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1 Introduction
Artificial intelligence (AI) is a multifaceted field of computer science that aims to create systems capable of
performing tasks that typically require human intelligence. These tasks include learning, reasoning, problem-
solving, perception, and language understanding. AI systems are powered by algorithms, trained to recognize
patterns within data and make decisions with varying levels of autonomy.

AI technology has proliferated across various domains, transforming data analysis and interaction with
digital systems. AI facilitates real-time translation and natural language processing, enabling computers
to understand and generate human speech. In image processing, AI excels at facial recognition and image
classification tasks. Audio processing has seen AI applications in voice recognition and music composition,
illustrating the technology’s versatility in handling diverse data types and tasks. With the advent of ChatGPT
[220] in 2022, many ordinary people will be able to enjoy the benefits of AI.

Neural networks (NNs) are computational models inspired by the human brain, and they are central to
many state-of-the-art AI applications. NNs are originally developed based on the threshold logic. The initial
model is called perceptron and could learn to connect or associate specific inputs to specific outputs, laying
the foundation for supervised learning. From the success of AlexNet [187] in the ImageNet competition in
2012, NNs became the central technique of AI. Numerous NN architectures have been proposed for image,
language, time series, and other data formats. Recently, foundation models have made it easy to create
task-specific NN models for images and languages. However, there is still no foundation model for time series
data.

Time-series data is a sequence of data points collected or recorded at time-ordered intervals. This type of
data is ubiquitously found in domains such as finance (stock prices), meteorology (weather forecasts), health
(heart rate monitoring), and more. Analyzing time-series data involves understanding patterns over time,
which can be complex because the temporal dimension adds to the data’s inherent variability. NNs for time-
series data have led to advanced applications like predictive modeling and anomaly detection. Time-series
forecasting employs NNs to predict future values based on historical data, which is essential in stock market
analysis and supply chain management. Anomaly detection uses AI to identify unusual patterns that do
not conform to expected behavior. It is crucial for fraud detection and maintaining operational integrity in
manufacturing.

However, most time series data are stored in dead storage and have not been applied by NNs. This
is due to the solid data-specific characteristics of time series data. For image data, characteristic patterns
such as edges and curves are highly versatile, even if the captured objects differ. Because the syntax of
a single language is limited for language data, foundation models have been developed by training a large
amount of high-quality data. For time series data, not only do waveform patterns differ significantly from
one data set to another, but data-specific noise, missing data, unequal intervals, and non-stationarity are
also prominent. What may be considered noise for some time-series data may be considered high-frequency
components or deterministic chaotic trajectories for others. It is essential to deal with the non-stationarity
of time series data in the same domain or task, where dynamics fluctuate as time evolves. Non-stationarity
can be considered a state in which domain shifts are constantly occurring and is difficult to handle. Because
of these characteristics, time series data have been a concern for many machine learning researchers and
practitioners, and many time series data remain idle.

To take advantage of dormant data, creating a framework that is easy to apply is a good idea. To create
such a framework, representation learning (RL) is a set of methods that allows a system to automatically
discover the representations needed for multiple downstream tasks, such as feature detection or classification
from raw data. The primary goal of RL is to transform raw data into a form that is easier to interpret
and process by machine learning models. For example, converting image pixel values to high-level features
like edges, textures, or object parts. RL provides many benefits, such as automatic feature extraction,
feature generalization, and transfer learning. Representation learning reduces the need for domain expertise
and labor-intensive feature engineering by automatically learning the features. Good representations often
capture underlying factors of variation in the data, leading to models that generalize better to new, unseen
data. Learned representations on one task can often be transferred and used to improve performance on
other related tasks.
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Representation learning is currently applied in a broad field, such as natural language processing, computer
vision, and reinforcement learning. In natural language processing, word embeddings like Word2Vec [249, 256]
or GloVe [250] are classic examples where words are represented as dense vectors in a continuous vector space,
capturing semantic meaning. In computer vision, convolutional neural networks (CNNs) such as ResNet [127]
and VGGNet [218] automatically learn hierarchical representations, from edges in the early layers to complex
objects in deeper layers. In reinforcement learning, representation learning helps understand and interpret
complex environments, leading to better decision-making policies. In this field, world models have been
developed based on representation learning. World models refer to a paradigm where an agent constructs
internal models or simulations of the environment it interacts with [116]. These internal models, or "world
models," allow the agent to predict the future states of the environment and the results of its actions, even
without directly interacting with the real environment. The concept was inspired by how humans seem to
simulate potential future scenarios before acting.

Representation learning is also helpful for time-series data. The current situation of building models for
each domain and task can be improved by generalizability through representation learning. This paper focuses
on deep representation learning using neural networks for time series data. Chapter 5 proposes a method
for anomaly detection and period estimation using weight vectors computed inside NNs as representations.
Chapter 6 proposes a learning algorithm that facilitates learning time series representations. Chapter 7
proposes a representation learning method suitable for biomolecular structural data.

This paper is organized as follows. This paper describes neural networks and representation learning,
which are the basis of AI technology, in Chapters 2 and 3, respectively, and outlines representation learning
for time series data in Chapter 4. Chapters 5 to 7 are dedicated to research results using time-structured
representation learning. Chapter 5 proposes an anomaly detection method for quasi-periodic time-series data,
such as the amount of electricity used on a factory production line. Chapter 6 proposes a learning technique
for time series NNs using an ensemble Kalman filter, a nonlinear data assimilation method. In Chapter 7, we
propose a method for extracting slow representations from biomolecular structural dynamics data. Finally,
Chapter 8 summarizes the thesis.

1.1 Notation
Set and Space For a finite set S, |S| represents the cardinality of the set. For a natural number n ∈ N,
Nn = {1, · · · , n} denotes the set of natural numbers less than or equal to n. For natural numbers q, r ∈ N,
qN + r = {qn + r|n ∈ N} denotes the set of natural numbers whose remainder divided by q is r. Sets
R+ = {x ∈ R|x > 0} and R− = {x ∈ R|x < 0} represent the set of real numbers greater than 0, less than 0,
respectively.

Vector and Matrix For a vector v ∈ Rd and a matrix M ∈ Rn×m, vT ∈ R1×d and MT ∈ Rm×n

represents the transpose of the vector and the matrix, respectively. For a vector v = (v1 · · · vd)T ∈ Rd

and a natural number n ∈ N, v◦n = (vn1 · · · vnd )T represents the element-wise power of n. For vectors
v = (v1 · · · vd)T and u = (u1 · · · ud)T ∈ Rd, v � u = (v1u1 · · · vdud)T represents the element-wise product.

For a vector v = (v1 · · · vd)T , ‖v‖ =
√∑d

i=1 v
2
i and ‖v‖1 =

∑d
i=1 |vi| represent the L2 norm and the L1 norm,

respectively. For a vector v = (v1 · · · vd)T ∈ Vd and a scalar function f : V → R, f(v) = (f(v1), · · · , f(vd))T
represents the element-wise mapping.

Id and Od denote the d-dimensional identity matrix and zero matrix, respectively. I and O denote the
identity matrix and zero matrix, respectively, whose dimension depends on context.

Random Variable For a random variableX ∈ X , a function f : X → R, and a distribution p : X → [0,∞),
Ep(X)[f(X)] ∈ R represents the expectation of f(X) regarding to the distribution p(X). For random variables
X ∈ X , Y ∈ Y , a function f : X ×Y → R, and a conditional distribution p(X|Y ), Ep(X|Y )[f(X,Y )] : X → R
represents the conditional expectation of f(X,Y ) regarding to the distribution p(X|Y ).
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Sequence Let X = {xt}Tt=1 be the dx-dimensional T -length observed sequence. For a vector sequence
V = {vt}Tt=1, vt,i represents the i-th element of the vector vt.

6



2 Neural Network
Neural networks (NNs) have become indispensable tools in recent machine learning tasks and mathematical
modeling. NNs were originally modeled after the structure of the human brain. The human brain comprises
over 100 billion neurons, which send and receive electrical signals at their connections to achieve complex
processing. The perceptron is a mathematical model of the human brain and is the basis for the NNs.

This chapter is organized as follows. Section 2.1 describes the basic structure of NNs, the feedforward
neural network. Sections 2.2, 2.3, and 2.4 describe the activation function, loss function, and optimization
methods that are essential for NNs, respectively. Sections 2.5, 2.6, and 2.7 describe learning rate schedul-
ing, regularization, and error backpropagation methods as learning techniques. In the latter of the paper,
Sections 2.8, 2.9, and 2.10 describe convolutional NNs, NNs for sequence data, and the attention mech-
anism, which are the most important architectures among NNs, respectively. Section 2.11 is devoted to
hyperparameter optimization.

2.1 Feedforward Neural Network
A neural network consists of real-valued elements called units, and information propagates through each
element. The model represents a mapping hθ : X → Y from input variables x ∈ X to output variables
y ∈ Y . For example, given the task of predicting ice cream sales based on the next day’s weather forecast,
the parameters θ can be adjusted to provide a mapping from temperature, humidity, and precipitation
probability as input variables to the output variable of expected ice cream sales.

In a feedforward neural network (FNN, MLP: multi-layer perceptron, FCN: fully-connected network) with
nl-th layer, the mapping hθ is a composite of Affine transformations and nonlinear transformations called
activation functions:

ui = f i(W iui−1 + bi), u0 = x, unl+1 = ŷ (2.1)

where ui ∈ Rdhi denotes the i-th hidden unit, W i ∈ Rdhi
×dhi−1 and bi ∈ Rdhi are Affine parameters at the

i-th layer, f i : R → R is the i-th activation function, ŷ ∈ Y is the predicted output. The network parameter
θ = {(W i, bi)}i ∈ Θ are learned to minimize task loss, such as mean squared loss at regression task and
cross-entropy loss at classification task. Figure 2.1 shows a basic FNN architecture. The circles represent
units, and the lines connecting the units represent weight vectors (information propagation). As a reminder,
NN with nl layers means nl number of intermediate layers, nl number of linear transformations, and nl − 1
number of intermediate layers, depending on three patterns literature. Here, we proceed with the discussion
assuming that the number of intermediate layers is nl.

Hidden OutputInput

u1 u2 u3

o = u4

i = u0

Figure 2.1: Basic architecture of neural network
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Figure 2.2: Activation functions and their derivatives

2.2 Activation Function
The following summarizes the activation functions currently commonly used in the hidden layer.

Sigmoid / Tanh unit based AFs Since human neurons are thought to take one only when they fire, the
step function Step(x) = 1 (x ≥ 0); 0 (else) was used in early neural networks. To convey information other
than binary values, sigmoid

Sigmoid(x) =
1

1 + e−x
(2.2)

and tanh

Tanh(x) =
ex − e−x

ex + e−x
(2.3)

functions with bounded value ranges were used.
Sigmoid-weighted linear units (SiLU)

SiLU(x) = x× Sigmoid(x), (2.4)

which are bounded with respect to negative inputs (i.e., the restricted mapping to the negative domain is
bounded), are widely used as an alternative to ReLU, which will be discussed later [85].

Swish
Swish(x) = x× Sigmoid(β × x), (2.5)

a function that takes between linear and ReLU depending on the learning parameter β, is a frequently used
activation function [297].

Rectified unit based AFs When using the sigmoid or tanh functions, there are two major problems:
output saturation and gradient vanishing. Output saturation means the information that can be conveyed
is limited because the value range is bounded. Gradient disappearance is the problem that causes the back-
propagated gradient to become close to zero when multiple layers are stacked. To learn the parameters of a
neural network, the gradients are propagated in sequence, starting with the output layer. If the gradient of
the activation function is less than 1, the value of the gradient decreases exponentially with each successive
layer, and the parameters are hardly updated in the layer closest to the input layer. To solve these problems,
a rectified linear unit (ReLU)

ReLU(x) = max{0, x} (2.6)
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was proposed. As shown in Figure 2.2, the ReLU’s gradient is always 1 in the positive input range and is
resistant to gradient vanishing [266]. However, the function does not completely eliminate gradient vanishing
because the gradient is always zero for negative inputs.

To increase the variability of the derivative, leaky ReLU (LReLU) and parametric ReLU (PReLU)

LReLU(x) = PReLU(x) = pmin{0, x}+max{0, x} (2.7)

were proposed. These functions suppress gradient loss by providing a small slope p ∈ R+ for negative inputs
[237, 128]. LReLU gives a small slope value p, such as 0.01 in advance, while PReLU treats it as a trainable
parameter. The Maxout function, whose output is the maximum of several linear layers, is sometimes used
as an alternative to ReLU. The function is formalized by

Maxout(x) = max
i∈I

xi, (2.8)

where I denote the index set and xi is the output of i-th linear layer.

Exponential unit based AFs The exponential linear unit (ELU) mitigates ReLU’s gradient vanishing
problem while inheriting its saturation for negative inputs. Its function is expressed as

ELU(x) =

{
x, x > 0
α× (ex − 1), x ≤ 0

, (2.9)

where α is the learning parameter and the range of the ELU is [−1,∞) [65]. The negative range of the
function is saturated, making it more robust to noise than LReLU or PReLU.

ELU is extended with a scaling hyper-parameter λ, scaled ELU (SELU) [177]

SELU(x) = λ× ELU(x). (2.10)

The continuously differentiable ELU (CELU)

CELU(x) =

{
x, x > 0
α× (ex/α − 1), x ≤ 0

, (2.11)

an extension of ELU, is also used as an alternative to ELU [19].

AFs for particular tasks There are softplus and softmax functions as activation functions used for specific
tasks. The softplus function

Softplus(x) =
1

β
× log(1 + eβ×x) (2.12)

has a value range of (0,∞) and is used to limit the output to positive values. For example, in the variational
auto-encoder (VAE) described in Section 3.3, designing a network that outputs the standard deviation and
a positive value constraint is essential. The softmax function

Softmax(xi) =
exp(xi)∑
j exp(xj)

(2.13)

is used to restrict the sum to 1. For example, it is used in the output layer of a classification task or the
relative weights in the attention mechanism described in Section 2.10.

2.3 Loss function
Machine learning tasks can be broadly divided into classification, regression, clustering, dimensionality re-
duction, etc., but they all come down to the problem of minimizing a loss function. For example, minimizing
the least-squares loss in linear regression, the binary classification loss in logistic regression, the total distance
from the class center in the k-means method, or the negative covariance matrix norm in principal component
analysis. Since neural networks are also elements of the hypothesis set {hθ : X → Y|θ ∈ Θ}, it is necessary
to provide a loss function that depends on the parameter θ. In this section, we introduce commonly used
loss functions for each task.
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Figure 2.3: Loss functions

Regression Figure 2.3 shows representative loss functions for regression and classification tasks. Commonly
used loss functions for a regression task are as follows:

• The mean squared error (MSE) is given by

MSE(y, ŷ) =
∑
n

(yn − ŷn)
2, (2.14)

where yn and ŷn are the n-th element of ground-truth and predicted values, respectively.

• The mean absolute error (MAE) is given by

MAE(y, ŷ) =
∑
n

|yn − ŷn|. (2.15)

• The Huber loss is given by

Huber(y, ŷ) =
∑
n

{
0.5(yn − ŷn)

2, |yn − ŷn| < δ
δ × (|yn − ŷn| − 0.5δ), |yn − ŷn| ≥ δ

, (2.16)

where δ controls the threshold between MSE and MAE.

Classification Classification tasks also have a set of commonly used loss functions as follows:

• The binary cross-entropy (BCE) used for binary classification tasks measures the difference between
the true labels and the predicted probabilities by

BCE(y, p) = −y log p− (1− y) log(1− p), (2.17)

where y ∈ {0, 1} is the true label and p ∈ (0, 1) is the predicted probability of class 1.

• The categorical cross-entropy (CE) used for multi-class classification tasks is an extension of the binary
cross-entropy for more than two classes:

CE(y,p) = −
C∑
i=1

yi log pi, (2.18)
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Figure 2.4: Gradient descent method

where y ∈ {0, 1}C is the one-hot encoded true label vector and p ∈ ∆C−1 = {p ∈ [0, 1]C |
∑C

i=1 pi = 1}
is the predicted probability vector.

• The hinge loss used primarily with support vector machines (SVM) for binary classification is given by

Hinge(y, f(x)) = max{0, 1− yf(x)}, (2.19)

where y ∈ {−1, 1} is the true label and f(x) ∈ R is the raw output of the classifier.

• The softmax loss is essentially the CE loss applied after a softmax function in multi-class classification.

2.4 Optimization
The neural network learning problem is formulated as a minimization of the expected loss problem

min
θ∈Θ

L(X ,Y;θ) = E(x,y)∼pX×Y [l(y, hθ(x))], (2.20)

where pX×Y is the true joint distribution, hθ : X → Y is a neural network with parameter θ ∈ Θ and
l : Y × Y → R is a loss function. In statistics and machine learning, the problem of minimizing an empirical
loss

min
θ∈Θ

L(X,Y ;θ) = E(x,y)∼p(X,Y )
[l(y, hθ(x))] =

1

N

N∑
i=1

l(yi, hθ(xi)) (2.21)

is generally solved as an alternative to the expected loss. Here, X = {xi}Ni=1, Y = {yi}Ni=1, p(X,Y ) is the
empirical joint distribution, xi ∈ X and yi ∈ Y are the i-th input variable and output variable, respectively.

Since the optimization function L(X,Y ; ·) : Θ → R is nonconvex with respect to the parameters θ, it
is impossible to find an explicit solution. Instead, a method based on the gradient descent method is used,
in which the parameters are repeatedly updated to decrease the objective value. This section outlines the
gradient descent method and then describes its development.

2.4.1 Gradient Descent Method

The gradient descent (GD) method starts with an initial parameter θ ∈ Θ and repeatedly updates at a
constant learning rate η ∈ R+ in the direction of the negative gradient:

θt = θt−1 − η∇L(θ), (2.22)

L(θ) =
1

N

N∑
i=1

l(yi, hθ(xi)), (2.23)
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(a) Higher learning rate lead to vibration
(b) Lower learning rate leads to trapping broader crit-
ical points

Figure 2.5: Bad cases of inappropriate learning rate

where l : X → Y is a loss function (Figure 2.4).
The gradient descent method requires an appropriate learning rate η. A large learning rate causes oscil-

lations near the valleys of the loss landscape, while a small learning rate tends to trap the local optimum
solution (Figure 2.5). The optimal learning rate depends on the case and should be explored in conjunction
with other hyperparameters.

2.4.2 Stochastic Gradient Descent Method

If a gradient descent method falls into a large critical point, it will not update. This is also related to
the fact that neural networks require a huge number of parameters. The parameter dimension of a neural
network is generally several thousand or more, and for GPT-4 [277], which is used in language models, it is
approximately 100 trillion. With such a huge parameter space, there are countless critical points, and it is
easier to fall into a critical point than in other machine learning problems.

To ease the trap of critical points, the stochastic gradient descent (SGD) method, which limits the number
of samples trained at each step, is used in neural network training. The set of samples Bt used for the t-th
training step is called a mini-batch, and the mini-batch set is a subset of the index set of total training
samples NN . Using mini-batches, the updated formula of the SGD method is

θt = θt−1 − η∇Lt(θ), (2.24)

Lt(θ) =
1

|Bt|
∑
i∈Bt

l(yi, hθ(xi)). (2.25)

In general, neural network learning is hierarchically organized into epochs and iterations. The sample size
N is equally divided so that the concentration of mini-batch sets is b (only the last mini-batch set can have
a size less than b), and the training unit using each mini-batch set is called iteration. One equal division
produces b(N − 1)/bc + 1 iterations, and the training unit consisting of these iterations is called an epoch.
Each epoch is a random, minibatch-size non-return extraction from the sample set. Once all samples have
been extracted, the next epoch is started. The neural network is trained by pre-setting the mini-batch size
and the number of epochs.

Since all the following methods are based on SGD, the empirical loss is described in L without dependence
on t, unless otherwise noted. Parameter updates are denoted by

θt = θt +∆θt, (2.26)

and only the difference ∆θt is described.

2.4.3 Momentum Method

The aim of the momentum method is to suppress oscillations around steep valleys in the loss landscape. The
method suppresses oscillations in which the slope alternates between positive and negative values by taking
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over the value of the slope from one period earlier:

∆θt = µ∆θt−1 − (1− µ)η∇L(θ), (2.27)

where µ ∈ [0, 1) is a momentum which commonly set to be 0.5 ∼ 0.99.
Nesterov’s accelerated gradient method [269] is a modified version of the momentum method that changes

the position at which the gradient value is evaluated:

∆θt = µ∆θt−1 − (1− µ)η∇L(θ + µθt−1). (2.28)

2.4.4 AdaGrad

The GD method uses the same learning coefficients for all coordinate directions and cannot handle the case
where landscape sensitivities differ for each parameter. The adaptive subgradient method (AdaGrad) [83]
addresses this problem by adaptively selecting different learning coefficients for each coordinate. The update
rule of AdaGrad is

∆θt,i = − η√∑t
s=1(∇L(θs)i)2

∇L(θ), (2.29)

where θt,i is the i-th element of parameter vector at t-th training iteration. The method adaptively washes the
learning rate according to the sum of past gradient changes for each coordinate, with the effect of increasing
the learning rate in the direction of fewer updates.

2.4.5 RMSProp

AdaGrad is sensitive to initial values because the coordinates are rarely updated once a large gradient is
recorded. To solve this problem, RMSProp [352] uses an exponential moving average of past updates:

∆θt,i = − η
√
vt,i + ε

∇L(θt)i, (2.30a)

vt,i = ρvt−1,i + (1− ρ)(∇L(θt)i)
2, (2.30b)

where v0,i = 0, ρ ∈ (0, 1) is decaying rate, and small ε > 0 suppress divergence.

2.4.6 AdaDelta

RMSProp has the same sensitivity to learning rate as AdaGrad. A reason of the sensitivity is the physical
dimensionality mismatch between ∆θ and ∇L. If the parameters have a length scale, the loss function l
should be a dimensionless length-independent quantity. In AdaGrad and RMSProp, the left-hand side of
the update ∆θ ∼ length, while the right-hand side of the update is a dimensionless quantity, resulting in a
dimension mismatch.

AdaDelta [411] uses an inverse Hessian approximation to address this issue. In contrast to the gradient
descent method, which uses first-order derivatives, the Newton method uses the Hessian, which is a second-
order derivative, and the update can be written as

∆θ = H(θ)−1∇L(θ), (2.31)

where the right-hand side of this equation has a length scale. If the Hessian is approximated by the diagonal
matrix, the Hessian inverse can be approximated by

H−1
ii =

∆θi
∇L(θ)i

. (2.32)

Using this equation, AdaDelta can be formulated as

∆θt,i = −
√
ut−1,i + ε
√
vt,i + ε

∇L(θt)i, (2.33a)
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ut,i = ρut−1,i + (1− ρ)(∆θt,i)
2, (2.33b)

vt,i = ρvt−1,i + (1− ρ)(∇L(θt)i)
2. (2.33c)

2.4.7 SMORMS3

SMORMS3 [99] is a hybrid method of RMSProp and vSGD [322], which is a method that calculates optimal
learning coefficients based on curvature information (second-order derivatives) around the current parameters.
The updated formula of SMORMS3 is

∆θt,i = −min{η, ζt,i}√
v̂t,i + ε

, (2.34a)

ζt,i =
m2

t,i

vt,i + ε
, (2.34b)

mt,i = ρt,imt−1,i + (1− ρt,i)∇L(θt)i, (2.34c)

vt,i = ρt,ivt−1,i + (1− ρt,i)(∇L(θt)i)
2, (2.34d)

ρt,i =
1

1 + st,i
, (2.34e)

st,i = 1 + ζt−1,ist−1,i. (2.34f)

2.4.8 Adam

Adam [173] is a method that takes an exponential moving average of the gradient as well as the square of
the gradient:

mt,i = β1mt−1,i + (1− β1)∇L(θt)i, (2.35a)

vt,i = β2vt−1,i + (1− β2)(∇L(θt)i)
2, (2.35b)

m̂t,i =
mt,i

1− βt
1

, (2.35c)

v̂t,i =
vt,i

1− βt
2

, (2.35d)

∆θt,i = −η m̂t,i√
v̂t,i + ε

, (2.35e)

where β1, β2 ∈ (0, 1) are decaying rate which is commonly set to β1 = 0.9, β2 = 0.999.
The m̂t,i and v̂t,i are unbiased estimators of the gradient and the square of the gradient, respectively,

when the gradient follows a stationary distribution. In fact,

E[v̂t,i] =
1

1− βt
2

(1− β2)
t∑

s=1

(β2)
t−sE

[
(∇L(θs)i)

2
]

= E
[
(∇L(θt)i)

2
]
. (2.36)

Adam is currently one of the most popular optimization methods, with many proposed variants. AdaMax
[425] extends Adam to the infinite-dimensional norm, Nadam [81] introduces Nesterov’s accelerated gradient
method to Adam, RAdam [217] corrects the moving average of the initial moments, AdamW [228, 229]
introduces a weight decay into Adam, and Eve [125] updates based on relative changes in gradient.

2.4.9 AdaSecant

AdaSecant [40] is a method that uses curvature information, exploiting the fact that the secant approximation
of the gradient is an approximation of the Hessian. It is a probabilistic rank-1 quasi-Newton method, and
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the updated law is

gt,i = ∇L(θt)i, (2.37a)
mt,i = βemt−1,i + (1− βe)gt,i, (2.37b)

vt,i = βevt−1,i + (1− βe)(gt,i)
2, (2.37c)

ζt,i =
1

τt,i
, (2.37d)

nt,i = (1− ζt−1,i)nt−1,i + ζt−1,i{(gt,i − g̃t−1,i)(g̃t−1,i −mt,i)}2, (2.37e)

dt,i = (1− ζt−1,i)dt−1,i + ζt−1,i{(gt,i −mt,i)(g̃t−1,i −mt,i)}2, (2.37f)

γt,i = min

{ √
nt,i√

dt,i + ε
, γM

}
, (2.37g)

g̃t,i = βc
gt,i + γt,imt,i

1 + γt,i
+ (1− βc)gt,i, (2.37h)

st,i = gt,i − gt−1,i, (2.37i)
ct,i = (1− ζt−1,i)ct−1,i + ζt−1,ist,i, (2.37j)

cst,i = (1− ζt−1,i)c
s
t−1,i + ζt−1,i(st,i)

2, (2.37k)

∆θt,i = −η


√
∆̄s

t,i + ε√
cst,i + ε

− νt−1,i

cst,i + ε

 , (2.37l)

τt,i = clop

{{
1− (∆̄t,i)

2

∆̄s
t,i

}
τt−1,i + 1 + ε, τm, τM

}
, (2.37m)

∆̄t,i = (1− ζt,i)∆̄t−1,i + ζt,i∆θt,i, (2.37n)

∆̄s
t,i = (1− ζt,i)∆̄

s
t−1,i + ζt,i(∆θt,i)

2, (2.37o)

ν̄t,i = (1− ζt,i)νt−1,i + ζt,ist,i, (2.37p)

where βe, βc ∈ (0, 1).

2.4.10 AMSGrad

The exponential moving average used by Adam and others has the problem that when the gradient information
from a particular sample is important, the gradient in that mini-batch decays quickly and does not converge
to the optimal solution. AMSGrad [303] addresses this problem by retaining the maximum value of the
exponential moving average of the squared gradient:

mt,i = βt,1mt−1,i + (1− βt,1)∇L(θt)i, (2.38a)

vt,i = β2vt−1,i + (1− β2)(∇L(θt)i)
2, (2.38b)

v̂t,i = max{v̂t−1,i, vt,i}, (2.38c)

∆θt,i = −αt
mt,i√
v̂t,i

, (2.38d)

θt = ΠF,diag(
√
vt)(θt−1 +∆θt), (2.38e)

where a feasible set F has bounded diameter D∞ if ‖x−y‖∞ ≤ D∞ for all x,y ∈ F , the projection operator
ΠF,A(y) for a positive definite matrix A is defined as

ΠF,A(y) = argmin
x∈F

‖A1/2(x− y)2‖. (2.39)

AMSGrad’s projection is based on the concept of the proximity gradient method, which suppresses abrupt
changes.
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2.4.11 AdaBound, AMSBound

AMSGrad can improve the problem of unnecessarily large learning rates, but it cannot improve the problem
of unnecessarily small learning rates. AdaBound and AMSBound [230] solve this problem by behaving like
Adam in the early stages and SGD in the late stages. Adam’s adaptive learning rate allows it to learn
quickly but fluctuates wildly even after sufficient progress has been made and generalization errors are not
suppressed. On the other hand, SGD can keep the final generalization error low, but it learns too slowly.
AdaBound and AMSBound achieve both fast learning and low generalization error by changing from Adam
to SGD and AMSGrad to SGD during the learning process.

The updated rule of AdaBound is

mt,i = βt,1mt−1,i + (1− βt,1)∇L(θt)i, (2.40a)

vt,i = β2vt−1,i + (1− β2)(∇L(θt)i)
2, (2.40b)

η̂t = Clip

{
α

vt
, ηl(t), ηu(t)

}
, (2.40c)

ηt =
η̂t√
t
, (2.40d)

θt = ΠF,diag(η−1
t )(θt−1 − ηt �mt), (2.40e)

where ηl : N → [0, α∗] is a non-decreasing function that starts from 0 and converges to α∗ asymptotically,
ηu : N → [α∗,∞] is a non-increasing function that starts from ∞ and converges to α∗. The update rule for
AMSBound is simply to replace vt with v̂t. AdaBound is currently one of the most popular optimization
methods after Adam.

2.5 Learning Rate Scheduling
Optimization methods such as Adam and AdaBound can adaptively determine the learning rate for each
parameter, but the appropriate hyperparameters may differ in the early, middle, and late stages of learning.
Scheduling the learning coefficient eta for each learning stage allows fast learning while avoiding traps to
saddle points.

Decay Schedulers The decay schedulers learn quickly initially and gradually reduce the learning rate to
suppress parameter oscillations. A step scheduler reduces the learning rate at specific intervals:

η = η0 × α⌊t/I⌋, (2.41)

where η0 ∈ R+ is the initial learning rate, t is the current training step, and I is the reducing interval.
Linear, exponential, and polynomial schedulers decrease the learning rate continuously by

η = η0 − α× t, (2.42)

η = η0 × e−k×t, (2.43)

η = η0 ×
(
1− t

T

)p

, (2.44)

respectively, where T is the number of training steps. Figure 2.6(a) shows these schedulings.

Warmup Schedulers Neural network training is often strongly influenced by the initial parameters. In
addition, optimization methods that use past gradient updates are strongly influenced by the parameter
gradients in the initial learning phase. Warmup schedulers slowly bring the initial parameters to good initial
values before learning begins. Linear warmup increases the learning rate linearly from an initial value to a
target value over a specified number of training steps:

η = η0 + (ηw − η0)×min

{
t

tw
, 1

}
, (2.45)
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Figure 2.6: Learning rate schedulers

where ηw and tw represent the target learning rate and the number of warmup steps, respectively.
Slanted Triangular Learning Rates (STLR) [139] first linearly increase the learning rate and then linearly

decay it:

η = η0 + (ηw − η0)×min

{
t

tw
, 1

}
− α×max{tw − t, 0}. (2.46)

Figure 2.6(b) shows warmup schedulers.

Annealing Schedulers Similar to decay schedulers, annealing schedulers gradually decrease the learning
coefficients. Cosine annealing anneals the learning rate by

η = ηm +
1

2
(ηM − ηm)×

{
1 + cos

(
π × t

T

)}
, (2.47)

where ηm and ηM represent the learning rates’ minimum and maximum, respectively.
Cosine power annealing [145] raise cosine function to some power by

η = ηm + (ηM − ηm)×

{
1 + cos

(
π × t

T

)
2

}p

. (2.48)

These schedulers are shown in Figure 2.6(c).
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Figure 2.7: Examples of learning curves

Stochastic Gradient Descent with Warm Resterts Introducing a decay scheduler requires new hy-
perparameters, which need to be adjusted. If the learning rate decays quickly, the system is stuck in a bad
local optimum, while if it decays slowly, learning becomes unstable. Stochastic Gradient Descent with Warm
Restarts (SGDR) [227] addresses this problem by repeatedly decaying and restarting the learning rate. The
scheduler was originally proposed as a form of cosine annealing

η = ηim +
1

2
(ηiM − ηim)×

{
1 + cos

(
π × Rt

Ti

)}
, (2.49)

where ηim and ηiM are ranges for the i-th learning rate, Rt is the number of training steps performed since
the last restart, Ti is the i-th number of training steps. The scheduler decays the learning rate by Ti steps
and then restarts the learning rate to the next ηi+1

M . This form of SGDR is also referred to simply as cosine
annealing. Figure 2.6(d) shows this cosine SGDR and other decay schedulers with restart.

2.6 Regularization
SGD methods consider minimizing the empirical loss, which is a Monte Carlo approximation of the expected
loss for a population. In the infinite limit of the number of training samples, where the training samples
follow the population distribution i.i.d., minimizing the empirical loss asymptotically approaches minimizing
the expected loss, but in general, it suffers from sampling bias with a finite training sample. The empirical
loss for the training sample is called the training error, the empirical loss for the test sample is called the
test error, and the expected loss for the population is called the generalization error.

Machine learning aims to reduce the generalization error, and the training error is suppressed from above
by the generalization error. The difference between the generalization and training errors is called the
generalization gap, and a large generalization gap is called overfitting or overlearning. Figure 2.7 shows
examples of training and testing learning curves. The training error and the generalization gap must be
suppressed simultaneously to reduce the generalization error.

2.6.1 Double Descent

In classical statistical machine learning, a bias-variance trade-off is said to hold between the number of model
parameters and the generalization error. The generalization error is decomposed into bias and variance due
to the training sample and the model’s representativeness. An increase in the number of parameters of
the model implies an expansion of the function space that the model can represent, which lowers the bias,
which is the difference between the best error for an arbitrary measurable function and the best error for
the measurable functions that the model can represent. On the other hand, increasing the representability
of the model increases the dependence of the empirical loss minimization model on the training sample and
raises the variance. There is an optimal number of parameters around which the generalization error is said
to increase.
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This trade-off is often not valid in the case of neural networks. When the size of the network is small,
it behaves in the same way as the bias-variance trade-off, but when it exceeds a certain threshold, the
generalization error is said to start decreasing (Figure 2.8) [267, 26, 25]. This phenomenon is called double
descent and has been proven in machine learning methods such as linear regression and nonnegative matrix
factorization. This is supported by the development of today’s large-scale infrastructure models that require
trillions to 100 trillion parameters.

2.6.2 Early Stopping

Early stopping suppresses generalization error by taking advantage of the upward trend in test error that
occurs when overlearning occurs [287]. Specifically, training is terminated if the test error does not improve
for a set number of epochs in a row as patience. This regularization method is often used due to its simplicity
of implementation cost and usefulness.

2.6.3 Weight Decay

The basis of regularization is to penalize the loss function for the values of its parameters. The method with
L2 penalties commonly used in machine learning

L(θ) =
1

|B|
∑
i∈B

l(yi, hθ(xi)) +
λ

2
‖θ‖2 (2.50)

is called weight decay in the context of neural networks. In general, weight decay applies only to the weight
matrix {W j} that governs the space expansion and contraction, not to the bias vectors {bj}. In neural
networks, the effectiveness of the L2 penalty has been questioned due to double descent, and the debate
continues [417].

2.6.4 Dropout

Dropout [338] randomly disables units in the network with probability p ∈ [0, 1) at training time. The
operation in the j-th layer of the NN is

uj =W j(mj � uj−1) + bj , (2.51)

where the i-th element of the j-th mask vector mj
i ∼ Be(p) follows a Bernoulli distribution Be(p) (Fig-

ure 2.9(a)). By randomly sampling the mask variable every iteration, the network’s degrees of freedom are
reduced during training to suppress overfitting. It also mitigates the problem of training bias toward a
particular unit and improves inference accuracy by viewing the network as an ensemble of multiple networks.
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Figure 2.9: Dropout and drop-connect

Dropout uses all units with p times the joint weights during inference. MC-dropout [101] also stochastically
invalidates the units during inference so that it can be viewed as a Monte Carlo average of the predictions of
multiple networks, allowing inference to take into account uncertainty. Similar methods to Dropout include
drop-connect (Figure 2.9(b))[369], which randomly disables edges, and stochastic maximum pooling [412],
which pools stochastically.

2.6.5 Batch Normalization

Machine learning often suffers from the covariate shift problem, where data distribution diverges between
training and inference. In neural networks, there is the problem of internal covariate shift, in which covariate
shift occurs between layers. Since the input vectors follow a generative distribution p(x), the output vectors
in the intermediate layers also follow the generative distribution p(uj). Each generative distribution in the
intermediate layers is updated to fit the data, but they interfere with each other, making it difficult to learn
each generative distribution.

Batch normalization (BN) [152] addresses this problem by normalizing the outputs in each layer and
binding them to follow a particular generative distribution. For the middle output uj before applying the
activation function at the j-th layer, BN computes

µj =
1

|B|
∑
i∈B

uj
i , (2.52)

(σj)◦2 =
1

|B|
∑
i∈B

(uj
i − µj)◦2, (2.53)

ûj
i = γj uj

i − µj√
(σj)◦2 + ε

+ βj , (2.54)

where γ and β control the distribution of the middle output at the j-th layer.
BN is frequently used in image recognition networks, but its theoretical effectiveness has not been clarified.

There are several effects: smoothing the loss function [318], randomness for finite samples [231, 183], and
stabilizing the residual connection in the early stages of learning by making it dominant [73].

2.6.6 Layer Normalization

BN has a problem of instability when the batch size is small. To address this problem, layer normalization
(LN) [13] is a method of normalization in the unit direction:

µi =
1

dhj

dhj∑
j=1

uj
i , (2.55)
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(σi)
◦2 =

1

dhj

dhj∑
j=1

(uj − µj)◦2, (2.56)

ûj
i = γj uj

i − µi√
(σi)◦2 + ε

+ βj . (2.57)

Layer normalization is often used in language models such as Transformer [365].

2.7 Backpropagation
Although the parameter optimization method was outlined in Section 2.4, the respective parameter gradients
for the losses were essential. The backpropagation method is an efficient way to obtain the gradients of each
parameter. The method is based on the chain rule of derivatives, and its ease of use and usefulness triggered
the second AI boom in the 1980s [311].

In this section, the previous notation is slightly modified for the sake of explanation. The composition
of linear transformations and activation operations at each layer is broken down into two operations and
described as

ul =W lzl−1 + bl, (2.58)

zl = f l(ul), (2.59)

where ul, zl ∈ Rdhl are hidden units before and after, respectively, operating the activation function at the
l-th layer.

The loss gradient for the parameter W l
ij is

∂L

∂W l
ij

=
∂L

∂uli

∂uli
∂W l

ij

= δliz
l−1
j , (2.60)

∂L

∂bli
=
∂L

∂uli

∂uli
∂bli

= δli, (2.61)

δli :=
∂L

∂uli
. (2.62)

The vector and matrix form of this equation is

∂L

∂W l
= δl

(
zl−1

)T
, (2.63)

∂L

∂bl
= δl. (2.64)

This means that the gradient of each parameter can be calculated from the gradient vectors {δl}. The
gradient vectors can be computed for nl-th layer neural network by

δl = diag{(f l)′(ul)}(W l+1)T δl+1, for l = 1, · · · , nl, (2.65)

δnl+1 =
∂L

∂ŷ
. (2.66)

This recurrence formula of the gradients {δl} yields each parameter gradient by back-propagating δ from the
output layer to the input layer.

Since back-propagation of gradients is essential in NN, a differentiable mechanism is preferred. Many
mechanisms have been proposed, such as the Sinkhorn algorithm [68, 319] used in optimal transport (e.g.,
Wasserstein GAN [12]) and differentiable data augmentation [167, 423], that allow end2end learning using
only differentiable arithmetic mechanisms.
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Figure 2.10: Convolutional operation

2.7.1 Gradient Vanishing Problem

The gradient backpropagation calculation is linear from the output layer to the input layer, so the gradient
diverges when the gradient in each layer is large and vanishes when the gradient is small. This problem is
called the gradient vanishing problem and is the main reason why deep neural networks with 20 or more
layers were considered difficult. Currently, activation functions such as ReLU and ELU, batch normalization,
weight initialization, and residual connections are used to alleviate this problem, making it possible to train
deep neural networks such as ResNet-152 [127], which has 152 layers.

2.7.2 Automatic Differentiation

The backpropagation method is a type of automatic differentiation. Automatic differentiation is a method
that automatically generates a procedure for computing the gradient of a directed acyclic graph from a
procedure for computing an operation ŷ = hθ(x). In packages such as PyTorch [283], and TensorFlow [1],
which handle NN, the computational graph is constructed behind the scenes using automatic differentiation
to compute forward propagation and gradient backpropagation.

2.8 Convolutional Neural Network
Humans have a high ability to recognize patterns from visual information. Electrical signals of visual infor-
mation received by the retina are input to the primary visual system via the lateral pallidum in the thalamus
while maintaining the flat structure of the image. This is where the first step of pattern recognition takes
place.

Two types of cells respond to specific patterns: simple and complex. Simple cells have a narrow receptive
field and fire only when a pattern is present in a specific area, while complex cells have a wide receptive field
and fire when a pattern is present anywhere in the image plane. Complex cells comprise a bundle of simple
cells with local receptive fields. Convolutional neural networks (CNNs) were born from this hierarchical
hypothesis.

CNN is a widely used architecture in the field of image recognition and is the spark for the current third AI
boom. In 2012, AlexNet [187], which uses CNNs, showed overwhelmingly superior recognition performance
to conventional machine learning methods in the ILSVRC image recognition competition [313], and CNNs
and deep learning have suddenly become widely studied.

2.8.1 Convolutional Layer

CNNs can be applied to a wide range of data, including time series, images, and point clouds, but for
simplicity, we will focus on 2D CNNs for image data. Image data is a third-order tensor X ∈ RH×W×C with
size H ×W and C channels. For example, an image using common RGB colors has three channels: R, G,
and B.

The convolutional layer transforms the input tensor into an output tensor using local linear operations
and activation functions. For the input tensor Zl−1 ∈ RHl−1×Wl−1×Cl−1 of the l-layer, the output tensor of
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Figure 2.11: Convolution with stride S = 2 Figure 2.12: Convolution with padding P = 1

the layer with kernel size Kl ∈ N is

U l
ijk =

Cl−1−1∑
c=0

Kl−1∑
p,q=0

Zl−1
i+p,j+q,cW

lpqc
k +Bl

ijk, (2.67)

Zl = f l(U), (2.68)

where W l ∈ RK×K×Cl−1×Cl is the l-th weight tensor (slightly abuse of notation, weight and width are both
denoted by W ), Bl ∈ RHl×Wl×Cl is the l-th bias tensor, f l : R → R is the l-th activation function. The
output height Hl and output width Wl is determined by

Hl = Hl−1 −Kl + 1, Wl =Wl−1 −Kl + 1. (2.69)

Figure 2.10 shows the convolution operation when the input/output channels are 1, the input height and
width are 3, and the kernel size is 3. Local information is extracted at each coordinate of the output image
by shifting a filter with a receptive field of only the kernel size. Adding convolution layers combines the
information from each local receptive field to capture complex patterns, such as complex cells.

2.8.2 Stride

In normal filtering, the filter is moved one pixel at a time, but stride is used to capture image features more
roughly. Stride Sl ∈ N means that the filter is moved by skipping an extra pixel by Sl − 1 (Figure 2.11), and
the output tensor is

U l
ijk =

Cl−1−1∑
c=0

Kl−1∑
p,q=0

Zl−1
Sli+p,Slj+q,cW

lpqc
k +Bl

ijk, (2.70)

where the output image size is

Hl =

⌊
Hl−1 −Kl

Sl

⌋
+ 1, Wl =

⌊
Wl−1 −Kl

Sl

⌋
+ 1. (2.71)

2.8.3 Padding

Normal convolution always results in a smaller image size, which can be a problem in image processing
techniques. Padding addresses this problem by expanding the image before convolution (Figure 2.12). The
image size after convolution of padding Pl ∈ N is

Hl =

⌊
Hl−1 −Kl + 2Pl

Sl

⌋
+ 1, Wl =

⌊
Wl−1 −Kl + 2Pl

Sl

⌋
+ 1. (2.72)
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Figure 2.13: Convolution with dilation D = 2
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Figure 2.14: Pooling layer

There are several types of padding: zero-padding, which fills the surrounding area with zeros; replica-padding,
which extrapolates the pixel value of the most surrounding area; reflect-padding, which wraps the pixel value
at the most surrounding area; and circular-padding, which considers the pixel value to appear periodically.

2.8.4 Dilation

When the image size is large, it is necessary to increase the kernel size or pile up multiple convolution layers
to expand the receptive field. The former makes it difficult to capture fine information, while the latter
increases the learning difficulty. Dilated convolution captures fine structures while expanding the receptive
field by "dilating" the filter (Figure 2.13). The output tensor of dilated convolution with dilation size Dl is

U l
ijk =

Cl−1−1∑
c=0

Kl−1∑
p,q=0

Zl−1
Sli+Dlp,Slj+Dlq,c

W lpqc
k +Bl

ijk, (2.73)

The output image size of the dilated convolution is

Hl =

⌊
Hl−1 −Dl(Kl − 1)− 1 + 2Pl

Sl

⌋
+ 1, Wl =

⌊
Wl−1 −Dl(Kl − 1)− 1 + 2Pl

Sl

⌋
+ 1. (2.74)

2.8.5 Pooling Layer

The pooling layer is a layer that makes the local patterns captured by the convolution layer locally position-
invariant. Since the pooling layer plays the role of a complex-type cell that bundles local patterns, it is
essentially parameter-free. Commonly used pooling methods are max pooling and average pooling, but there
are also extensions of these methods, such as LP pooling and stochastic pooling, which samples representative
values with relative probability when the input is positive (Figure 2.14). Max pooling, average pooling, and
LP pooling with kernel size Kl, stride Sl and dilation Dl are computed by

U l
ijk = max

0≤p,q≤Kl−1
Zl−1
Sli+Dlp,Slj+Dlq,k

, (2.75)

U l
ijk =

1

(Kl)2

Kl−1∑
p,q=0

Zl−1
Sli+Dlp,Slj+Dlq,k

, (2.76)

U l
ijk =

(
1

(Kl)2

Kl−1∑
p,q=0

(Zl−1
Sli+Dlp,Slj+Dlq,k

)P

)1/P

, (2.77)

respectively.
Average pooling that matches the input image size with the kernel size is called global average pooling

(GAP). The pooling is frequently used in the final output layer of a CNN to ensure that the features are
location-invariant.
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Figure 2.15: Comparison of normalization methods

2.8.6 Pointwise / Channel-wise Convolution

Convolution with a kernel size of 1 × 1 is called pointwise convolution, which aggregates information in the
channel direction. The convolution is used to convert the number of channels or to obtain pixel-by-pixel
features and is utilized in well-known CNN architectures such as ResNet [127].

Group-wise convolution divides the channels NCl
into groups {Cg

l }g and performs the usual convolution
operation for each group. The convolution is formulated by

U l
ijk =

∑
c∈Cg

l−1

Kl−1∑
p,q=0

Zl−1
Sli+Dlp,Slj+Dlq,c

W lpqc
k +Bl

ijk, k ∈ Cg
l . (2.78)

The convolution is used when different groups are expected to acquire different features or when architectures
separate in the middle of the process.

In group-wise convolution, when each group has only one element, it is called channel-wise convolution.
The convolution is useful for acquiring spatially oriented features without interference from other channels
since the convolution operation is performed for each channel. Instead of the usual convolution, channel-
wise convolution and pointwise convolution can be applied in pairs to reduce the computation order from
O(K2ClCl−1) to O(K2Cl−1 + ClCl−1).

2.8.7 Upsampling / Transposed Convolution

In a normal CNN, the number of pixels monotonically decreases as the image input to the CNN propagates
inside the CNN, but for some tasks, it may be desirable to increase the number of pixels. Super-resolution,
which transforms a low-resolution image into a high-resolution image, is a typical example [197, 206, 415,
164, 56, 198]. In semantic segmentation, which classifies the class to which each pixel belongs, the structure
of reducing the number of pixels once and then enlarging it is often used [308, 107, 374, 375, 58, 18]. The
generative model described in Chapter 3 uses an architecture that generates a larger real image from a smaller
image.

The simplest way to increase image size is to upsampling and interpolating in pairs. Pixel values are
placed at r pixel intervals, and the pixels in between are interpolated.

The currently popular method without interpolation is transposed convolution [332]. Ignoring the bias
term, the output vector u ∈ RClWlHl is always represented by

u =Wz, (2.79)

where z ∈ RCl−1Wl−1Hl−1 is the input vector and W ∈ RClWlHl×Cl−1Wl−1Hl−1 is the sparse weight matrix.
Using the transposed matrix WT , we can consider a form in which the input and output are swapped, cor-
responding to the usual formula for the back-propagation of convolution layers. The transposed convolution
is equivalent to the pair of upsampling and normal convolution.

2.8.8 Normalization of Convolutional Layer

The batch normalization introduced in subsection 2.6.5 is often used in convolutional layers. For a mini-batch
size N , number of channels C, and number of pixels H,W , the normalization methods normalize within the
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blue region shown in Figure 2.15. The mathematical expressions are given by

• Batch normalization [152]:

µc =
1

NHW

∑
n,i,j

unijc, (2.80)

σ2
c =

1

NHW

∑
n,i,j

(unijc − µc)
2, (2.81)

ûnijc = γc
unijc − µc√
σ2
c + ε

+ βc, (2.82)

where βc, γc ∈ R are affine parameters at the c-th channel.

• Layer normalization [13]:

µn =
1

CHW

∑
i,j,c

unijc, (2.83)

(σn)2 =
1

CHW

∑
i,j,c

(unijc − µn)2, (2.84)

ûnijc = γ
unijc − µn√
(σn)2 + ε

+ β. (2.85)

• Group normalization [391]:

µn
g =

1

|Cg|HW
∑

i,j,c∈Cg

unijc, (2.86)

(σn
g )

2 =
1

|Cg|HW
∑
ijc

(uni,j,c∈Cg
− µn

g )
2, (2.87)

ûnijc = γ
unijc − µn

G(c)√
(σn

G(c))
2 + ε

+ β, (2.88)

where {Cg}g are partition of C channels i.e. NC =
∪

g Cg and Cg ∩ C ′
g = ∅ (g 6= g′), G : c 7→ g is the

assigning map.

• Local contrast normalization (divisive normalization) [233]:

µn
ij =

1

C|N (i, j)|
∑

c,(i′,j′)∈N (i,j)

wi′j′cu
n
i′j′c, (2.89)

(σn
ij)

2 =
1

C|N (i, j)|
∑

c,(i′,j′)∈N (i,j)

wi′j′c(u
n
i′j′c − µn

ij)
2, (2.90)

ûnijc =
unijc − µn

ij√
(σn

ij)
2 + ε

, (2.91)

where N (i, j) are neighbors of the (i, j)-th pixel and {wi′j′c}i′j′c are weights which have a maximum
value at the center and decreases to the periphery.

• Instance normalization [360]:

µn
c =

1

HW

∑
i,j

unijc, (2.92)
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Figure 2.16: Representative CNN architectures. "k×k conv, c" means convolution layer with kernel size k and
c channels, "/2" means pooling with stride 2 and kernel size 2. "5 x 5, norm" means contrast normalization
layer with neighbor size 5, "fc, c" means fully-connected layer with c hidden units.

(σn
c )

2 =
1

HW

∑
i,j

(unijc − µn
c )

2, (2.93)

ûnijc = γc
unijc − µn

c√
(σn

c )
2 + ε

+ βc. (2.94)

2.8.9 Representative Architecture

The structural design of CNNs has evolved from AlexNet [187], which sparked the third AI boom, to VGGNet
[218], an improved version, to ResNet [127], one of the modern basic structures. AlexNet (Figure 2.16(a))
is the first CNN to successfully perform large-scale object recognition in a system comparable to humans.
VGGNet (Figre 2.16(b), (c)) has evolved from AlexNet to a deeper, 16∼19-layer system.

ResNet (Figure 2.17) employs residual connections and batch normalization to significantly increase the
number of layers. A residual connection is an operation that adds the current feature to the output of several
layers later and is used within the res-block. Global average pooling is employed before the fully connected
layer to convert to position-invariant features. ResNet is called ResNet-34 when the basic structure is used
as a res-block and ResNet-50 when the bottleneck structure is used, with (N1, N2, N3, N4) = (3, 3, 5, 2).
Using the basic structure with (N1, N2, N3, N4) = (2, 1, 1, 1), ResNet-18; using the bottleneck structure
with (N1, N2, N3, N4) = (3, 3, 22, 2), ResNet-101; using the bottleneck structure with (N1, N2, N3, N4) =
(3, 7, 35, 2), ResNet-152. The bottleneck structure can capture a wider variety of features by increasing the
number of channels in a block without increasing the computational complexity through 1× 1 convolution.
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Figure 2.18: Basic architecture of recurrent neural network

2.9 Networks for Sequential Data
In this section, we deal with sequential data represented as X = {xt}Tt=1. Sequential data includes time-series
data such as hourly temperature and precipitation, string data corresponding to input text such as ChatGPT
[424], and voice data for smart speakers. Common basic structures such as recurrent neural networks (RNNs)
[151, 310, 61, 135], temporal convolutional networks (TCNs), and transformers [365] are used in all cases.

2.9.1 Recurrent Neural Network

Ignoring time transitions, recurrent neural networks (RNNs) are a generic term for NNs with an internally
directed closed path, which, when expanded, can be regarded as NNs that share parameters at each time
point (Figure 2.18). RNNs include time delay NNs (TDNN) [368], echo state networks (ESN) [158], and long
short-term memory (LSTM) [135].

An RNN is formulated as

ht = fh(W xxt +Whht−1 + bh), (2.95)
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yt = fy(W yht + by), (2.96)

where fh and fy are activation functions, ht ∈ Rdh is hidden vector at time t, yt ∈ Rdy is output vector at
time t.

The final output of RNN varies depending on the task. In the case of a time series forecast, such as a
temperature time series, the goal is to output the forecast value x̂t+1 at the next time point as yt, and for
practical use, the forecast value can be used as the input for the next time point to allow forecasting to any
future time point. In the case of predicting a class from T inputs, such as document classification, the loss
is calculated based on the output yT at the last time point. In tasks such as document classification, where
inference is performed after a batch of sequential data is given, bi-directional RNNs (bi-RNNs) [325] are often
used to integrate sequential data with the output of RNN input in the reverse direction.

2.9.2 Backpropagation Through Time

RNN training is computed by the error back-propagation method as with other networks. The backpropa-
gation through time (BPTT) method [385, 383] is an error backpropagation method for RNNs.

For simplicity of notation, let

ht = fh(ut), ut =W xxt +Whht−1 + bh, (2.97)

yt = fh(vt), vt =W yht + by, (2.98)

be used. The BPTT method calculates the gradient vector of the backpropagation from the chain rule of
differentiation as

δvt =
∂L

∂vt
= δyt (f

y)′(vt), (2.99)

δut =
∂L

∂ut
= δht (f

h)′(ut), (2.100)

δht =
∂L

∂ht
= (W y)T δvt + (Wh)T δut+1. (2.101)

Figure 2.19 shows the schematic flow of the gradients in the method.

2.9.3 Long Short-Term Memory

RNN reflects the output gradient using the BPTT method, but due to the gradient vanishing problem, only
about ten-time points are transmitted. Long short-term memory (LSTM) [135] is designed to retain memory
over a long period of time.
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Figure 2.20 shows the architecture of LSTM. The network consists of the memory cell and the three gates.
The cell ct ∈ Rdh is responsible for storing the state and solving the gradient vanishing problem. The forget
gate gf

t ∈ Rdh forgets memories that are no longer needed according to the current input or past states. The
input gate gi

t ∈ Rdh adjusts the amount of memory in the cell according to the current input and the past
state. The output gate go

t ∈ Rdh adjusts the transmission to the outside according to the current input and
the past state. These are formulated by

gi
t = σ(W i,xxt +W i,hht−1 +W i,cct−1), (2.102)

ut = f(W xxt +Whht−1), (2.103)

gf
t = σ(W f,xxt +W f,hht−1 +W f,cct−1), (2.104)

ct = gi
t � ut + gf

t � ct−1, (2.105)

go
t = σ(W o,xxt +W o,hht−1 +W o,cct), (2.106)

ht = go
t � g(ct), (2.107)

where σ : R → [0, 1] is the sigmoid function, f and g are activation functions which are tanh function mainly
used. Propagation from the memory cell to the gate, called peephole coupling, controls the gate by looking
into its internal state and may be omitted. Each gate takes a value in [0,1] to control the amount of forgetting
or input/output.

LSTM is a complex calculation and, therefore, computationally expensive. The update gate RNN
(UGRNN), gated recurrent unit (GRU) [61], and intersection RNN (+RNN) [66] focus on the forget gate,
which is said to be the most important part of LSTM [113, 104], to reduce computational complexity. Recur-
rent Kalman networks (RKNs) [23] and particle filter RNNs (PFRNNs) [236], which utilize sequential data
assimilation methods such as Kalman filters [166] and particle filters [176, 111], have also been proposed.

2.10 Attention Mechanism
Attention mechanisms are a core architectural element of NN and are the foundation of large-scale language
models such as GPT [277] and BERT [75]. Figure 2.21 shows the basic structure of the attention mechanism.
The architecture returns an output from query, key, and value variables. When a new query comes in, it
searches for keys in the dictionary and returns the value corresponding to the key with the highest match to
the query. In mathematical terms, this corresponds to returning a weighted sum of value vectors {vi} based

30



k1

k2

k3

k4

k5

q
Softmax

s1

s2

s3

s4

s5

v1

v2

v3

v4

v5

a

Figure 2.21: Attention mechanism

Attention

X

Q K V

Attention

X

Q K V

X′ 

(a) Cross-attention (b) Self-attention

A A

Figure 2.22: Cross-attention and self-attention

これ は ペン です <BOS> This is a

This is a pen

pen

<EOS>
Encoder

Decoder

Figure 2.23: Traditional Seq2Seq architecture

on the relative similarity of the query vector q to the key vectors {ki}. This is formulated by

K =

kT
1
...

kT
N

 , V =

vT
1
...

vT
N

 , (2.108)

a = softmax(qTKT )V, (2.109)

where ‘softmax’ is the softmax function which restricts the column sum to one.
Attention mechanisms used in NN can be broadly classified into cross-attention (source-to-target atten-

tion) and self-attention. Figure 2.22 shows the difference between the two types of attention. Cross-attention
generates a key matrix K and a value matrix V from the same internal input X, and a query matrix Q
from the external input X ′. This attention is intuitive, given the computer-mimicking mechanism denoted
above. Self-attention generates three matrices from the same internal input X. This attention implies that
the input matrices are updated according to the relationships within the same input and are used in many
modern architectures, including Transformer [365].

2.10.1 Seq2Seq

The Attention mechanism was originally proposed as an extension of the sequence transformation model
Seq2Seq [345, 14]. The original Seq2Seq is a model that transforms an input series into an output series after
it has been reduced to a single vector. Figure 2.23 shows an overview of the model. Here, we consider a
Japanese-to-English machine translation task. The Encoder converts the Japanese input “これはペンです"
into an embedded vector corresponding to each word, which RNN processes to obtain a hidden vector. From
that vector and the first input <BOS> on the decoder side (which means the beginning of a sentence), the
first output “This" is obtained. The output is treated as the next input, and the next output “is" is obtained.
This is repeated until <EOS>, meaning the end of the sentence, is produced; the machine translation is
complete at this point.
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Seq2Seq cannot store long-term information as the series length increases, resulting in decreased accuracy.
Seq2Seq with attention generates a query vector from the hidden vectors at each time point in the decoder
and crosses it with the key-value vector in the encoder (Figure 2.24). This attention allows each input of the
decoder to correspond to the required input of the encoder, which improves accuracy for long-term series.

2.10.2 Transformer

Transformer [365] was originally developed for machine translation tasks in the vein of Seq2Seq, but it is now
effective for almost all tasks involving language, and its application to non-language data such as images and
graphs is also popular. Because of its order equivalence, its architecture can be easily applied to aggregate
data other than sequential data. This means that the order of the outputs only changes when the order of
the inputs is switched.

The architecture is shown in Figure 2.25. The vector corresponding to each point in the input matrix X
to each attention in the architecture is called a token. The Transformer learns the relationships among the
tokens by an attention mechanism and propagates them to the next layer. Assuming a machine translation
task, each structure in the architecture is described step by step.

Embedding The embedding layer transforms each word into a vector of fixed dimensions, such as 784
dimensions. After one-hot encoding, a vector of the desired dimension is obtained by converting to the linear
layer. This transformation of words into vectors is called distributed representation and has been studied
in the fields of cognitive psychology and neuroscience. This is because the human brain can remember new
events and concepts by associating them with known events and concepts based on their similarities. On the
other hand, in the field of natural language processing, the distribution hypothesis [90, 122], which states
that the meaning of a word depends on the surrounding words, was proposed, and these fields were combined
to propose an initially distributed representation based on principal component analysis and latent Dirichlet
allocation [34].

With the spread of neural networks, the acquisition of distributed representations by skip-gram and
CBOW became mainstream [249, 256]. CBOW acquires the distributed representation of the features in
front of the output layer by solving the task of finding the current word from surrounding words masking the
current word, while skip-gram acquires the distributed representation of the features in front of the output
layer by solving the task of finding the current word from words in front of the output layer. The Transformer
obtains the initial embedding representation by back-propagating errors to the embedding layer.
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Positional Encoding Although the Transformer can receive set data from ordinal equivalence, it was
originally mainly applied to series data, so positional encoding (PE) was used to add time information. The
encoding uses a vector pt ∈ Rdh corresponding to the time information, which is added to the input xt + pt

or concatenated to make [xt,pt]
T .

The PE vector can be obtained by fixing the operations in advance or by automatically determining them
in training [103, 75, 294, 295, 38, 277]. In the former case, sinusoidal waves [365] are often used to set

(pt)j =

 sin
(

t
100002j/dh

)
, j ∈ 2N,

cos
(

t
100002j/dh

)
, j ∈ 2N+ 1.

(2.110)

This vector stores a sine wave with a different frequency for each element.

Multi-head Attention The attention mechanism can be expressed as

A(Q,K, V ) = softmax

(
QKT

√
dh

)
V, (2.111)

for a query matrix Q ∈ RT×dh , a key matrix K ∈ RT×dh , and a value matrix V ∈ RT×dh . The weight
matrices WQ,WK ,WV to transform from the input matrices X,X ′ to be multiplied later can be expressed
as Q = X ′ and K = V = X. Since we decided to apply the matrices later, the output of the attention
mechanism can be expressed as

A = A(QWQ,KWK , V WV ). (2.112)
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In multi-head (MH) attention, H attention computations are performed in parallel, each attention h is
called a head and is computed as

headh = A(QWQ
h ,KW

K
h , V WV

h ). (2.113)

These head results are combined, and the output of the multi-head attention is

A = AMH(Q,K, V ) = [head1, · · · , headH ]WO. (2.114)

Masked Multi-head Attention The Transformer inputs the true outputs to the decoder during training
to allow fast parallel computation. Masking input parts that should not be visible enables parallel computa-
tion without cheating. For example, at “This" in the previous translation example, “is", “a", “pen", <EOS>
are masked and only <BOS>, This is visible. This ensures that the output is equivalent to that obtained by
executing in series without masking. The masked MH-attention is an attention mechanism that guarantees
parallel computation on the decoder side by masking a part of the input series.

2.10.3 Vision Transformer

Transformers, which first appeared in the field of natural language processing, have flowed into the field of
imaging and are being actively studied under the name Vision Transformer (ViT). Figure 2.26 shows the
architecture of ViT. ViT divides the input image into small square regions called patches and uses a vector
obtained by linearly transforming each patch as a token. The class tokens are then added to the vector and
input to the Transformer encoder to obtain features that can be applied to downstream tasks such as class
classification.

ViT is used for a wide range of image-based tasks such as image classification [387, 69, 409, 413], semantic
segmentation [394, 374, 375, 58, 18], pose estimation [402, 41, 216, 398, 399, 400, 420], and depth estimation
[299, 330, 29, 165, 410]. Many derivative methods have been proposed, such as the Swin Transformer
[224, 223], which improves on ViT’s windowing method, and DAT [392], which realizes deformable attention.

2.10.4 Transformers for Time-series Modeling

Transformers are also frequently used for time-series tasks such as time-series forecasting [204, 426, 175, 389,
390, 427, 386, 207, 209, 349, 219, 288, 222], time-series classification [353, 138, 333], and event detection
[382]. The disadvantage of Transformers is their high computational and memory complexity, which is of
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the order O(T 2), i.e., the square of the time series length T . LogTrans [204] reduces the computational com-
plexity to O(T log T ) through a sparse bias using time causal convolution. Informer [426] and Reformer [175]
similarly achieve O(T log T ) computational complexity by limiting computation to elements with high query
and key similarity. Autoformer [389] reduces the computational complexity to O(T log T ) by using seasonal
and trend decomposition. On the other hand, there are attempts to improve prediction accuracy through
original mechanisms further. AST [390] reduces error accumulation by directly shaping the output distri-
bution using an adversarial framework. FEDformer [427] and ETSformer [386] extract time and frequency
features by applying an attention mechanism in the frequency domain. TFT [207] captures local and global
dependencies to achieve multi-horizon prediction. SSDNet [209] and ProTrans [349] provide interpretability
in combination with State Space Models (SSM). Pyraformer [219] acquires relationships at various time reso-
lutions with hierarchical attention. Aliformer [288] provides knowledge-based attention and noise reduction.
Non-stationary Transformers [222] incorporate non-stationarity in the attention computation.

2.11 Hyperparameter Optimization
The parameters of the NNs are optimized by gradient descent, but there are hyperparameters that are not
optimized. Hyperparameters can be divided into three main categories: those that determine the learning
behavior, the strength of regularization, and the architecture. Hyperparameters that determine learning
behavior include the number of epochs, mini-batch size, learning rate η, and β,ρ,ε included in each optimiza-
tion method described in Section 2.4. Hyperparameters determining the strength of regularization include
patience for early stopping, the coefficient of weight decay, and the dropout ratio. Hyperparameters that
determine the architecture include the number of layers and units, the kernel size and number of channels in
the convolutional layer, and the ViT window size. The architecture design, such as the activation function
and batch normalization, can also be considered a hyperparameter, and neural architecture search (NAS),
which searches for architectures, has been actively studied.

Three main methods for determining these hyperparameters are grid search, randomized search, and
automatic optimization. Grid search is a method that determines several candidates for each hyperparameter
and tries all combinations. For example, when searching for the learning rate η
in{10−n|n ∈ {1, 2, 3}}, mini-batch size bs ∈ {2n|n ∈ {2, 3, 4}} and dropout ratio p ∈ {0.1, 0.2, 0.5}, 33 = 27.
NNs are trained in 33 = 27 ways. Randomized search selects each hyperparameter independently and
identically, with a generator distribution for each hyperparameter. For example, the dropout ratio is assumed
to follow a uniform distribution U [0, 1], the batch normalization is assumed to follow a Bernoulli distribution
Be(0.5), and the mini-batch size follows a power transform 2n of variable n following a discrete uniform
distribution DU [2, 4], and they are independently sampling.

2.11.1 Bayesian Optimization

Bayesian optimization (BO) is often used for automatic optimization of hyperparameters. BO is a powerful
technique for optimizing expensive-to-evaluate functions. It is especially suited for scenarios where evaluating
the function (often called the "objective function") is time-consuming, costly, or noisy. At the heart of
Bayesian optimization is the Gaussian Process (GP) [300]. A GP is a non-parametric method used to define
a distribution over functions. It provides a probabilistic way to guess the shape of the function we’re trying
to optimize based on the data points we have observed. A GP is fully characterized by a mean function and
a covariance (or kernel) function. The GP gives a predicted value (mean) and an uncertainty (variance) for
any given input point.

A crucial component of Bayesian optimization is the acquisition function. Given the current GP model
of the objective function, the acquisition function helps decide where to sample next. It provides a trade-off
between exploring areas of high uncertainty and exploiting areas of low estimated objective values. Com-
mon acquisition functions include Expected Improvement (EI), Probability of Improvement (PI), and Upper
Confidence Bound (UCB).

The process of BO is as follows (also shown in Figure 2.27).
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Figure 2.27: One-dimensional Bayesian optimization

1. Initialization: Start with a few initial data points, typically chosen randomly or based on prior knowl-
edge.

2. Build GP Posterior: Using the observed data, build a GP posterior model of the objective function.
This provides a mean and variance (uncertainty) estimate for each point in the input space.

3. Choose Next Point with Acquisition Function: Use the acquisition function to determine the next point
to sample. This decision balances exploration (sampling where uncertainty is high) and exploitation
(sampling where the function value is expected to be optimal).

4. Sample Objective Function: Evaluate the true objective function at the chosen point.

5. Update GP: Add the new data point to your dataset and update the GP.

6. Iterate: Repeat steps 2-5 for a predefined number of steps or until a convergence criterion is met.

Hyperparameter optimization using Bayesian optimization is implemented in libraries such as Optuna [4],
Hyperopt [30], and Scikit-Optimize [130], and can be easily incorporated into existing code.
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3 Representation Learning
Representation learning (RL) aims to acquire appropriate representations or features from data to describe
that data. For example, RL acquires representations of the animal’s shape, hair volume, size, color, pattern,
and habitat from the animal image dataset. For linguistic data, we can obtain representations of the similarity
of meaning between words, modification relations, order of occurrence, and co-occurrence, among other things.
From sensor data, such as electricity consumption and seismic data, we can obtain expressions such as time-
series patterns, relationships between channels, and time-delay effects. These representations can be used
for downstream tasks, eliminating the need to train large-scale NNs for each task. Downstream tasks are
those tasks that use the representations obtained by upstream representation learning. For example, once the
representations of face images are obtained, they can be used for tasks such as personal identification, body
temperature estimation, and facial skeleton estimation (Figure 3.1). Recently, there has been a significant
boom in machine learning to acquire representations that can be applied to various problems.

Models that have been pre-trained with large-scale representations and have representations that can be
transferred to various tasks are called foundation models. Foundation models include language models such
as GPT-4 [277], Giraffe [281], and BERT [75], image models such as DALLE-2 [298] and Stable Diffusion
[307], speech and music models such as MERT [205] and MusicLM [3], and multimodal models such as CLIP
[293] and BLIP [200, 199]. These models have become indispensable tools in today’s society, as ChatGPT
and Github Copilot exemplified, and are expected to be used to realize general-purpose artificial intelligence
(AGI).

Representation learning can be broadly classified into supervised and unsupervised representation learn-
ing. Supervised representation learning is a method that uses the outputs of the middle layer of NNs trained
by supervised learning as representations. For example, when an image classification task is trained on
ResNet [127], the output before the last fully connected layer or before the GAP layer is often used as
the representation (Figure 3.2). This is because nonlinear low-dimensional features are acquired before the
last linear layer when training individual supervised tasks. Supervised representation training is sometimes
performed by branching into multiple tasks before the final layer. Unsupervised representational learning
is a method without classification labels or explicit regression targets. It includes self-supervised learning,
variational auto-encoder, and contrastive learning. This chapter focuses on these methods, described in turn
in each section.

3.1 Self-supervised Learning
Self-supervised learning is a method of learning a representation by setting the teacher’s data from the data
itself. As shown in Figure 3.3, it is easy to grasp the image of time series data. When solving a time series
prediction problem with NNs, such as predicting future values from past data, the features obtained along
the way are represented. Not only prediction from the past to the future but also from the present to the
past and from the past and future to the present can be regarded as self-supervised learning.

BERT [75] and GPT [277], the two major trends in language modeling, are also trained by self-supervised
learning. GPT’s key learning task is next-word prediction, which predicts the next word from past word

Downstream tasks
Upstream = RL

NN

z1

z2

Body temperature estimation

Personal identification

Facial skelton estimation

Figure 3.1: Schematic image of representation learning
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sequences. BERT is pre-trained with a masked language model, which masks words and predicts them
from the preceding and following sentences. Unlike individual tasks such as machine translation, sentiment
estimation, or sentence summarization, these models require no teacher data. They can be trained on large
corpora on the web, giving rise to today’s large-scale language models.

3.2 Auto-Encoder
Auto-encoder (AE) is the predecessor to variational auto-encoder and consists of an encoder Eθ and a decoder
Dθ. The purpose of the encoder Eθ : X → Z is to extract information, often by mapping the observation
space X = Rdx to a lower dimensional latent space Z = Rdz . The purpose of the decoder Dθ : Z → X
is to reconstruct the observation, mapping from the latent space to the observed space. AE is often used
for dimensionality reduction and feature extraction since it can compress only the information necessary to
reconstruct an observation to a lower dimension. The most basic AE loss function is the MSE:

l(x, x̂) =
1

2
‖x− x̂‖2 =

1

2
‖x−Dθ ◦ Eθ(x)‖2. (3.1)

3.3 Variational Auto-Encoder
In recent years, generative AI has become a social phenomenon, with image generative AI such as stable
diffusion [307] and DALL-E[298], and chat AI such as ChatGPT [220] and LLaMA [356, 357] becoming pop-
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ular. Behind these generative AIs are generative models that describe the process of observation generation.
Generative models using deep learning are called deep generative models and include variational auto-encoder
(VAE) [174], generative adversarial network (GAN) [110], flow-based neural networks (Flows) [179], diffusion
model (DM) [134], and consistency model (CM) [337]. VAE is a deep generative model suitable for learning
representations because of its ability to acquire low-dimensional representations.

AE combines the simplicity of implementation and learning stability but overfitting and low-generation
performance issues. VAE solves these problems by treating observed and latent variables as random variables.
The structure of VAE is shown in Figure 3.4. Specifically, it assumes that the observed and latent variables
follow a Gaussian distribution, and the output of NNs is the mean and variance, which are distribution
parameters. The encoder qφ(z|x) is called the inference model (recognition model, encoding model) and
maps from the observations x to the latent parameters (µz,σz). Latent variables are generated by sampling
from the distributionN(µz, (σz)◦2). The decoder pθ(x|z) is called the generative model (decoding model) and
maps latent z to observed parameters (µx,σx). Because VAE samples the latent variables independently at
each iteration, overfitting is unlikely to occur because of noise effects and the diversity of inputs from which
the generative model can be viewed. By assuming in advance a prior pθ(z) for the latent variables, it is
possible to generate unknown observed data.

3.3.1 Reparametrization Trick

In VAEs, during the forward pass, we want to sample from the latent space distribution qφ(z|x) (usually
a Gaussian) that is parameterized by the encoder’s outputs (mean µz and variance σz). However, directly
sampling from this distribution introduces stochasticity, which makes it difficult to backpropagate gradients.
Instead of directly sampling z from qφ(z|x), the variable is reparametrized in such a way that the randomness
is external to the model parameters. The trick involves two steps:

1. Sample ε from a standard Gaussian distribution ε ∼ N (0, I).

2. Compute z using the deterministic transformation:

z = µz + σz � ε (3.2)

The randomness is decoupled from parameters µz and σz. The gradients can flow through µz and σz without
being hindered by the sampling operation, as ε is an external source of randomness.

The reparametrization trick works because it effectively separates the deterministic and stochastic parts
of the model. The deterministic part, which depends on µz and σz, is differentiable and can be optimized
using gradient-based methods. The stochastic part, which involves sampling ε, doesn’t depend on any model
parameters, so it doesn’t interfere with the gradient calculations.

3.3.2 Variational Inference

VAE optimizes parameters (φ,θ) using a learning technique called variational inference (VI) [162, 22]. Vari-
ational inference is a method that approximates the maximization of the marginal log-likelihood log pθ(x),
which is computationally infeasible, by maximizing its lower bound, the evidence lower bound (ELBO)

LELBO(X,φ,θ) := Eqφ(z|x)

[
log

pθ(x, z)

qφ(z|x)

]
≤ log pθ(x). (3.3)

This equation can be shown by Jensen’s inequality from the concavity of the logarithmic function. The ELBO
equation can be written as

LELBO(X,φ,θ) = Eqφ(z|x)

[
log

pθ(x, z)

qφ(z|x)

]
(3.4)

= Eqφ(z|x)[log pθ(x|z)]−KL(qφ(z|x)‖pθ(z)) (3.5)

= log pθ(x)−KL(qφ(z|x)‖pθ(z|x)). (3.6)
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Figure 3.5: Simple image of contrastive learning

Equation (3.5) is the negative expected loss, the form used in actual training. The first term is the expected
log-likelihood, the maximization of which implies learning a generative model such that plausible observations
are obtained. The second term is the KL divergence between the inference distribution qφ(z|x) and the prior
distribution pθ(x), which serves as a regularization that prevents the inference distribution from deviating
from the prior distribution given beforehand. Equation (3.6) implies that maximizing ELBO is equivalent to
minimizing the KL divergence of the approximate posterior distribution qφ(z|x) and the posterior distribution
pθ(z|x). In other words, it estimates the approximate posterior distribution qφ∗(z|x) with the smallest
deviation from the posterior distribution pθ(z|x) in the variational function space {qφ|φ ∈ Φ}.

Some advanced VI methods have been proposed to achieve tighter bounds of the log marginal likelihood
[414]. IWAE [39, 77] achieves tighter bounds by describing the ELBO by averages over multiple particles.
TVO [244] bridges thermodynamic integration and VI. SIVI [407], DSIVI [257], and UIVI [354] expand
the applicability of VI by defining expressive variational families. Some methods focus on specific model
structures such as stochastic differential equations [315] and network autoregression models [192].

3.3.3 Disentanglement

Disentanglement, which separates the representations into axes, is important in representation learning. For
example, in animal image data, each meaningful representation, such as animal skin color, skin pattern,
hair color, hair volume, eye shape, nose shape, ear shape, and face shape, is represented on a different axis.
VAE uses an uncorrelated covariance structure of N (0, I) as a prior distribution of latent variables, which
makes it easy to obtain a disentangled representation. The β-VAE [132], which strengthens the restriction
to follow the prior distribution of the latent variable, and the object-centric representation [225], which gives
a representation for each object, have been proposed.

3.4 Contrastive Learning
Contrastive learning is an approach in representation learning that aims to learn embeddings or representa-
tions of data by comparing similar and dissimilar pairs. The goal is to ensure that similar data points are
brought closer in the embedded space while dissimilar or contrasting data points are pushed apart. Figure 3.5
shows a simple image of the method. The method has three inputs: anchor q, positive example k+, and
negative example k−. With the anchor as the axis, positive examples are data similar to the anchor, and
negative examples are data different from the anchor. For example, if the anchor is an image, the positive
example is an image obtained by rotating, coloring, or transforming the image, and the negative example is
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an entirely different image. These images are passed through an encoder such as ResNet, and the resulting
representations are learned to be similar or dissimilar.

A typical measure of similarity is the cosine similarity

cossim(x,y) =
x · y

‖x‖ · ‖y‖
, (3.7)

where x,y ∈ Rd. The similarity is determined by the angle between the vectors and corresponds to the
similarity of the vector orientations. Since it is desirable to have a high similarity of positive examples to
negative examples, noise contrastive estimation (NCE) [115]

lNCE(q,k+,k−) = − log
exp(sim(q,k+)/τ)

exp(sim(q,k+)/τ) + exp(sim(q,k−)/τ)
(3.8)

is used as a loss function, where τ ∈ R+ is a temperature parameter and sim : Rd × Rd → R is a similarity
function. Since negative examples are overwhelmingly more common than positive examples, InfoNCE [362]
uses more negative examples {ki}Ki=1 by

lInfoNCE(q,k+, {ki}) = − log
exp(sim(q,k+)/τ)

exp(sim(q,k+)/τ) +
∑K

i=1 exp(sim(q,ki)/τ)
. (3.9)

3.4.1 Pretext Task

Transfer learning is the transfer of representations acquired while solving one task to solve another task. In
representation learning, the pretext task to be solved in advance does not require labels. For example, the
language model BERT masks a word and predicts the word. In contrastive learning, setting the optimal
pretext task for learning representations is also necessary.

CL’s pretext task is to increase similarity with positive examples and decrease similarity with negative
examples. This comes down to data augmentation, i.e., how to generate positive example images. SimCLR
[51], a typical CL method, uses color transformations such as image blurring, color distortion, and noise
addition, as well as shape transformations such as image rotation and flipping. PIRL [253] learns features by
shuffling images patch by patch like a jigsaw puzzle. For series data such as video, clips from the same video
or observations at nearby points in time are used as positive examples [289, 159, 147].

3.4.2 Architecture

The larger the number of negative examples K in CL, the faster the learning progresses, but a large K is
memory-consuming. There is also a solution that stores previous embeddings, but this time, the negative
examples must be recomputed each time the parameters are updated, which is computationally expensive
[253]. MoCo (Momentum Contrast) [126, 54, 57] solves these problems by storing features in a queue to
update them smoothly. BYOL [114], SimSiam [55] solved these problems by using two types of encoders
called projector and predictor, that only approximate positive examples and queries without using negative
examples. CL has another problem: images of the same class are treated as negative examples. SwAV [42],
PCL [202], and SMOG [282] solved this problem by learning while clustering in the representation space.
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4 Representation Learning for Sequential Data
Time series data have different frequency characteristics, pattern characteristics, and non-stationarity for
each data, making uniform modeling difficult, and no practical foundation model has been constructed. For
example, temperature time series have a seasonality that rises during the day and falls at night, but many
components cannot be explained by the trend or seasonal components. This component may be viewed
as noise, or it may be considered to be a significant manifestation of chaos, requiring modeling that is
appropriate to the situation. Stock price time series has a large volatility component, and modeling that
considers extreme value components, such as the Lehman shock, is sometimes necessary. Sensor data from
ECGs and factories need to be modeled with the unique property of quasi-periodicity, which lies between
periodicity and non-periodicity. In object tracking of moving images, it is necessary to separate the foreground
(moving objects) from the background (buildings, trees, etc.), and in a time series of athletes’ actions, changes
in discrete states (running, jumping, swinging, etc.) are important. It is important to separate slow time-scale
phenomena in protein structure trajectories, and in communication networks, we want to capture fast changes.
Representation learning for sequential data requires extracting such time-series characteristics according to
the data.

The three main types of representation learning for sequential data are Transformers, sequential VAEs
(SVAEs), and time contrastive learnings (TCLs). This chapter describes each of these in turn.

4.1 Transformers for Sequential RL
As mentioned in section 2.10.2, Transformer is an encoder-decoder architecture, so encoded features can be
viewed as representations. BERT [75] and its variants [221, 129, 404, 64] use only the Transformer encoder
to obtain the language representation. The attention mechanism used in the Transformer can capture the
similarities and relationships among time series patterns. In Chapter 5, we propose a method to extract
quasi-periodicity from the attention mechanism and use it for anomaly detection and period estimation.

4.2 Sequential Data Assimilation
Data assimilation (DA) is a method of obtaining new knowledge by combining deductive simulation and
inductive experimental observation. The method is used to determine optimal initial and boundary conditions
for simulations, estimate parameters of simulation models, interpolate non-observed spatio-temporal points,
and perform sensitivity analysis. The method has been developed mainly in meteorology, and today’s weather
forecasting and typhoon path prediction are computed with data assimilation. Today, it is used not only in
meteorology but also in a wide range of fields such as chemistry and medicine [141, 304].

4.2.1 State Space Model

State space models (SSMs) form the core of sequential data assimilation. The model is formulated as a time
series of observed processes with latent state transition processes (system model) pθ(zt|zt−1) and observation
generation processes (observation model) pθ(xt|zt):

pθ(X,Z) = pθ(z1) ·

(
T∏

t=2

pθ(zt|zt−1)

)
·

(
T∏

t=1

pθ(xt|zt)

)
, (4.1)

where zt ∈ Rdz and xt ∈ Rdx . This formulation (4.1) is called a general state-space model in the context of
statistics, and when referred to as a state-space model, it is formulated as

zt = fθ(zt−1) + vt, vt ∼ pθ(vt), (4.2)
xt = gθ(zt) +wt, wt ∼ pθ(wt), (4.3)

where vt ∈ Rdz and wt ∈ Rdx are additive noise, fθ : Rdz → Rdz is transition operator, gθ : Rdz → Rdx is
observation operator.

42



Time of z

Time of x

p(zt−1 |x1:t−1) p(zt |x1:t−1)

p(zt |x1:t) p(zt+1 |x1:t)

p(zt+1 |x1:t+1)

p(zT |x1:T)p(zt+1 |x1:T)p(zt |x1:T)

prediction

filtering

smoothing

Figure 4.1: Schematic image of sequential Bayes filtering

4.2.2 Sequential Bayes Filter

SSMs have three important distributions: predicted, filtered, and smoothed distributions. These distributions
can be described consistently as pθ(zt|x1:s) and are called differently depending on the amount of observed
information s. When s < t, they are called predicted distributions; when s = t, filtered distributions; and
when s > t, smoothed distributions. A predictive distribution represents future conditions based on past
observations; for example, it is a distribution of future atmospheric conditions based on past meteorological
observations. A filtered distribution is a distribution that represents the current state based on observations
up to the present and is used to estimate the state reflecting real-time information. A smoothed distribution is
a distribution that represents the past state based on observations up to the present and is used for reanalysis.

As shown in Figure 4.1, these distributions are obtained by the Markov property of SSM and Bayes’
theorem in the form of recurrence formulas called sequential Bayes filter (SBF)

pθ(zt|x1:t−1) =

∫
pθ(zt|zt−1)pθ(zt−1|x1:t−1)dzt−1, (4.4)

pθ(zt|x1:t) =
pθ(xt|zt)pθ(zt|x1:t−1)∫
pθ(xt|zt)pθ(zt|x1:t−1)dzt

, (4.5)

pθ(zt|x1:T ) = pθ(zt|x1:t)

∫
pθ(zt|zt−1)pθ(zt+1|x1:T )

pθ(zt+1|x1:t)
dzt+1. (4.6)

In practice, due to the complexity of the integral calculations, they are replaced by introducing hypotheses
or approximations to the distribution.

4.2.3 Kalman Filter

The Kalman filter reduces the computation of the SBF to the computation of the mean vector and variance-
covariance matrix by assuming a linear Gaussian state-space model (LGSSM)

zt = Ftzt−1 + vt, vt ∼ N (0, Qt), (4.7)
xt = Gtxt +wt, wt ∼ N (0, Rt), (4.8)

where Ft, Qt ∈ Rdz×dz , Gt ∈ Rdx×dz , and Rt ∈ Rdx×dx . Assuming that the initial distribution pθ(z1) is
Gaussian, we can prove that each predictive, filter, and smoothing distribution is Gaussian. Assuming the
distribution pθ(zt|x1:s) = N (zt|s, Vt|s), the update formulas of SBF for predicting and filtering are

zt|t−1 = Ftzt−1|t−1, (4.9)
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Figure 4.2: Filtering process of (a) EnKF and (b) PF

Vt|t−1 = FtVt−1|t−1F
T
t +Qt, (4.10)

Kt = Vt|t−1G
T
t (GtVt|t−1G

T
t +Rt)

−1, (4.11)
zt|t = zt|t−1 +Kt(xt −Gtzt|t−1), (4.12)
Vt|t = Vt|t−1 −KtGtVt|t−1, (4.13)

where Kt ∈ Rdz×dx is called Kalman gain, which corrects the state toward the observation in the observation
space. These updated formulas are called the Kalman filter (KF).

Originally proposed in the field of control engineering, KF has been used in a wide range of fields, including
robotics, civil engineering, econometrics, and cognitive science, because of its simplicity and usefulness [166,
203]. Concerning SVAE, which will be discussed in section 4.3, there have been many attempts to integrate
KF with deep learning, such as Kalman VAE [92] and Deep Kalman Filter [185].

4.2.4 Probabilistic Time-Series Model

Probabilistic time-series model (PTSM) is a non-Markovian extension of SSM and is described as

pθ(X,Z) = pθ(z1)
T∏

t=2

pθ(zt|z1:t−1)
T∏

t=1

pθ(xt|zt). (4.14)

Since the SVAEs discussed in section 4.3 are based on PTSM, the following two subsections 4.2.5 and 4.2.6
also refer to filtering methods based on PTSM.

4.2.5 Ensemble Kalman Filter

KF cannot be used for complex nonlinear processes because the LGSSM bounds the available models. The
ensemble Kalman filter (EnKF) and particle filter (PF) can be applied to general nonlinear and non-Gaussian
SSM by making a Monte Carlo approximation of each state distribution pθ(zt|x1:s) using particles {z(i)

t|s}
N
i=1:

pθ(zt|x1:s) ≈
1

N

N∑
i=1

δ
(
zt − z

(i)
t|s

)
, (4.15)

where δ denotes the Dirac’s delta function. The difference between EnKF and PF is shown in Figure 4.2.
EnKF updates each particle to fit the observation, whereas PF replicates particles based on likelihood. This
difference will be described later in the proposed method in Chapter 6.

The original paper [88] assumes a linear observation model with additive noise

zt ∼ pθ(zt|zt−1), (4.16a)

44



xt = Gtzt +wt, wt ∼ pθ(wt). (4.16b)

The EnKF updates the particles by

z
(i)
t|t−1 ∼ pθ(zt|z(i)

t−1|t−1), ∀i ∈ NN (4.17a)

Kt = Σz
t|t−1G

T
t (GtΣ

z
t|t−1G

T
t +Σw

t )
−1, (4.17b)

z
(i)
t|t = z

(i)
t|t−1 +Kt(xt −Gtz

(i)
t|t−1 −w

(i)
t ), ∀i ∈ NN , (4.17c)

where Σz
t|s and Σw

t represent the sample covariance of {z(i)
t|s} and {w(i)

t }, respectively.
The original EnKF is easily applied to the nonlinear observation model

xt ∼ pθ(xt|zt) (4.18a)
E[gθ(zt)] exists⇐⇒ xt = E[gθ(zt)] + (xt − E[gθ(zt)]), wt = xt − E[gθ(zt)] ∼ pθ(wt) (4.18b)
⇐⇒ xt = gθ(zt) +wt, wt ∼ pθ(wt) (4.18c)

by the augmented PTSM

z̃t =

(
zt

gθ(zt)

)
∼ p̃θ(z̃t|z̃1:t−1) = pθ

((
Idz Odx

)
z̃t|
(
Idz Odx

)
z̃1:t−1

)
, (4.19a)

xt =
(
Odz

Idx

)
z̃t +wt = G̃tz̃t +wt

∼ p̃θ(xt|z̃t) = pθ
(
xt|
(
Idz

Odx

)
z̃t

)
(4.19b)

for the augmented latent states z̃t ∈ Rdz+dx . By equation (4.19b), the nonlinear emission is regarded as a
linear representation; then, the augmented PTSM can be applied to equations (4.17).

It is generally known that the EnKF underestimates the state covariance matrix

Σz
t|t =

1

N − 1

N∑
i=1

(z
(i)
t|t − z̄t|t)(z

(i)
t|t − z̄t|t)

T (4.20)

due to several factors such as limited particle size and model error, where z̄t|s is the average of {z(i)
t|s}

N
i=1.

To overcome this problem, covariance inflation methods that inflate the covariance have been proposed
[10, 254, 67, 416, 384]. The representative methods are multiplicative inflation [10], additive inflation [254, 67],
and relaxation to prior [416, 384]. The relaxation to prior (RTP) methods relax the reduction of the spread of
particles at the filtering step and are suitable for our proposed algorithm. The relaxation to prior perturbation
(RTPP) [416] method blends the particles before and after filtering; the mathematical equation is

z̃
(i)
t|t = αz

(i)
t|t−1 + (1− α)z

(i)
t|t , (4.21)

where α ∈ [0, 1] is known as the inflation factor and z̃
(i)
t|t denotes the i-th latent particle after covariance

inflation. The relaxation to prior spread (RTPS) [384] method multiplies the particles after filtering and
inflation together; the formulation is

z̃
(i)
t|t = (ασt|t−1 + (1− α)σt|t)� σt|t � z

(i)
t|t , (4.22)

where α ∈ [0, 1] is the inflation factor and σt|s ∈ Rdz is the sample variance of particles {z(i)
t|s}

N
i=1.

For EnKF combined with deep neural networks, Bayesian LSTM [47] represents the weights of LSTM by
an ensemble of particles and propagates the particles using EnKF at each mini-batch, considered a time-step
in the SSM. A similar framework [226] has been applied to time production prediction in natural gas wells,
and robust estimators were obtained. Bayesian neural networks with EnKF [46] represent the distribution of
the parameters by particles and update the particles using EnKF at each mini-batch.
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Table 4.1: Examples of SVAEs

Network VRNN [63] SRNN [94] SVO [260]

Encoder qφ(zt|z1:t−1,x1:t) qφ(zt|zt−1,x1:T ) qφ(zt|zt−1,x1:T )
Decoder pθ(xt|z1:t,x1:t−1) pθ(xt|zt,x1:t−1) pθ(xt|zt)
Transition pθ(zt|z1:t−1,x1:t−1) pθ(zt|zt−1,x1:t−1) pθ(zt|zt−1)

Graph

xt

zt

ht

xt−1

zt−1

ht−1

xt

zt

ht

xt−1

zt−1

ht−1

btbt−1

xt

zt
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xt−1

zt−1

ht−1

btbt−1

4.2.6 Particle Filter

EnKF was an updated formula that used up to the second-order moments of the state distribution and thus
could not capture the strong nonlinearity. Particle filter (PF, SMC; sequential Monte Carlo, SIR: sequential
importance resampling) [111, 176, 82] is an effective filtering method for strongly nonlinear and strongly non-
Gaussian systems by using a larger number of particles and stochastically replicating them. The procedure
for implementing the method is as follows

z
(i)
t|t−1 ∼ pθ(zt|z(i)

t−1|t−1), (4.23a)

w
(i)
t =

pθ(xt|z(i)
t|t−1)∑N

j=1 pθ(xt|z(j)
t|t−1)

, (4.23b)

Ai ∼ MultiNomial
(
{w(i)

t }Ni=1

)
, (4.23c)

z
(i)
t|t = z

(Ai)
t|t−1, (4.23d)

where MultiNomial denotes the multinomial distribution.
While PF can be applied to arbitrary nonlinear, non-Gaussian problems and is easy to implement, it has

the problem of particle degeneration. The problem is that only identical particles survive, and the diversity
of particles decreases as time steps advance and resampling is repeated. This problem is more pronounced
for medium to high-dimensional problems with ten or more dimensions due to the curse of dimensionality.
Although this problem can be avoided by increasing the number of particles, the computational and spatial
complexity becomes a bottleneck. Reducing the actual state dimension and adding noise regularization after
resampling have been tried to alleviate the problem without much success. There are also methods to bias
the particles to compare their weights. Implicit PF [62] encourages transitions that increase the likelihood of
noise space. EWPF [363, 2] replaces sampling from exact posterior by sampling with equal particle weights.
IEWPF [428] adjusts the target weights in EWPF to be optimal. AGMF [341] and EKPF [97] bridge EnKF
and PF to achieve both strong nonlinearity and particle diversity.

4.3 Sequential Variational Auto-Encoder
Sequential VAEs (SVAEs) expand the generative model of VAE [174] to probabilistic time-series models and
infer the models by variational inference. DKF [185], DMM [186], KVAE [93], E2C [380], and DynaNet
[48] directly construct state space model and infer the latent probabilistic models. VRNN [63] and STORN
[21] construct the transition model with RNNs such as GRU [61] and LSTM [135] to capture long-term
dependencies. SRNN [94], Z-forcing [112], and SVO [260] introduce backward recursion to the forward model
to capture future information. CW-VAE [321], TVA [172], RSSM [117], and SVG [74] mainly focus on image
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Figure 4.3: Variants of architectures of SVAEs

sequence data such as 3D maze [87] and moving handwritten data [339]. Okada et al. [275] and STAF [292]
use SVAEs for pose tracking.

Table 4.1 shows probablistic models and structures of VRNN [63], SRNN [94], and SVO [260]. The
dotted and solid lines represent inferential and generative processes, and the circles and squares represent
stochastic and deterministic variables, respectively. While VRNN infers the latent states from past and
current observations, SRNN and SVO use future observations. SVO restricts PTSM to SSM, which satisfies
Markov property.

4.3.1 Static-Dynamic Separated System

There are methods to separate time-independent static representations from time-dependent dynamic rep-
resentations (Figure 4.3 (b)). For example, moving images may not change the background, but only the
foreground may move. The representation of the car as an object remains the same, but its position and
rotation angle change. FHVAE [140] and DSVAE [408] pioneered these methods, with FAVAE [401] sepa-
rating like factors and IDEL [60] minimizing the amount of mutual information between static and dynamic
factors. S3VAE [429] separates only the invariant static factors by applying contrastive learning to the static
factors and pseudo-supervised learning to the dynamic factors. R-WAE [118] utilizes Wasserstein AE, and
C-DSVAE [15] introduces contrastive learning for both static and dynamic factors.

4.3.2 Time-lagged System

Time-lagged networks are used when you want to remove fast time-scale motion and extract slow time-scale
motion (Figure 4.3 (c)). For example, a fixed-point camera on a street can be used to capture fast-moving
people while ignoring slow-moving clouds. In biomolecules, slow structural dynamics are closely related
to biological function. In those models, dynamics occurring at times shorter than τ steps are reduced by
embedding observations xt at time t into latent variables τ steps ahead zt+τ . TAE [381] and TVAE [136]
pioneered, VDE [131] introduced sample autocorrelation to loss, and VAMPNet [242] and SRV [53] focus on
discrete embedding.
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In Chapter 7, we propose a new SVAE for biomolecular structures. The model can capture sample-by-
sample slower dynamics by introducing a simple transition prior.

4.3.3 Switching System

Switching SVAEs is a model that can capture steep changes by simultaneously acquiring continuous and dis-
crete representations (Figure 4.3 (d)). For example, a stock price time series may have a discrete background
due to rapid price fluctuations. The dynamics of a factory machine operating time series change depending
on what is produced as the current lot. Such continuous-discrete systems have been considered in SSM for
a long time as switching linear dynamical systems (SLDS), and it is natural to assume that they have been
extended to SVAE. rSLDS [210] adds a recursive path from continuous to discrete states, and SLDS+ [24]
modifies the initial distribution from SLDS. DWB [59] uses the Wasserstein distance for continuous mixture
loss, and RES-SDS [11] merges rSDS and ED-SDS. DS3M [397] leverages backward RNNs, and SSNN [215]
infers continuous and discrete states via intermediate representations. KVAE [92] infers discrete states with
RNNs, and SRKN [270] allows switching between KVAEs in the latent space. DRBPF [191] is used as a
learning technique for switching SVAEs.

4.3.4 Ensemble System

The generative model of SVAEs is often formulated as a PTSM, which can be constructed as a tighter
variational lower bound using sequential data assimilation. FIVO [238], AESMC [196], and VSMC [265]
proposed VI methods combined with sequential Monte Carlo (SMC). These methods are ensemble systems
applied to SVAEs to infer more accurate models. Although TVSMC [194] and SMC-Twist [212] obtain tighter
bounds by introducing twisted functions for capturing future information, experimental results revealed
that these methods have lower log marginal likelihood compared to non-twisted methods. These SMC-
based methods obtain tighter bounds for sequential data; however, they have two main drawbacks: particle
degeneracy and biased gradient estimators.

PSVO [262, 261] proposed an inference framework using forward filtering backward simulation (FFBSi)
[109, 82], a method to estimate the posterior conditioned on all observations in the SSM formulation, to
achieve unbiased estimators and a tighter bound than SMC-based methods. The method, however, has
three main disadvantages: particle degeneracy, high calculation and memory cost, and high sensitivity of
the hyper-parameters. The first disadvantage also applies to SMC-based methods; the second one arises
from long backward loss calculation and storage of all particles at the time forward calculation for the time
backward calculation. The last one means PSVO needs careful tuning of the hyper-parameters due to training
instability.

In Chapter 6, we propose EnKO, a variational inference method using EnKF. The proposed method
overcomes the particle degeneracy and biased gradient estimator of SMC-based methods and the sensitivity
to hyperparameters of PSVO.

4.4 Time Contrastive Learning
Time contrastive learning (TCL) originated from Hyvärinen et al. [147] but now generally refers to contrastive
learning using time direction. Hyvärinen et al. [147] divide time into multiple segments and learn features by
self-supervised learning that classifies which segment the data comes from. The method has been theoretically
proven for identifiability [149] and extended to auxiliary variables [150]. Regarding identifiability, iVAE [169]
integrates TCL and VAE as nonlinear ICA, and ICE-BeeM [170] evolves into a conditional energy model.

The representation learning method for biomolecular structural dynamics proposed in Chapter 7 can be
regarded as a BYOL-type TCL without negative samples.
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5 An Online System of Detecting Anomalies and Estimating Cycle
Times for Production Lines

Energy consumption data of production machines often exhibit quasi-periodicity, and anomalies are ob-
served when deviations from the quasi-periodicity are detected. It is crucial to quickly estimate the individual
cycles at each time point and detect abnormalities in such data. In this study [156, 155], we propose a system
that satisfies these requirements. The proposed system trains a neural network with an attention mechanism
and applies the weight vectors in the mechanism to the two tasks. Experimental results demonstrate that
the proposed method outperforms benchmark methods for sensor data that mimic the power consumption
data of production lines.

5.1 Introduction
Industry 4.0, a new industrial stage that focuses on integrating vertical and horizontal manufacturing pro-
cesses and the connection of things and the Internet, is attracting attention [70, 95, 361]. The smart factory
proposed in Industry 4.0 is a system that facilitates the manufacturing process and enables efficient produc-
tion by communicating among all machines and systems in the factory. Consider a production line where
each machine is equipped with a smart meter that measures power consumption. If abnormal signals can
be automatically detected from the time-series changes in the smart meters, the product defect rate can be
reduced, and productivity can be improved.

Fig. 5.1 shows the time-series data of smart meters on a production line, where the time-series of each
meter show a quasi-periodic pattern but does not include system information such as lot switching or stop
status. For such data, in parallel with anomaly detection, the estimation of individual cycles, a key production
performance indicator (KPPI), is strongly required. By estimating individual cycles, it is possible to estimate
the degree of abnormality in the production line and detect lot switching.

There are two major approaches to anomaly detection for quasi-periodic time-series data, such as energy
consumption data of production machinery. The first approach is a segment-based method that divides
the time-series data into segments for one period and then performs classification using the features of the
segments. In the first stage of segmentation, specific points that appear in one cycle, such as one spike in one
cycle, are extracted and divided into segments using these points. In the second stage of anomaly detection,
when the abnormal/normal teacher labels are given, a classification method such as naïve Bayes method
[235] and Support Vector Machine [86] is used, and when not given, a clustering method such as DBSCAN
[395], k-means method [422] is used. Considering that most of the data is normal, unsupervised anomaly
detection methods such as the kNN method, the SVDD method [350], and deep learning methods have also
been proposed [263, 264, 8]. The former classification method is difficult to apply in the energy consumption
data of production machinery because of no teacher labels. The latter clustering method cannot return an
immediate and accurate response because both stages require high accuracy.
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Figure 5.1: A energy consumption data in a production line

©2022 IEEE. This Chapter is reprinted, with permission, from T. Ishizone, T. Higuchi, K. Okusa and K. Nakamura, “An On-
line System of Detecting Anomalies and Estimating Cycle Times for Production Lines," IECON 2022 – 48th Annual Conference
of the IEEE Industrial Electronics Society, Brussels, Belgium, 2022, pp. 1–6, doi: 10.1109/IECON49645.2022.9969061.
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The second approach is a prediction-based method that enables immediate response using time-series
prediction methods to evaluate anomaly levels by prediction errors. Typical prediction-based methods include
studies utilizing the ARIMA model [232, 100, 248] and LSTM [240], which discriminate anomalies by the
prediction confidence interval. These methods are not able to estimate individual cycles, nor are they able
to detect anomalies using quasi-periodic structures.

In this study, we propose the QuAD (Quasi-periodic Anomaly Detection) system as a technology that
can simultaneously detect anomalies and estimate cycle times in real-time. The QuAD system consists
of the prediction network QuADNet (Network for Quasi-periodic Anomaly Detection) and components for
anomaly detection and cycle time estimation (Fig. 5.2). QuADNet is a network that extracts time-local
features using a CNN (convolutional neural network) and then performs multi-horizon forecasting using an
attention mechanism. The QuAD system can perform real-time estimation of individual cycles using the
weight vectors that appear in the attention mechanism and real-time anomaly detection using the prediction
errors and weight vectors.

This chapter is structured as follows. The next section proposes a QuAD system for anomaly detection
and individual cycle estimation. In section 5.3, we discuss the results of applying the proposed method and
the comparison method to simulated data that mimic smart meter data from a factory. Finally, we conclude
this chapter in section 5.4.

5.2 QuAD System
This section proposes a QuAD system for anomaly detection and estimation of cycle times. We first introduce
the QuADNet, the core of the proposed system, and then describe the estimation method of cycle times and
the anomaly detection method.
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5.2.1 QuADNet

QuADNet is a deep learning model for detecting quasi-periodic anomalies and estimating cycle times. The
network comprises a convolutional neural network (CNN) for extracting local features and an attention
mechanism for distinguishing important features (Fig. 5.3).

The attention mechanism is represented by

a = V ω = V softmax(KTq), (5.1)

where a ∈ Rv, q ∈ Rq, K = (k1 · · · kn) ∈ Rq×n, V = (v1 · · · vn) ∈ Rv×n, and ω ∈ Rn represent the
output vector, a query vector, a key matrix, and a value matrix, and the weight vector, respectively. Because
the output vector is represented by the weighted sum of the value vectors, the mechanism extracts useful
information by the similarity between the query vector and the key vectors. The mechanism is widely used
in natural language processing [208], and computer vision [119].

We assume d-dimensional multivariate time-series data {xt}Tt=1, where T means final time index. The
network is trained by h-horizon prediction error

L(B) = 1

|B|
∑
t∈B

Error(QuADNet(Xt), Yt), (5.2)

where Xt = (xt−w+1 · · · xt) ∈ Rd×w, Yt = (xt+1 · · · xt+h) ∈ Rd×h, and B represent an input matrix, the
output matrix, and a batch set, respectively. Our experiments use the L1 error for outliers’ robustness, such
as spiking activity. The network first applies 1-dimensional CNN with kernel size k and number of channels c
and obtains the local features L = (l1, · · · , ln)T ∈ Rn×q by the LSTM with hidden dims q. The network then
obtains the vector a via the attention mechanism with the key matrix K = LT , the value matrix V = LT ,
and the query vector q = ln. Finally, we obtain the final output vector Ŷt by applying multi-layer perceptron
(MLP) to a.

5.2.2 Individual Period Estimation

The proposed system estimates a cycle time at time t by

ct = (w − k + 1)− argmax
1≤s≤w−k+1−sc

ωs, (5.3)

where sc represents truncating interval. The weight vector ωt corresponds to normalized similarities between
the current and past local features. The time point with the greatest weight, excluding the most recent sc
time points, is the time point that contributed the most to the forecast. The point in time is the periodic
point one cycle earlier, and the interval length can be regarded as the cycle time.

The robust estimate is computed by

Ct = mode({ct + j}t+bp,ne

s=t−bp,j=−ne
), (5.4)

where bp means a base period estimated by bp = mode({ct}T−h
t=w ) and ne is a neighborhood number to provide

robustness against quasi-periodic shaking. When a lot’s change appears as a change in the basic cycle, it is
possible to detect the lot change by the degree of deviation of the individual cycles from the basic cycle and
relearn the network.

5.2.3 Anomaly Detection

The proposed system determines abnormality by the degree of deviation from the distribution of weight
vectors estimated from normal data. Since the weight vectors have a sum of 1, the Dirichlet distribution

f(ω;α) =
Γ
(∑w−k+1

s=1 αs

)
∏w−k+1

s=1 Γ(αs)

w−k+1∏
s=1

ωαs−1
s , (5.5)
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where Γ(·) represent the Gamma function. The parameter α is estimated by the maximum likelihood method
from the set of weight vectors {ωt} obtained during training.

Since anomaly intervals are more important than anomaly points, the anomalous section is identified
through post-processing based on the following five steps.

1. Moving average of the log-likelihood with interval bp

2. Determine anomalies based on a threshold value

3. Closing the anomaly intervals with γ1

4. Opening the anomaly intervals with γ2

5. Closing the anomaly intervals with γ3 > max{γ1, γ2}

Step 1 corresponds to smoothing and is performed to correct deviations in likelihood within one cycle. Steps
3 and 5 are performed to combine anomaly intervals when the intervals are short. Step 4 is performed to
remove short anomaly intervals. In our experiments, we have applied the same post-processing to other
methods. The base period bp is estimated for the proposed method, and a known value is used for the
existing methods.

5.3 Experiments
Although obtaining energy consumption data from factories is possible, we cannot release them to the public
for confidentiality reasons. The data is characterized by anomalies due to deviations from quasi-periodicity
and is long-periodic. Due to the long periodicity, short-time Fourier transforms have low-frequency resolution
and cannot capture anomalies. Since such data do not exist as a benchmark dataset for time series anomaly
detection, we created an experimental dataset using a fan.

5.3.1 Fan Data

To verify the effectiveness of the proposed method, we experimented with the detection of anomalies in
periodic motion using a microwave Doppler radar [359]. A transmitted radio signal vs may be expressed by
the following equation:

vs(t) = As cosϕs, ϕs = 2πft+ os, (5.6)
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Figure 5.5: Generated fan data

Algorithm 1 Generating process of normal data

Require: original data {ot}T−1
t=0 , representative period of original data To, normal down-sampling range Rn

1: a current time tc = 0, a residual time tr = 0, a counter of new data c = 0, a counter of periodic point
cp = 0

2: while tc < T − 1 do
3: i := btcc, d := tc − i
4: xc = (1− d)oi + doi+1

5: a next movement m ∼ U(Rn), where U(R) represent uniform distribution of range R
6: tc := tc +m, tr := tr +m
7: if tr > To then
8: tr := tr − To, pcp := c, cp := cp + 1
9: end if

10: c := c+ 1
11: end while
Ensure: new data X = {xt−1}ct=1, a sequence of periodic points {pt−1}

cp
t=1

where As, f , and os respectively indicate its amplitude, frequency, and initial phase. The transmitted wave
is reflected by a subject and returns as a received signal vr after a delay of time Tr, as expressed by the
following equation:

vr(t) = Ar cosϕr, (5.7)

ϕr = 2πf(t− Tr) + os = 2πf

(
t− 2

c
L(t)

)
+ os, (5.8)

where Ar and L(t) are the amplitude of the received signal and the distance between the sensor and the
subject at time t, respectively. The following signals are obtained by applying inphase/quadrature (I/Q)
detection to the received signal:

I(t) =
AsAr

2
{cos(ϕr − ϕs) + cos(ϕr + ϕs)} , (5.9)

Q(t) =
ArAs

2
{sin(ϕr − ϕs) + sin(ϕr + ϕs)} . (5.10)

The direction and speed of the subject’s movement can be obtained by analyzing the I/Q signal. In the
experiment, we performed measurements of the periodic motion of an oscillating fan in the environment
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Algorithm 2 Generating process of abnormal data

Require: original data {ot}T−1
t=0 , representative period of original data To, normal / abnormal down-

sampling range Rn / Ra, number of continuous normal / abnormal interval nn / na, switching kernel

P =

(
pnn pna
pan paa

)
1: a current time tc = 0, a residual time tr = 0, a counter of new data c = 0, a counter of continuous state
cc = 0, a counter of periodic point cp = 0, a current state s = n

2: while tc < T − 1 do
3: i := btcc, d := tc − i
4: xc = (1− d)oi + doi+1

5: a next movement m ∼ U(Rs), where U(R) represent uniform distribution of range R
6: tc := tc +m, tr := tr +m
7: if tr > To then
8: if cc < ns then
9: cc := cc + 1

10: else
11: u ∼ U [0, 1]
12: if u > pss then
13: cc := 0, s := n (s = a); a (s = n)
14: end if
15: end if
16: tr := tr − To, pcp := c, cp := cp + 1
17: end if
18: c := c+ 1
19: end while
Ensure: new data X = {xt−1}ct=1, a sequence of periodic points {pt−1}

cp
t=1

shown in Fig. 5.4. Three microwave Doppler radars (InnoSenT GmbH, IPS-154) were placed around a fan
to measure its oscillating motion. Each I/Q signal was measured at a sampling rate of 300 Hz using an
analog-to-digital converter (ADC) (Contec Co. Ltd., AIO-160802AY-USB).

The observed signals {ot} were downsampled by Algorithm 1 and 2, and we obtained “normal" data for
training and validation and “abnormal" data for testing. We set the parameters To = 4301, Rn = [49.5, 50.5],
Ra = [48, 49.5], nn = 5, na = 3, pna = 0.1, pan = 0.6, pnn = 1− pna, paa = 1− pan. The representative cycle
time of the normal data is around 85 to 86, and the abnormal data is around 86 to 88. The obtained normal
data is shown in Fig. 5.5.

5.3.2 Conditions and Results

We trained QuADNet with Adam optimizer [173] with a learning rate of 0.001. Hyperparameters are tuned
using the tree-structured Parzen estimator [31] in Optuna [5]. Tune hyparparameters are window size w =
150, horizon h = 6, kernel size k = 10, channel size q = v = 100. The parameter of Dirichlet distribution is
estimated by the fixed iteration method and Newton method [251]. We set the truncating interval sc = 12,
the neighborhood number ne = 1, the first closing quantity γ1 = 1, the first opening quantity γ2 = 20, the
second closing quantity γ3 = 50. All of the network training takes less than 10 minutes and is online.

Our comparisons are SARIMA [334], kNN [33], and SVDD [350]. Since the latter two methods are
supervised learning methods, we also compare the unsupervised approach by the Douglas-Peucker-based
segmentation algorithm [80, 213] called DP-kNN and DP-SVDD.

The recall was calculated as the percentage of intervals in which the half-abnormal time point within each
interval was judged to be an anomaly among the true consecutive anomaly intervals. Precision was calculated
as the percentage of intervals with more than half of the time points within each interval included in the true
anomaly intervals out of the predicted consecutive anomaly intervals. These calculations were repeated with
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different threshold values, and the resulting PR curves are shown in Fig. 5.7, and the AUPRC and maximum
F1 values are summarized in Table 5.1. Fig. 5.6 shows estimated cycle times taking the median within each
true periodic interval.

5.3.3 Considerations

Table 5.1 shows that the proposed method outperforms other unsupervised learning methods in AUPRC and
F1. SVDD is the best when supervised learning is included, but in real-world problems, this is mainly the
case when a teacher is unavailable or the high human and financial costs. Unsupervised DP-SVDD gives
poor results, giving the proposed method an advantage.

The threshold determination is often based on the width of the recall that one wishes to increase. If the
recall is requested to be approximately 1, QuADNet’s precision is about 0.3. If the recall must be greater
than 0.8, precision can also be greater than 0.4, reducing the human cost of checking for anomalies. A higher
level than 0.95 is often required, and the proposed method needs further improvement.

Fig. 5.6 demonstrates that the proposed system can identify the correct individual cycle times with an
error within 1. The proposed system can accurately and simultaneously detect anomalies and estimate the
cycle time.
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Table 5.1: F1 score and AUPRC

Method F1 AUPRC

Supervised kNN 0.345 0.242
SVDD 0.852 0.909

Unsupervised

DP-kNN 0.428 0.213
DP-SVDD 0.262 0.161
SARIMA 0.347 0.196
QuADNet (ours) 0.697 0.790

5.4 Conclusion
This chapter proposes a system for detecting anomalies and estimating individual cycles in quasi-periodic
time series data typified by energy consumption data from factory production lines. The proposed system
consists of three parts: a prediction network called QuADNet, anomaly detection, and cycle time estimation.
The most important part of the network is the attention mechanism, which performs anomaly detection and
period estimation based on the weights calculated by the mechanism.

We generated normal and anomaly data by varying the down-sampling rate for the observed data obtained
using a fan and a Doppler sensor. The proposed method outperforms the benchmark method in terms of
AUPRC. The cycle time estimation by the proposed system was also highly accurate. The proposed system
is also highly online, as the network training takes less than 10 minutes, and the evaluation computation
takes only a few seconds. Thus, the proposed system is excellent for online anomaly detection and cycle time
estimation for quasi-periodic data.

However, two issues remain with the proposed system. The first is to increase precision while keeping recall
at 1. We plan to search for a more optimal structure concerning the combination of network components such
as convolutional structure and attention mechanism. The second is introducing a mechanism to distinguish
an anomaly from a system changeover, such as lot changes. If a signal for lot changes cannot be obtained, it is
necessary to send continuously out-of-cycle information as a signal for lot changes and relearn the network.
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6 Ensemble Kalman Variational Objective: A Variational Inference
Framework for Sequential Variational Auto-Encoders

Time series model inference can be divided into modeling and optimization. Sequential VAEs have been
studied as a modeling technique. As an optimization technique, methods combining variational inference
(VI) and sequential Monte Carlo (SMC) have been proposed; however, they have two drawbacks: less parti-
cle diversity and biased gradient estimators. This chapter proposes Ensemble Kalman Variational Objective
(EnKO), a VI framework with the ensemble Kalman filter, to infer latent time-series models [154]. Our pro-
posed method efficiently learns the time-series models because of its particle diversity and unbiased gradient
estimators. We demonstrate that our EnKO outperforms previous SMC-based VI methods in the predictive
ability for several synthetic and real-world data sets.

6.1 Introduction
Inference of time-series models is essential for prediction, control, and reanalysis. For example, epidemiologists
use models to predict the spread of infectious diseases, economists use models to make transactions, and
meteorologists use models to reanalyze weather fields. There is no need for inference if the model is already
established, but it is not, and data-driven model inference is necessary.

Model inference can be divided into two steps: modeling and optimization. The modeling phase con-
structs an appropriate model for representing the generating process of time series data. The optimization
phase searches for the optimal model by maximizing the prediction accuracy of the parameters in the model
constructed in the previous step.

Classically, ARIMA and state-space models [334] have been used for modeling; however, deep learning
models have been researched [63, 94, 21, 112, 260]. We focus on a class of deep learning models called
sequential VAEs (SVAEs), which extract meaningful latent variables from observed dimensions. SVAEs can
be viewed as an extension of VAE [174] to sequential data, where the encoder qφ(zt|x1:T ), the decoder p(xt|zt),
and the latent transition process pθ(zt|z1:t−1) are learned to obtain the generative process

pθ(x1:T , z1:T ) = pθ(z1)

T∏
t=2

pθ(zt|z1:t−1)

T∏
t=1

pθ(xt|zt), (6.1)

where zt and xt represent the latent and the observed variables, respectively, at a given time t. Because of
their high model representation capability, these techniques have been applied to a wide range of data, such
as music data [238] and mouse brain voltage data [260].

VAE and SVAEs use variational inference (VI) [22, 162] to learn the parameters. VI maximizes the
evidence lower bound, a lower bound of the log marginal likelihood log p(x1:T ), instead of the intractable
maximization of the log marginal likelihood. To achieve a tighter bound, objective functions are given by an
ensemble of particles in IWAE [39, 77] and FIVO [238]. While IWAE gives the objective function by simple
Monte Carlo integration, FIVO uses sequential Monte Carlo (SMC) to give a tighter bound than IWAE
asymptotically.

However, FIVO has two drawbacks: biased gradient estimators and particle degeneracy. The resampling
operations required by SMC are non-differentiable and result in a high variance of the gradient estimators.
To reduce the variance, the gradient of the resampling operation can be omitted, or a continuously relaxed
distribution [239] can be used, both of which lead to the biased gradient estimator. It is known that a biased
gradient estimator leads to poor local optima, which destabilizes parameter learning. Particle degeneracy
means only one or a few particles occupy a large weight and are copied at the resampling step of SMC,
resulting in low particle diversity [82]. Particle diversity enhances the ability to represent the probability
density function (PDF), and low diversity results in poor model inferences. Previous studies to obtain

This Chapter is based on “Ensemble Kalman variational objective: a variational inference framework for sequential variational
auto-encoders” [154], by the same author, which appeared in the Proceedings of Nonlinear Theory and Its Applications,
Copyright©2022 IEICE.
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Table 6.1: Objective functions and ensemble methods of ensemble learning frameworks

System Method Objective

IWAE [39] naïve Monte Carlo E

[
log

(
1

N

N∑
i=1

T∏
t=1

pθ(xt, z
(i)
t |Z1:t−1)

qφ(z
(i)
t |X,Z1:t−1)

)]

FIVO [238] particle filter E

[
log

(
1

N

T∏
t=1

N∑
i=1

pθ(xt, z
(i)
t |Z1:t−1)

qφ(z
(i)
t |X,Z1:t−1)

)]

EnKO (ours) ensemble Kalman filter E

[
log

(
1

N

N∑
i=1

T∏
t=1

pθ(xt, z
(i)
t |Z1:t−1)

qφ(z
(i)
t |X,Z1:t−1)

)]

particle diversity in SMC require many iterations or resampling operations [62, 363, 428]. The iterative
methods spend time computing gradient propagation and learning parameters. The resampling operations
lead to the biasedness of the gradient estimator same as FIVO. These problems are inherent to the SMC. In
contrast, the ensemble Kalman filter (EnKF) [88, 89], a nonlinear Bayesian filtering method used mainly in
geophysics [317, 91], does not suffer from these problems.

Thus, we propose a new optimization framework called Ensemble Kalman Variational Objective (EnKO),
which uses the EnKF to learn the SVAEs and obtains rich PDF representations. The main idea of the
proposed method is to take advantage of the characteristics of the EnKF.

In this chapter, our main contributions are as follows:

1. We first provide a new framework called EnKO, which uses the EnKF in the inference of latent states
{zt}Tt=1. The proposed method has two main advantages over the FIVO framework: particle diversity
and unbiased gradient estimators. The diversity provides rich information on the latent states to predict
observations and quantify their uncertainty. The gradient estimators are unbiased because of no need
to truncate any terms while the FIVO truncates the resampling term.

2. It is known that the EnKF often underestimates the sample covariance matrix of the latent states. We
introduce a covariance inflation technique generally used in geophysics to alleviate this problem.

3. The computational complexity of EnKO is O(d2x), which is less scalable than O(dx), such as FIVO,
where dx represents the observation dimensions. We incorporate auxiliary variables for high-dimensional
data to reduce the computational complexity to O(dx).

4. EnKO has been applied to multiple synthetic and real-world data sets to achieve superior prediction
accuracy and particle diversity. Furthermore, we report that the variance of the gradient estimator of
EnKO is lower than that of FIVO and IWAE for toy examples in Appendix A.4.

This chapter is organized as follows. Section 6.2 describes ensemble learning frameworks for sequential
VAEs. Section 6.3 introduces the proposed method, EnKO, and discusses its concrete algorithm and simple
theoretical validity. Section 6.4 conducts experiments on several synthetic and real-world data sets and
compares the results with existing methods. Section 6.5 discusses the experiments and the proposed method.
Finally, Section 6.6 summarizes this chapter. The supplementary materials give detailed theoretical and
experimental results. Our codes are available at our GitHub page https://github.com/ZoneMS/EnKO.

6.2 Ensemble Learning Frameworks
IWAE [39, 77] provides a tighter bound by an ensemble of particles:

LN
IWAE(θ,φ, X) := E∏N

i=1 qφ(Z(i)|X)

[
log

(
1

N

N∑
i=1

pθ(X,Z
(i))

qφ(Z(i)|X)

)]
, (6.2)

58

https://github.com/ZoneMS/EnKO


where N denotes the number of particles, Z(i) = z
(i)
1:T denotes the i-th latent sequence, and L1

IWAE = LELBO.
When IWAE is applied to time series data, the divergence in the likelihood of particles increases as the time
step advances. This means that lossy particles are left behind over time, and these particles reduce the
learning efficiency.

FIVO [238] uses a particle filter to improve learning efficiency by allowing only particles with high likeli-
hoods to survive. The ELBO of FIVO is formulated by

LN
FIVO(θ,φ, X) : = E

QFIVO(z
(1:N)
1:T ,x

(1:N)
1:T |X)

[log p̂N (x1:T )], (6.3)

p̂N (x1:T ) =
T∏

t=1

1

N

N∑
i=1

pθ(z
(i)
t |z(i)

1:t−1)pθ(xt|z(i)
t )

qφ(z
(i)
t |x1:T , z

(i)
1:t−1)

, (6.4)

QFIVO(z
(1:N)
1:T ,x

(1:N)
1:T |X) =

T∏
t=1

N∏
i=1

qφ(z
(i)
t |x1:T , z

(i)
1:t−1)pθ(x

(i)
t |z(i)

t ), (6.5)

where pθ(z1|z1:0) = pθ(z1), qφ(z
(i)
1 |x1:T , z

(i)
1:0) = qφ(z

(i)
1 |x1:T ).

Objective functions and ensemble methods of these two learning frameworks and our proposed framework
detailed following Section are compared in Table 6.1

6.3 Ensemble Kalman Variational Objective (EnKO)

Algorithm 3 Ensemble Kalman Variational Objectives

1: EnKO(x1:T , pθ, qφ, N):
2: for t ∈ {1, · · · , T} do
3: for i ∈ {1, · · · , N} do
4: if t = 1 then
5: z

(i)
1 ∼ qφ(z1|x1:T )

6: else
7: z

(i)
t ∼ qφ(zt|x1:T , z

f,(i)
1:t−1)

8: z
(i)
1:t =CONCAT(z

(i)
1:t−1, z

(i)
t )

9: end if
10: w

(i)
t =

pθ(xt,z
(i)
t |z(i)

1:t−1)

qφ(z
(i)
t |x1:T ,z

f,(i)
1:t−1)

11: end for
12: {zf,(i)

t }Ni=1 =EnKF({z(i)
t }Ni=1,xt)

13: end for
Ensure: p̂N (x1:T ) =

1
N

∑N
i=1

∏T
t=1 w

(i)
t

14: EnKF({z(i)
t }Ni=1,xt):

15: for i ∈ {1, · · · , N} do
16: x

(i)
t ∼ pθ(xt|z(i)

t )

17: µ
x,(i)
t = E[x(i)

t ] = gθ(z
(i)
t )

18: end for
19: x̄t =

1
N

∑N
i=1 x

(i)
t

20: µ̄x
t = 1

N

∑N
i=1 µ

x,(i)
t

21: z̄t =
1
N

∑N
i=1 z

(i)
t

22: Σx
t = 1

N−1

∑N
i=1(x

(i)
t − x̄t)(x

(i)
t − x̄t)

T

23: Σzµx

t = 1
N−1

∑N
i=1(z

(i)
t − z̄t)(µ

x,(i)
t − µ̄x

t )
T

24: Kt = Σzµx

t (Σx
t )

−1

25: for i ∈ {1, · · · , N} do
26: z

f,(i)
t = z

(i)
t +Kt(xt − x

(i)
t )

27: end for
28: {zc,(i)

t }Ni=1 =CI({z(i)
t }Ni=1, {z

f,(i)
t }Ni=1)

Ensure: {zc,(i)
t }Ni=1

Ensemble Kalman Variational Objective (EnKO) is a framework for learning SVAEs using the EnKF
in the inference phase. Thanks to the property of the EnKF in EnKO, the proposed method has three
advantages over the SMC-based methods, as shown in Table 6.2:

1. EnKO provides high particle diversity because EnKF keeps particles have equal weights.

2. The gradient estimator of EnKO is a low variance because its operations are differentiable. This low
variance is experimentally shown in Appendix A.4.

3. Unbiasedness of the gradient estimator is guaranteed using the full gradient estimators. A detail of the
gradient estimator is shown in Appendix A.3.
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Algorithm 4 Covariance Inflation

1: RTPP({z(i)
t }Ni=1, {z

f,(i)
t }Ni=1;α):

2: for i ∈ {1, · · · , N} do
3: z

c,(i)
t = αz

(i)
t + (1− α)z

f,(i)
t

4: end for
Ensure: {zc,(i)

t }Ni=1

5: RTPS({z(i)
t }Ni=1, {z

f,(i)
t }Ni=1):

6: σt =
1

N−1 (z
(i)
t − z̄t)� (z

(i)
t − z̄t)

7: σf
t = 1

N−1 (z
f,(i)
t − z̄f

t )� (z
f,(i)
t − z̄f

t )
8: for i ∈ {1, · · · , N} do
9: z

c,(i)
t = (ασt + (1− α)σf

t )� σf
t � z

f,(i)
t

10: end for
Ensure: {zc,(i)

t }Ni=1

Table 6.2: Comparative summary of competing ensemble systems

System Unbiasedness Diversity Low variance Robustness
Gradient Objective

IWAE [39]
√ √ √

×
√

FIVO [238] ×
√

× ×
√

PSVO [262] ×
√

× × ×
EnKO (ours)

√
×

√ √ √

The rest of this section is laid out as follows. We first describe a detailed algorithm of the proposed method
in the following subsection. We then introduce our objective function and its property in subsection 6.3.2.
Finally, subsection 6.3.3 is devoted to a technique to apply the proposed method to high-dimensional data.

6.3.1 Algorithm of the Proposed Method

Overall Algorithm We describe the overall algorithm of EnKO with Algorithm 3. First, the method
infers the initial latent state z1 from the observations X = x1:T by neural networks, e.g., z1 = biLSTMφ(X)
using bidirectional LSTM (biLSTM) in SRNN [94], z1 = MLPφ ◦ biLSTMφ(X) using biLSTM and dense
NN in SVO [260] (line 5 in Algorithm 3). At each time-step t, the latent state z

(i)
t is inferred from the

observations X and the latent states until the previous time-step z
(i)
1:t−1 (line 7). The importance weight w(i)

t

is calculated by

w
(i)
t =

pθ(xt, z
(i)
t |z(i)

1:t−1)

qφ(z
(i)
t |x1:T , z

(i)
1:t−1)

(6.6)

=
pθ(xt|z(i)

t )pθ(z
(i)
t |z(i)

1:t−1)

qφ(z
(i)
t |x1:T , z

(i)
1:t−1)

, (6.7)

for the objective function (line 10). The latent states {z(i)
t }Ni=1 are corrected by the EnKF using their sample

covariance and the observation at time t (line 12). Finally, the p̂N (x1:t) are computed (output).

Detailed Algorithm of the EnKF We describe the detailed algorithm of the EnKF in EnKO with
Algorithm 3. At each time-step t and for each particle i, the mean estimate of the observation µ

x,(i)
t and a

sample x
(i)
t is generated from the emission network pθ(xt|z(i)

t ) (lines 16-17). For example, in the Gaussian
output distribution pθ(xt|z(i)

t ) = N (gθ(z
(i)
t ), sθ(z

(i)
t )), the mean estimate µ

x,(i)
t = gθ(z

(i)
t ) is gained. In this

example, w(i)
t = x

(i)
t − µ

x,(i)
t follows the zero-mean Gaussian distribution N (0, sθ(z

(i)
t )) and this random

variable corresponds to the noise in the EnKF update formula. Covariance matrices Σx
t and

(
Σzµx

t Σµx

t

)T
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correspond to HtΣ
z̃
tH

T
t + Σw

t and Σz̃
tH

T
t , respectively, at equation 4.17b in the augmented system, where

Ht =
(
Odz Idx

)
(lines 22-23). In the augmented system, because the first dz coordinates of z̃t constitute

the only update target, the augmented gain K̃t ∈ R(dz+dx)×dz is only needed at the first dz rows Kt ∈ Rdz×dx

(line 24). The latent state z
(i)
t is updated to z

f,(i)
t by the gain explaining observation xt well (line 26).

Finally, the updated latent states {zf,(i)
t }Ni=1 are adjusted by covariance inflation methods such as RTPP and

RTPS (line 28); these details are summarized in Algorithm 4.

6.3.2 Objective Function

The proposed method trains the EnKO to maximize the objective function

LN
EnKO(θ,φ, X) : = E

QEnKO(z
(1:N)
1:T ,x

(1:N)
1:T |X)

[log p̂N (x1:T )], (6.8)

p̂N (x1:T ) =
1

N

N∑
i=1

T∏
t=1

pθ(z
(i)
t |z(i)

1:t−1)pθ(xt|z(i)
t )

qφ(z
(i)
t |x1:T , z

f,(i)
1:t−1)

, (6.9)

QEnKO(z
(1:N)
1:T ,x

(1:N)
1:T |X) =

T∏
t=1

N∏
i=1

qφ(z
(i)
t |x1:T , z

f,(i)
1:t−1)pθ(x

(i)
t |z(i)

t ), (6.10)

where pθ(z1|z1:0) = pθ(z1), qφ(z
(i)
1 |x1:T , z

f,(i)
1:0 ) = qφ(z

(i)
1 |x1:T ) and p̂N (x1:T ) is the output of Algorithm 3.

This formulation is the same as the objective of sequential IWAE [39] as shown in Equation 6.2 and slightly
different from FIVO [238].

The following theorem and corollary are easily proved.

Definition 6.1 (linear Gaussian). An emission distribution pθ(xt|zt) is linear Gaussian if the distribution
is Gaussian and whose mean is linear transformation of zt, i.e.,

pθ(xt|zt) = N (Gθ,tzt, V
g
θ,t), (6.11)

where Gθ,t ∈ Rdx×dz and V g
θ,t ∈ Rdx×dx .

A variational distribution qφ(zt|x1:T , z
f
1:t−1) is linear Gaussian if the distribution is Gaussian and whose

mean is linear transformation of zf
t−1, i.e.,

qφ(zt|x1:T , z
f
1:t−1) = N (Qφ,t(x1:T )z

f
t−1, V

q
φ,t(x1:T )), (6.12)

where Qφ,t(x1:T ) ∈ Rdz×dz and V q
φ,t(x1:T ) ∈ Rdz×dz .

Theorem 6.2. The p̂N (x1:T ) is an approximately unbiased estimator of the marginal likelihood p(x1:T ). If
the emission distribution pθ(xt|zt) and the variational distribution qφ(zt|x1:T , z

f
1:t−1) are linear Gaussian,

the p̂N (x1:T ) is an unbiased estimator of the marginal likelihood.

Corollary 6.3. The objective function LN
EnKO(θ,φ, X) is an approximately lower bound of the log marginal

likelihood log p(x1:T ). If the emission distribution pθ(xt|zt) and the variational distribution qφ(zt|x1:T , z
f
1:t−1)

are linear Gaussian, the objective function is an unbiased estimator of the log marginal likelihood.

There is one point to be noted here. Since the objective function is not an exact lower bound of the
log marginal likelihood log p(x1:T ) but an approximate lower bound, it is not strictly an ELBO. However,
we describe it as ELBO because it is an approximate lower bound of the log marginal likelihood and an
exact lower bound under linear Gaussian constraints. This “approximation" means the filtering distribution
p(zt|x1:t) is replaced with the Gaussian distribution whose first and second moments are matched with
p(zt|x1:t) at all time-steps. Our goal is to infer models efficiently, and we are not concerned with the
tightness of the theoretical lower bound. In fact, in the following section, we show that the proposed method
can experimentally infer more appropriate models than IWAE and FIVO.
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Figure 6.1: Hierarchical structure for application to high-dimensional data. We first embed the observed
variables xt to auxiliary variables at, and then apply SVAE with EnKO to latent variables zt and at. In
this figure, while SVAE is assumed to SVO, other SVAEs can be applied

6.3.3 High-dimensional Application of the Proposed Method

While the computational complexity of FIVO scales linearly with the observation dimension dx, the computa-
tional complexity of EnKO scales quadratically with the dimension dx, making it difficult to apply directly to
high-dimensional data. To solve this problem, we use VAE to embed the observed variable xt to an auxiliary
variable at ∈ Rda , and then models SVAE for latent variables z1:t and auxiliary variables a1:T (Figure 6.1).
In this structure, the computational complexity of EnKO scales quadratically with the dimension da and
linearly with the observation dimension dx, which significantly reduces the computational cost. In addition,
because EnKO has particle diversity, the number of particles used in the calculation can be reduced compared
to FIVO, resulting in lower computational costs than FIVO.

6.4 Experiments
We trained the SVO network [260] with EnKO, IWAE [39], and FIVO [238] for three synthetic data and
one real-world benchmark data set. We used RTPP and RTPS as inflation methods in EnKO and set an
inflation factor by grid search from {0.1, 0.2, 0.3}. We implemented our experiments in PyTorch, and neural
network parameters were optimized using the Adam optimizer [173] with a learning rate of 0.001. The other
hyper-parameters settings and the grid search details are described in Appendix A.5. All experiments were
performed on three random seeds, and performance metrics were averaged over the seeds. The codes for the
experiments are available at our GitHub page https://github.com/ZoneMS/EnKO.

6.4.1 FitzHugh-Nagumo Model

The FitzHugh-Nagumo model (FHN model) is a two-dimensional simplification of the Hodgkin-Huxley model,
which models the spiking activity of neurons. The model is represented by

V̇ = V − V 3

3
−W + Iext, (6.13)

Ẇ = a(bV + d− cW ), (6.14)

where V and W represent the membrane potential and a recovery variable, respectively. In our experiments,
we set Iext = 0, a = 0.7, b = 0.8, c = 0.08, and d = 0. The initial states were uniformly sampled from
[−3, 3]2 to generate 400 samples using 200 for training, 40 for validation, and 160 for testing. A synthetic
one-dimensional observation xt was sampled from N (Vt, 0.1

2). We set the latent dimension to 2 and the
number of particles to 16.
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Figure 6.2: Inferred latent dynamics and prediction MSE for FitzHugh-Nagumo model. (left) True dynamics
and trajectories on the first 10 test set. (center) Inferred latent dynamics and trajectories on the 10 test sets
using EnKO to perform dimensionality expansion. (right) Prediction MSE for various ensemble frameworks,
including FIVO (blue), IWAE (orange), and EnKO without (green) and with covariance inflation (RTPP: red,
RTPS: purple). Solid line represents mean MSE over multiple seeds. Semi-transparent filled area represents
the mean plus/minus the standard deviation of MSE over the seeds, exclusive IWAE due to the large standard
deviation

The inferred latent dynamics and prediction MSE are shown in Figure 6.2. The left panel displays
the original dynamics and trajectories on the first 10 test set. The center panel displays the inferred latent
dynamics and trajectories on the 10 test sets using EnKO to expand dimensionality. The initial points located
inside and outside the limit cycle and the order of the trajectories inside the original system are equivalent
to the reconstructed system. This equivalence means that the reconstructed dynamics are topologically
equivalent to the original dynamics. The right panel shows the prediction MSE comparison among ensemble
frameworks. The EnKO outperforms the previous methods, especially for long-time prediction.

6.4.2 Lorenz Model

The Lorenz model is a system of three ordinary differential equations originally developed to simulate atmo-
spheric convection. The model is described by

dx

dt
= σ(y − x), (6.15)

dy

dt
= x(ρ− z)− y, (6.16)

dz

dt
= xy − βz, (6.17)

where x, y, and z are the variables of this system. In our experiments, we set σ = 10, ρ = 28, and β = 8/3.
These parameter settings are chaos parameters, leading to the Lorenz attractor. The initial states were
randomly chosen from [−10, 10]3 to generate 100 samples using 66 for training, 17 for validation, and 17
for testing. A synthetic observation xt was generated from N

((
xt yt zt

)T
, 0.12 × I3

)
. We set the latent

dimension to 3 and the number of particles to 16.
The inferred latent dynamics and prediction MSE are shown in Figure 6.3. The left panel displays the

original trajectories on the first 10 test set. The center panel displays the inferred latent trajectories on
the 10 test set using EnKO. The order of the trajectories inside the double-scroll attractor in the original
system is equivalent to the reconstructed system. This equivalence means that the reconstructed system is
topologically equivalent to the original system. The right panel shows the prediction MSE comparison among
ensemble frameworks. The EnKO performs better prediction than the previous methods.
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Figure 6.3: Inferred latent trajectories and prediction MSE for Lorenz model. (left) True trajectories on the
first 10 test set. (center) Inferred latent trajectories on the 10 test set using EnKO. (right) Prediction MSE
for various ensemble frameworks, including FIVO (blue), IWAE (orange), and EnKO without (green) and
with covariance inflation (RTPP: red, RTPS: purple). Solid line represents mean MSE over multiple seeds.
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exclusive IWAE due to the large standard deviation
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Figure 6.4: Prediction MSE for CMU walking data set (left) and rotating MNIST data set (right). Solid line
represents mean MSE over multiple seeds. Semi-transparent filled area represents the mean plus/minus the
standard deviation of MSE over the seeds

6.4.3 CMU Walking Data

We experiment on a data set extracted from the CMU motion capture library to demonstrate that the
proposed method can capture latent structures from noisy real-world observations. We used the 23 walking
sequences of subject 35 [102], which is partitioned into 16 for training, 3 for validation, and 4 for testing.
We followed the preprocessing procedure of [372], after which we were left with 47-dimensional joint angle
measurements and 3-dimensional global velocities. We set the latent dimension to 2 and the number of
particles to 128.

The prediction MSE is shown in Figure 6.4 (left). While the error of EnKO without inflation methods
diverges, EnKO with RTPS outperforms the other methods. This is probably because the EnKF tends to
underestimate the state covariance when the ratio of the observation dimension to the number of particles is
large. The predicted reconstructions from the proposed method are shown in Appendix A.6.
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the shape and edge of the handwritten data, the dynamics convolution block extracts dynamics information,
such as rotation dynamics

6.4.4 Rotating MNIST Dataset

We used a rotating MNIST data set consisting of rotated images of handwritten “3" digits [44] to demonstrate
that the proposed method can extract latent dynamics from high-dimensional image sequence data. We used
all of the rotation angles and divided the data set into 360 for training, 40 for validation, and 642 for testing.
We used the hierarchical structure as presented in Figure 6.5 and set the auxiliary dimension to 8 (6 for
styles and 2 for dynamics), the latent dimension to 2, and the number of particles to 32.

The prediction MSE is shown in Figure 6.4 (right). The EnKO method consistently provides lower errors
than the FIVO and IWAE. Contrary to the walking data set, EnKO without inflation methods provides
competitive errors with EnKO with the inflation methods. We introduced auxiliary variables, and the ratio
of the substantial observation dimension to the number of particles is less than that of the walking data set.
A small inflation factor is more suitable for this rotating handwritten data. The predicted images from the
methods are shown in Appendix A.6.

6.4.5 Particle Diversity

We computed cosine similarity for each particle pairs to evaluate particle diversity. The cosine similarity is
computed by

CS(z
(i)
t , z

(j)
t ) =

(z
(i)
t − z̄t) · (z(j)

t − z̄t)

‖z(i)
t − z̄t‖‖z(j)

t − z̄t‖
, (6.18)

where v ·w represents inner product of vectors v and w. Because the cosine similarity is close to 1 when two
particles are similar, the higher ratio of particle pairs which provide high cosine similarity is, the less particle
diversity the model provides.

The ratio are summarized in Table 6.3. The network trained by IWAE has relatively less diversity for the
Lorenz model. The Lorenz model provides chaotic dynamics, and IWAE could not represent the distribution
of these dynamics. In contrast, the EnKO methods consistently provide a lower ratio of particle pairs of high
cosine similarity than IWAE and FIVO.

65



Table 6.3: Ratio of particle pairs which provide higher cosine similarity

(a) Fitz-Hugh Nagumo model

System ≥ 0.5 ≥ 0.7 ≥ 0.9

IWAE 0.329 0.259 0.155
FIVO 0.343 0.276 0.171
EnKO w/o CI 0.327 0.256 0.151
EnKO w/ RTPP 0.321 0.249 0.144
EnKO w/ RTPS 0.325 0.253 0.149

(b) Lorenz model

System ≥ 0.5 ≥ 0.7 ≥ 0.9

IWAE 0.409 0.341 0.250
FIVO 0.286 0.198 0.0841
EnKO w/o CI 0.249 0.158 0.0573
EnKO w/ RTPP 0.249 0.158 0.0574
EnKO w/ RTPS 0.251 0.160 0.0581

(c) CMU walking data set

System ≥ 0.5 ≥ 0.7 ≥ 0.9

IWAE 0.132 0.0435 0.00330
FIVO 0.134 0.0454 0.00364
EnKO w/o CI 0.124 0.0391 0.00283
EnKO w/ RTPP 0.124 0.0393 0.00284
EnKO w/ RTPS 0.124 0.0392 0.00283

(d) Rotating MNIST data set

System ≥ 0.5 ≥ 0.7 ≥ 0.9

IWAE 0.336 0.261 0.153
FIVO 0.343 0.272 0.162
EnKO w/o CI 0.327 0.250 0.144
EnKO w/ RTPP 0.327 0.250 0.144
EnKO w/ RTPS 0.327 0.251 0.144

6.5 Discussion
The proposed method demonstrated excellent prediction accuracy in our experiments for three main reasons.
The first is that EnKF is suitable for systems that can be approximated linearly in latent space in a time-local
manner. The four data sets do not show rapid time-local changes; thus, the EnKF works well for systems that
use local linear information. The chaotic nature of the Lorenz model makes long-term prediction difficult;
however, the error derived from the linear approximation is small in the short term. On the other hand,
downsampling the data every ten times points to a loss of local linearity, destabilizes the EnKF calculation,
and reduces the proposed method’s superiority. In the Walking dataset, if a sample suddenly starts dancing,
the strong nonlinearity at the change point gives the FIVO an advantage.

Second, the phase space of the latent space is well covered by the training dataset, and the temporal
evolution of the state is independent of the samples. The Fitz-Hugh Nagumo model exhibits periodic limit-
cycle oscillations and does not contain samples that deviate significantly from the cycle. If the training
data only includes data that winds from inside the cycle and the test data are given outside the cycle, it
will predict incorrectly. The Lorenz model constructs the double-scroll attractor, and training, validation,
and testing data were sampled uniformly. For these model systems, the predictions break down for samples
obtained from models with different parameters. The Walking data shows behavior similar to periodic limit
cycles in the latent space, although individual differences exist. Data with speedy running motion and crab
walking may be incorrectly estimated. The Rotating MNIST data exhibit a circular motion in latent space,
as the structure of the style and dynamics networks allows for acquiring a dynamics-related latent space.
Predictions fail for data with different rotation speeds and opposite rotation data. If the style network is
excluded from the embedding, the style evolves as latent states from the dynamics network, making learning
difficult.

Third, both the network and the data satisfy the Markov property. Since SVO is used as SVAE, the
transition structure of the latent variable is Markov. The Fitz-Hugh Nagumo data is Markov because we
generated the data by the explicit Runge-Kutta method. The one-dimensional observation is non-Markov;
however, the latent variable is Markov because the encoder constructs a latent space that captures time-
delayed information. The Lorenz data is Markov same as the Fitz-Hugh Nagumo data. The data is sensitive at
the intersection of the double scrolls. The transition model representing two-peak states is a more appropriate
choice for this data. The Walking dataset is Markov because it contains only linear walking motions. The
Rotating MNIST dataset is Markov because of the rotational motion at equal intervals. Modeling of the
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SVAE needs to be reconsidered for systems with insufficient observation information and non-Markovian
state space.

6.6 Conclusion
We have introduced Ensemble Kalman Variational Objective (EnKO) to improve time-series model inference
by combining sequential VAEs. The proposed method uses the EnKF to infer latent variables and has
three advantages over the previous SMC-based methods: particle diversity, the low variance of the gradient
estimator, and the unbiasedness of the gradient estimators.

With these advantages, the proposed method outperforms the previous methods regarding the predictive
ability for three synthetic and one real-world data set. The inferred 2-dimensional latent dynamics from
1-dimensional observations in the Fitz-Hugh Nagumo model are topologically equivalence to the original
2-dimensional dynamics. The inferred latent trajectories for synthetic Lorenz data could reconstruct the
double-scroll attractor.

We provide three future directions for this work. The first direction is the application of the time-delay
ODE systems [306, 193, 276, 234]. Our Fitz-Hugh Nagumo experiment demonstrates that the proposed
method can reconstruct homomorphism space from one-dimensional observation. The reconstruction is re-
lated to time-delay coordinates [280, 348, 320] in the field of dynamics theory. The concept is especially
useful for reconstructing the phase space of a dynamical system when we have access to only a single series
of observations. The idea is to construct a multidimensional phase space by delaying the time series by a
fixed time interval, often called the delay time τ , and stacking these delayed versions as coordinates. The
time-delay coordinates can be represented as

zt =
(
xt xt+τ · · · xt+(m−1)τ

)
, (6.19)

wherem is the embedding dimension. Under certain conditions, Takens’ Embedding theorem [348] guarantees
that the reconstructed phase space using time-delay coordinates is topologically equivalent to the original
phase space of the dynamical system. Since this is closely related to our experimental result, we plan to
apply the proposal to the time-delay system and compare the results.

The second direction is the applications inferring stochastic differential equations (SDEs). While this work
only focuses on the time-series data formulated by the probabilistic time-series model, unequally spaced-time
data and continuous-time observed data exist in practical applications. Since the proposed framework is not
constrained to a discrete-time state transition, we plan to start with ODE inference such as NeuralODE [50]
and ODE2VAE [406] and then extend to SDE.

The third direction is the hybrid algorithm of EnKO and FIVO. The other algorithm could solve the
drawbacks of one algorithm. The hybrid of these two algorithms has the potential to solve both drawbacks.
This future direction is clear because many hybrid sequential filtering methods of EnKF and PF have been
proposed [97, 341].
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7 Representation of Protein Dynamics Disentangled by Time-structure-
based Prior

Representation learning (RL) is a universal technique for deriving low-dimensional disentangled represen-
tations from high-dimensional observations, aiding a multitude of downstream tasks. RL has been extensively
applied to various data types, including images and natural language. Here, we analyze molecular dynam-
ics (MD) simulation data of biomolecules in terms of RL. Currently, state-of-the-art RL techniques, mainly
motivated by the variational principle, trying to capture slow motions in the representation (latent) space.
Here, we propose two methods based on an alternative perspective on the disentanglement in the latent
space [157]. By disentanglement, we here mean the separation of underlying factors in the simulation data,
aiding in detecting physically important coordinates for conformational transitions. The proposed methods
introduce a simple prior that imposes temporal constraints in the latent space, serving as a regularization
term to facilitate capturing disentangled representations of dynamics. Comparison with other methods via
the analysis of MD simulation trajectories for alanine dipeptide and chignolin validates that the proposed
methods construct Markov state models (MSMs) whose implied time scales are comparable to state-of-the-art
methods. Using a measure based on total variation, we quantitatively evaluated that the proposed methods
successfully disentangle physically important coordinates, aiding the interpretation of folding/unfolding tran-
sitions of chignolin. Overall, our methods provide good representations of complex biomolecular dynamics
for downstream tasks, allowing for better interpretations of conformational transitions.

7.1 Introduction
Molecular dynamics (MD) simulation is one of the most powerful approaches for investigating the confor-
mational dynamics of biomolecules [379, 245]. MD simulations can be used to investigate various dynamic
phenomena of biomolecules, such as allosteric transitions [258, 259, 182, 278, 328, 329], molecular docking
[243, 98, 124, 153, 178], and structure formation [106, 286, 301, 252, 78]. Raw output data from MD sim-
ulations are trajectories and multivariate time-series data containing coordinates of atomic positions. The
temporal information contained in trajectory data spans a broad range of time-scales, from atomic vibration
in femtoseconds to protein folding in milliseconds. In trajectory data analysis, reducing the high-dimensional
data to a small number of collective variables (CVs), which summarize such complicated dynamics, is of-
ten challenging. Capturing good CVs is important for various downstream tasks, including conformational
clustering, free energy surface for analyzing the thermodynamic stability of states, Markov state modeling
for analyzing kinetic behavior, and further simulations with enhanced sampling methods using the captured
CVs.

For capturing CVs, dimensionality reduction techniques have been widely used in the studies of MD
simulation analysis. Principal component analysis (PCA) captures the CVs with the largest variances by
orthogonal transformations of the original coordinates. Relaxation mode analysis (RMA),[347, 255] time-
structure-based independent component analysis (tICA),[268, 284, 326, 247, 331] which are often applied
for capturing CVs with the slowest relaxations by linear transformations. Advanced nonlinear reduction
techniques include isomap[72] and diffusion map[336, 171]. For details, the readers are referred to a recent
excellent review on unsupervised learning of MD data by Glielmo et al.[108]

Generally, since the success of such downstream tasks is highly dependent on the choice of CVs, capturing
“good” CVs is an important subject for analyzing trajectories. In terms of the field of machine learning,
unsupervised learning techniques for obtaining good CVs or features with an emphasis on the performance of
various downstream tasks have been studied in the context of representation learning (RL). [27, 28, 335, 49,
377, 351] So far, RL has been developed and successfully applied to various types of data sets besides MD data.
For image data, RL extracts informative representations for image classification [373, 376], anomaly detection
[181, 45], and object detection [393, 344]. For language data, RL provides low-dimensional embedding for
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sentiment analysis [396, 32], named entity recognition [7, 201], and language translation [279].
The key point of RL is to learn features that disentangle many underlying explanatory factors (essential

for downstream tasks, such as classification or prediction) hidden in the observed data as possible, discarding
as little information about the data.[27, 28] RL to obtain these features include basic dimensionality reduction
methods such as PCA and dimensionality expansion methods such as sparse auto-encoder (SAE) [195]. In
terms of this view, as shown by Schwantes et al. [327, 121, 342, 246], tICA can be regarded as an optimal
embedding of temporal variations in trajectory data by linear transformations. Recently, motivated by recent
developments in deep learning technologies, several methods based on neural networks have been developed
to disentangle the underlying temporal behavior hidden in trajectory data [381, 131, 343, 17, 76, 242, 53, 52,
364, 378]. An auto-encoder (AE) is a general nonlinear dimensionality reduction method based on neural
networks that learn the process of reconstructing the original observed variables after encoding them into
low-dimensional latent variables [133].

Various extensions of AE for MD trajectory data have been proposed based on AE. Time-lagged AE
(TAE), an extension of AE to the temporal domain, was developed to capture slow CVs by applying time-
lagged reconstruction as the loss function in the AE framework [381]. A variational AE (VAE) suppresses
overfitting, often occurring in AE, by adding Gaussian noise to the latent variables [174]. Time-lagged VAE
(TVAE) learns encoding and time-lagged reconstruction process using VAE [136]. Variational dynamics en-
coder (VDE) obtains slower CVs by penalizing TVAE’s loss function with a negative sample autocorrelation
coefficient in the latent space [131]. Gaussian-mixture VAE (GMVAE) simultaneously performs dimension-
ality reduction, clustering them into macrostates with a Gaussian mixture distribution [364]. Variational
approach for Markov processes nets (VAMPnets) and reversible deep MSM (revDMSM) learn macrostates
based on a variational approach [242, 241]. State-free reversible VAMPnet (SRV) orthogonalizes the embed-
ding maps with linear VAC[53].

More recently, physically motivated methods have been developed to learn interpretable representations
for complex dynamics. For example, Yang et al. made a notable contribution by embedding time se-
ries in a latent space coherent with physical simulators, an approach particularly effective in deterministic
simulations.[403] Complementing this, Khan and Storkey focused on representation learning that approxi-
mately conserves the original Hamiltonian in latent space, an important property in differentiating between
static and dynamic representations.[168] From an information-theoretic perspective, Wang and Tiwary inno-
vated by optimizing mutual information in different aspects of state prediction, offering a unique approach to
understanding molecular dynamics.[370] Wang et al. explored the integration of physically constrained priors
into representation learning, paving the way for more meaningful interpretations of latent dynamics.[371] Wu
and Noé employed normalizing flows in latent space embeddings, allowing for a refined separation of reac-
tion coordinates and noise, thereby contributing to a more nuanced approach to the dimensional reduction of
molecular kinetics.[388] Together, these studies form a comprehensive framework, informing and inspiring our
current research direction toward developing more interpretable and physically consistent models in protein
dynamics simulation.

Despite the development of these methods, disentanglement in learning representations of dynamics has
not yet been fully explored.

By disentanglement, we here mean the separation of underlying factors in the simulation data, aiding in
detecting physically important coordinates for conformational transitions.

Since disentanglement is a crucial property for the success of downstream tasks, methods that can learn
disentangled representations would be important for subsequent analyses. In order to explore this point, this
study proposes two RL methods, time-structure-based variational autoencoder (tsVAE) and time-structure-
based time-lagged variational autoencoder (tsTVAE). Both methods leverage a unique prior to disentangle
complex biomolecular dynamics in the latent space. This prior imposes temporal constraints on the transi-
tional motions in the latent space, expected to disentangle transitional motions on an event-by-event basis,
not relying on averaged quantities like autocorrelations, which is a typical approach in other existing meth-
ods. Consequently, the proposed methods can robustly learn disentangled representations from relatively
short MD trajectory data, even when conformational transitions occur infrequently. Through the compari-
son with other existing methods on the MD simulation data of alanine-dipeptide and chignolin, we show that
the proposed methods can extract disentangled CVs that capture conformational transitions well, and the
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properties of constructed Markov state models further validate the learned representations (CVs).
This chapter is organized as follows. Section 7.2 describes existing methods, then explains the details

of the proposed methods (tsVAE, tsTVAE). Section 7.3 describes the protocols of MD simulations and the
properties of MSMs used to assess the qualities of RL methods. Section 7.4 shows the results obtained
by applying the existing and proposed methods to MD simulation data for alanine-dipeptide molecule and
chignolin folding dynamics. Section 7.5 discusses the limitations of the methods and future directions.

7.2 Theory
7.2.1 Notation

Let X = {xt}Tt=1 be the dx-dimensional T -length observed sequence and Z = {zt}Tt=1 be the dz-dimensional
T -length latent sequence. In our neural network model analysis, X is the feature-selected data from the
series data obtained by MD simulation. For a vector sequence V = {vt}Tt=1, vt,i represents the i-th element
of the vector vt. For a vector v ∈ Rd and a matrix M ∈ Rn×m, vT ∈ R1×d and MT ∈ Rm×n represents
the transpose of the vector and the matrix, respectively. For a vector v = (v1 · · · vd)T ∈ Rd and a natural
number n ∈ N, v◦n = (vn1 · · · vnd )T represents the element-wise power of n. For vectors v = (v1 · · · vd)T and
u = (u1 · · · ud)T ∈ Rd, v � u = (v1u1 · · · vdud)T represents the element-wise product. For a vector v =

(v1 · · · vd)T , ‖v‖ =
√∑d

i=1 v
2
i and ‖v‖1 =

∑d
i=1 |vi| represent the L2 norm and the L1 norm, respectively.

For a vector v ∈ Rd, diag(v) ∈ Rd×d represents the diagonalized matrix. For a finite set S, |S| represents
the number of elements of the set. For a random variable X ∈ X , a function f : X → R, and a distribution
p : X → [0,∞), Ep(X)[f(X)] ∈ R represents the expectation of f(X) regarding to the distribution p(X).
For random variables X ∈ X , Y ∈ Y , a function f : X × Y → R, and a conditional distribution p(X|Y ),
Ep(X|Y )[f(X,Y )] : X → R represents the conditional expectation of f(X,Y ) regarding to the distribution
p(X|Y ).

7.2.2 Auto-Encoder

Auto-encoder (AE) is a model for obtaining low-dimensional representation by reconstructing an observation
from the reduced representation [312, 405] (Figure 7.1(a)). The model embeds an observation x to the
latent variable z = Eφ(x) by the encoder Eφ : Rdx → Rdz and reconstructs the observation x̂ = Dθ(z)
by the decoder Dθ : Rdz → Rdx . The encoder Eφ and the decoder Dθ are neural networks with the model
parameters φ and θ. The model parameters φ and θ are learned by minimizing the reconstruction loss

lAE
r =

1

|B|
∑
t∈B

‖xt − x̂t‖2 =
1

|B|
∑
t∈B

‖xt −Dθ ◦ Eφ(xt)‖2, (7.1)

where B is a minibatch whose elements are randomly sampled from {1, · · · , T}. Note that the AE does
not use temporal information in the observations; thus, it does not learn representations related to dynamic
properties.

7.2.3 Variational Auto-Encoder

Variational auto-encoder (VAE) uses probabilistic models for AE’s encoder and decoder (Figure 7.1(b)).
The model designs a variational posterior distribution qφ(z|x) and a generative distribution pθ(x|z) by
neural networks [174]. The parameters φ and θ are learned by variational inference [22, 162, 414], which
is a method to maximize the evidence lower bound (ELBO) instead of intractable maximization of the log
marginal likelihood. The ELBO is defined by

L(θ,φ,x) := Eqφ(z|x)

[
log

pθ(x, z)

qφ(z|x)

]
≤ log pθ(x), (7.2)
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where pθ(x, z) represents the joint generative distribution. The inequality in the equation (7.2) is easily
proved by Jensen’s inequality [160]. The bound is represented by

L(θ,φ,x) = Eqφ(z|x) [log pθ(x|z)]−KL (qφ(z|x)‖pθ(z)) , (7.3)

where pθ(z) is a prior distribution, and KL(qφ(z|x)‖pθ(z)) represents the Kullback-Leibler (KL) divergence
between the posterior qφ(z|x) and the prior pθ(z) distributions [190, 189, 9]. Resembling the AE, the VAE
does not learn the temporal information in the observations.

In a typical VAE, the prior pθ(z) is chosen to be the standard isotropic Gaussian distribution N (zt;0, I)
where N (·;µ,Σ) represents the normal distribution with mean vector µ and covariance Σ. This choice is
computationally convenient (for calculating the KL divergence) and encourages disentangling the representa-
tion in the latent space because the isotropic distribution promotes latent variables becoming uncorrelated.
At the same time, the prior helps to reduce overfitting to limited sets of training data because the KL term
in Eq. 7.3 works as a regularization term to constrain the capacity of information contained in the latent
space.[132]

7.2.4 Time-lagged Neural Network Models

The TAE extends the original AE by incorporating time-lagged information to learn the dynamic properties
present in observations. The TAE [381] embeds an observation xt to the latent variable zt by the encoder
network Eφ : Rdx → Rdz and reconstructs the time-lagged observation x̂t+τ by the decoder network Dθ :
Rdz → Rdx (Figure 7.1(c)). The model parameters φ and θ are learned by minimizing the reconstruction
loss

lTAE
r =

1

|B|
∑
t∈B

‖xt+τ − x̂t‖2 =
1

|B|
∑
t∈B

‖xt+τ −Dθ ◦ Eφ(xt)‖2, (7.4)

where B ⊂ {1, · · · , T − τ} and τ are a minibatch and a model lagtime, respectively.
The TVAE [136] is an extension to TAE based on the architecture of the VAE. It introduces the proba-

bilistic model to TAE and designs the variational posterior distribution, the generative distribution, and the
prior distribution as follows (Figure 7.1(d)):

qφ(zt|xt) = N
(
zt;µφ(xt), diag(σφ(xt))

)
, (7.5)

pθ(xt+τ |zt) = N (xt+τ ;µθ(zt), I) , (7.6)
pθ(zt) = N (zt;0, I). (7.7)

The model parameters φ and θ are learned by minimizing the following loss

lTVAE = lTVAE
r + β lTVAE

p (7.8)

= − 1

|B|
∑
t∈B

log pθ(xt+τ |zt) + β
1

|B|
∑
t∈B

KL(qφ(zt|xt)‖pθ(zt)), (7.9)

where lTVAE
r and lTVAE

p represent the reconstruction loss (negative log-likelihood) and the prior regularized
loss, respectively.

In the limit of a single linear hidden layer of the TAE, the tICA solution can be obtained.[381] Also,
the TVAE with regularized coefficient β = 0 reduces to the TAE with latent Gaussian perturbation. These
suggest that the TAE and the TVAE are expected to be nonlinear extensions of tICA for learning slow CVs
hidden in high-dimensional observation. However, as discussed by Chen et al. [52], just minimizing the
reconstruction loss does not ensure that the method captures the slowest CVs in nonlinear ways. Chen et al.
theoretically show that, in general, the TAE learns a mixture of slow and maximum variance CVs instead of
purely slow CVs.

The VDE[131] is similar to the TVAE, but the problem of the TAE and TVAE is somewhat relaxed.
Inspired by the variational approach to conformational dynamics,[272] the VDE introduced the sample au-
tocorrelation loss lVDE

a to the TVAE (Figure 7.1(e)). The VDE loss is defined by

lVDE = lVDE
r + β lVDE

p + γ lVDE
a (7.10)
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Figure 7.1: Neural network model structures of AE, VAE, TAE, TVAE, VDE, tsVAE, and tsT-
VAE. The green trapezoid E and the blue trapezoid D represent the encoder and the decoder, respectively.
The red dashed line lVDE

a , the purple dashed lines ltsVAE
s , and ltsTVAE

s represent the sample autocorrelation
loss of VDE and the time-structure-based loss of tsVAE and tsTVAE, respectively. The black lines between
a latent variable zt and the decoder D represent that the zt is an input of the decoder. The black wavy
arrows represent sampling procedures from Gaussian distribution.

= − 1

|B|
∑
t∈B

log pθ(xt+τ |zt)

+ β
1

|B|
∑
t∈B

KL(qφ(zt+τ |xt+τ )‖pθ(zt+τ ))

− γ

dz∑
d=1

∑
t∈B(zt,d − z̄t,d)(zt+τ,d − z̄t+τ,d)√(∑

t∈B(zt,d − z̄t,d)2
) (∑

t∈B(zt+τ,d − z̄t+τ,d)2
) . (7.11)

Here, z̄t represents the mean of {zt}t∈B, and γ is an autocorrelation penalty coefficient. The sample au-
tocorrelation loss lVDE

a calculates the sum of the negative sample autocorrelation in each dimension; the
smaller loss means higher sample autocorrelation in the latent space. This loss enhances obtaining slower
CVs because higher autocorrelation corresponds to a slower transition in the latent space. While this loss
term γ lVDE

a mainly depends on the coefficient γ and the minibatch size |B|, the robustnesses are not fully
discussed in the original paper [131].
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7.2.5 Time-structure-based Neural Network Models

Here, we describe our proposed RL methods, tsVAE and tsTVAE, designed to obtain disentangled represen-
tations of protein dynamics (Figure 7.1(f),(g)). The idea behind tsVAE and tsTVAE is based on the VAE
applying a prior pθ(z) to encourage the disentanglement of its representation as done by the VAE. Whereas
the notion of the VAE’s prior is limited to the disentanglement of static distributions, we extend the idea of
the prior to temporal domain space.

Following Wang et al. [371], we consider a stochastic process in the latent space. In such a process, slow
dynamics are characterized as memoryless and can be described as a Markovian process. A distribution of
such a process, after a short time interval τ > 0, can be well approximated as a Gaussian function centered
on scaled and/or drifted coordinates of the initial position. Among the various stationary processes with
stationary distributions, the Ornstein-Uhlenbeck (OU) process [105] fulfills the above requirements, exhibiting
a stationary distribution characterized by a Gaussian distribution. The OU process of one-dimensional
stochastic latent variable zt is defined by

dzt = −γztdt+
√
DdWt. (7.12)

Here, γ > 0, D > 0 are parameters, and Wt denotes the Wiener process. The conditional probability density
p(zt+τ | zt) of the process is given by

p (zt+τ | zt) =
1√

2πD
γ (1− e−2γτ )

exp

(
− (zt+τ − zte

−γτ )
2

2D
γ (1− e−2γτ )

)
(7.13)

= N
(
zt+τ ; zte

−γτ ,
D

γ

(
1− e−2γτ

))
(7.14)

A more general process was described by Wang et al. [371] where they considered an effective potential
energy function in the latent space. Here, we do not introduce a potential energy function in the latent space
because our objective is not to reduce the energy landscape but to achieve a disentangled representation
without any trapping in energy minima. As will be shown below, this simple process can be conceptually
related to the VAE prior, and its autocorrelations can be regulated by a single parameter.

When we setD/γ = 1, the joint probability density of zt and zt−τ is given by p(zt, zt−τ ) = p(zt−τ )p(zt|zt−τ ),
where p(zt−τ ) is the stationary distribution N (zt−τ ; 0, 1), and the conditional probability density is given by
Eq. 7.14. This results in

p(zt, zt−τ ) = N (zt−τ ; 0, 1)N (zt;αzt−τ , 1− α2), (7.15)

where α = e−γτ (0 < α < 1 ). Here, the variance of the second distribution on the right-hand side corresponds
to the autocorrelation between zt and zt+τ , explicitly parametrized by α. Consequently, the autocorrelation
of the OU process can be easily imposed in the latent space by specifying α, facilitating the capture of slow
protein dynamics.

In our proposed RL methods, tsVAE and tsTVAE, we impose the above joint probability density derived
from the OU process as a prior in the latent space. Returning to the dz-dimensional latent space zt where
components are independent of each other, the prior can be described as,

pθ(zt, zt−τ ) = pθ(zt−τ )pθ(zt|zt−τ ) (7.16)

= N (zt−τ ;0, I) N (zt;α� zt−τ , diag(1−α◦2)), (7.17)

where α ∈ Rdz is a dz-dimensional parameter vector. The first normal distribution of the prior N (zt;0, I)
is the same as that used in the VAE and TVAE. As mentioned, it enhances disentanglement by isotropically
distributing the latent variables. The second normal distribution N (zt;α � zt−τ , diag(1 − α◦2)), which
we refer to as time-structure-based prior, encourages the position of zt to be near time-proximal zt−τ while
maintaining a certain covariance around. As noted above, this second prior corresponds to the autocorrelation
between zt−τ and zt. In the limit of α → 0, the second prior converges to N (zt;0, I) and the whole prior
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becomes pθ(zt, zt−τ ) = N (zt−τ ;0, I)N (zt;0, I), essentially same as that of the VAE, suggesting that the
tsVAE and tsTVAE are the natural time-domain extensions of the VAE.

Altogether, the second prior works to make time-proximal samples spatially close to each other, while the
first prior makes the other samples isotropically distributed or disentangled. Also, states far apart in time
but visited many times in MD trajectories can be brought closer together by the reconstruction loss. These
effects complementarily explain state transitions in latent space while collapsing fast modes.

The model parameters φ and θ are learned by minimizing the negative bound

lts(T)VAE = lts(T)VAE
r + β lts(T)VAE

p + lts(T)VAE
s (7.18)

= − 1

2|B|
∑
t∈B

1∑
i=0

log pθ(xt+(i+δtsTVAE)τ |zt+iτ )

+ β
1

2|B|
∑
t∈B

KL(qφ(zt|xt)‖pθ(zt))

+
1

2|B|
∑
t∈B

KL(qφ(zt+τ |xt+τ )‖pθ(zt+τ |zt))) (7.19)

=
1

2|B|
∑
t∈B

1∑
i=0

‖µθ(zt+iτ )− xt+(i+δtsTVAE)τ‖2

+ β
1

2|B|
∑
t∈B

{µφ(xt)
Tµφ(xt) + ‖σφ(xt)‖2 − 2‖ log σφ(xt)‖1}

+
1

2|B|
∑
t∈B

dz∑
d=1

{
(µφ(xt+τ )d − αdzt,i)

2

1− α2
d

+
σφ(xt+τ )

2
d

1− α2
d

− log σφ(xt+τ )
2
d

}
+ const., (7.20)

where δtsTVAE = 1 (tsTVAE); 0 (tsVAE) represent whether the model is the tsVAE or the tsTVAE. The
equation’s third term (from the time-structure-based prior) works as a regularization of transitional motions
during τ . The detailed training process for the tsVAE and the tsTVAE is shown in Algorithm 5.

Algorithm 5 Training of tsVAE and tsTVAE
Ensure: model qφ and pθ, data D
1: for minibatch B ⊂ D do
2: Initialize loss l = 0
3: for (xt,xt+τ ,xt+2τ ) ∈ B do
4: for i ∈ {0, 1} do
5: Samples latent variables zt+iτ ∼ qφ(zt+iτ |xt+i∗τ )
6: Compute the log-likelihood of the emission l = l − log pθ(xt+(i+δtsTVAE)τ |zt+iτ )
7: end for
8: Compute the KL divergence of the latent prior l = l +KL(qφ(zt|xt)‖N (0, 1))
9: Compute the KL divergence of the latent transition l = l + KL(qφ(zt+τ |xt+τ )‖N (α � zt, diag(1 −

α◦2)))
10: end for
11: Backward loss 1

2|B| l and update model parameters
12: end for
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7.3 Methods
7.3.1 Molecular Dynamics Simulations

We compared RL methods through the analysis of MD trajectory data sets of alanine-dipeptide and chignolin.
MD trajectory data of alanine-dipeptide[123, 274] was taken from a public data (https://markovmodel.
github.io/mdshare/ALA2/#alanine-dipeptide) provided by the Computational Molecular Biology Group,
Freie Universität Berlin. The total MD simulation length of the data is 250 ns performed using ACEMD.[123]
Amber ff99SB-ILDN force-field [211] was used for proteins, and the TIP3P model[163] was used for water
molecules. All bonds involving hydrogen atoms were constrained.[314] Electrostatic interactions were treated
using the smooth particle mesh Ewald method.[71] Temperature was controlled at 300 K by using Langevin
dynamics.

MD trajectory data of chignolin was generated by Prof. Matsunaga through performing MD simulations.
The total simulation length of 10 µs was performed with NAMD version 3.0 alpha (http://www.ks.uiuc.
edu/Research/namd/).[285] The input file for the MD simulation of chignolin was prepared by using the
CHARMM-GUI web server.[161] The initial structure was taken from the PDB ID of 1UAO.[137] The native
structure was used as the initial state for the 200 ns simulation, and data were sampled every ten ps.
CHARMM36m[143] was used as the force field, and the TIP3P[163] model was used for water molecules.
The covalent bonds, including hydrogen atoms, were constrained.[314] Electrostatic interactions were treated
using the smooth particle mesh Ewald method.[71] After equilibrating the system under NPT (300 K and 1
atm), a production run was conducted under NVT condition (300 K). The temperature was controlled by
using Langevin dynamics. Five unfolding and four folding events were observed in the total 10 µs length
simulation.

7.3.2 Markov State Model Analysis

We here used the Markov state model (MSM)[146] as a downstream task for the embedded representation.
By constructing MSMs and assessing their properties, we compared the tsVAE and tsTVAE with PCA, tICA
[268, 284, 326], TAE [381], TVAE [136], and VDE [131]. The construction of MSM followed the standard
procedure widely used in the community with the PyEMMA package [323]:

1. Feature selection. Aligned heavy-atom Cartesian coordinates were used for the alanine-dipeptide as
features (dx = 30). As preprocessing, the coordinates were z-scaled and transformed into triples
{(xt,xt+τ ,xt+2τ )}T−2τ

t=1 . For chignolin, the contact map vector was used as a feature. Specifically,
the distance between alpha carbon atoms of non-adjacent residues was extracted from the MD data to
obtain dx = 28 data. The data was further transformed by exp(−d) and whitened to remove correlations
between variables.

2. Representation learning. We embedded the selected features into the latent space by the PCA, tICA
[268], TAE [381], TVAE [136], VDE [131], SRV [53], tsVAE, and tsTVAE.

3. Clustering. Embedded samples in the latent space by each method were clustered by the k-means
method with k = 100, and discrete trajectories were obtained.

4. Construction of MSM. We constructed MSM by estimating a transition matrix by counting the number
of transition events in the clustered discrete trajectories.

5. Coarse-graining or lumping MSM. The PCCA+[302] algorithm was applied to compute macrostates
decomposition of MSM states.

We compared the RL methods by assessing implied timescales (ITS) and eigenvectors of the transition
matrix of MSM. The i-th ITS ti is defined by

ti(τm) = − τm
log λi(τm)

, (7.21)
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where τm is the MSM lagtime, λi is the (i+ 1)-th eigenvalue of the transition matrix.
PCA and tICA were computed using the PyEMMA package [323], and the neural network models were

implemented using PyTorch framework [283]. The decoder network Dφ and the encoder network Eθ are
composed of the number of hidden layers 2, respectively. Each layer has 50 units, and the latent dimension
is dz = 2. We set the model lagtime τ = 50, the sample autocorrelation coefficient of VDE γ = 1, and
the disentangled regularization coefficient β = 0. The neural network models were trained using the Adam
optimizer [173] of a learning rate 10−3, a batch size 256, and 100 epochs.

The hyperparameters α in the tsVAE and tsTVAE were determined by considering the decaying time τd
of autocorrelation in the latent space. The decay time τd (d = 1, 2) and αd (d = 1, 2) can be theoretically
related by

αd =

(
Φ−1(a)
√
τd

) τ
τd

, (7.22)

where a = 0.95 and Φ represent a significance level and the cumulative distribution function of the standard
normal distribution, respectively. This relation means that the autocorrelation of lag time τd enters the
accepted region of the uncorrelated hypothesis. If the sample autocorrelation is sufficiently attenuated, the
accepted region is given by Φ−1(a)/

√
τd since it does not differ from the sample autocorrelation from the

standard normal population. Since the time evolves τd/τ times by the decay time, (αd)
τd/τ is the accepted

region. In this study, we chose τd = 105 (d = 1, 2) sampling steps for both alanine-dipeptide and chignolin
and computed αd (d = 1, 2) using this relation.

7.4 Results
7.4.1 Alanine-dipeptide

Figure 7.2 compares MSM properties obtained from the alanine-dipeptide MD data. Since it is known that
the alanine-dipeptide is well characterized by the two backbone dihedral angles (ϕ, ψ), we here investigated
whether embedded spaces can achieve close correspondence to reference dihedral space (ϕ, ψ) only from the
Cartesian coordinates (features used in MSM analysis). Figure 7.2(a) compares the convergence of the first
three ITSs as a function of the MSM lagtime τm. The ITSs of MSM using TAE, TVAE, VDE, tsVAE, and
tsTVAE converge to the time scales comparable to those of the MSM constructed in the reference space
(ϕ, ψ). This means these methods successfully extract slow dynamics mainly determined by the dihedral
angles (ϕ, ψ). On the other hand, while the first two ITSs of MSM of tICA and SRV converge to the value
comparable to those of the reference space (ϕ, ψ), the third implied timescale is significantly lower. In the
case of PCA, the three ITSs of MSM are consistently lower than those of the reference space.

Next, we investigated whether the modes corresponding to the slowest three ITSs are well captured
from the input Cartesian coordinates. Figure 7.3 shows the first three scaled right eigenvector maps in
the reference space (ϕ, ψ). The reference MSM shows that the first three slowest dynamics of the alanine-
dipeptide are the ϕ-rotation, the ψ-rotation with Gauche-negative ϕ, the ψ-rotation with Gauche-positive
ϕ (more precisely, this shows the transition to left-handed helix region in the ABEGO-type Ramachandran
plot), respectively. The three right eigenvectors of TAE, TVAE, VDE, tsVAE, and tsTVAE are consistent
with those of the reference. On the other hand, PCA and tICA fail to capture the correspondent vectors,
suggesting the superiority of non-linear transformations over these linear ones in obtaining a mapping from
Cartesian coordinates to dihedral angles. SRV fails to capture the third correspondent vector because the
method excessively focuses on extracting the two slowest dynamics. These results confirm that the tsVAE
and tsTVAE perform comparably with the other state-of-the-art nonlinear methods in this simple system.

7.4.2 Chignolin

We evaluated the RL methods by analyzing the properties of constructed MSMs of chignolin’s folding/unfolding
dynamics. Figure 7.4(a) and (b) show the representative structures of folded and unfolded states. The MD
data for chignolin exhibits a more complex behavior than that of the alanine-dipeptide and is comparatively
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(b)(a)

Figure 7.2: Comparison of Markov state models of alanine-dipeptide trajectory. (a) The first three
ITSs of MSMs constructed in the encoded space. (b) Heatmaps of the first three ITSs against the decaying
time τd and the MSM lagtime τm.
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Figure 7.3: The first three scaled right eigenvector maps of MSM with lagtime 50 ps in the reference space
(ϕ, ψ) for the alanine-dipeptide trajectories.

short, encompassing only five unfolding and four folding events within 10 µs length simulation. As such, this
presents a more stringent comparison of the RL methods under consideration.

Figure 7.4(c) depicts the first two ITSs of the MSMs constructed in the latent space. The figure shows
that the ITSs of TAE, TVAE, VDE, SRV, tsVAE, and tsTVAE converge to slow timescales comparable
with each other. In contrast, the 2nd ITSs of PCA and tICA do not converge to these time-scales. This
indicates that nonlinear transformations are crucial for capturing the conformational transitions of chignolin.
As described later, the second slowest dynamics is the dihedral motion, which a linear transformation from
the input feature distance cannot obtain. The figure also demonstrates that the 2nd ITSs of SRV, tsVAE, and
tsTVAE converge more rapidly than the other methods. This suggests that the three methods can robustly
capture transitional motions, even when MD data is not long enough, as in this case. This rapid convergence
of tsVAE and tsTVAE could be explained by the inductive bias due to the time-structure-based prior that
samples closer in time will also be closer in the latent space.

The macrostates of each MSM are visualized in Figure 7.5. In the figure, samples in the latent space
are colored according to three macrostates. Since the native structure of chignolin is well characterized by
hydrogen bonds between the backbone amide group of ASP3 and the carbonyl group of THR8 (ASP3N-
THR8O), we used this distance as a reference feature. In addition, we used the dihedral angle ψ of ASP
as a feature because this angle is found to be coupled to the folding and unfolding transition in our MD
data. In the figure, the macrostates of PCA and tICA are considered mixed (i.e., entangled) since the states

78



(a) (c)

(b)

(d)

Figure 7.4: Comparison of Markov state models of chignolin folding and unfolding trajectory.
(a) Representative structure of native states (b) Representative structure of unfolded states (c) The first two
ITSs of MSMs constructed in the encoded space. (d) Heatmaps of the first two ITSs against the decaying
time τd and the MSM lagtime τm.

overlap in the reference feature space. On the other hand, the transitions among macrostates of TAE, TVAE,
VDE, SRV, tsVAE, and tsTVAE are well correlated with the formation of contact between ASP3 and THR8
and the dihedral angle ψ of ASP. This concludes that these RL methods successfully capture important
physical interactions upon the folding and unfolding transitions. Upon closer examination of the figure, it
also shows that the SRV and tsVAE clearly disentangle the folding and unfolding transitions without mixing
them. Indeed, z2 in the tsVAE and z1 in SRV correspond better with the ψ-rotation compared to the other
methods. This disentangling of tsVAE could be explained by the property of the method; the time-structure-
based prior promotes time-local autocorrelation for each axis while the representations of each axis were
disentangled to improve reconstruction accuracy.

We quantitatively evaluated disentanglement using total variation (TV) similarity. The TV similarity
between two probability distributions p1 and p2 on measurable space (X ,F(X )) is formulated by

TVS(p1, p2) =

∫
X
dxmin{p1(x), p2(x)} (7.23)

= 1− 1

2
‖p1 − p2‖TV, (7.24)

where ‖ · ‖TV represents the TV norm. The lower the similarity, the more divergent the two distributions
are. We define the TV similarity of a variable x ∈ X (distance between atoms or dihedral angle) along the
zi axis (where i = 1, . . . , dz) in the latent space by

TVSXi := inf
zξ
i ∈[zmin

i ,zmax
i ]

TVS(p(x|zi ≤ zξ), p(x|zi > zξ)), (7.25)

where zξi is the threshold of zi, which minimizes the TV similarity of two probability distributions. When X
is a bin set of histograms, the total variation similarity is computed by

TVS(p1, p2) =
N−1∑
i=0

∆xmin{p1(x+ i∆x), p2(x+ i∆x)}, (7.26)
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Figure 7.5: Estimated macro-states of MSM with lagtime 1 ns in the embedded and reference space for
chignolin trajectories

where ∆x is the bin-size and N is the the number of divisions. We created the histograms whose bin edges
are estimated by the Freedman Diaconis estimator[96]. We use the space X as each distance between the
no-adjacent pairs of the residues and each dihedral angle of the residues. The exploring range of the threshold
is set to be [minzi∈Dzi

zi +∆zi,maxzi∈Dzi
zi −∆zi], where ∆zi = (maxzi∈Dzi

zi −minzi∈Dzi
zi)/10 and Dzi

is the trajectory data of zi.
Figure 7.6 shows the ten lowest TV similarities along the z1 and z2 axes. The orange bars correspond to

the ASP3-THR8 distance and the dihedral angle ψ of ASP3, which are important for the folding/unfolding
transitions. PCA, tICA, and TVAE fail to capture the two features by the minimum TV. TAE captures the
dihedral angle as the minimum TVS along z1; however, it fails to capture the distance by the minimum TVS
along z2. SRV captures the dihedral angle as the minimum TVS along z1; however, the feature that achieves
the minimum TVS along z2 is also the dihedral angle. The tsVAE and tsTVAE capture the dihedral angle
and distance by the minimum TVS along z1 and z2, respectively; this means the methods realize interpretable
disentanglement in latent space.

7.4.3 Robustness against the choice of hyperparameters

The tsVAE and tsTVAE have the hyperparameters α in their time-structure-based prior, which the user
should give in advance. The robustness of results against the choice of the parameters α is important for
the practical use of the methods. To evaluate the robustness, we conducted additional MSM analysis for
alanine-dipeptide and chignolin trajectories. Figure 7.2(b) and Figure 7.4(d) show ITSs of MSMs constructed
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Figure 7.6: Total variation similarity of distances between atom and dihedral angles along the axes of z1 and
z2 in the latent space. The orange bars indicate the ASP3-THR8 distance and the dihedral angle ψ of ASP3,
which are important for the folding/unfolding transitions of chignolin.

in the latent space with different α. As described in Eq. (7.22), α can be related to the decay time τd of
autocorrelation in the latent space as described in Eq. (7.22). The first three ITSs for alanine-dipeptide
trajectories have similar values for τd = 103 ps to τd = 107 ps. The first two ITSs for chignolin trajectories
also have qualitatively almost the same values from τd = 102 ns to τd = 104 ns. Overall, these results suggest
the robustness of tsVAE and tsTVAE against the choice of the hyperparameters α.

Furthermore, to eliminate dependency on α, we introduced a prior for α and estimated plausible values
of α from the data in Supporting Information.

We evaluated the robustness of each model against the choice of the model lagtime τ by varying τ .
Figure 7.7 shows the first three ITSs as a function of the model lagtime τ for alanine-dipeptide trajectories.
The ITSs of TAE, TVAE, and VDE are robust to the choice of τ in [1 ps, 10 ps]. The tsVAE and tsTVAE
have slight variations similar to those methods, while the second and the third ITS slightly decrease with
increasing τ . This is because the tsVAE and tsTVAE are biased toward reducing features on fast time-
scales. The dynamics of the second and the third ITSs are too fast for these methods and are subject to the
reduction. As shown in Figure 7.8, the ITSs of PCA, tICA, and TAE are significantly lower than those of
other methods. In contrast, the ITSs of TVAE, VDE, and SRV remain robustly high across a wide range from

81



1
2

3
4

5
6

7
8

9
10M

od
el

 L
ag

tim
e 

[p
s]

PCA tICA TAE TVAE VDE SRV tsVAE tsTVAE ( , )
1

2
3

4
5

6
7

8
9

10M
od

el
 L

ag
tim

e 
[p

s]

1 2 5 10 20 50
MSM Lagtime [ps]

1
2

3
4

5
6

7
8

9
10M

od
el

 L
ag

tim
e 

[p
s]

1 2 5 10 20 50
MSM Lagtime [ps]

1 2 5 10 20 50
MSM Lagtime [ps]

1 2 5 10 20 50
MSM Lagtime [ps]

1 2 5 10 20 50
MSM Lagtime [ps]

1 2 5 10 20 50
MSM Lagtime [ps]

1 2 5 10 20 50
MSM Lagtime [ps]

1 2 5 10 20 50
MSM Lagtime [ps]

1 2 5 10 20 50
MSM Lagtime [ps]

0

500

1000

1500

2000

1.
 IT

S 
[p

s]

0

20

40

60

2.
 IT

S 
[p

s]

0

10

20

30

40

3.
 IT

S 
[p

s]

Figure 7.7: Heatmaps of the first three ITSs against the model lagtime τ and the MSM lagtime τm for the
alanine-dipeptide trajectories.
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Figure 7.8: Heatmaps of the first two ITSs against the model lagtime τ and the MSM lagtime τm for the
chignolin trajectories.

τ = 10−1 ns to τ = 10 ns, suggesting the impact of the sampling from the inference distribution on reducing
the fast time-scales without overfit to the data. Additionally, the figure demonstrates that the ITSs of tsVAE
and tsTVAE are significantly higher than those of the other methods in the surroundings of τ = 10−1 ns,
suggesting the impact of the time-structure-based prior. Indeed, the ITSs tend to become high for relatively
small τ because small τ increase the impact of the time-structure-based prior, which embeds samples close
in the time-to-close position in the latent space. If the scale of the decay time is well chosen, the methods
can extract slower dynamics better than other methods.

Another important hyperparameter is the learning rate η, used in the Adam optimizer for neural networks.
The ITSs of tsVAE and tsTVAE are robustly higher than the other methods in η ∈ [10−4, 10−2]. Detailed
results are given in Supporting Information.

7.5 Discussion
In this study, we have proposed two RL methods, tsVAE and tsTVAE, based on a simple time-structure-based
prior. Through the comparison of MSM properties constructed from alanine-dipeptide’s MD trajectories, we
have shown that the proposed methods can capture slow dynamics comparable to state-of-the-art methods.
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Furthermore, as shown by the macrostate analysis of coarse-grained MSMs for chignolin’s MD trajectories, the
tsVAE or tsTVAE can learn disentangled representations that are well correlated with physically important
interactions. This suggests that the proposed methods can obtain widely disentangled representations, leading
to high interpretability. In the Supporting Information, we show a systematic analysis that can detect
physically important interactions for the transitions between macrostates by analyzing the contributions of
physical coordinates to the distributions of macro-states.

Although the tsVAE and tsTVAE methods are promising alternatives to the current state-of-the-art
methods, we would like to discuss the limitations of these methods. The time-structure-based prior makes
time-proximal samples spatially close to each other. Sometimes, this effect introduces a bias into the dynamics
in the latent space, leading to incorrect results in downstream tasks, including MSM analysis. For example,
suppose the MD simulation is long enough to repeatedly visit the same metastable state in its simulation.
Still, the visiting time is far apart from each other and failed to capture with the reconstruction loss. In that
case, a bias is introduced by the time-structured-based prior by capturing this state as a different state in
the latent space. To avoid this bias, we plan to develop an algorithm that iteratively clusters and learns the
embedding, such as SwAV[43] and PCL[202].

There would be two major future directions in this study. The first direction is to apply the methods for
enhanced sampling of MD simulation. For example, in the Reweighted Autoencoded Variational Bayes for
Enhanced Sampling (RAVE),[305] and Deep-TICA[35], RL methods have been successfully combined with
enhanced sampling techniques for biomolecular conformational sampling. Combination with the development
version of OpenMM[84] or PLUMED-LibTorch[358] interface would be suitable to apply the biased forces
from the latent variables of the tsVAE or tsTVAE as CVs for enhanced sampling.

The second direction is to extend the tsVAE and tsTVAE in the context of contrastive learning. Con-
trastive learning learns the general features of a dataset without labels by optimizing the embedding model
to determine whether data points are similar or dissimilar. Since the time-structured-based prior of the
proposed methods brings the latent variable zt and the time-proximal variable zt+τ closer together, the
tsVAE and tsTVAE can be categorized to time contrastive learning[148]. Thus, introducing the state-of-
the-art techniques of contrastive learning in our context will further improve the representation of protein
dynamics.
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8 Conclusion
This paper describes neural networks and representation learning for time series data. Representation learning
automatically extracts meaningful features for explaining observation well. Because the technique saves
several costs, such as data engineering and individual model training, representation learning has the potential
for many applications. This paper proposes new representation learning methods for specific tasks and
algorithms.

In Chapter 5, we propose a QuAD system that detects anomalies and estimates individual cycle time
together. The system uses an attention mechanism that measures the relationship between the input query
and the existing keys and then outputs the weighted sum of the values. The relationship can be considered
a similarity between current and past local patterns. The system uses this explicit representation and
outperforms the existing methods in terms of AUPRC for the Doppler radar data. Such explicit representation
makes the system easy to inspect for practitioners.

In Chapter 6, we propose EnKO, the learning algorithm for sequential variational auto-encoders (SVAEs),
by shedding light on particle diversity. Because the generating process of SVAEs is considered the probabilistic
time-series model, sequential Bayes filtering methods can estimate latent state distributions. FIVO [238], an
existing work, uses the particle filter for tightening the lower bound of the variational objective; however,
the work suffers from particle degeneracy and the biased gradient estimator. The proposal EnKO method
overcomes these drawbacks and outperforms the existing works regarding predictive accuracy for several
ODE systems, human walking data, and handwritten digit rotating data. The proposed method enhances
the inference process, i.e., inferred representations inherited in the original data.

In Chapter 7, we propose representation learning methods called tsVAE and tsTVAE for extracting
the slow dynamics of biomolecules. Because the slow dynamics are closely related to biological processes
in the human body, extracting the dynamics from trajectory data has been studied. To achieve this, the
proposed methods enhance autocorrelation in latent space by using a highly autocorrelated prior related to
the physical process described by the Ornstein-Uhlenbeck process. The proposed methods could capture the
first several slowest dynamics and disentangle the representations by applying two biomolecule trajectories.
The disentanglement means each latent dimension corresponds to a meaningful representation, and the
characteristic is crucial for practical applications.

Our proposals center on specific tasks and algorithms due to the difficulty of generalized representation
learning for time-series data. There are no applicable foundation models for time-series data because the data
depend heavily on domains and cases. In our experiments, fan data in section 5.3 has quasi-periodicity and
shaking patterns, Lorenz model in section 6.4 provides chaotic trajectory, Chignolin dynamics in section 7.4
is highly stochastic Markovian. Interpretation of the same local patterns varies from domain to situation.
For example, a local pattern is considered noise, chaotic, or highly frequent dynamics. Compensation for
these differences by foundation models and fine-tuning is difficult in current techniques.

On the other hand, the dataset space that can be generalized by representation learning is growing. Our
research is also contributing to making this wave even more extensive. Time-series representation learning
will continue to grow and incorporate the latest technologies, such as large language models (LLMs), graph
neural networks (GNNs), optimal transport (OT), and diffusion models (DMs). For example, analyzing
system data by LLMs contributes to alleviating domain- and task-specific dependency of time-series data.
As described so far, classifying local patterns from only raw time-series data is difficult; however, it can
be done with other data, such as system and alternative data. Since time-series relations are considered
graphs, graph neural networks [421, 366, 184, 367, 273, 340] and geometric neural networks [291, 37, 20, 36]
stimulate new methodologies in the time-series field. For instance, protein trajectories can be considered
spatiotemporal graphical data, and the embedding with graph and geometric neural networks is intriguing.
Optimal transport, also known as the Wasserstein distance or Earth Mover’s Distance, is a concept from
mathematics that has become increasingly important in machine learning, especially in tasks like domain
adaptation, generative modeling, and clustering. The Wasserstein AE [355] uses Wasserstein distance instead
of Kullback-Leibler divergence for evaluating the discrepancy of the variational posterior and the prior.
Because OT provides advantages over KL divergence, such as geometric sensitivity, handling disjoint supports,
robustness to sample noise, and clear interpretability, advanced methods that combine VAE and OT have
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been researched [120, 419, 6]. Diffusion models [134] are a class of generative models in machine learning
that have gained significant attention, especially in the generative modeling of images [316, 16, 290, 418],
audio [214, 144, 324], and other complex data structures [180, 271, 142]. The models are inspired by the
physical process of diffusion, where particles spread out from an area of high concentration to an area of
low concentration over time. Because DMs are considered the stacking of VAE, the embedding framework
by VAE can potentially be replaced by the models. Representation learning for time series data has many
development factors, and buried time series data will continue to be unearthed and utilized.
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A Supplementary Information for EnKO

A.1 Algotirhm
The original EnKF [88] assumes a linear observation model with additive noise

xt = Htzt +wt, wt ∼ pθ,w(wt). (A.1)

The EnKF updates the particles by

z
(i)
t ∼ pθ(zt|z(i)

1:t−1), ∀i ∈ NN (A.2a)

z̄t =
1

N

N∑
i=1

z
(i)
t , (A.2b)

Σz
t =

1

N − 1

N∑
i=1

(z
(i)
t − z̄t)(z

(i)
t − z̄t)

T , (A.2c)

w
(i)
t ∼ pθ,w(wt), ∀i ∈ NN , (A.2d)

w̄t =
1

N

N∑
i=1

w
(i)
t , (A.2e)

Σw
t =

1

N − 1

N∑
i=1

(w
(i)
t − w̄t)(w

(i)
t − w̄t)

T , (A.2f)

Kt = Σz
tH

T
t (HtΣ

z
tH

T
t +Σw

t )
−1, (A.2g)

z
f,(i)
t = z

(i)
t +Kt(xt −Htz

(i)
t −w

(i)
t ), ∀i ∈ NN , (A.2h)

where NN = {1, · · · , N}, superscript T indicates vector or matrix transpose, and z
f,(i)
t denotes the i-th

latent particle after filtering at time t.
The original EnKF is easily applied to the nonlinear observation model

xt ∼ pθ(zt) (A.3a)
E[zt] exists⇐⇒ xt = E[zt] + (xt − E[zt]), xt ∼ pθ(zt) (A.3b)
⇐⇒ xt = gθ(zt) +wt, wt ∼ pθ,w(wt) (A.3c)

by the augmented PTSM

z̃t =

(
zt

gθ(zt)

)
∼ p̃θ(z̃t|z̃1:t−1) = pθ

((
Idz

Odx

)
z̃t|
(
Idz

Odx

)
z̃1:t−1

)
, (4.19a)

xt =
(
Odz

Idx

)
z̃t +wt = H̃tz̃t +wt

∼ p̃θ(xt|z̃t) = pθ
(
xt|
(
Idz Odx

)
z̃t

)
(4.19b)

for the augmented latent states z̃t ∈ Rdz+dx , where Id and Od are the d-dimensional square identity matrix
and zero matrix, respectively. By Equation 4.19b, the nonlinear emission is regarded as a linear representation;
then, the augmented PTSM can be applied to Equations A.2.

This Chapter is based on “Ensemble Kalman variational objective: a variational inference framework for sequential variational
auto-encoders” [154], by the same author, which appeared in the Proceedings of Nonlinear Theory and Its Applications,
Copyright©2022 IEICE.
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The first dz rows of the Kalman gain in the generalized EnKF are obtained by

(K̃t):dz
=
(
Σz̃

t H̃
T
t (H̃tΣ

z̃
t H̃

T
t +Σw

t )
−1
)
:dz

=

((
Σz

t Σzµx

t

Σµxz
t Σµx

t

)(
Odz

Idx

)((
Odz Idx

)( Σz
t Σzµx

t

Σµxz
t Σµx

t

)(
Odz

Idx

)
+Σw

t

)−1
)

:dz

= Σzµx

t (Σµx

t +Σw
t )

−1

= Σzµx

t (Σx
t )

−1, (A.5)

where Σµx

t and Σzµx

t are sample variance of {gθ(z
(i)
t )} and sample covariance between {z(i)

t } and {gθ(z
(i)
t )},

respectively.

A.2 Proof
Theorem A.1. A statistics

p̂N (x1:T ) =
1

N

N∑
i=1

T∏
t=1

pθ(z
(i)
t |z(i)

1:t−1)pθ(xt|z(i)
t )

qφ(z
(i)
t |x1:T , z

f,(i)
1:t−1)

(A.6)

is an approximately unbiased estimator of the marginal likelihood p(x1:T ). If the emission distribution
pθ(xt|zt) and variational distribution qφ(zt|zf

1:t−1,x1:T ) are linear Gaussian, the p̂N (x1:T ) is an unbiased
estimator of the marginal likelihood.

Proof. EnKO applies the EnKF to the probabilistic time-series model (PTSM)

Qθ,φ(x1:T , z1:T ) = qφ(z1)

T∏
t=2

qφ(zt|z1:t−1,x1:T )

T∏
t=1

pθ(xt|zt). (A.7)

With slightly abuse of notation, we denote the predictive distribution at time t by Q(zt|x1:t−1) and the
filtered distribution by Q(zt|x1:t) in this PTSM. Since the particle z

f,(i)
t can be approximated as sampling

from the filtered distribution Q(zt|x1:t), the particle z
(i)
t can be considered as sampling from predictive

distribution Q(zt|x1:t−1). The expectation of the estimator is

E
QEnKO(z

(1:N)
1:T ,x

(1:N)
1:T |X)

[p̂N (x1:T )]

=
1

N

N∑
i=1

∫ T∏
t=1

pθ(z
(i)
t |z(i)

1:t−1)pθ(xt|z(i)
t )

qφ(z
(i)
t |x1:T , z

f,(i)
1:t−1)

N∏
j=1

qφ(z
(j)
t |x1:T , z

f,(j)
1:t−1)dz

(1:N)
1:T

' 1

N

N∑
i=1

∫ T∏
t=1

pθ(z
(i)
t |z(i)

1:t−1)pθ(xt|z(i)
t )

Qθ,φ(z
(i)
t |x1:t−1)

N∏
j=1

Qθ,φ(z
(j)
t |x1:t−1)dz

(1:N)
1:T

=
1

N

N∑
i=1

∫ T∏
t=1

pθ(z
(i)
t |z(i)

1:t−1)pθ(xt|z(i)
t )

Qθ,φ(z
(i)
t |x1:t−1)

Qθ,φ(z
(i)
t |x1:t−1)dz

(i)
1:T

=
1

N

N∑
i=1

∫ T∏
t=1

pθ(z
(i)
t |z(i)

1:t−1)pθ(xt|z(i)
t )dz

(i)
1:T

= p(x1:T ).

It is noteworthy that in the second line, each particle z
(i)
t depends on the other particles through z

f,(i)
t , while

in the third line, the dependence between particles is broken by approximating the predictive distribution
Q(zt|x1:t−1).
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The approximation equation in the second line is an equality if pθ(xt|zt) and qφ(zt|z1:t−1,x1:T ) are linear
Gaussian due to the general fact of EnKF, and p̂N (x1:T ) is an unbiased estimator of the marginal likelihood
p(x1:T ).

Corollary A.2. An objective function

LN
EnKO(θ,φ, X) = E

QEnKO(z
(1:N)
1:T ,x

(1:N)
1:T |X)

[log p̂N (x1:T )] (A.8)

is an approximately lower bound of the log marginal likelihood log p(x1:T ). If the emission distribution
pθ(xt|zt) and the variational distribution qφ(zt|x1:T , z

f
1:t−1) are linear Gaussian, the objective function is

an unbiased estimator of the log marginal likelihood.

Proof. This is easily proved by Jensen’s inequality and Theorem 1, i.e.,

LN
EnKO(θ,φ, X) = E

QEnKO(z
(1:N)
1:T ,x

(1:N)
1:T |X)

[log p̂N (x1:T )]

≤ logE
QEnKO(z

(1:N)
1:T ,x

(1:N)
1:T |X)

[p̂N (x1:T )]

' log p(x1:T ).

A.3 Gradient Estimator
The gradient of the objective function is

∇θ,φLEnKO(θ,φ, X)

= ∇θ,φ

∫
QEnKO(z

(1:N)
1:T ,x

(1:N)
1:T−1) logZEnKO(z

(1:N)
1:T ,x

(1:N)
1:T−1) dz

(1:N)
1:T dx

(1:N)
1:T−1

= ∇θ,φ

∫ ( N∏
i=1

qφ(z
(i)
1 |x1:T )

)
·(

T∏
t=2

N∏
i=1

qφ(z
(i)
t |x1:T ,EnKFθ(z

(i)
t−1, z

(1:N)
t−1 ,x

(i)
t−1,x

(1:N)
t−1 ,xt))pθ(x
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t−1|z

(i)
t−1)

)
·

logZEnKO(z
(1:N)
1:T ,x

(1:N)
1:T )dz

(1:N)
1:T dx

(1:N)
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where ZEnKO(z
(1:N)
1:T ,x

(1:N)
1:T−1) := p̂N (x1:T ) and EnKFθ(z

(i)
t−1, z

(1:N)
t−1 ,x

(i)
t−1,x

(1:N)
t−1 ,xt) denote the deterministic

process of the EnKF as described in Algorithm 1. When reparametrized sampling is applied, including the
filtering process, we obtain

∇θ,φLEnKO(θ,φ, X)

=
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,

where ε
q,(i)
t and ε

g,(i)
t follows the distribution sqt (ε

q,(i)
t ) and sgt (ε

g,(i)
t ), respectively, and rq and rg represent

the reparametrization transform from ε
q,(1:N)
1:T to z

(1:N)
1:T and from ε

g,(1:N)
1:T to x

(1:N)
1:T , respectively.
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Figure A.1: Variance of the gradient estimates of EnKO, FIVO, FIVOr, and IWAE versus latent dimension dz,
where FIVOr means FIVO with resampling gradient term. For a vector parameter v, the variance is computed
for each element and averaged over the elements. For a matrix parameter A, diag(A) and offdiag(A) represent
the average of the variance of the diagonal elements and the off-diagonal elements, respectively.

A.4 Experiment for Variance of Gradient Estimators
The low variance of the gradient estimator leads to stable learning. In this section, we compute the variance
of the gradient estimators of IWAE, FIVO, and EnKO for two toy examples and compare the results among
the methods. We set T = 100, a number of particles to 16, batch size to 10, number of simulations to 100,
and dx, dz ∈ {2, 3, · · · , 10}.

A.4.1 Linear Gaussian State Space Model

The first example uses the following variational distribution and SSM

z1 ∼ N (µq1,σ
2
q1), (A.9a)

zt ∼ qφ(zt|zt−1) = N (Aqzt−1,σ
2
q), (A.9b)

pθ(Z,X) = pθ(z1)
T∏

t=2

pθ(zt|zt−1)
T∏

t=1

pθ(xt|zt), (A.9c)

pθ(z1) = N (µf1,σ
2
f1), (A.9d)

pθ(zt|zt−1) = N (Afzt−1,σ
2
f ), (A.9e)

pθ(xt|zt) = N (Agzt,σ
2
g), (A.9f)

where θ = {µf1, Af , Ag,σf1,σf ,σg} and φ = {µq1, Aq,σq1,σq}. We evaluated the gradient estimators
at µf1 = µq1 = 0, σq1 = σf1 = 0.1 × 1, σq = σf = σg = 0.01 × 1, Aq = Idz

+ Uq, Af = Idz
+ Uf ,

(Uq)ij , (Uf )ij ∼ U(−0.05, 0.05), and (Ag)ij ∼ U(−0.5, 0.5).
Figure A.1 and Figure A.2 show variance of the gradient estimates of EnKO, FIVO, FIVOr, and IWAE

versus latent dimension dz and observation dimension dx, respectively, where FIVOr means FIVO with resam-
pling gradient term. Figure A.3 shows log relative variance of EnKO to FIVO log{VEnKO[∇L]/VFIVO[∇L]}.
For a vector parameter v ∈ Rd, the variance is computed for each element and then averaged over the
elements

V [v] =
1

d

d∑
i=1

V

[
∂L
∂vi

]
. (A.10)
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Figure A.2: Variance of the gradient estimates of EnKO, FIVO, FIVOr, and IWAE versus observation
dimension dx, where FIVOr means FIVO with resampling gradient term
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Figure A.3: Log relative variance of EnKO to FIVO log{VEnKO[∇L]/VFIVO[∇L]}. Positive values (red)
represent the variance of EnKO is greater than FIVO, and the opposite is true for negative values (blue)

For a square matrix parameter A ∈ Rd×d, a variance of diag(A) and offdiag(A) represent the average of the
variance of the diagonal elements and the off-diagonal elements, respectively, i.e.,

V [diag(A)] =
1

d

d∑
i=1

V

[
∂L
∂Aii

]
, (A.11)

V [offdiag(A)] =
1

d(d− 1)

∑
i̸=j,i,j∈Nd

V

[
∂L
∂Aij

]
, (A.12)

For a rectangular matrix A ∈ Rd1×d2 , the variance is computed same as a vector parameter

V [A] =
1

d2

d1∑
i=1

d2∑
j=1

V

[
∂L
∂Aij

]
. (A.13)

From Figure A.1 and A.2, FIVOr (FIVO with resampling gradient term) has a higher variance than the
other methods, and EnKO has a relatively low variance for all parameters. In particular, the variance of
FIVOr is rapidly increased when dz is increased. When dx = 2 is fixed and dz increases, FIVO and IWAE
are competitive, but when dz = 2 is fixed and dx increases, the variance of IWAE shifts more than that of
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Figure A.4: Log relative variance of EnKO to FIVO log{VEnKO[∇L]/VFIVO[∇L]}. Positive values (red)
represent the variance of EnKO is greater than FIVO, and the opposite is true for negative values (blue).

FIVO. From Figure A.3, the variance of gradient estimates of EnKO is generally lower than that of FIVO,
especially for parameters regarding g and q.

A.4.2 Nonlinear Non-Gaussian State Space Model

The second example uses the following variational distribution and SSM

z1 ∼ N (µq1,σ
2
q1), (A.14a)

zt ∼ qφ(zt|zt−1) = N (tanh(Cqflatten(zt−1z
T
t−1) +Aqzt−1 + bq),σ

2
q), (A.14b)

pθ(Z,X) = pθ(z1)
T∏

t=2

pθ(zt|zt−1)
T∏

t=1

pθ(xt|zt), (A.14c)

pθ(z1) = N (µf1,σ
2
f1), (A.14d)

pθ(zt|zt−1) = Student5(tanh(Cfflatten(zt−1z
T
t−1) +Afzt−1 + bf ),σf ), (A.14e)

pθ(xt|zt) = Student5(tanh(Cgflatten(ztz
T
t ) +Agzt + bg),σg), (A.14f)

where θ = {µf1, σf1, Cf , Af , bf ,σf , Cg, Ag, bg,σg}, φ = {µq1,σq1, Cq, Aq, bq,σq}. Studentν(ρ, σ) represent
student-t distribution with degree of freedom ν, location parameter ρ, and scale parameter σ. For a matrix
A ∈ Rd×d, flatten(A) = (a11, a12, · · · , add)T ∈ Rd2

.
Figure A.4 shows log relative variance of EnKO to FIVO log{VEnKO[∇L]/VFIVO[∇L]}. EnKO’s gradient

estimates for the parameters regarding f and q have lower variance than FIVO, but the opposite is true for
g. This indicates that while EnKO can stabilize learning for variational and transition parameters, FIVO has
the ability for generative parameters. Since learning transition parameters are often unstable in time-series
models, EnKO, which can stabilize the learning transition parameters, is a more effective method.

A.5 Experiment Details
Figure A.5 shows the network architecture of SVO [260] as coded in the authors’ GitHub page https:

//github.com/amoretti86/PSVO. Although they trained SVO with the FIVO system, we expanded this
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Figure A.5: The network architecture of SVO. FC and biLSTM stand for fully connected layer and bidirec-
tional LSTM, respectively. A filtering step (blue) is different by ensemble systems

Table A.1: Chosen hyperparamters and configurations

Parameters Dataset
FHN Lorenz Walking RMNIST

# Neural units per layer {16, 32} {16, 32} {50, 100} {25, 50}
Latent dimension 2 3 6 2
Batch size 20 6 4 40
Training epochs 2000 2000 2000 3000
Scaling abs. div. abs. div. - -

with EnKO and IWAE systems. The chosen hyperparameters of SVO are the same as their experiments.
Figure 6.5 shows the network architecture of outer VAE for rotating MNIST data set. The encoder consists
of a style convolution block and a dynamics convolution block. While the style convolution block extracts
style (static) information, such as the shape and edge of the handwritten data, the dynamics convolution
block extracts dynamics information, such as rotation dynamics. The chosen hyperparameters of convolution
layers are the same as experiments for the data set in [406]. The dimension of at and st were set to 2
and 6, respectively. Table A.1 summarizes other hyperparameters and configurations used for generating
the results reported in Section 6.4. In this table, the boldfaces are the chosen hyperparameters through
our experiments. The more detailed conditions and our experiments are described on our GitHub page
https://github.com/ZoneMS/EnKO.

We used NVIDIA Tesla V100 GPUs, CUDA 10.2, and PyTorch 1.6.0 for our experiments. Each experiment
for the FHN model, the Lorenz model, and the walking data set spent around one day, and each experiment
for the rotating MNIST data set spent around two days.
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Figure A.6: MSE for synthetic Fitz-Hugh Nagumo data by EnKO without inflation methods (left) and with
RTPP (center) and RTPS (right) for various ensemble sizes
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Figure A.7: MSE for synthetic Lorenz data by EnKO without inflation methods (left) and with RTPP
(center) and RTPS (right) for various ensemble sizes

A.6 Additional Results
A.6.1 Ensemble Size

To verify that the number of particles changes the prediction ability, we performed experiments with varying
numbers of particles. Figure A.6 and Figure A.7 show prediction MSE for Fitz-Hugh Nagumo and Lorenz
data, respectively, for various ensemble sizes. An increase in the number of particles improves the prediction
accuracy for the Lorenz data. In EnKO, without inflation methods for FHN data, an increase in particles
hurts the prediction ability. This result is contrary to the intuition that an increase in the number of particles
results in better prediction accuracy; however, it is known that an increase in the number of particles does
not necessarily have a positive effect on the results [296]. The Lorenz model is complex and requires a certain
number of particles to learn well, while the FHN model is relatively simple and requires only eight particles.
It is a future task to calculate the intrinsic dimension of the data in advance and create a framework to
appropriately determine the number of particles according to the complexity measure, such as translation
error [346].

A.6.2 Inflation Factor

To evaluate the effect of the inflation factor on prediction and to enable appropriate factor selection, we
conducted experiments with several factors {0.1, 0.2, 0.3}. In Section 6.4, the factors that minimize the
prediction MSE for the validation data are selected, the results for the test data are shown, and the selected
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Table A.2: Chosen inflation factors

Parameters Dataset
FHN Lorenz Walking RMNIST

RTPP 0.2 0.1 0.2 0.1
RTPS 0.1 0.1 0.2 0.3
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Figure A.8: Prediction MSE for synthetic Fitz-Hugh Nagumo data by EnKO with RTPP (left) and RTPS
(right) for various inflation factors

factors are summarized in Table A.2. Figure A.8-A.11 show prediction MSE for the Fitz-Hugh Nagumo, the
Lorenz, the walking, and the rotating MNIST data sets, respectively, by EnKO with inflation methods for
various inflation factors. For the FHN and Lorenz data, since the errors when the inflation factor is 0.3 are
higher, the appropriate factor to improve the inference accuracy is selected from 0.1 to 0.2. For the walking
data, a factor of 0.3 further improves the prediction accuracy of the RTPP, indicating that a relatively
large factor is appropriate for inference. A small ratio of particles to the observation dimension tends to
underestimate the state covariance, as mentioned in Section 4.2.5. Since the ratios were high for FHN and
Lorenz, underestimation was not apparent, and a small inflation factor was preferred. In the walking data,
the ratio was small, so a large inflation factor was preferred to suppress underestimation. For the rotating
MNIST data, the inflation methods did not improve the prediction accuracy, and a factor between 0 and
0.1 is considered appropriate. Since the observations in SVAE correspond to the dimensions of the auxiliary
variables, the ratio was kept low, and underestimation did not occur.

If the number of particles is predetermined due to memory or other reasons, the inflation factor can be
determined according to the observed or auxiliary dimension. Specifically, we propose that the factor should
be selected from 0.01 to 0.2 for low-dimensional systems of 10 or less, 0.2 to 0.3 for medium-dimensional
systems of 10 to 100, and according to the dimension of the space of auxiliary variables obtained using outer
VAE for high-dimensional systems of 100 or more.

A.6.3 CMU Walking Data

Figure A.12 shows long prediction results for EnKO with RTPS. We inferred the initial latent state and
forecasted the values of the observations at all remaining time points according to the learned generative
model. Overall, the observation points are within the prediction interval of the mean plus or minus standard
deviation, and the proposed method provides excellent predictions over a long period. In particular, it is
surprising that the proposed method predicts well even for variables with significant noise effects, such as the
neck and the thorax. On the other hand, the proposed method overestimates the prediction interval for the
clavicles, which take almost zero values.
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Figure A.9: Prediction MSE for synthetic Lorenz data by EnKO with RTPP (left) and RTPS (right) for
various inflation factors
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Figure A.10: Prediction MSE for the walking data set by EnKO with RTPP (left) and RTPS (right) for
various inflation factors

A.6.4 Rotating MNIST Dataset

Figure A.13 shows true images and prediction results for FIVO, IWAE, and EnKO. We inferred the initial
latent state and forecasted the observations at all remaining time points according to the network. It can be
seen qualitatively that all the methods produce images close to the observations. However, when we look at
the prediction MSE (Figure 6(c)), EnKO outperforms IWAE and FIVO, indicating that EnKO can learn a
more appropriate model at a difficult level to distinguish qualitatively.
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Figure A.11: Prediction MSE for the rotating MNIST data set by EnKO with RTPP (left) and RTPS (right)
for various inflation factors
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Figure A.12: Long prediction results for EnKO with RTPS. We inferred the initial latent state and predicted
the values of the observations at all remaining time points according to the learned generative model. The
black times represent the observed points, the solid blue line represents the predicted mean, and the dark and
light blue widths represent the predicted mean plus or minus standard deviation and two standard deviations,
respectively. The text in the figure shows the variable names. The vz, vx, and vy correspond to velocities,
alpha, beta, and gamma correspond to Euler angles, and l and r correspond to left and right
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Figure A.13: True images and prediction results for rotating MNIST data set
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(a) (b)

(d)(c)

Figure B.1: Negative autocorrelations and implied timescales (ITS) of MSMs constructed in the
latent space. (a) The negative model autocorrelation 1− α versus a model lagtime τ for alanine-dipeptide
trajectories. (b) Heatmaps of the first three ITS against the model lagtime τ and the MSM lagtime τm for
alanine-dipeptide trajectories. (c) The negative model autocorrelation ϵ = 1 − α versus a model lagtime τ
for chignolin trajectories. (d) Heatmaps of the first three ITS against the model lagtime τ and the MSM
lagtime τm for chignolin trajectories.

B Supplementary Information for tsVAE

B.1 Learning Model Autocorrelation
While we used the fixed hyperparameter α adjusted from the fixed decaying time τd in our main experiments,
we propose another setting called learned mode. The learned mode of the model means the hyperparameter
α is learned together with the neural network parameters. This mode assumes a prior distribution such as
the Beta distribution [309, 188] B(3, 1). The overall time-structured prior distribution is designed by

pθ(Z,α) = p(α)
τ∏

t=1

pθ(zt)
T∏

t=τ+1

pθ(zt|zt−τ ,α) (B.1)

This Chapter is reprinted (adapted) with permission from J. Chem. Theory Comput. 2024, 20, 1, 436—450. https:

//doi.org/10.1021/acs.jctc.3c01025. Copyright 2023 American Chemical Society.

100

https://doi.org/10.1021/acs.jctc.3c01025
https://doi.org/10.1021/acs.jctc.3c01025


10 5

10 4

10 3

Le
ar

ni
ng

 R
at

e
PCA tICA TAE TVAE VDE SRV tsVAE tsTVAE ( , )

10 5

10 4

10 3

Le
ar

ni
ng

 R
at

e

1 2 5 10 20 50
MSM Lagtime [ps]

10 5

10 4

10 3

Le
ar

ni
ng

 R
at

e

1 2 5 10 20 50
MSM Lagtime [ps]

1 2 5 10 20 50
MSM Lagtime [ps]

1 2 5 10 20 50
MSM Lagtime [ps]

1 2 5 10 20 50
MSM Lagtime [ps]

1 2 5 10 20 50
MSM Lagtime [ps]

1 2 5 10 20 50
MSM Lagtime [ps]

1 2 5 10 20 50
MSM Lagtime [ps]

1 2 5 10 20 50
MSM Lagtime [ps]

0

500

1000

1500

1.
 IT

S 
[p

s]

0

20

40

60

2.
 IT

S 
[p

s]

0

10

20

30

40

3.
 IT

S 
[p

s]

Figure B.2: Heatmaps of the first three ITS against the learning rate η and the MSM lagtime τm for alanine-
dipeptide trajectories

= p(α)
τ∏

t=1

N (zt;0, I)
T∏

t=τ+1

N (zt;α� zt−τ , diag(1−α◦2)). (B.2)

In the following experiment, we used the Beta distribution Be(3, 1), and the pseudo-exponential distribution
whose probability density function is defined by

p(α) = eα log 3 − 1. (B.3)

Figure B.1 shows the negative autocorrelations and implied timescales (ITS) of MSMs constructed in the
latent space. Figure B.1 (a) and (c) show the negative model autocorrelation ϵ = 1−α for alanine-dipeptide
and chignolin trajectories, respectively. For the adjusted mode, the parameters were computed using the Eq.
(22) of the main article. For the learned mode, the parameters were learned together with neural network
parameters. Figure B.1(a) shows that in the learning mode, the autocorrelations are comparable in scale
concerning the model lagtime τ for alanine-dipeptide trajectories. Figure B.1(b) shows that the third ITS is
lowered as the model lagtime τ increases in the learning and adjusted modes. Regardless of the introduction
of model autocorrelation α, it is suggested that a high model lagtime τ can destroy the third slowest dynamics,
which is relatively fast. Figure B.1(c) shows that the model autocorrelations learned are destabilized for large
model lagtime τ for chignolin trajectories. As the model lagtime τ is increased, ITS decreases significantly,
meaning that the model, including α, is not well trained (Figure B.1(d)). The robustness of ITS to the
introduction of α means that the presence or absence of α is more beneficial for representation acquisition
than the presence or absence of a prior distribution of α.

B.2 Robustness for Learning Rate
A learning rate is an important hyperparameter for optimizing neural network parameters. Figure B.2 and
Figure B.3 show implied timescales of MSMs constructed in the latent space with each learning rate. The
first three implied timescales for alanine-dipeptide trajectories slightly vary for the learning rate. The first
two implied timescales of tsVAE and tsTVAE for chignolin trajectories are higher than the other methods
in η ∈ [10−4, 2× 10−3]. This suggests that the proposed methods can more efficiently obtain slow CVs than
the existing methods by exploring the learning rate scale.

B.3 How to Detect Key Variables from MSM Macro-states
Detecting key variables that contributed to slow dynamics is essential. To extract the variables, we used
each variable’s total variation similarities between histograms of macro-states. The total variation similarity
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Figure B.3: Heatmaps of the first two ITS against the learning rate η and the MSM lagtime τm for chignolin
trajectories

between two probability distributions p1 and p2 is formulated by

TVS(p1, p2) =

∫
X
dxmin{p1(x), p2(x)}, (B.4)

where (X ,F(X )) represents the measurable space. When X is a bin set of histograms, the total variation
distance is computed by

TVS(p1, p2) =
N−1∑
i=0

∆xmin{p1(x+ i∆x), p2(x+ i∆x)}, (B.5)

where ∆x is the bin-size and N is the the number of divisions.
Figure B.4 shows the total variation similarities between the histograms of each variable of macro-states

for chignolin trajectories. Let hi(x) represents histograms of a variable x of the i-th macro-state, i.e.,

hi(x) = histogram of {xt|St = si, t ∈ {1, · · · , T}}, (B.6)

where St and si represents the macro-state at a time t and the i-th macro-state. We created the histograms
whose bin edges are estimated by the Freedman Diaconis Estimator. We used variable space X as each
distance between the no-adjacent pairs of the residues and each dihedral angle of the residues.

This figure shows critical variables for each transition between macro-states. The total variation similarity
between the histogram of the distance d(3, 8) of macro-states s2 and s3 is the lowest in TAE, TVAE, VDE,
SRV, tsVAE, and tsTVAE. Since the distance d(3, 8) is the critical variable for folding dynamics, these
methods can explain the folding dynamics by the transition between s2 and s3. The total variation similarities
of ψ(3) between s1 and s3 of the methods excluding PCA are the lowest. The NN-based methods can construct
interpretable embedding space regarding the macro-state transition from these results.

B.4 Relationships between Time-locality and Spacial-locality
We use relative locality to verify whether samples in time proximity are embedded in spatial proximity. The
measure is defined by

RL(∆t1|∆t2) =
1

T −∆t1

∑
t∈[T−∆t1]

r(d(zt, zt+∆t1);

{d(zs, zs+∆t1)}s∈[T−∆t1] ∪ {d(zs, zs+∆t2)}s∈[T−∆t2]), (B.7)
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Figure B.4: Total variation similarity between the histograms of each variable of macro-states for chignolin
trajectories. The variables include the distances between the no-adjacent residues and the dihedral angles
of the residues. The ten smallest total variation distances for the transitions are displayed. The orange bar
means the specific variables: the distance between ASP3N and THR8O and the dihedral angle ψ of ASP3.
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Figure B.5: Relative locality for alanine-dipeptide trajectories
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Figure B.6: Relative locality for chignolin trajectories
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(a) (b)

Figure B.7: Chapman-Kolmogorov testing of three macrostates estimated in the encoded space constructed
by (a) tsVAE and (b) tsTVAE for alanine-dipeptide trajectories

where T is the time-length, r(a;A) is the rank of the element a among the ordered set A. The lower the
value, the closer to space, and the higher the value, the farther away from space.

Figure B.5 and Figure B.6 show the relative locality for the alanine-dipeptide trajectories and the chignolin
trajectories, respectively. For all methods, the lower ∆t1 is, the lower the measure is, and the lower ∆t2 is,
the higher the measure is. This is because there is an indirect factor called "state" in between. If they are
close in time, the structural states of the molecules are similar and consequently embedded in close spatial
proximity. The tsVAE and tsTVAE promote spatial proximity in the case of time proximity, but to evaluate
this effect, the indirect causality through states must be removed. Since both indirect and direct causality
are nonlinear, it is difficult to remove them, and it is also difficult to evaluate the promotion effect from this
perspective.

B.5 Other Results for Alanine-dipeptide Trajectories
This chapter briefly describes additional alanine-dipeptide results that were not described before.

Figure B.7 shows the results of the Chapman-Kolmogorov test for the three macrostates of MSM with a
lagtime of 50 ps, constructed in latent space by tsVAE and tsTVAE. These methods are consistent with the
MSM up to the 1000 ps band, which covers the slowest time scales.

Figure B.8 shows the free energy surface (FES) in latent space and reference space for each method applied
in this paper. The FES in the reference space is almost the same for all methods. In the latent space, tICA,
tsVAE, and tsTVAE can visually construct an FES that is isomorphic to the reference space. VDE and SRV
appear to have spatially collapsed FES, while TAE and TVAE appear to be collapsed in the region ϕ > 0.

B.6 Additional Results for Chignolin Trajectories
This chapter briefly describes additional chignolin results that were not described before.

Figure B.9 shows the results of the Chapman-Kolmogorov test for the three macrostates of MSM with a
lagtime of 1 ns, constructed in latent space by tsVAE and tsTVAE. The configured macrostate can construct
a consistent MSM up to 10 ns from that figure.

Figure B.10 shows the free energy surface (FES) in latent space and reference space for each method
applied in this paper. tsVAE and tsTVAE find several energy maxima in the potential space.
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Figure B.8: Free energy surface in the embedded space and the reference space for alanine-dipeptide trajec-
tories
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(a) (b)

Figure B.9: Chapman-Kolmogorov testing of three macrostates estimated in the encoded space constructed
by (a) tsVAE and (b) tsTVAE for chignolin trajectories
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Figure B.10: Free energy surface in the embedded space and the reference space for chignolin trajectories
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