S2Sy = R & R? & A*R?. Let I : $25y — R?
be the orthogonal projection. We define a Spin(9)-equivariant map « : Sy — R? as

a(w) = I(w @ w).

To describe o : Sy — R explicitly, we use a diagonal subgroup A C Sp_ (1) x Sp_(1) and
regard Sy and R? as A x Sp(2)-modules:

Sy=(CPoc e (C?ech)®, R =Re (5°C’)%e (n2CHT,

where C? denotes the standard representation of A. We use A to define a quaternion
structure on (C2®@ CH™ and so, R @ (52C2)" ¢ R is identified with a scalar field H.
Then we have

Sy=H>@H?>, R’ =Hea (AJCH™.
Using a quaternion structure, we can also show

Lemma 5.3.38. For an arbitrary (u,v) € Sy = H2® H?, a : Sy — R? can be expressed
as:

a(u,v) = c(hu(u,v), pr(u A ju) — pr(v A jv)),

where ¢ is a real non-zero constant and hyg denotes a quaternion hermaitian inner product
2
on H".
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The sections s and ¢ are locally expressed as
s=e1 Qs +e®s, t=[101h+ fo®l,,

where {e1,es} and {f1, fo} are now regarded as local standard frames. Since s and ¢ are
real sections, we have
Js1 =82, Jli =ty

Under the identification Sy = H? @ H?, this yields that
9w =V2(s1,t1) e H2 @ H2, g € Spin(9).
It follows from (5.3.11) and our identification R* = H that
To(s @) = V2hu(s1, 1), (5.3.13)

which is nothing but the section of the tautological bundle corresponding to a(w) (up
to constant) by Lemma 5.3.38. Consequently, f is not an isoparametric function on
Gry(R?), but a new function f := |m(s ® t)|? is an isoparametric function considered in
the previous subsection. We have a subgroup Spin(8) C Spin(9) as an isotropy subgroup
at a(w), which is denoted by H. Of course, f is invariant under the action of Spin(8).
Since |s]? = |s1]? + |s2|? = 2|s1]? and |¢]|? = 2|¢;]?, the Cauchy-Schwarz inequality implies
that

1 1
2 2
imo(s @D < SlsPltf? = < {1 = (Is = ¢%)°}

where the equality holds if and only if |s|* = [¢|* = 3. In particular, the maximum value

of f is £. This yields that la(w)]> = 5. Hence we have
a(u,v) = V2 (hg(u,v), pr(u A ju) — pr(v A jv)). (5.3.14)
It follows that
- ~ 1
fﬁl(O) = G?"4(R8> > S(),SM, fil (g) = GT3<R8).

We define a function F': Gry(R%) — R?:

Fi= (s = 11 7).
Lemma 5.3.39. The function F' is an isoparametric function.

Proof. From Lemma 5.3.37, we get

[ (IsI” = [¢P) | =

{1= (s~ 113" - 67}
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We need to compute g (d (1s|* = [t]*) ,df). Since mo(s ® 1) is a section of the tautological

bundle corresponding to a(w), it follows from (5.3.14) that

df = 4hH(81, tl) & {pT(81 A 82) — pT(t1 A tz)} .

On the other hand, we see that
a (sl = 1) = 2df = mr(s 2 ) =43 (e ® ;) @ pr (s A ;).
It follows from R* = H that

%9 (df, Tr(s ® 75))

=w(s1,t1)g (pr(s1 A s2) — pr(ti Ata),pr (51 A ty))
+w(s1,t1)g (pr(s1 A s2) — pr(ts Ata), pr (s2 Ats))
+h(s1,t1)g (pr(s1 A s2) — pr(ti Ata),pr (51 A ta))
—h(s1,t1)g (pr(s1 A s2) — pr(ti Ata),pr (s2 A ty))

Since F~* (0, 1) = f! (3). we obtain
Lemma 5.3.40. One orbit F—! ( , 8) of the action of H on Gry(R?) is a totally geodesic
submanifold of Gry(R?).

Remark 18. From F~1 (0, §) = f! (%), we can get the well-known fact that Spin(7) /Sp(1)x
Sp(1) = Gr3(R®).

Lemma 5.3.41. The action of H on Gry(R?) is not a hyperpolar action.

Corollary 5.3.42. The submanifold F~*(c), where ¢ is a reqular value of F, is not an
equifocal submanifold of Gry(R?).

5.4 Radon transforms

We obtained isoparametric functions f in the previous section. In the case that the
action of H is of cohomogeneity one, f is invariant under the action of H. Otherwise, f is
invariant under the action of H. In both cases, if we pull back f to G under the natural
fibration 7 : G — G/K, then the pull-back function 7*f is invariant under the action of
H x K on G, where H acts on G on the left and K on the right. Hence, we can push
down 7*f to get a function on H\G.
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To be more precise, we introduce the Radon transform. Let ¢ : G — H\G be a
natural fibration and dp is the normalized Haar measure on H. We use the same notation
to denote the measure on the fiber of ¢ : G — H\G induced by du. We define a Radon
transform R : C*°(G/K) — C*(H\G) for an arbitrary function f on G/K as

R = [ wfdu ceH\G.
$~1(z)
By definition, the Radon transform is a G-equivariant linear map.

5.4.1 The case of cohomogeneity one

Let f = |s|* — & be an isoparametric function defined in the Remark after Theorem
5.3.13. Let {ej, -+ ,en} be an orthogonal basis of a real representation W such that
{w=-ey,---,e,} isabasis of U and {e,11,--- ,en} is a basis of V. By definition, we have

f(x(9)) = |mv (gflw)|2 - %, g €q.

Let {x1, -+ ,xn} be the standard coordinate functions with respect to eq,--- , ey on W.
We get

7 (o7 w) [ = 5 = D mlo ™ w) = 5 D walew)’

and so,
1| & al
N (=182 —1,.\2
R(f) =+ {qzxz(g w?—p Y zalglw) }
=1 a=p+1
If a real representation is replaced by a complex representation, then we have a similar

result.

Theorem 5.4.1. The Radon transform of f in the case of cohomogeneity one is an
isoparametric function on a unit sphere of W which induces an isoparametric hypersurface
of a sphere with two distinct principal curvatures.

5.4.2 The case of cohomogeneity greater than one

We obtain Radon transforms of f on case-by-case computations.
e (SU(n)/SO(n),C") n = 3.
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Let {e1, Jei, -+, en, Je, } be an orthogonal basis of a real representation C" = (R*", J)
such that {w = e1,--- ,e,} is a basis of U and {Jey,---,Je,} is a basis of V. Since
F=(s]2 = [t|%)? + 4g(s, )2, by definition, we have

Fr(@) = (Imo (57 0)[* = v (57 0)[*) +4g (o (97 ) 7 (97))’,

where we identify U with V' in a standard way and g € SU(n). Let {x1,vy1, " ,Zn, Yn}
be the standard coordinate functions with respect to e, Jey, -+ ,e,, Je, on W. It follows
that

R(f)(x,y) = (Z zi(g~ w)? — Zyi(g_lwf) +4 <Z xi(g_lw)yi(g_lw)) .

=1

Theorem 5.4.2. In the case of (SU(n)/SO(n),C") (n = 3), the Radon transform of f is
an isoparametric function defined by Nomizu [25] on a unit sphere of C™ which induces
an isoparametric hypersurface of a sphere with four distinct principal curvatures.

e (Sp(n)/U(n),C?*") n = 2.

Let {e1,je1, -+ ,en,jen} be a unitary basis of a complex representation C?" such that
{w=ey, -+ ,e,} is a basis of U 2 C™ and {je;, - ,je,} is a basis of V =2 C™". Since
F= (s> = [t|2)” + 4|(s, t)[? by definition, we have

f(ﬂ(g)) = (|7rU (g_lw) |2 — ‘7TV (g_lw) ‘2>2 +4 |(7rU (g_lw) , Ty (g_lw)) 2

where g € Sp(n). Let {z1,wy, -+, 2y, w,} be the standard coordinate functions with
respect to ey, Jey, -+ ,e,, Je, on W. It follows that

R(f)(z,w) = (Z |2i(g ™ w)|* — Z |wi(g_1w)|2> +4

i=1 i=1

Y

n 2

> alg  wwi(g T w)

=1

Theorem 5.4.3. In the case of (Sp(n)/U(n),C**) (n = 2), the Radon transform of f
is an isoparametric function on a unit sphere of C* which induces an isoparametric
hypersurface of a sphere with four distinct principal curvatures.

From [9, Satz in §6.1], we have

Theorem 5.4.4. In each case, every isoparametric hypersurface of a sphere in a family

defined by R(f) is homogeneous, in the sense that it is an orbit of the action of isometry
group.

o (Gry(R?), Sy)
We use an identification between Sy and H? @ H? in the previous section. It follows
from (5.3.13) that

R(f)(u,v) = 2|hu(u, v)|" .
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Theorem 5.4.5. The Radon transform off s an isoparametric function on a unit sphere
of So which induces a family of isoparametric hypersurfaces of a sphere with four distinct
principal curvatures. FEvery isoparametric hypersurface in our family is homogeneous.

We will postpone a proof until the last paragraph.
_ Since f is also invariant under H, we can easily obtain a Radon transform of f on
H\G, which is denoted by R(f). In each case, we also have a fibration ¢ : H\G — H\G

with totally geodesic fibers. More concretely, we have
gt cprt, gt S HP! and S — S8
Using the normalized Haar measure on H, we have
3R = R

Since R(f) is constant on the fiber of ¢ : H\G — H\G, it follows from Theorems 5.4.2,
5.4.3 and 5.4.5 that

Theorem 5.4.6. The Radon transform R(f) is an isoparametric function on H\G.

We describe R( f ) in the last case. To do so, we “normalize” f to get an eigenfunction
Since mo(s ® ) is the corresponding section to a(w) 6 R? with |a(w)[* = £, it follows
from the Remark after Theorem 5.3.13 that f = f 15 1s an eigenfunction. Accordmg to
the SO(4) x SO(5) decomposition of R?, we put (4, U) € R'® R5 = RY. Then Theorem
5.4.1 yields that 5|a|? — 4]0|? is an isoparametric function. If « is restricted to the unit

sphere of Sy, we have that ¢ = «, It follows from (5.3.14) that

RN 2 1
R(f)(a(u.r)) = : 5 b, 0 = 4 300 + o = (o, o)}
:_6 {9 P (u, 0)|” = (Juf* + 0f*)*} .
From [9, Satz in §6.4], Theorem 5.4.5 holds. We can directly check that (|u|? + |v|*)? —
9 |hg(u,v)|” is a harmonic function on Sy, but in [9], a polynomial (|u|® + |v]?)?

8 |he (u, v)|? is introduced as an isoparametric function, which is called a Cartan-Miinzner
polynomial.
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