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Abstract

Various theoretical approaches have been developed to elucidate the hidden order parameters char-
acterizing unusual physical phenomena in solids, such as the group theoretical arguments, electronic
multipole theory, and density functional theory (DFT). Although these approaches have been suc-
cessful in some aspects, they still need to be improved to reveal the microscopic representation of
the order parameter and the microscopic understanding of its related physical phenomena. From
these circumstances, it is highly desirable to develop a systematic prescription for clarifying the
quantum-mechanical operator corresponding to the order parameter and quantitatively evaluating
it. In particular, the order parameter for molecule and crystal chirality, i.e., the electric toroidal
monopole, G0, has not fully been understood at the microscopic level. Clarifying the microscopic
description of chirality, i.e., G0, is essential for unveiling the heart of chirality and achieving absolute
enantioselection in chiral materials.

In this thesis, we develop a systematic generation scheme of a DFT-based tight-binding (TB)
model based on the symmetry-adapted multipole theory. First, we construct a complete orthonormal
symmetry-adapted multipole basis (SAMB) that enables us to express any electronic degrees of free-
dom in molecules and crystals. The Hamiltonian is expressed as the linear combination of SAMB,
in which the weights correspond to the model parameters. We construct the DFT-based TB model
by optimizing the weights to reproduce the DFT band dispersion. Using this systematic generation
scheme, we can unveil hidden electronic multipole degrees of freedom and their quantum-mechanical
operator expressions explicitly in molecules and crystals. Moreover, by optimizing the weights, we
can also evaluate their contributions quantitatively. Using the generation scheme, we investigate the
microscopic description of chirality and its related responses.

In Chap. 1, we give an introduction, outline, and organization of this thesis.
In Chap. 2, we clarify the advantages and disadvantages of using a de facto standard DFT-based

tight-binding model based on the Wannier functions and atomic orbitals. In particular, the Wannier
TB model is superior in its quantification, whereas the required symmetry is not taken into account in
the model construction process. On the other hand, the Slater-Koster approach based on the atomic
orbitals partially considers the symmetry, however, essential parameters would often be lost in the
TB model owing to the lack of the effect from the surrounding environment around the bond of the
electron hopping.

In Chap. 3, we develop the systematic generation scheme of SAMB. First, we decompose the
electronic degrees of freedom into orbital/spin and the sublattice parts which are described by the
atomic and site/bond-cluster multipole bases, respectively. By combining the atomic and site/bond-
cluster multipole bases, we construct complete orthonormal SAMB set in the given Hilbert space.
Using SAMB, we can describe any electronic degrees of freedom in the isolated and periodic multi-
site systems, such as molecules and crystals.

In Chap. 4, we demonstrate a systematic generation scheme of the DFT-based symmetry-adapted
TB model given by the linear combination of SAMB. We optimize the model parameters, i.e., the
weights of each SAMB, so as to reproduce a given DFT band dispersion. To efficiently optimize the
weights, we utilize machine learning techniques and introduce a deep neural network (DNN) where
the SAMB plays a role of a neuron in the network, which we call DNN-SAMB. Using DNN-SAMB, we
can perform highly efficient and accurate optimization with less initial guess dependence of the model
parameters. We demonstrate our method for graphene, SrVO3, and monolayer MoS2. We achieve
accuracy of less than 10−4 of the mean squared error between the normalized energy eigenvalues of the
optimized TB model and that of the DFT or DFT-based Wannier calculation. Most remarkably, we
obtain highly accurate optimized TB model although our TB model contains fewer model parameters



i

than the Wannier TB model. Since the proposed method refers only to the energy eigenvalues, there
is no guarantee to reproduce the orbital dependence of the electronic states in the reference bands.
Nevertheless, the optimized TB Hamiltonian well reproduces the orbital dependence of the electronic
states of SrVO3 because of the use of the SAMB, which imposes strong constraints by symmetry.
It should be emphasized that our method is applicable to any crystallographic structure within 230
space group. Furthermore, DNN-SAMB could be useful in various fields such as materials informatics.

In Chap. 5, we elucidate the microscopic description of chirality, i.e., G0, by taking elemental
Te crystal as the simplest example of chiral crystals. Based on the systematic generation scheme
introduced in Chap. 4, we construct the DFT-based realistic tight-binding Hamiltonian of Te and
elucidate that the local and itinerant G0 are the most dominant contributions in the Hamiltonian.
Furthermore, we clarify that the itinerant G0 is the crucial element to realize the possible electric-field
induced static rotational lattice deformation.

Lastly, we propose a possible experimental approach to realize the absolute enantioselection in
chiral materials by means of the conjugate field of chirality, such as simultaneously applying electric
and rotation fields, or a magnetic field and electric current, and so on. The sign of the combined
field controls the preferred handedness during the crystallization process. It should be emphasized
that this generic approach is applicable to any chiral material. Since a larger coupling magnitude
between G0 and its conjugate field is favorable for achieving an absolute enantioselection, quantitative
experimental observation of the responses related to the coupling is essential in future development.
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Chapter 1

Introduction

1.1 Hidden Electronic Degrees of Freedom

Unusual physics governed by hidden electronic degrees of freedom has been extensively studied, and
various theoretical approaches to elucidate them have been developed concurrently. The anomalous
Hall effect (AHE) [2–4], Kerr effect [5–8], and Nernst effect [9–12] under collinear [13–17] and non-
collinear [18–24] antiferromagnetic (AFM) orderings are typical examples. Since the AHE is usually
characterized by a coupling between a magnetic dipole moment Mz and electronic motion through the
spin-orbit coupling (SOC), the mechanism of AHE in antiferromagnets with Mz = 0 is nontrivial. In
the series of study for the gigantic AHE observed in the non-collinear AFM Mn3Sn [20], methodologies
combining the density functional theory (DFT) with the symmetry-adapted multipole theory [25–28]
have been developed [29] as well as the Berry curvature mechanism [30–33]. Then, it has been pointed
out that there is a strong correlation between the AHE and a cluster magnetic octupole consisting of
non-collinear magnetic structures [29].

In contrast to magnetic order, electric ferro-axial (lattice rotational) order, a consequence of broken
mirror symmetries with preserving both spatial inversion and time reversal symmetries, has recently
attracted much attention as one of the ferroic orders. Although the electric ferro-axial order has been
less studied because of the absence of its conjugate electromagnetic fields and its quantum-mechanical
operator, it has been observed in several materials, such as RbFe(MoO4)2 [34–39], NiTiO3 [40–42],
Ca5Ir3O12 [39], superlattices of PbTiO3/SrTiO3 [43], and so on. Moreover, the quantum-mechanical
operator corresponding to the electric ferro-axial order, so-called the electric toroidal dipole, was
obtained quite recently [25, 26, 28]. Then, it has been elucidated that the electric toroidal dipole is
the order parameter for the electric ferro-axial orderings [44]. In addition, an antiferroaxial ordering
of the anti-polar units has been observed in Ba(TiO)Cu4(PO4)4 [45]. Remarkably the emergence of
the antiferroaxial order accompanied with the anti-polar units induces the spontaneous ferro-chiral
structural transition.

Chirality is a consequence of broken spatial inversion and mirror symmetries and has been paid
much attention in various fields of science due to its diverse applications. CISS (Chirality Induced Spin
Selectivity), a spin polarization caused by passing through chiral systems, is a typical chirality induced
phenomenon discussed in both molecules [46–50] and inorganic crystals, such as CrNb3S6 [51,52] and
MSi2 (M = Nb, Ta) [53]. Additionally, much variety of chirality induced phenomena has been exten-
sively studied, such as the kinetic magnetoelectric (Edelstein) effect [54–58], heat-current/electric-field
induced phonon angular momentum [59, 60], truly chiral phonons rotating in a plane perpendicular
to the direction of propagation [61–63], and so on. Notably, recent studies elucidated that the electric
toroidal monopole G0 corresponds to the order parameter for chirality [26,64] based on the electronic
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2 CHAPTER 1. INTRODUCTION

multipole theory [25, 26,28]. However, it has yet to be understood at the microscopic level.

1.2 Purpose of This Thesis
As mentioned above, there is a one-to-one correspondence between the symmetry breaking and the
order parameter, such as the electric ferro-axial orderings characterized by the electric toroidal dipole,
molecular and crystal chirality characterized by the electric toroidal monopole, G0, and so on. In the-
oretical studies, such order parameters have been investigated mainly based on the group theoretical
arguments, electronic multipole theory, and DFT calculations. Although these approaches have been
successful in some aspects, they still need to be improved to reveal the microscopic representation of
the order parameter and the microscopic picture of its related physics. To elucidate them, it is highly
desirable to develop a systematic prescription for clarifying the quantum-mechanical operator corre-
sponding to the order parameter and quantitatively evaluating it. In particular, the order parameter
for molecule and crystal chirality, G0, has not fully been understood at the microscopic level. Thus,
clarifying the microscopic origin of G0 inherent in chiral materials is essential for unveiling the heart
of chirality and achieving absolute enantioselection in chiral materials.

The main purpose of this thesis is to develop a systematic generation scheme of a DFT-based tight-
binding (TB) model based on the symmetry-adapted multipole theory. To achieve this purpose, we
first construct a complete orthonormal symmetry-adapted multipole basis that enables us to express
any electronic degrees of freedom in materials. The Hamiltonian is expressed as the linear combination
of the symmetry-adapted multipole basis, where the weights of each basis correspond to the model
parameters. Then, we construct the DFT-based TB model by optimizing the weights to reproduce the
DFT band dispersion. Note that we utilize the machine-learning technique in the optimization process
to efficiently optimize the weights. Using the systematic generation scheme, we can unveil hidden
electronic multipole degrees of freedom in the Hamiltonian and their quantum-mechanical operator
expressions explicitly. Moreover, by optimizing the weights, we can also evaluate their contributions
numerically. We demonstrate the method by applying to graphene, SrVO3, and monolayer MoS2. We
show that the optimized TB model well reproduce the DFT band dispersions, density of states, and
Fermi surfaces. Moreover, using the method, we construct a realistic TB model for chiral Tellurium
crystal. We find the dominant electric toroidal monopole G0 terms in both the local and itinerant
parts of the Hamiltonian. Then, we elucidate the microscopic origin of the possible electric-field
induced static rotational lattice deformation and its inverse response, rotation-field induced electric
polarization in Tellurium. Based on these responses, we propose a possible experimental approach to
realize the absolute enantioselection in chiral crystals.

1.3 Outline and Organization of This Thesis
In order to make this thesis self-contained, thesis is organized as follows. In Chap. 2, we give a
short summary of the de facto standard DFT-based Wannier TB model, and then we clarify their
advantages and disadvantages. In Chap. 3, we introduce the symmetry-adapted multipole basis. In
Chap. 4, we present a systematic generation scheme of a DFT-based TB model based on the symmetry-
adapted multipole basis. We also show prime examples of the method to some typical crystals:
graphene, SrVO3, and monolayer MoS2. Using the present systematic method, we elucidate the
microscopic origin of chirality in elemental Tellurium in Chap. 5. We also show the explicit definitions
of the dominant G0 terms in both the local and itinerant parts of the Hamiltonian. We also discuss
a possible electric-field induced static rotational lattice deformation and experimental approach to
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achieve absolute enantioselection in chiral crystals. Chapter 6 summarizes thesis. There are six
Appendices. We give a brief outline of DFT in Appendix A. In Appendix B, the atomic orbitals and
the Slater-Koster parameters are given. Appendix C presents the vector spherical harmonics, cubic
and hexagonal harmonics, and the projection-based Clebsch-Gorden coefficients. In Appendices D,
E, and F, the detail of the multipole basis for graphene, SrVO3, and monolayer MoS2 are given,
respectively.





Chapter 2

Theoretical Background

In this chapter, we show a theoretical background behind the present study. First, some advantages
and disadvantages of the DFT-based Wannier TB model are given in Sec. 2.1. Then, we show the
characteristic properties of the TB model based on the atomic orbitals in Sec. 2.2.

2.1 Tight-Binding Model Based on Wannier Functions
To analyze the material property, constructing a realistic theoretical model is essential. DFT-based
electronic structure analysis is a de facto standard approach, which enables us to incorporate electronic
states in materials in detail and to evaluate a wide range of physical quantities. There are several
software packages to implement the DFT-based electronic structure calculations, such as VASP [65],
QUANTUM ESPRESSO [66], WIEN2K [67], OpenMX [68], ABINIT5 [69], Gaussian [70], and so
on. We briefly outline the concept of DFT in Appendix A. Once the Kohn-Sham (KS) energies and
orbitals are obtained by solving the KS equation, one can analyze the electronic band structure and
various physics quantitatively. However, since the KS Hamiltonian is defined in an auxiliary system,
the microscopic mechanism of related physics tends to be opaque. In addition, only several bands,
consisting of the electronic degrees of freedom near the Fermi level, are usually significant for ana-
lyzing the low-energy physics of interest. From these circumstances, recent studies have developed
a generation scheme of a DFT-based TB model with the use of the Wannier function (WF) [71].
Depending on the model parameters, the effective model can describe a wide range of physical phe-
nomena in the fields, such as ferromagnetism, antiferromagnetic, superconductivity, and so on. To
perform realistic calculations based on actual materials, deriving the model parameters from the DFT
calculations is required. In this section, we briefly show a methodology to create a DFT-based TB
model based on the WF, which is implemented in the Wannier90 software package [72–74].

2.1.1 Wannier Function
The crystal potential satisfies the periodicity:

V (r +R) = V (r) (2.1.1)

where R is any lattice vector in real space. Therefore, in a typical DFT calculation for crystals, the
Bloch function (BF), periodically spreading through crystals according to Bloch’s theorem, is adopted
as the KS orbitals. The BF of the nth band at a crystal momentum k is defined by

ψnk(r) = unk(r)e
ik·r (2.1.2)

5



6 CHAPTER 2. THEORETICAL BACKGROUND

where unk(r) is the periodic part, unk(r + R) = unk(r), and |ψnk〉 is an eigenstate of the periodic
Hamiltonian, H with an eigenvalue εnk:

H |ψnk〉 = εnk |ψnk〉 (2.1.3)

Although the BF spreads through a crystal, one can construct a localized orbital in real space as a
superposition of the BFs, called the Wannier function (WF).

Isolated Band

For simplicity, let us first consider a situation in that each band is isolated from the other bands, i.e.,
each band is separated by a gap from the others in the entire Brillouin zone (BZ). In this case, BFs
are chosen as smooth periodic functions in the BZ. Thus, the WF of the nth band localized at a unit
cell R, |wnR〉, is defined by the Fourier transform of the BF [75]:

|ψnk〉 =
1√
N

∑

R

|wnR〉 eik·R (2.1.4)

|wnR〉 = 1√
N

∑

k

|ψnk〉 e−ik·R (2.1.5)

where N is the number of unit cells.

Manifold of Bands

Figure 2.1: (a) Crystal structure of bulk crystalline SrVO3. (b) Band dispersion obtained from a DFT calcu-
lation. The Fermi energy is taken as the origin. The red solid lines constitute a manifold of three
t2g orbitals isolated from the other bands.

Let us consider a more general situation where the J bands constitute a manifold separated from
the others. Note that there can be band crossings at high symmetry points or degeneracies along
high symmetry lines. As a simplest example, we show the band structure of SrVO3 that is often
chosen as the benchmark for developing the methodology associated with DFT calculation. As shown
in Fig. 2.1(a), SrVO3 has a cubic crystal structure with the space group Pm3̄m (#221, O1

h). By
using QUANTUM ESPRESSO [66], we calculate the electronic band structure of SrVO3 as shown in
Fig. 2.1(b). The three bands near the Fermi level depicted by the solid red lines, which correspond to
the t2g orbitals of V atom, constitute an isolated manifold. Since there are band degenerates at the
high symmetry points, and along high symmetry lines, the BFs of these bands are no longer analytic
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functions in the BZ. Consequently, Eq. (2.1.5) is not capable of constructing well-localized WFs. In
order to make well-localized WFs in such a situation, the unitary transformation of the J bands in
the manifold is indispensable:

|ψ̃nk〉 =
J∑

m=1

Umnk |ψmk〉 (2.1.6)

|ũnk〉 =
J∑

m=1

Umnk |umk〉 (2.1.7)

where Uk is a J × J unitary matrix defined in the manifold and |umk〉 is the periodic part of |ψmk〉
, |ψmk〉 = |umk〉 eik·r. The procedure of Eq. (2.1.6) eliminates the discontinuities of |ψmk〉, and the
obtained |ψ̃nk〉 becomes analytic in the BZ. Since the BFs with different eigenvalues are mixed in
Eq. (2.1.6), |ψ̃nk〉 is no longer an energy eigenstate and n is not a band index. Using |ψ̃nk〉, the
localized WF, |w̃nR〉, is obtain by

|ψ̃nk〉 =
1√
N

∑

R

|w̃nR〉 eik·R =
J∑

n=1

Umnk |ψmk〉 (2.1.8)

|w̃nR〉 = 1√
N

∑

k

|ψ̃nk〉 e−ik·R =
J∑

n=1

Umnk |wmR〉 (2.1.9)

The WFs have some characteristic properties as follows:

(1) BFs and WFs are complete orthonormal basis functions

〈ψ̃nk|ψ̃mk′〉 =
∫

dr ψ̃∗
nk(r)ψ̃mk′(r) = δnmδkk′ (2.1.10)

〈w̃nR|w̃mR′〉 =
∫

dr w̃∗
nR(r)w̃mR′(r) = δnmδRR′ (2.1.11)

The nth band projection operator in both representations are equivalently defined by

Pn =
∑

k

|ψ̃nk〉 〈ψ̃nk| =
∑

R

|w̃nR〉 〈w̃nR| (2.1.12)

(2) WFs are translational images of each other

w̃nR(r) = w̃n0(r −R) (2.1.13)

(3) WF is localized function in real space
Usually, w̃nR(r) becomes a localized function in real space whose peak is located at a unit cell
R. As |r −R| increases, the amplitude of w̃nR(r) rapidly decreases.

(4) DFT band dispersion can be reproduced by using the WFs
The matrix elements of the Hamiltonian against WFs and BFs are given by

H̃nmR = 〈w̃nR|H|w̃m0〉 =
1

N

∑

k

〈ψ̃nk|H|ψ̃mk〉 eik·R =
1

N

∑

k

H̃nmke
ik·R (2.1.14)

H̃nmk = 〈ψ̃nk|H|ψ̃mk〉 =
∑

R

H̃nmRe−ik·R (2.1.15)
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Here, H̃nmR corresponds to the hopping between a pair of two WFs, and it decays rapidly with
|R| as long as Uk is appropriately defined to make the WFs well-localized. The band dispersion
εnk is obtained by solving the eigenvalue problem:

∣∣∣H̃k − εnkI
∣∣∣ = 0 (2.1.16)

where I is a J × J identity matrix.

(5) Gauge indeterminacy
Since Uk in Eq. (2.1.8) is not defined uniquely up to its phase factor, WF is gauge dependent.

(6) The matrix element of the position operator is related to the Berry connection
The matrix element of the position operator is given by

ãnmR ≡ 〈w̃nR|r|w̃m0〉 =
1

N

∑

k

ãnmke
ik·R (2.1.17)

ãnmk = i 〈ũnk|∇k|ũmk〉 =
∑

R

ãnmRe−ik·R (2.1.18)

where Eq. (2.1.18) is the Berry connection. The Wannier center of nth band is defined by

r̄n = 〈w̃nR|r|w̃nR〉 = 1

N

∑

k

ãnnk +R (2.1.19)

Note that r̄n is the gauge invariant quantity modulo a lattice vector R.

The property (4) provides us the Wannier interpolation technique [76] that is similar to the Fourier
interpolation. In the practical calculation, the KS equation is solved at coarse N = N1 × N2 × N3

grid points {kj} in the BZ. The matrix element of the Hamiltonian at each kj is given by

H̃nmkj = 〈ψ̃nkj |H|ψ̃mkj 〉 (2.1.20)

Using Eq. (2.1.14), H̃nmkj is mapped onto the Wannier representation as

H̃nmR =
1

N

N∑

j=1

H̃nmkje
ikj ·R (2.1.21)

Then, using Eq. (2.1.15), H̃nmkj is interpolated onto an arbitrary k as

H̃nmk =
∑

R

H̃nmRe−ik·R (2.1.22)

The property (4) also indicates that the Wannier TB model can be constructed by the site energies
εn0 = H̃nn0 and hopping parameters H̃nmR in real space. The amplitude of the hopping parameters
decays rapidly with |R| because of the property (3). As a consequence, a few numbers of hopping
parameters dominantly contribute to the Hamiltonian. By solving Eq. (2.1.16), one can reproduce
the DFT band dispersion.

As mentioned in the property (5), since there is no unique way to construct the WFs up to the
phase factor, the remaining question is how to define the unitary transformation matrix Uk. A well-
known method to overcome this difficulty is the maximal localization procedure [77, 78] as shown
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below. Let us introduce the sum of variance of all WFs:

Ω =
J∑

n=1

[〈
w̃n0

∣∣ r2
∣∣ w̃n0

〉
− |〈w̃n0 | r | w̃n0〉|2

]
(2.1.23)

A maximally-localized Wannier function (MLWF) is obtained by minimizing Ω. Ω is decomposed
into a gauge invariant term ΩI and a variant term Ω̃,

Ω = ΩI + Ω̃ = ΩI + ΩD + ΩOD (2.1.24)

ΩI =
J∑

n=1

[
〈
w̃n0

∣∣ r2
∣∣ w̃n0

〉
−
∑

mR

|〈w̃mR | r | w̃n0〉|2
]

(2.1.25)

ΩD =
J∑

n=1

∑

R #=0

|〈w̃nR | r | w̃n0〉|2 (2.1.26)

ΩOD =
∑

m #=n

∑

R

|〈w̃mR | r | w̃n0〉|2 (2.1.27)

By using the projection operator P =
∑

nR |w̃nR〉 〈w̃nR| and its complement Q = I − P , ΩI recasts
as

ΩI =
∑

α

∑

n

〈w̃n0 | rαQrα | w̃n0〉 =
∑

α

Tr [PrαQrα] (2.1.28)

Using the relations PP † = P and QQ† = Q, ΩI can be further transformed as

ΩI =
∑

α

Tr
[
(PrαQ)(PrαQ)†

]
=
∑

α

||PrαQ||2 ≥ 0 (2.1.29)

As a result, ΩI is gauge invariant positive definite, and ΩD and ΩOD are also positive definite. Thus,
minimizing Ω corresponds to minimizing Ω̃ = ΩD + ΩOD ≥ 0.

To obtain well-localized WFs, a better choice of the initial guess for the iterative calculation
of Uk is crucial. The projection procedure is a widely used method to construct an initial guess
systematically [77]. Let us start with the J trial orbitals |ϕn〉 (n = 1, . . . , J) that are localized in
the home unit cell, such as atomic-like s, p, d, and f orbitals (See Appendix B in detail). |ϕn〉 is
projected onto the Bloch manifold at k as

|φnk〉 =
J∑

m=1

|ψmk〉 〈ψmk|ϕn〉 =
J∑

m=1

Amnk |ψmk〉 (2.1.30)

Note that (Ak)mn = Amnk = 〈ψmk|ϕn〉 is not a unitary matrix. By using the overlap matrix
Snmk = 〈φnk |φmk〉 =

(
A†

kAk

)

nm
, |φnk〉 is transformed as

|ψ̃nk〉 =
J∑

m=1

(
S−1/2
k

)

mn
|φmk〉 =

J∑

m=1

[
Ak(A

†
kAk)

−1/2
]

mn
|ψmk〉 (2.1.31)

Since the transformation matrix S−1/2
k = Ak(A

†
kAk)

−1/2 is unitary, it can be chosen as the initial
guess of Uk. Notably, when the maximal localization procedure is neglected, the obtained WFs
roughly preserve the symmetry of the trial orbitals |ϕn〉.

Figure 2.2(a) shows the comparison of the band dispersion of SrVO3 between the DFT calculation
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Figure 2.2: (a) The comparison of the band dispersion of SrVO3 between the DFT calculation and the Wannier
TB model. The Fermi energy is taken as the origin. The solid grey lines are band dispersion of
the DFT calculation, while the dashed red lines are that of the Wannier TB model. (b) One of
the MLWFs with dxy orbital-like symmetry. It has weights around O atoms with p orbital-like
symmetry.

and the Wannier TB model. The following atomic t2g orbitals are adopted as the trial functions to
construct the MLWFs,

ϕyz(r) = 2e−r

√
15

4π

yz

r2
, ϕzx(r) = 2e−r

√
15

4π

zx

r2
, ϕxy(r) = 2e−r

√
15

4π

xy

r2
(2.1.32)

As shown in Fig. 2.2(a), the band dispersion obtained from the DFT calculation is accurately repro-
duced by the obtained Wannier TB model.

As shown in Fig. 2.2(b), although the MLWFs have similar symmetry properties with that of the
trial t2g orbitals near V atom, they have weights around O atoms with p orbital-like symmetry. This
is because the three electronic states near the Fermi level are the anti-bonding orbitals composed of
the t2g orbitals at the V atom and the p orbitals at the O atoms. In order to obtain well-localized
WFs at the V atom, the p orbital of the O atoms must be involved. On the other hand, doing so
would increase the size of the Hamiltonian matrix, resulting in a more complicated TB model.

Entangled Bands

Figure 2.3: (a) Crystal structure of two-dimensional graphene and the one of the MLWFs with pz orbital-like
symmetry. (b) Band dispersion obtained from a DFT calculation. The Fermi energy is taken as
the origin. The energy window between the red and blue lines consists of entangled bands. (c)
The comparison of the band dispersion near the Fermi level between the DFT calculation (solid
grey lines) and the Wannier TB model (dashed red lines).

Usually, the bands of interest are not isolated from others, such as metals or the empty bands of
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insulators. In this case, the procedure given in the previous section is not applicable. Graphene is one
such example. Graphene has a hexagonal crystal structure with the space group P6/mmm (#191,
D1

6h) as shown in Fig. 2.3(a). Figure 2.3(b) shows the non-isolated groups of bands near the Fermi level
obtained from the DFT calculation using QUANTUM ESPRESSO [66]. Within the energy window
between the red and blue lines, the bands are entangled and mixed with others outside the energy
window. Since the number of bands in the energy window can be different at each k point, N (k),
the N Bloch states of interest is obtained by performing a unitary transformation among N (k) > N

Bloch states in the energy window [78]:

|ψ̃nk〉 =
N(k)∑

m=1

Umnk |ψmk〉 (2.1.33)

|ũnk〉 =
N(k)∑

m=1

Umnk |umk〉 (2.1.34)

The fixed number J in Eq. (2.1.6) is replaced by the k dependent number N (k). Note that Umnk is
a rectangular N (k) × N matrix and Eq. (2.1.33) is still a unitary transformation in the sense that
U †
kUk = 1N where 1N is a N × N identity matrix. Umnk is determined by minimizing ΩI and the

MLWFs are obtained by minimizing Ω̃. In addition, choosing appropriate energy windows and initial
trial orbitals is significant to reproduce the original DFT band dispersion accurately. The detailed
procedure to obtain Uk is found in Ref. [78].

We construct a minimum Wannier TB model for graphene. By choosing the pz orbital as a trial
orbital, we obtain a MLWF as shown in Fig. 2.3(a). As shown in Fig. 2.3(c), the obtained TB model
well reproduces the DFT band dispersion near the Dirac point at K point. Thus, following the above
technique, we can generate a Wannier TB model even when the bands of interest are entangled.

2.1.2 Advantages and Disadvantages
In this section, we present some advantages and disadvantages of using the Wannier TB model.

Advantages

The most remarkable advantage of using the Wannier TB model is that it allows quantitative cal-
culations. The Wannier TB model reproduces the DFT band dispersion accurately, and the model
parameters are systematically derived from the DFT calculation. Therefore, the systematic scheme
based on the WFs has been widely used to analyze various properties quantitatively. For example,
by incorporating electron-phonon interactions into the Wannier TB model in a perturbative manner,
various phonon-related physics, such as superconductivity and electric/heat transport phenomena
have been analyzed quantitatively [79]. Furthermore, the WFs enable us to evaluate the coupling
constants of the local Coulomb interaction U , Hund’s coupling J , and then the multi-orbital Hub-
bard model can be generated systematically to take account of electron correlations beyond the DFT
scheme [80,81].

In addition, the interpolation procedure by means of the MLWFs is also powerful tool to create a
compact TB Hamiltonian. Since the MLWFs is well-localized in real space, the hopping parameters
rapidly decay with the distance between a pair of two WFs, leading the Hamiltonian matrix sparse.
Moreover, MLWFs provide intuitive understanding in real-space properties especially chemical bond-
ing and electric polarization. There has been a long discussion about the definition of the electric
polarization in crystal, P =

∫
dr rρ(r), because r is ill defined, i.e., |P | diverges at |r| → ∞. The
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Figure 2.4: Mapping of the actual complicated electronic charge clouds (left) to a simple point charge located
at the Wannier centers (right). The grey (orange) points represent the (ion) Wannier center with
“+” (“-”) symbol that denotes the nuclei charge (electronic charge located at the Wannier center).

paradigm shift has been brought about by the establishment of so-called modern theory of polariza-
tion, based on the works of Resta [82–84], King-Smith and Vanderbilt [85–87]. Following theory, the
electric polarization in the periodic crystal is defined by using the Berry connection as

P = − e

Ω0N

occ.∑

n

∑

k

annk + P (0) = − e

Ω0

occ.∑

n

r̄n, P (0) = − e

Ω0
NbR (2.1.35)

where Ω0 is the unit-cell volume and occ. means that the summation is taken over Nb occupied
bands below the Fermi energy in the band gap. Thus, P is defined as gauge invariant modulo P (0)

same as the Berry phase. As shown in the second equation in Eq. (2.1.35), the electric polarization
is determined by using the Wannier centers r̄n of the occupied bands. In other words, the realistic
complicated charge distribution can be replaced by −e point charges located at the Wannier centers
as depicted in Fig. 2.4. The Bloch and Wannier representations of polarization given in the first and
second equations in Eq. (2.1.35) enable us to quantitatively evaluate the polarization in insulators
based on DFT-based Wannier TB model.

On the other hand, recent studies have developed some evaluation schemes of the hidden electronic
degrees of freedom and their related physics based on DFT calculation and Berry curvature physics.
For example, a systematic formalism to numerically evaluate the macroscopic magnetic monopole
M0 =

∫
dr r ·µ(r) (µ is the magnetization density) based on DFT framework has been developed [88–

90]. M0 is one of the order parameters that give rise to the ME effect. For collinear spin systems, the
Bloch and Wannier representations of M0 are defined by analogy to the electric polarization [90]:

M0 =
µB

3Ω0N

∑

k

↑↓∑

σ

occ.∑

nσ

σaznσnσk +M (0)
0 =

µB

3Ω0

↑↓∑

σ

occ.∑

nσ

σr̄znσ , M (0)
0 =

µB

Ω0

(
N↑

b −N↓
b

)
Rz (2.1.36)

where nσ is the band index of the spin σ = ↑, ↓ state and Nσ is the number of the occupied states
with spin σ. Similar to the electric polarization given in Eq. (2.1.35), M0 is defined as gauge invariant
modulo M (0)

0 . Based on Eq. (2.1.36), M0 for collinear magnetic insulator can be quantitatively eval-
uated by using the Berry connection obtained from DFT calculation or by calculating the difference
of the Wannier center between spin-up and spin-down states.

The another example is the study for the gigantic AHE observed in the non-collinear AFM Mn3Sn
based on the Wannier TB model by M.-T. Suzuki et al. [29]. The anomalous Hall conductivity (AHC)
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Figure 2.5: (a) Crystal and (b) AFM structures of Mn3Sn. (c) One of the WFs with dxy like symmetry (the
phase is not shown). (d) Brillouin zone and (e) the comparison of the band dispersion between
the DFT calculation (solid grey lines) and the Wannier TB model (dashed red lines).

is generally obtained by

σAHC
αβ = − e2

!V
∑

γ

εαβγ
∑

k

Ωγ
k (2.1.37)

Ωγ
k =

∑

n

fnkΩ
γ
nk (2.1.38)

where εαβγ is the Levi-Civita symbol, fnk = [1+exp(βεnk)]−1 is the Fermi-Dirac distribution function,
and V is the system volume. Ωγ

k is the sum of the Berry curvature of each band Ωnk that is defined
as the rotation of the Berry connection:

Ωnk = ∇k × annk = i
∑

m #=n

anmk × amnk (2.1.39)

Thus, by using Eqs. (2.1.38) and (2.1.39), the AHC can be quantitatively evaluated by calculating
the Berry curvature/connection based on the Wannier TB model. In addition, from Eq. (2.1.37), one
can realize that the origin of the AHE is different from a net magnetization which is given by the
integration of spin moment over the entire BZ. In other words, the existence of the net magnetization
is not necessary for the emergence of AHE.

Figure 2.5 (a) represents the crystal structure of bulk crystalline Mn3Sn, which belongs to the
space group P63/mmc (#194, D4

6h) [91, 92]. In Mn3Sn, AFM phase with inverse triangular spin
structure emerges below the Neel temperature of TN , 420 K [93, 94] as shown in Fig. 2.5(b). We
construct the Wannier TB model of Mn3Sn with Mn s, d and Sn s, p initial orbitals. One of the
obtained WFs without the maximal localization procedure is shown in Fig. 2.5(c). Although the
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shape of the WF is similar to dxy orbital, it is distorted because of the surrounding environment. As
shown in Fig. 2.5(e), the DFT band dispersion is well reproduced by the Wannier TB model. Since Ωx

k

is negative in most region of the BZ, the AHC becomes positive finite according to Eq. (2.1.37) [29].
The AHC evaluated by M.-T. Suzuki et al. in Ref. [29] is σAHC

yz = 129 S/cm with Mn magnetic
moment 3.39 µB, which are consistent with the experiment, σAHC

yz 100 S/cm and 3 µB [20]. Thus,
the analysis based on the Wannier TB model clarifies that the AHE occurs even in the non-collinear
AFM Mn3Sn.

The advantages of using the Wannier TB model are summarized below.

(1) The Wannier TB model reproduces the band dispersion obtained from the DFT calculation.

(2) The model parameters are derived from the DFT calculation.

(3) Since the MLWFs are well-localized in real space, the hopping parameters rapidly decay with
the distance between a pair of two WFs, leading to the Hamiltonian matrix sparse.

(4) MLWFs have the advantage of providing intuitive understanding in real-space discussions espe-
cially chemical bonding and electric polarization.

(5) Berry connection and curvature, and their related quantities, such as electric polarization, bulk
magnetic monopole, and AHC can be evaluated quantitatively.

(6) There is a variety of open-source software packages that provides an interface to the Wannier90
code and a tool to systematically construct or analyze the Wannier TB Hamiltonian, such as
PythTB (see http://www.physics.rutgers.edu/pythtb/), WannierBerri [95], TBM [96].

Disadvantages

Using the DFT-based Wannier TB model, we can quantitatively analyze various physical properties
of interest. In addition, the MLWFs give us an intuitive and deeper understanding of the Berry
phase physics, such as electric polarization. On the other hand, there might be some disadvantages
or problems summarized below:

(1) The symmetry of the given material would be broken by numerical error in

(2) The microscopic expression of the order parameter and the microscopic mechanism of their
related physics often remain obscure.

(3) Although the hopping parameters of small magnitude for sufficiently far bonds seem to be
neglected safely, the removal of such hoppings results in the difficulty to reproduce the original
DFT band dispersion.

Let us first focus on the problem (1). As shown in Sec. 2.1.1, since the bands are entangled in
most cases, the disentanglement procedure is necessary. In this case, some eigenstates are discarded
in the disentanglement procedure, leading to the loss of accuracy of the band structure of the given
system. D. Gresch et al. mentions the detail of this problem in Ref. [97]. Owing to this problem,
the obtained Wannier band dispersion includes the unexpected slight lifting of the degeneracies in
the DFT band dispersion as shown in Fig. 1(b) in Ref. [97]. This seemingly trivial issue can lead to
unexpected behavior of some properties that are sensitive to symmetry and topology of the electronic
states. In addition, the problem also results in the superfluous hopping parameters that must be zero
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because of the symmetry. D. Gresch et al. have proposed a solution to the problem by recreating the
symmetrized Hamiltonian as

H(sym)(k) =
1

Ng

∑

G∈G
Dk(G)H (k)Dk(G−1) (2.1.40)

where G is the space group, Dk(G) is the k-dependent representation matrix of the symmetry opera-
tion G, and Ng is the total number of symmetry operations. To use this method, the WFs must have
the same symmetry properties as the initial atomic orbitals. However, the disentanglement procedure
mixes multiple atomic orbitals and the symmetry of the obtained WFs is often lower than that of the
initial atomic orbitals as shown in Fig. 2.5(c). In addition, the maximal localization procedure must
be omitted as well, because the initial atomic orbitals are mixed in this process. Meanwhile, the max-
imal localization procedure itself has another problem in that the symmetry is not considered as well
as the disentanglement procedure. R. Sakuma mentioned this problem and proposed the algorithm
to create symmetry-adapted WFs [98]. However, note that this method is not always applicable.

Next, let us discuss the problem (2). As shown in the previous section, the Wannier TB model
is indeed superior in the quantitative analysis of material properties. However, the microscopic
expression of the order parameter and the microscopic mechanism of its related physics often remain
obscure. For example, as for the AHE in non-collinear AFM Mn3Sn, the microscopic mechanism of the
AHE, such as the implicit couplings among AFM ordering, electron hopping, and SOC, have remained
unclear. In addition, non-trivial physical phenomena driven by unfamiliar electronic multipole orders,
such as the electric toroidal dipole G and monopole G0, which are closely related to the lattice rotation
and crystal chirality respectively, have yet to be understood at the microscopic level.

It should be emphasized that the WFs typically contain no useful information except for their
location and geometric shape, hampering such analysis from a microscopic point of view. Since the
WFs are not characterized by the atomic orbital and magnetic quantum numbers (l,m) or irreducible
representation and its component of a given symmetry, (Γ, γ), the symmetry argument is more difficult
than a description using the atomic orbital that is characterized by (l,m) or (Γ, γ). In addition, it
is also difficult to exactly define the matrix form of the basic atomic operators, such as the electric
quadrupole Qxy ∝ xy, atomic angular momentum l = r × p (r is a position operator of an electron
belongs to one nucleus), electric toroidal dipole G = l × σ, and so on. For example, as shown in
Fig. 2.5(c), the WFs located at Mn atom in Mn3Sn clearly different from the initial d orbitals, because
of the disentanglement procedure. Thus, the atomic orbital angular momentum operator lz at a Mn
atom can not be defined by a simple 5×5 matrix with the basis functions, (du, dv, dyz, dzx, dxy) (See
Appendix B in detail):

〈WFs|lz|WFs〉 .=





0 0 0 0 0

0 0 0 0 −2i

0 0 0 i 0

0 0 −i 0 0

0 2i 0 0 0




(2.1.41)

In order to systematically investigate various electronic multipoles such as G and G0, it is highly
desirable to define their corresponding quantum-mechanical operator as analytic form of matrix. To
realize this, the atomic orbitals are more appropriate than WFs as the basis function of the TB model.

The last problem (3) increases computational cost, e.g., calculating the electron-phonon couplings.
Moreover, it is difficult to identify which model parameter plays a crucial role in the physics of interest,
hampering an intuitive and deeper understanding of it.
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2.2 Tight-Binding Model Based on Atomic Orbitals
In this section, we briefly show the another approach to construct the effective TB model based on
the atomic orbitals.

The atomic orbital is defined by the multiplication of the radial function and spherical harmonics:

ϕa(r) ≡ ϕnlm(r) = Rnl(r)Ylm(r̂) (2.2.1)

where an abbreviation a = (n, l,m) is introduced (m is a magnetic quantum number or a subscript of
the orbitals in real representation). The real representation of the angular part of the atomic orbitals
are defined by arbitrary linear combinations of Ylm within the same l (See Appendix B). The atomic
orbital located at a sublattice s in the unit-cell R is given by

ϕasR(r) ≡ ϕa(r − (R+ s)) (2.2.2)

where s is the position of the sublattice s within the home unit cell, R = 0. Similar to Eqs. (2.1.4)
and (2.1.5), the BF is defined by using the atomic orbitals as

|ψask〉 =
1√
N

∑

R

|ϕasR〉 eik·(R+s) (2.2.3)

|ϕasR〉 = 1√
N

∑

k

|ψask〉 e−ik·(R+s) (2.2.4)

Note that the atomic orbitals are not orthogonal basis:

Saa′
ss′ (R) = 〈ϕasR|ϕa′s′0〉 =

1

N

∑

k

〈ψask|ψa′s′k〉 eik·((R+s)−s′) =
1

N

∑

k

Saa′
ss′ (k)e

ik·((R+s)−s′) (2.2.5)

Saa′
ss′ (k) = 〈ψask|ψa′s′k〉 =

∑

R

Saa′
ss′ (R)e−ik·((R+s)−s′) (2.2.6)

Saa′
ss′ (R) is the overlap matrix. The matrix elements of the Hamiltonian are given by

Haa′
ss′ (R) = 〈ϕasR|H|ϕa′s′0〉 =

1

N

∑

k

〈ψask|H|ψa′s′k〉 eik·((R+s)−s′) =
1

N

∑

k

Haa′
ss′ (k)e

ik·((R+s)−s′)

(2.2.7)

Haa′
ss′ (k) = 〈ψask|H|ψa′s′k〉 =

∑

R

Haa′
ss′ (R)e−ik·((R+s)−s′) (2.2.8)

The eigenstates |ψnk〉 and eigenvalues εnk of Eq. (2.2.8) are obtained by solving the secular equations:
∑

a′s′

[
Haa′

ss′ (k)− εnkS
aa′
ss′ (k)

]
Un,a′s′(k) = 0 (2.2.9)

|ψnk〉 =
∑

as

Un,as(k) |ψask〉 (2.2.10)
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We summarize the most significant differences between the Wannier TB model and the TB model
based on the atomic orbitals.

(1) Orthogonality
While the WFs are orthogonal basis, the atomic orbitals are non-orthogonal, Saa′

ss′ (R) .= 0.
However, the atomic orbitals are often treated as orthogonal basis approximately, i.e.,
Saa′
ss′ (R) , N−1δR0δaa′δss′ , Saa′

ss′ (k) , δaa′δss′ . Hereafter, we follow this approximation.

(2) Gauge indeterminacy
Similar to the WFs, atomic orbitals depend on gauge (phase). Nevertheless, the gauge in atomic
orbitals are easier to control than the WFs. The phase e−ik·s added in Eq. (2.2.4) is suitable
choice for symmetry arguments. Hereafter, we adopt this gauge.

(3) Model building process
The DFT-based WFs are derived from the BFs obtained from the DFT band calculation and
the DFT band dispersion is automatically reproduced. On the other hand, the atomic orbitals
are introduced manually unless DFT solver is based on the atomic orbitals.

(4) Flexibility of the model
Haa′

ss′ (R) is a controllable parameter. εaa′(s) = Haa′
ss (0) corresponds to the crystal field param-

eter at s site in the unit-cell and taa
′

ss′ (R) = Haa′
ss′ (R) is the hopping parameter, and they must

satisfy the symmetry of the given system. When building a TB model using atomic orbitals, we
can choose a small number of orbitals of interest and freely control the model parameters and
system size, enabling us to analyze the physics of interest flexibly. Since the atomic orbitals are
characterized by (l,m) or (Γ, γ), the symmetry arguments are more straightforward than the
WFs. Moreover, any atomic operator matrices can be defined universally.

(5) Optimization of the model
As shown above, the Wannier TB model is derived from the DFT calculation directly, whereas
the TB model based on the atomic orbitals includes empirical model parameters, εaa′(s) and
taa

′
ss′ (R). One way to determine the TB model parameters is to reproduce the DFT band

dispersion.

As shown in (5), to reproduce the DFT band dispersion, we need to optimize the model param-
eters, εaa′(s) and taa

′
ss′ (R), appropriately. Since εaa′(s) and taa

′
ss′ (R) must satisfy the symmetry of the

system, they are determined by the atomic orbitals ϕasR,ϕa′s′0, bond vector Rss′ ≡ (R+s)−s′, and
surrounding environment. The Slater-Koster approach is a well-known method to determine inde-
pendent hopping parameters according to the symmetry of the atomic orbitals and bond vector [99].
When Rss′ is chosen as the z axis, the atomic orbitals ϕnslsmssR,ϕns′ ls′ms′s

′0 are proportional to
eimsφ, eims′φ where φ is the azimuthal angle measured from the x axis. In the Slater-Koster approach,
the Hamiltonian is approximated to have axial symmetry along the z axis, and then hopping matrix
elements vanish when ms .= ms′ :

taa
′

ss′ (R) ∝
∫ 2π

0

dφ

2π
e−i(ms−ms′ )φ = δmsms′ (2.2.11)
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As a consequence, there are only ten independent Slater-Koster parameters for s, p, d orbitals [99]:

Vssσ = 〈ϕs|H|ϕs〉 , Vspσ = 〈ϕs|H|ϕp0〉 , Vsdσ = 〈ϕs|H|ϕd0〉
Vppσ = 〈ϕp0|H|ϕp0〉 , Vpdσ = 〈ϕp0|H|ϕd0〉 , Vddσ = 〈ϕd0|H|ϕd0〉
Vppπ = 〈ϕp±1|H|ϕp±1〉 , Vpdπ = 〈ϕp±1|H|ϕd±1〉 , Vddπ = 〈ϕd±1|H|ϕd±1〉
Vddδ = 〈ϕd±2|H|ϕd±2〉

(2.2.12)

where σ,π, δ denote |m| = 0, 1, 2. In general, when the quantization axis of the atomic orbitals is
different from the bond direction, the hopping matrix elements can be obtained by using the direction
cosine, Rss′/|Rss′ | = (l,m, n), as shown in Table B.1. Note that the matrix elements that are not
included in Table B.1 can be obtained by permutation of indices and cosine directions of the other
matrix elements in Table B.1. To our knowledge, there are some open-source software packages that
enable us to automatically generate the TB Hamiltonian based on the Slater-Koster approach, such
as Tight-Binding Studio [100].

Following the Slater-Koster approach, we can implement the electronic structure calculation by
using the Slater-Koster parameters with low computational cost. However, since it assumes the
axial symmetry along the bond direction and neglects the surrounding environment, some essential
parameters could be lost.

2.3 Summary
As discussed above, the WFs and the atomic orbitals are widely used to construct the DFT-based
TB model, both of which have advantages and disadvantages.

The Wannier TB model is superior in terms of quantitative calculation, since it well reproduces
the DFT calculations. However, while the WF is well localized in real space, it exhibits low symmetry
and is not characterized by any quantum number, such as the atomic orbital and magnetic quantum
numbers or irreducible representation of relevant point group. Consequently, the WF is unsuitable
for symmetry arguments and for defining the matrix form of the atomic operators universally, such
as the atomic angular momentum l, thus hindering the analysis of unconventional order parameters,
e.g., the electric toroidal dipole G = l× s and the electric toroidal monopole G0.

On the other hand, the TB model based on the atomic orbitals with a small number of model
parameters is a suitable choice for symmetry arguments and electronic structure calculations with
low computational costs. In particular, following the Slater-Koster approach, we can construct a TB
model satisfying partially the symmetry of a given system, which provides an intuitive understanding
of the electronic band structure and various physics of interest. Nonetheless, some essential hopping
parameters could be lost owing to the assumption of the axial symmetry along the bond direction.
Furthermore, to construct the DFT-based TB model using the atomic orbitals, we must optimize the
model parameters to reproduce the DFT band dispersion. However, this process is not straightfor-
ward. One of the difficulties is that the accuracy of the optimization strongly depends on the initial
guess of the optimization parameters. From these circumstances, it is highly desirable to develop
a systematic generation scheme to build TB models satisfying the symmetry of a given system and
overcome these difficulties.

To realize this, we first introduce the symmetry-adapted multipole basis in Chap. 3, which enable
us to describe any electronic degrees of freedom in materials. Then, in Chap. 4, we show a systematic
generation scheme of a DFT-based TB model based on the symmetry-adapted multipole basis with
the help of the machine learning techniques. The obtained TB model not only satisfies the symmetry
of a given system precisely but also reproduces the DFT band dispersion with high accuracy. From the
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result of parameter optimization, we can identify which multipole basis has a dominant contribution
in the Hamiltonian. Additionally, since the atomic orbitals are used as basis functions, we can easily
obtain the matrix form of any atomic operator in terms of these bases.





Chapter 3

Symmetry-Adapted Multipole Basis

In this chapter, we introduce the symmetry-adapted multipole basis (SAMB) [25, 26, 28, 101, 102],
which enable us to describe any electronic degrees of freedom in materials.

To generate the SAMB systematically, we first decompose the electronic degrees of freedom in
materials into orbital/spin and sublattice parts in Sec. 3.1, and then we introduce the definition of
the SAMB. Next, in Sec. 3.2, we demonstrate a fundamental concept of multipole basis and review
recent development of the multipole basis theory [25, 26, 28, 101, 102]. In Sec. 3.3, we present the
definition of the atomic multipole basis for both spinless and spinful single-centered electron systems.
In Sec. 3.4, we introduce the site-cluster and bond-cluster multipole basis that describes the intra
and inter sublattice degrees of freedom in the isolated multi-site systems. Then, we define the SAMB
as the linear combination of the direct product of the atomic and site/bond-cluster multipole basis.
Furthermore, we extend the definition of the SAMB to the periodic crystals in Sec. 3.5.

3.1 Decomposition of Electronic Degrees of Freedom

First, let us introduce the braket notation for an operator Â since each operator plays a role of basis
vector to expand any physical operator:

|Â〉aa′ = [Â]aa′ , 〈Â|aa′ = [Â†]aa′ = [Â]∗a′a

〈Â|B̂〉 = Tr[Â†B̂] =
∑

aa′

[Â†]aa′ [B̂ ]a′a

(
|Â〉 〈B̂|

)

aa′,bb′
= [Â]aa′ [B̂

†]b′b = [Â]aa′ [B̂
∗]bb′

(3.1.1)

Next, suppose that we have a complete orthonormal basis set of matrices {Ẑj} in a given Hilbert
space satisfying the orthonormal and complete relations:

〈Ẑi|Ẑj〉 = δij ,

(
∑

i

|Ẑi〉 〈Ẑi|
)

aa′,bb′

= δabδa′b′ (3.1.2)

Then, we can expand any operator |Â〉 as the linear combination of Ẑj :

|Â〉 =
∑

j

〈Ẑj |Â〉 |Ẑj〉 =
∑

j

zj |Ẑj〉 (3.1.3)

where zj = 〈Ẑj |A〉 is the weight of contribution of |Ẑi〉 to |Â〉. Note that |Ẑj〉 has two constraints:
21
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Figure 3.1: Decomposition of (a) the 3-fold rotation operation 3+001 into (b) site and atomic orbital parts.

(1) Since Â is Hermitian, Ẑj must be also Hermitian provided that zj is real.

(2) Symmetry property of Ẑj must be same as that of Â.

In particular, when Â is the Hamiltonian, we can express it as the linear combination of Ẑj :

|Ĥ〉 =
∑

j

zj |Ẑj〉 (3.1.4)

where zj corresponds to a model parameter. Since Ĥ is fully symmetric for all the symmetry oper-
ations, GĤG−1 = Ĥ, Ẑj must be also fully symmetric, GẐjG−1 = Ẑj . When the system preserves
the time reversal symmetry, Ẑj must be time reversal even. Otherwise, Ẑj can be time reversal odd.
We call such Ẑj as a symmetry-adapted basis that is characterized by the spatial inversion and time
reversal parities P and T , and the irreducible representation of a given point group, Γ. One can
realize that the crystal field Hamiltonian ĤCEF is an example that is obtained by the above idea:

|ĤCEF〉 =
∑

j

φj |Ôj〉 (3.1.5)

where φj is the crystal field parameter and Ôj is the cubic or hexagonal harmonics or their Stevens’
equivalent operators.

Thus, the remaining question is how to systematically generate the symmetry-adapted basis for
various electron systems, such as single-centered electron systems, molecules, periodic crystals, and
so on. To realize this, the SAMB, which is characterized by the irreducible representation and the
time reversal and spatial inversion parities, is the most suitable choice for Ẑj .

In general, the electrons in crystallographic systems acquire site and bond degrees of freedom in
addition to the atomic orbital (including spin) degrees of freedom, which hinders to obtain the explicit
expression of Ẑj . Based on this circumstance, let us consider decomposing the electronic degrees of
freedom into the site/bond and atomic orbital parts and treating them independently.

Let us consider a symmetry operation G of the given system. G can be separated into two parts;
an operation moves a site (bond) to the other site (bond) and an operation that acts only on the
atomic orbital. Figure 3.1 represents a simple example of separating the 3-fold rotation operation 3+001
into site and atomic orbital parts. Since the symmetry operation acts independently on the site/bond
and atomic orbital degrees of freedom, Ẑj can be expressed as the linear combination of the direct
products of the basis |X̂α〉 of the atomic orbital part and the basis |Ŷβ〉 of the site/bond parts:

|Ẑj〉 =
∑

αβ

〈X̂α ⊗ Ŷβ |Ẑj〉 |X̂α ⊗ Ŷβ〉 =
∑

αβ

Cj
αβ |X̂α ⊗ Ŷβ〉 (3.1.6)
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where we assume that |X̂α ⊗ Ŷβ〉 is also complete orthonormal basis. To define Ẑj as fully symmetric,
the irreducible representation of X̂α and Ŷβ must be same. In addition, when Ẑj is time reversal
even (odd), the time reversal parities of X̂α and Ŷβ must be same (different). Thus, if we have {X̂α}
and {Ŷβ}, we can obtain {Ẑj} by implementing the irreducible decomposition of the product of them
with appropriate coefficients Cj

αβ as shown in Eq. (3.1.6). This construction procedure is much easier
than directly constructing {Ẑj}. According to the electronic multipole theory, X̂α and Ŷβ correspond
to the atomic multipole basis and the site/bond multipole basis as discussed below.

In Sec. 3.2, we briefly outline the concept of multipole basis. Then, we show the explicit definition
of the atomic multipole basis in Sec. 3.3. We introduce the site/bond multipole basis and define the
SAMB for isolated multi-site systems in Sec. 3.4. In Sec. 3.5, we extend the definition of the SAMB
to periodic crystals.

3.2 Concept of Multipole Basis
From a mathematical point of view, a multipole expansion is a series expansion of a function depending
on the polar and azimuth angles in the spherical coordinate system for three dimensional Cartesian
space. A multipole basis is a complete orthonormal basis used in a multipole expansion and its
expansion coefficient corresponds to the multipole moment. Usually, the spherical harmonics Ylm(r̂)

is used as the multipole basis that satisfies the orthogonal and complete relations:

〈lm|l′m′〉 ≡
∫

dr̂ Y ∗
lm(r̂)Yl′m′(r̂) = δll′δmm′ ,

∞∑

l=0

l∑

m=−l

|lm〉 〈lm| = 1 (3.2.1)

Using Ylm(r̂), an arbitrary angular dependent function f(r̂) is expanded as

|f〉 =
∑

lm

〈lm|f〉 |lm〉 =
∑

lm

ylm |lm〉 (3.2.2)

where ylm = 〈lm|f〉 is the multipole moment depending on f . Equation (3.2.2) is a linear combination
that can express finer anisotropic structure with use of the higher rank-l spherical harmonics. |lm〉
is called 2l multipole basis or monopole (l = 0), dipole (l = 1), quadrupole (l = 2), octupole (l = 3),
hexadecapole (l = 4), triakontadipole (l = 5), hexacontatetrapole (l = 6), octacosahectapole (l = 7)
bases, and so on. Some notable advantages of using multipole expansion are summarized below.

(1) Using complete orthonormal multipole basis, any angular dependent function can be expressed
by Eq. (3.2.2) systematically.

(2) Only a few multipole basis are often important to reproduce the original function, similar to
the Taylor and Fourier series expansions.

(3) The most dominant multipole contribution is elucidated by performing the multipole expansion.

Due to these advantages, the concept of multipole basis is widely utilized in various fields of physics
such as classical electromagnetism [103–105], nuclear physics [106–108], solid-state physics [25–28,88–
90,109–114], meta-materials [115–117], and so on.

The concept of multipole basis is also applied to describe atomic-scale electromagnetic distribution
of the wave function of electrons bound to a single-centered atom, so-called atomic multipole basis.
The well-known examples are the electric and magnetic multipoles as shown in Figs. 3.2(a) and (b),
respectively. Remarkably, it has been clarified that the four types of atomic multipoles, well-known
electric and magnetic multipoles and lesser-known magnetic toroidal and electric toroidal multipoles,
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Figure 3.2: Schematic figures of (a) electric (E) and (b) magnetic (M) multipoles.

constitute the complete orthogonal basis set in the Hilbert space for s, p, d, and f electrons [25,26,28].
In addition, the quantum-mechanical operators of the atomic multipole basis were obtained and a
compact formula to calculate their matrix elements are also derived quite recently [28]. Thus, the
atomic multipole basis is a powerful tool to describe electronic internal degrees of freedom, such
as charge, spin, and orbital and their combinations. Indeed, various electric and magnetic atomic
multipole ordered states have been studied mainly in d- and f -electron systems, such as the electric
quadrupole ordering in CeB6 [109, 118–124] and PrT2X20 (T = Ir, Rh, V, Ti, Nb and X = Al,
Zn) [125–133], electric hexadecapole ordering in PrRu4P12 [134, 135], magnetic octupole ordering in
Ce1−xLaxB6 [136–139] and NpO2 [140–145], magnetic octacosahectapole ordering in Yb2Pt2Pb [146,
147], and so on. These atomic multipoles, being active in the orbitals with the same orbital angular
momenta, are called conventional atomic multipoles. On the other hand, recent studies have pointed
out that the magnetic toroidal and electric toroidal atomic multipoles also become active in multiple
hybrid orbitals with different orbital angular momenta [25,26,148]. Such multipoles that are activated
only in hybrid orbitals are called hybrid atomic multipoles. In particular, it has been elucidated that
magnetic toroidal dipole in d-f hybrid orbitals can be a microscopic origin of the ME effect [148].

Moreover, recent studies extend the scope of the concept of multipole from a single-centered
electron systems to isolated multi-site systems such as molecules and periodic crystals, which provides
helpful insights for complicated electric/magnetic orderings over a site-cluster and bond-cluster in the
system. This concept is well-known as a molecular orbital in quantum chemistry. For example, the
complicated non-collinear AFM ordering in Mn3Sn is regarded as the site-cluster magnetic octupole
composed of the six Mn sites in the unit-cell [29, 101]. In addition, a recent study has discussed
that the odd parity electric toroidal quadrupoles induced by anisotropic bond modulation can be a
candidate order parameter for the unusual phase transition in the pyrochlore spin-orbital coupled
metal Cd2Re2O7 [149].
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3.3 Multipole Basis for Single-Centered Electron Systems

This section presents the explicit definition of the atomic multipole basis as the complete orthonormal
basis for both the spinless and spinful single-centered electron systems [25,26,28].

3.3.1 Four Types of Multipoles

Figure 3.3: Multipole expansion of scalar potential with complex charge distribution.

In classical electromagnetism, the multipole expansion is utilized to describe the angle dependence
of charge and current distributions [25, 103, 105, 150] as shown in Fig. 3.3. Let us consider the static
electric and magnetic fields with Coulomb gauge ∇ ·A(r) = 0. The Poisson equations of the scalar
and vector potentials, φ(r) and A(r), for Gaussian-cgs unit are given by

∇2φ(r) = −4πρe(r) (3.3.1)

∇2A(r) = −4π

c
je(r) (3.3.2)

where c is the speed of light and ρe(r) (je(r)) represents a source electric charge (current) density.
Based on the multipole expansion, φ(r) and A(r) are expanded by using the spherical harmonics
Ylm(r̂) and vector spherical harmonics Y l+k

lm (r̂) (see Appendix C.1 in detail):

φ(r) =
∞∑

l=0

l∑

m=−l

√
4π

2l + 1
Qlm

Y ∗
lm(r̂)

rl+1
(3.3.3)

A(r) =
∞∑

l=0

l∑

m=−l

[√
4π(l + 1)

(2l + 1)l
Mlm

Y (l)∗
lm (r̂)

irl+1
−
√

4π(l + 1)Tlm
Y (l+1)∗
lm (r̂)

rl+2

]
(3.3.4)

The expansion coefficients Qlm, Mlm, and Tlm represent the rank-l electric (E), magnetic (M), and
magnetic toroidal (MT) multipole moments, respectively. They are defined by

Qlm =

∫
dr ρe(r)Olm(r) =

∫
dr P (r) ·∇Olm(r) (3.3.5)

Mlm =
1

c(l + 1)

∫
dr [r × je(r)] ·∇Olm(r) =

∫
drM(r) ·∇Olm(r) (3.3.6)

Tlm =
1

c(l + 1)

∫
dr [r · je(r)]Olm(r) =

∫
dr T (r) ·∇Olm(r) (3.3.7)

where Olm(r) =
√
4π/(2l + 1)rlYlm(r̂), ρe(r) = −∇ · P (r), je(r) = c[∇×M(r)], and

M(r) = c[∇× T (r)].
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Figure 3.4: Four types of multipoles and their P and T parities. Their sources and schematic images up to
rank-2 are also shown.

The second expressions are given by using identity for an arbitrary vector field X [25]:

1

l + 1

∫
dr r × (∇×X) ·∇Olm =

∫
drX ·∇Olm (3.3.8)

Note that M00 and T00 vanish in the classical multipole expansion, because ∇O00(r) = 0 and∫
dr r · je(r) = 0, respectively.

Using Eqs. (3.3.3) and (3.3.4), the electric and magnetic fields are expanded in the same way,

E(r) = −∇φ(r) = −
∑

lm

√
4π(l + 1)Qlm

Y (l+1)∗
lm (r̂)

rl+2
(3.3.9)

B(r) = ∇×A(r) = −
∑

lm

√
4π(l + 1)Mlm

Y (l+1)∗
lm (r̂)

rl+2
(3.3.10)

As shown in Eq. (3.3.10), Tlm does not contribute to B(r), and then it is often neglected in Eq. (3.3.4).
From the quantum mechanical point of view, however, Tlm makes an appearance on the phase of the
electron wave function via the vector potential A(r) as shown in Eq. (3.3.4).

Since Olm(r), ρe(r), and je(r) have spatial inversion P and time reversal T parities (P, T ) =

[(−1)l,+1], [+1,+1], and [−1,−1], respectively, Qlm(r), Mlm(r), and Tlm(r) are characterized by
(P, T ) = [(−1)l,+1], [(−1)l+1,−1], and [(−1)l,−1], respectively. In other words, Qlm is the T -even
polar tensor, Mlm is the T -odd axial tensor, and Tlm is the T -odd polar tensor, respectively. It is
clear that the T -even axial tensor with (P, T ) = [(−1)l+1,+1] is missing in the multipole expansion of
classical electromagnetic potentials, which is essential multipole degree of freedom for completeness.

The missing fourth multipole is called an electric toroidal (ET) multipole and is naturally derived
by considering the magnetic current density as the vorticity of the electric polarization, jm(r) [25,
151, 152]. The expression of the magnetic current density, jm(r) = c[∇ × P (r)] is similar to the
electric current density, je(r) = c[∇×M(r)]. Since je(r) (jm(r)) is polar (axial) and T -odd (even),
the transformation je(r) → jm(r) reverses both the P and T parities. For example, by replacing
je(r) with jm(r) in the first expression of Mlm given in Eq. (3.3.6), the first expression of Qlm given
in Eq. (3.3.5) is obtained. Thus, the T -even axial ET multipole moment Glm can be defined by



3.3. MULTIPOLE BASIS FOR SINGLE-CENTERED ELECTRON SYSTEMS 27

replacing je(r) with jm(r) in the first expression of Tlm given in Eq. (3.3.7):

Glm =
1

c(l + 1)

∫
dr [r · jm(r)]Olm(r) =

∫
drG(r) ·∇Olm(r) (3.3.11)

where P (r) = ∇×G(r) and G(r) represents the electric toroidarization.
Figure 3.4 summarizes the P and T parities of four types of multipoles, their sources, and their

schematic images up to rank-2. These four types of multipoles, Qlm, Mlm, Tlm, and Glm, satisfy a
completeness to describe any angle dependence of electromagnetic charge and current distributions in
materials. For example, any scalar quantities, T -even scalar, T -odd pseudoscalar, T -odd scalar, and
T -even pseudoscalar are described by Q00, M00, T00, and G00, respectively. Notably, G00 corresponds
to the chirality from the symmetry point of view as discussed in Chap. 5. As we will show in the
next section, G00 does not appear in spinless Hilbert space, indicating that spin degrees of freedom
are essential to describe the chirality of electronic systems.

On the other hand, any vector quantities are described by Q, M , T , and G, respectively. As
shown in “dipole” column in Fig. 3.4, the vorticity of the M (MT) dipole corresponds to the MT
(M) dipole, while the vorticity of the E (ET) dipole corresponds to the ET (E) dipole. Since the E
dipole has the same symmetry property of the lattice displacement vector, its vorticity, ET dipole,
corresponds to the static lattice rotational deformation. Similarly, the higher rank tensor quantities
more than l = 2 are also described by the corresponding multipole basis.
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3.3.2 Quantum-Mechanical Operator Expressions

In this section, the quantum-mechanical operator expressions and the matrix elements of the atomic
multipoles for both the spinless and spinful systems are given [26,28].

For spinless systems

Based on Eqs. (3.3.5)-(3.3.7), and (3.3.11), the spinless atomic multipole operators are explicitly given
by

Q̂(orb)
lm = −eOlm (3.3.12)

M̂ (orb)
lm = −µBα

(M)
l

[
(∇Olm) · l̂+ l̂ · (∇Olm)

]
(3.3.13)

T̂ (orb)
lm = −µBα

(T )
l

[
(∇Olm) · (r × l̂)− (l̂× r) · (∇Olm)

]
= iα(T )

l

[
Olml̂2 − l̂2Olm

]
(3.3.14)

Ĝ(orb)
lm = −eiα(G)

l

[
(∇Olm) · l̂l̂2 − l̂2l̂ · (∇Olm)

]
(3.3.15)

where −e and −µB are the electron charge and Bohr magneton, which are taken to be unity hereafter,
−e,−µB → 1, and

α(M)
l =

1

2

2

l + 1
, α(T )

l =
1

2

2

(l + 1)(l + 2)
, α(G)

l =
1

2

4

(l + 1)2(l + 2)
(3.3.16)

Here, l̂ = −i(r×∇) is the dimensionless orbital angular momentum operator, and the parenthesis in
(∇Olm) denotes that ∇ acts only on Olm. Note that the above operators are symmetrized to satisfy

[X̂(orb)
lm ]† = (−1)mX(orb)

l−m (3.3.17)

Hereafter, we omit the hat symbol (ˆ) for notational simplicity.
The four spinless atomic multipole operators X(orb)

lm (X = Q,M, T,G) can describe arbitrary
electronic degrees of freedom in the Hilbert space of |n,L,M〉 with the angular momentum L, and its
component M , and the other quantum number n, such as the principal quantum number. Notably,
X(orb)

lm transforms like Ylm with respect to the spatial rotation. Therefore, following the Wigner-Eckart
theorem, the matrix elements of X(orb)

lm are given by

〈n1L1M1|X(orb)
lm |n2L2M2〉 = (−1)L1+M1

(
L1 L2 l

−M1 M2 m

)
〈n1L1||X(orb)

l ||n2L2〉 (3.3.18)

where the parenthesis represents the Wigner’s 3j symbol, and 〈n1L1||X(orb)
l ||n2L2〉 represents the

reduced matrix elements given by

〈n1L1||Q(orb)
l ||n2L2〉 = (−1)L1

√
(2L1 + 1)(2L2 + 1)

(
L1 L2 l

0 0 0

)
〈rl〉12 (3.3.19)

〈n1L1||M (orb)
l ||n2L2〉 = (−1)L1

√
l(2l + 1)(2l − 1)(2L1 + 1)L2(L2 + 1)×

× 2(2L2 + 1)

l + 1

(
L1 L2 l − 1

0 0 0

){
l − 1 l 1

L2 L2 L1

}
〈rl−1〉12 (3.3.20)

〈n1L1||T (orb)
l ||n2L2〉 = iRl(L1, L2) 〈n1L1||Q(orb)

l ||n2L2〉 (3.3.21)

〈n1L1||G(orb)
l ||n2L2〉 = iRl(L1, L2) 〈n1L1||M (orb)

l ||n2L2〉 (3.3.22)
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where the curly bracket denotes the Wigner’s 6j symbol, and

〈rk〉12 =
∫ ∞

0
drrk+2Rn1L1(r)Rn2L2(r) (3.3.23)

is the matrix element in the radial part. Here, we introduced the common proportional coefficient as

Rl(L1, L2) = −L1(L1 + 1)− L2(L2 + 1)

(l + 1)(l + 2)
(3.3.24)

The reduced matrices with same rank-l are orthogonal in the fixed (L1, L2) subspace:
∑

n1L1↔n2L2

〈n1L1||X(orb)
l ||n2L2〉

∗
〈n1L1||Y (orb)

l ||n2L2〉 = δXY X(l, n1, L1, n2, L2) (3.3.25)

X(l, n1, L1, n2, L2) =
∑

n1L1↔n2L2

| 〈n1L1||X(orb)
l ||n2L2〉 |2 (3.3.26)

where
∑

n1L1↔n2L2
denotes to sum (n1L1, n2L2) and (n2L2, n1L1) terms.

The Wigner’s 3j symbol satisfies the following selection rules:
(

j1 j2 j3
m1 m2 m3

)
=

(−1)j1−j2−m3

√
2j3 + 1

〈j1m1j2m2|j3 (−m3)〉

=






finite






mi ∈ {−ji,−ji + 1,−ji + 2, . . . , ji} (i = 1, 2, 3)

m1 +m2 +m3 = 0

|j1 − j2| ≤ j3 ≤ j1 + j2 (addition rule of the angular momentum)
j1 + j2 + j3 is an (even) integer (whenm1 = m2 = m3 = 0)

0 otherwise

(3.3.27)

We summarize some notable properties of X(orb)
lm as follows:

(1) From the addition rule of the angular momentum, only the rank-l multipoles satisfying |L1 −
L2| ≤ l ≤ L1 + L2 can be active.

(2) Since the spatial parities of Qlm(Mlm) and Tlm(Glm) are (−1)l ((−1)l+1), they are active only
when (−1)L1+L2 = (−1)l ((−1)l+1).

(3) M00 = T00 = G00 = G1m = 0 because of the identities, ∇O00(r) = 0 and ∇α∇βO1m(r) = 0.

(4) From Eq. (3.3.24), Tlm and Glm are inactive for L1 = L2, whereas they are activated when
L1 .= L2 and called hybrid multipoles.

(5) Since the Wigner’s 3j and 6j symbols and 〈rk〉12 are real, the matrix elements of Qlm (Tlm)
and Mlm (Glm) are real (pure imaginary).

(6) By normalizing {X(orb)
lm } (X = Q,M, T,G), it constitutes a complete orthonormal basis set.

We here prove the property (6). Let us consider the Hilbert space of |L,M〉 up to L = 3, where
there are independent 11 subspaces: 4 diagonal (non-hybrid) spaces, L1 = L2 = 0(s), 1(p), 2(d), 3(f),
and 6 off-diagonal (hybrid) spaces, (L1, L2) = (s, p), (s, d), (s, f), (p, d), (p, f), (d, f). Since the dimen-
sion of the matrices defined in the total Hilbert space is 16, there should be 16×16 = 256 independent
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Table 3.1: Activated atomic multipoles in each diagonal (non-hybrid) and off-diagonal (hybrid) subspaces.

s p d f
s Q0 (1) Q1m (3), T1m (3) Q2m (5), T2m (5) Q3m (7), T3m (7)

p
Q0 (1)
M1m (3)
Q2m (5)

Q1m (3), T1m (3)
M2m (5), G2m (5)
Q3m (7), T3m (7)

Q2m (5), T2m (5)
M3m (7), G3m (7)
Q4m (9), T4m (9)

d

Q0 (1)
M1m (3)
Q2m (5)
M3m (7)
Q4m (9)

Q1m (3), T1m (3)
M2m (5), G2m (5)
Q3m (7), T3m (7)
M4m (9), G4m (9)
Q5m (11), T5m (11)

f

Q0 (1)
M1m (3)
Q2m (5)
M3m (7)
Q4m (9)
M5m (11)
Q6m (13)

active multipoles, which are summarized in Table 3.1. Using the orthogonal relation of the Wigner’s
3j symbols,

(2j + 1)
∑

m1m2

(
j1 j2 j

m1 m2 m

)(
j1 j2 j′

m1 m2 m′

)
= δjj′δmm′ (3.3.28)

we can confirm that |X(orb)
lm 〉 is orthogonal in the fixed (L1, L2) subspace:

〈X(orb)
lm |X

′(orb)
l′m′ 〉L1L2

=
∑

n1L1↔n2L2

L1∑

M1=−L1

L2∑

M2=−L2

〈n1L1M1|X(orb)
lm |n2L2M2〉

∗
〈n1L1M1|X

′(orb)
l′m′ |n2L2M2〉

=
∑

n1L1↔n2L2




L1∑

M1=−L1

L2∑

M2=−L2

(
L1 L2 l

−M1 M2 m

)(
L1 L2 l′

−M1 M2 m′

)



× 〈n1L1||X(orb)
l ||n2L2〉

∗
〈n1L1||X

′(orb)
l′ ||n2L2〉

=
1

2l + 1
δll′δmm′

∑

n1L1↔n2L2

〈n1L1||X(orb)
l ||n2L2〉

∗
〈n1L1||X

′(orb)
l′ ||n2L2〉

=
X(l, n1, L1, n2, L2)

2l + 1
δll′δmm′δXX′

(3.3.29)

The last line is derived by using Eq. (3.3.25). Thus, |X(orb)
lm 〉 is normalized as

|X̃(orb)
lm 〉L1L2

≡ 1√
〈X(orb)

lm |X(orb)
lm 〉L1L2

|X(orb)
lm 〉L1L2

=

√
2l + 1√

X(l, n1, L1, n2, L2)L1L2

|X(orb)
lm 〉L1L2

(3.3.30)
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Similarly, using the another orthogonal relation of the Wigner’s 3j symbols,

∑

jm

(2j + 1)

(
j1 j2 j

m1 m2 m

)(
j1 j2 j

m′
1 m′

2 m

)
= δm1m′

1
δm2m′

2
(3.3.31)

we can also confirm that |X̃(orb)
lm 〉 satisfies the complete relation in the fixed (L1, L2) subspace:

∑

lm

(
|X̃(orb)

lm 〉 〈X̃(orb)
lm |

)(L1,L2)

M1M2,M ′
1M

′
2

=
∑

lm

∑

n1L1↔n2L2

〈n1L1M1|X̃(orb)
lm |n2L2M2〉 〈n1L1M

′
1|X̃

(orb)
lm |n2L2M

′
2〉

∗

= (−1)M1+M ′
1

∑

lm

(2l + 1)

(
L1 L2 l

−M1 M2 m

)(
L1 L2 l

−M ′
1 M ′

2 m

)

× 1

X(l, n1, L1, n2, L2)L1L2

∑

n1L1↔n2L2

| 〈n1L1||X(orb)
l ||n2L2〉 |2

= (−1)M1+M ′
1

∑

lm

(2l + 1)

(
L1 L2 l

−M1 M2 m

)(
L1 L2 l

−M ′
1 M ′

2 m

)

= δM1M ′
1
δM2M ′

2

(3.3.32)

We used Eq. (3.3.30) to obtain the third line.
The above considerations and Eqs. (3.3.29) and (3.3.32) indicate that {X̃(orb)

lm } constitutes the
complete orthonormal basis set in the Hilbert space of |n,L,M〉. In other words, it can describe
arbitrary spinless operator O(orb) in the fixed (L1, L2) space as the linear combination of |X̃(orb)

lm 〉:

|O(orb)〉L1L2
=

Q,M,T,G∑

X

L1+L2∑

l=|L1−L2|

l∑

m=−l

〈X̃(orb)
lm |O(orb)〉L1L2

|X̃(orb)
lm 〉L1L2

(3.3.33)

For spinful systems

Table 3.2: Correspondence between Xl(k) and X(orb)
l+k in spin sector [28].

X(1)
l (k) k = 0 k = ±1

Q(1)
l (k) T (orb)

l M (orb)
l±1

M (1)
l (k) G(orb)

l Q(orb)
l±1

T (1)
l (k) Q(orb)

l G(orb)
l±1

G(1)
l (k) M (orb)

l T (orb)
l±1

Next, we briefly show the definition of the atomic multipole basis for spinful systems. The detail
derivation is found in Ref. [28].

The spinful atomic multipole operators can be naturally constructed by composing the 2×2 iden-
tity matrix σ0 (rank 0 tensor) and the Pauli matrices σ (rank 1 tensor) with X(orb)

lm (rank-l tensor)
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in accordance with the addition rule of angular momentum:

X(s)
lm (k) = is+k(−1)l+m

√
2l + 1

s∑

n=−s

(
l + k l s

m− n −m n

)
X(orb)

l+k,m−nσs,n (3.3.34)

X(0)
lm (0) = X(orb)

lm σ0 with σ0,0 = σ0 is a multipole in charge sector, while X(1)
lm (k) (k = 0,±1) is a

multipole in spin sector, where three spin components (n = 0,±1) are defined as σ1,0 = σz and
σ1,±1 = ∓(σx ± iσy)/

√
2. Similar to Eq. (3.3.17), thanks to the phase factor is+k, the spinful atomic

multipole operator also satisfies

[X(s)
lm (k)]† = (−1)mX(s)

l−m(k) (3.3.35)

Since σ is the T odd axial vector, the T parity of X(1)
lm (k) is opposite to that of X(orb)

lm , and the P
parity is further reversed for k = ±1 components. The correspondence is summarized in Table 3.2.

By introducing the spinful spherical harmonics as

O(s)
lm(k) = is+k(−1)l+m

√
2l + 1

s∑

n=−s

(
l + k l s

m− n −m n

)
Ol+k,m−nσs,n (3.3.36)

and replacing Olm in Eqs. (3.3.12)-(3.3.15) with O(s)
lm(k), the explicit expressions of the composed

spinful atomic multipole operators are given by

Q(1)
lm(0) = α(T )

l

[(
∇O(1)

lm (0)
)
· (r × l)− (l× r) ·

(
∇O(1)

lm (0)
)]

= iα(T )
l

[
O(1)

lm (0)l2 − l2O(1)
lm (0)

]

(3.3.37)

M (1)
lm (0) = iα(G)

l

[(
∇O(1)

lm (0)
)
· ll2 − l2l ·

(
∇O(1)

lm (0)
)]

(3.3.38)

T (1)
lm (0) = O(1)

lm (0) (3.3.39)

G(1)
lm(0) = α(M)

l

[(
∇O(1)

lm (0)
)
· l+ l ·

(
∇O(1)

lm (0)
)]

(3.3.40)

Q(1)
lm(±1) = α(M)

l

[(
∇O(1)

lm (±1)
)
· l+ l ·

(
∇O(1)

lm (±1)
)]

(3.3.41)

M (1)
lm (±1) = O(1)

lm (±1) (3.3.42)

T (1)
lm (±1) = iα(G)

l

[(
∇O(1)

lm (±1)
)
· ll2 − l2l ·

(
∇O(1)

lm (±1)
)]

(3.3.43)

G(1)
lm(±1) = iα(T )

l

[(
∇O(1)

lm (±1)
)
· (r × l)− (r × l) ·

(
∇O(1)

lm (±1)
)]

= iα(T )
l

[
O(1)

lm (±1)l2 − l2O(1)
lm (±1)

]
(3.3.44)

In the spinful basis of the direct product, |nLMσ〉 = |nLM〉 ⊗ |1/2σ〉, the matrix elements of
X(s)

lm (k) are given by

〈n1L1M1σ1|X(s)
lm (k)|n2L2M2σ2〉 = is+k(−1)l+m

√
2l + 1

s∑

n=−s

(
l + k l s

m− n −m n

)

× 〈n1L1M1|X(orb)
l+k,m−n|n2L2M2〉 〈1/2σ1|σs,n|1/2σ2〉 (3.3.45)
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where

〈1/2σ1|σ1,0|1/2σ2〉 = δσ1σ2 , 〈1/2σ1|σ1,n|1/2σ2〉 = (−1)σ1−1/2
√
6

(
1/2 1/2 1

−σ1 σ2 n

)
(3.3.46)

Notably, the matrix elements of the spinful atomic multipole operators X(s)
lm (k) are obtained simply

by using the matrix elements of X(orb)
l+k , which are given by Eq. (3.3.18).

Let us next consider the eigenstates |nJM ;L〉 of the total angular momentum operator j =

l+ (1/2)σ:

|nJM ;L〉 = (−1)J+M
√
2J + 1

±1∑

σ

(
L J 1/2

M − σ/2 −M σ/2

)∣∣∣nLM − σ

2
σ
〉

(3.3.47)

Since X(s)
lm (k) transforms like Ylm under the spatial rotation, the matrix elements of X(s)

lm (k) under
|nJM ;L〉 is also given by following the Wigner-Eckart theorem:

〈n1J1M1;L1|X(s)
lm (k)|n2J2M2;L2〉 = (−1)J1+M1

(
J1 J2 l

−M1 −M2 m

)
〈n1J1;L1||X(s)

l (k)||n2J2;L2〉

(3.3.48)

The reduced matrix elements 〈n1J1;L1||X(s)
l (k)||n2J2;L2〉 are expressed by using 〈n1L1||X(orb)

l+k ||n2L2〉
as

〈n1J1;L1||X(s)
l (k)||n2J2;L2〉 = Pl(s, k; J1, J2;L1, L2) 〈n1L1||X(orb)

l+k ||n2L2〉 (3.3.49)

Pl(s, k; J1, J2;L1, L2) = is+k(−1)s
√
(2l + 1)(2J1 + 1)(2J2 + 1)(1− s)!(2 + s)!






L1 J1 1/2

L2 J2 1/2

l + k l s






(3.3.50)

where the curly bracket denotes the Wigner’s 9j symbol. The explicit expressions of
〈n1J1;L1||X(s)

l (k)||n2J2;L2〉 are given by

〈n1J1;L1||Q(1)
l (0)||n2J2;L2〉 = Rl(L1, L2)Pl(0, k; J1, J2;L1, L2) 〈n1L1||Q(orb)

l ||n2L2〉

〈n1J1;L1||M (1)
l (0)||n2J2;L2〉 = Rl(L1, L2)Pl(0, k; J1, J2;L1, L2) 〈n1L1||M (orb)

l ||n2L2〉

〈n1J1;L1||T (1)
l (0)||n2J2;L2〉 = −iPl(0, k; J1, J2;L1, L2) 〈n1L1||Q(orb)

l ||n2L2〉

〈n1J1;L1||G(1)
l (0)||n2J2;L2〉 = −iPl(0, k; J1, J2;L1, L2) 〈n1L1||M (orb)

l ||n2L2〉 (3.3.51)

〈n1J1;L1||Q(1)
l (±1)||n2J2;L2〉 = ±Pl(±1, k; J1, J2;L1, L2) 〈n1L1||M (orb)

l±1 ||n2L2〉

〈n1J1;L1||M (1)
l (±1)||n2J2;L2〉 = ±Pl(±1, k; J1, J2;L1, L2) 〈n1L1||Q(orb)

l±1 ||n2L2〉

〈n1J1;L1||T (1)
l (±1)||n2J2;L2〉 = ±iRl±1(L1, L2)Pl(±1, k; J1, J2;L1, L2) 〈n1L1||M (orb)

l±1 ||n2L2〉

〈n1J1;L1||G(1)
l (±1)||n2J2;L2〉 = ±iRl±1(L1, L2)Pl(±1, k; J1, J2;L1, L2) 〈n1L1||Q(orb)

l±1 ||n2L2〉
(3.3.52)
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We have confirmed that the reduced matrices with same rank-l are orthogonal in the fixed (L1, L2)

subspace:

∑

n1J1L1↔n2J2L2

L1±1/2∑

J1

L2±1/2∑

J2

〈n1J1;L1||X(s)
l (k)||n2J2;L2〉

∗
〈n1J1;L1||X

′(s′)
l (k′)||n2J2;L2〉

= δXX′δss′δkk′X(l, s, k;n1L1, n2L2) (3.3.53)

X(l, s, k;n1L1, n2L2) =
∑

n1J1L1↔n2J2L2

L1±1/2∑

J1

L2±1/2∑

J2

| 〈n1J1;L1||X(s)
l (k)||n2J2;L2〉 |2 (3.3.54)

We summarize some notable properties of X(s)
lm (k) as follows:

(1) From the addition rule of the angular momentum, only the rank-l multipoles satisfying |J1 −
J2| ≤ l ≤ J1 + J2 can be active.

(2) Since the spatial parities of Q(s)
l (k) (M (s)

l (k)) and T (s)
l (k) (G(s)

l (k)) are (−1)l ((−1)l+1),
Q(s)

lm(k) (M (s)
lm (k)) and T (s)(k) (G(s)(k)) are active only when (−1)L1+L2 = (−1)l ((−1)l+1)

(3) T (s)
00 (k) = 0.

(4) From Eq. (3.3.24), Q(1)
lm(0), M (1)

lm (0), T (1)
lm (±1), and G(1)

lm(±1) are active only for L1 .= L2,
otherwise zero.

(5) Since the Wigner’s 3j and 6j symbols and 〈rk〉12 are real, the matrix elements of Q(s)
lm(k)

(T (s)
lm (k)) and M (s)

lm (k) (G(s)
lm(k)) are real (pure imaginary).

(6) By normalizing {X(s)
lm (k)} (X = Q,M, T,G), it constitutes complete orthonormal basis set.

The property (6) can be easily proven based on the orthogonal and complete relations of X(orb)
lm

given by Eqs. (3.3.29) and (3.3.32) and the orthogonal relations of Wigner’s 3j symbols given by
Eqs. (3.3.28) and (3.3.31).

|X(s)
lm (k)〉 is orthogonal in the fixed (L1, L2) subspace:

〈X(s)
lm (k)|X

′(s′)
l′m′ (k

′)〉L1L2

= (−i)s+kis
′+k′(−1)l+m+l′+m′√

(2l + 1)(2l′ + 1)

×
∑

nn′

(
l + k l s

m− n −m n

)(
l′ + k′ l′ s′

m′ − n′ −m′ n′

)
〈X(orb)

l+k,m−n|X
′(orb)
l′+k′,m′−n′〉

L1L2
〈σs,n|σs′,n′〉

= 2(−i)kik
′
(−1)m+m′√

(2l + 1)(2l′ + 1)
X(l, n1, L1, n2, L2)

2l + 1
δXX′δl+k,l′+k′δss′

×
∑

n

(
l + k s l

m− n n −m

)(
l + k s l′

m− n n −m′

)

= 2
X(l, n1, L1, n2, L2)

2l + 1
δXX′δll′δmm′δss′δkk′ (3.3.55)

To obtain the second line, we used Eq.(3.3.29) and the orthogonality of σsn, 〈σsn|σs′n′〉 = 2δss′δnn′ .
Then, |X(s)

lm (k)〉 is normalized as

|X̃(s)
lm (k)〉L1L2

≡ 1√
〈X(s)

lm (k)|X(s)
lm (k)〉L1L2

|X(s)
lm (k)〉L1L2

(3.3.56)
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=

√
2l + 1√

2X(l, n1L1, n2L2)
|X(s)

lm (k)〉L1L2
(3.3.57)

= is+k(−1)l+m
√
2l + 1

s∑

n=−s

(
l + k l s

m− n −m n

)
X̃(orb)

l+k,m−nσ̃s,n (3.3.58)

where σ̃s,n = σs,n/
√
2 are the normalized spin tensors, 〈σ̃s,n|σ̃s′,n′〉 = δss′δnn′ .

In addition, the complete relation of |X̃(s)
lm (k)〉L1L2

in the fixed (L1, L2) subspace is represented
by

∑

lmsk

|X̃(s)
lm (k)〉 〈X̃(s)

lm (k)|

=
∑

lmsk

∑

nn′

(2l + 1)

(
l + k s l

m− n n −m

)(
l + k s l

m− n′ n′ −m

)
|X̃(orb)

l+k,m−n〉 〈X̃
(orb)
l+k,m−n′ | |σ̃s,n〉 〈σ̃s,n′ |

=
∑

l′m1m2snn′

[
∑

lm

(2l + 1)

(
l′ s l

m1 n m

)(
l′ s l

m2 n′ m

)]
|X̃(orb)

l′,m1
〉 〈X̃(orb)

l′,m2
| |σ̃s,n〉 〈σ̃s,n′ |

=
∑

lmsn

|X̃(orb)
l,m ⊗ σ̃s,n〉 〈X̃(orb)

l,m ⊗ σ̃s,n| (3.3.59)

We redefined the subscripts l + k → l′,m− n → m1,m− n′ → m2,−m → m in the second line and
l′ → l,m1 → m in the third line. Since |X̃(orb)

l,m ⊗ σ̃s,n〉 is a complete basis,

(
∑

lmsn

|X̃(orb)
l,m ⊗ σ̃s,n〉 〈X̃(orb)

l,m ⊗ σ̃s,n|
)L1L2

(M1σ1M2σ2),(M ′
1σ

′
1M

′
2σ

′
2)

=

(
∑

lm

|X̃(orb)
l,m 〉 〈X̃(orb)

l,m |
)L1L2

(M1M2),(M ′
1M

′
2)

(
∑

sn

|σ̃s,n〉 〈σ̃s,n|
)

(σ1σ2),(σ′
1σ

′
2)

= δM1M ′
1
δM2M ′

2
δσ1σ′

1
δσ2σ′

2
(3.3.60)

|X̃(s)
lm (k)〉L1L2

also satisfies the complete relation in the fixed (L1, L2):

(
∑

lmsk

|X̃(s)
lm (k)〉 〈X̃(s)

lm (k)|
)L1L2

(M1σ1M2σ2),(M ′
1σ

′
1M

′
2σ

′
2)

= δM1M ′
1
δM2M ′

2
δσ1σ′

1
δσ2σ′

2
(3.3.61)

Using Eq. (3.3.47), |X̃(s)
lm (k)〉L1L2

also satisfies the complete relation in the fixed (L1, L2) subspace of
|JM ;L〉 basis:

(
∑

lmsk

|X̃(s)
lm (k)〉 〈X̃(s)

lm (k)|
)L1L2

(J1M1J2M2),(J ′
1M

′
1J

′
2M

′
2)

= (−1)J1+M1+J2+M2+J ′
1+M ′

1+J ′
2+M ′

2

√
(2J1 + 1)(2J2 + 1)(2J ′

1 + 1)(2J ′
2 + 1)

×
∑

σ1σ2

(
L1 J1 1/2

M1 − σ1/2 −M1 σ1/2

)(
L2 J2 1/2

M2 − σ2/2 −M2 σ2/2

)

×
∑

σ′
1σ

′
2

(
L1 J ′

1 1/2

M ′
1 − σ′1/2 −M ′

1 σ′1/2

)(
L2 J ′

2 1/2

M ′
2 − σ′2/2 −M ′

2 σ′2/2

)
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×
(
∑

lmsk

|X̃(s)
lm (k)〉 〈X̃(s)

lm (k)|
)L1L2

(M1−σ1/2σ1M2−σ2/2σ2),(M ′
1−σ′

1/2σ
′
1M

′
2−σ′

2/2σ
′
2)

= (−1)J1+M1+J2+M2+J ′
1+M ′

1+J ′
2+M ′

2

√
(2J1 + 1)(2J2 + 1)(2J ′

1 + 1)(2J ′
2 + 1)

×
∑

σ1σ2

(
L1 J1 1/2

M1 − σ1/2 −M1 σ1/2

)(
L2 J2 1/2

M2 − σ2/2 −M2 σ2/2

)

×
∑

σ′
1σ

′
2

(
L1 J ′

1 1/2

M ′
1 − σ′1/2 −M ′

1 σ′1/2

)(
L2 J ′

2 1/2

M ′
2 − σ′2/2 −M ′

2 σ′2/2

)

× δM1M ′
1
δM2M ′

2
δσ1σ′

1
δσ2σ′

2

= (−1)J1+M1+J2+M2+J ′
1+M ′

1+J ′
2+M ′

2

√
(2J1 + 1)(2J2 + 1)(2J ′

1 + 1)(2J ′
2 + 1)

×
∑

σ1

(
L1 J1 1/2

M1 − σ1/2 −M1 σ1/2

)(
L1 J ′

1 1/2

M1 − σ1/2 −M1 σ1/2

)

×
∑

σ2

(
L2 J2 1/2

M2 − σ2/2 −M2 σ2/2

)(
L2 J ′

2 1/2

M2 − σ2/2 −M2 σ2/2

)

× δM1M ′
1
δM2M ′

2

= (−1)J1+M1+J2+M2+J ′
1+M ′

1+J ′
2+M ′

2

√
(2J1 + 1)(2J2 + 1)(2J ′

1 + 1)(2J ′
2 + 1)

× 1

2J1 + 1

1

2J ′
1 + 1

δJ1J ′
1
δJ2J ′

2
δM1M ′

1
δM2M ′

2

= δJ1J ′
1
δJ2J ′

2
δM1M ′

1
δM2M ′

2
(3.3.62)

The above consideration and Eqs. (3.3.55), (3.3.61), and (3.3.62) indicate that {X̃(s)
lm (k)} constitute

the complete orthonormal basis set in the spinful Hilbert space of |nLMσ〉 or |nJM ;L〉. In other
words, it can describe arbitrary spinful operators O in the fixed (L1, L2) space:

|O〉L1L2
=

Q,M,T,G∑

X

L1+L2∑

l=|L1−L2|

l∑

m=−l

0,1∑

s

s∑

k=−s

〈X̃(s)
lm (k)|O〉L1L2

|X̃(s)
lm (k)〉L1L2

(3.3.63)

Hereafter, we neglect (̃ ) in X̃(s)
lm (k) for notational simplicity unless otherwise stated.

3.3.3 Atomic Multipole Basis in Crystallographic Systems

For crystalline systems, the real representation X(a)
α , characterized by α = (l,Γ,m, γ; s, k) is suitable,

where Γ, m, γ, are the irreducible representation of the point group, multiplicity, and component, re-
spectively. The superscript (a) denotes the atomic multipole basis. Notably, since X(s)

lm (k) transforms
like Olm by the symmetry operation of the point group, the real representations of X(s)

lm (k) and Olm

can be obtained in the same way,

X(a)
α =

∑

m

Um;αX
(s)
lm (k) (3.3.64)

Oα =
∑

m

Um;αOlm (3.3.65)
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We calculate all the matrix elements of Um;α for Oh and D6h point groups up to rank 11 [28]. The
explicit expressions of atomic multipoles X(a)

α up to rank 1 are shown in Table 3.3, and the explicit
expressions of the cubic and hexagonal harmonics Oα up to rank 4 are shown in Table C.1. Oα for
the other point groups can be also obtained by following the compatibility relation and redefining Γ,
m, and γ without changing any matrix elemement of Um;α. Compatibility relation among irreducible
representations of cubic and hexagonal point groups are shown in Tables XII and XXVIII in Ref. [26],
respectively. Note that the multipoles with the fully symmetric irreducible representation, such as
A1g, A1, Ag, A in Tables XII and XXVIII in Ref. [26] can have finite expectation values and appear
in the Hamiltonian. Meanwhile, the other multipoles are candidate order parameters of various phase
transitions.

Table 3.3: Explicit expressions of the atomic multipole operators up to rank 1. l, σ/2, and t = (r× l− l×r)/6
represent the dimensionless orbital and spin angular-momentum operators and magnetic toroidal
dipole operator. Here, (AiBj) = (AiBj + AjBi + BiAj + BjAi)/4. The upper and lower parts
separated by double line represent the spinless and spinful multipoles, respectively.

rank type (P, T ) notation expression
0 E (+,+) Q(a)

0 1
1 E (−,+) Q(a) r

M (+,−) M (a) l
MT (−,−) T (a) t

0 E (+,+) Q(a)
0 (1) 1√

3
l · σ

M (+,−) M (a)
0 (1) 1√

3
r · σ

ET (−,+) G(a)
0 (1) 1√

3
t · σ ∝ r ·G(a)(0)

1 E (−,+) Q(a)(0) 1√
2
(σ × t)

E (−,+) Q(a)
z (1) 2

3
√
10
[3(lr)zxσx + 3(lr)yzσy + 2[2(lr)zz − (lr)xx − (lr)yy]σz] (+cyclic)

M (+,−) M (a)(−1) σ

M (+,−) M (a)(+1) 3√
10

[
(r · σ)r − r2

3 σ
]

MT (−,−) T (a)(0) 1√
2
(r × σ)

MT (−,−) T (a)
z (+1) 1

2
√
10
[3(lt)zxσx + 3(lt)yzσy + 2[2(lt)zz − (lt)xx − (lt)yy]σz] (+cyclic)

ET (+,+) G(a)(0) 1√
2
(l× σ)

ET (+,+) G(a)
z (+1) 1

2
√
10
[3(tr)zxσx + 3(tr)yzσy + 2[2(tr)zz − (tr)xx − (tr)yy]σz] (+cyclic)

In a given Hilbert space 〈φe| and |ψe′〉 of interest, such as the atomic orbitals (See Appendix B in
detail), any electronic degrees of freedom in this space can be described by the matrix representation
of the atomic multipole basis 〈φe|X(a)

α |ψe′〉. The actual calculation requires 〈φe|X(a)
α |ψe′〉 for a limited

Hilbert space, and |φe〉 and |ψe′〉 can be represented by the unitary transformation of |LM〉 (spinless)
or |LMσ〉/|JM ;L〉 (spinful). Thus, 〈φe|X(a)

α |ψe′〉 for spinless and spinful systems are explicitly given
by

spinless systems

{
〈L1M1|X(a)

α |L2M2〉 =
∑

m Um;α 〈L1M1|X(0)
lm (0)|L2M2〉

〈L1φe|X(a)
α |L2ψe′〉 =

∑
mM1M2

Um;αU∗
M1;e

UM2;e′ 〈L1M1|X(0)
lm (0)|L2M2〉

(3.3.66)



38 CHAPTER 3. SYMMETRY-ADAPTED MULTIPOLE BASIS

spinful systems






〈L1M1σ1|X(a)
α |L2M2σ2〉 =

∑
m Um;α 〈L1M1σ1|X(1)

lm (k)|L2M2σ2〉
〈L1φeσ1|X(a)

α |L2ψe′σ2〉 =
∑

mM1M2
Um;αU∗

M1;e
UM2;e′ 〈L1M1σ1|X(1)

lm (k)|L2M2σ2〉
〈J1M1;L1|X(a)

α |J2M2;L2〉 =
∑

m Um;α 〈J1M1;L1|X(1)
lm (k)|J2M2;L2〉

(3.3.67)

By storing the following matrix elements,

〈L1M1|X(0)
lm (0)|L2M2〉 , 〈L1M1σ1|X(1)

lm (k)|L2M2σ2〉 , 〈J1M1;L1|X(1)
lm (k)|J2M2;L2〉 , Um;α, UM1;e, UM2;e′

as binary data once in advance, any matrix elements of the atomic multipole operator are calculable
based on Eqs. (3.3.66) and (3.3.67).

Note that the obtained {X(a)
α } becomes non-orthogonal in general when a given Hilbert space

is the subspace of the rank block (L1, L2), e.g., (px, py) which is the subspace of the rank block
(1, 1), (px, py, pz). Nevertheless, by using Gram-Schmidt orthonormalization, we can also construct
the complete orthonormal basis set {X̃(a)

α } expressed by the linear combination of X(a)
α . Furthermore,

when given orbitals include several ranks, such as 〈L1 ⊕ L2|X(a)
α |L〉, by considering the radial parts of

the matrix elements, the matrix elements are given by 〈rk〉L1L
〈L1|X(a)

α |L〉 ⊕ 〈rk〉L2L
〈L2|X(a)

α |L〉. As
a result, 〈L1|X(a)

α |L〉 and 〈L2|X(a)
α |L〉 must be treated independently, and then the matrix elements

for each rank block, (L1, L) and (L2, L), must be orthogonalized in each block.
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3.4 Multipole Basis for Isolated Multi-Site Systems
In this section, we present the SAMB for isolated multi-site systems such as molecules. As shown in
Sec. 3.1, we treat the atomic orbital and site/bond degrees of freedom independently.

The definition of the site/bond-cluster is shown in Sec. 3.4.1. Then, we introduce the virtual-
cluster in Sec. 3.4.2 that is used for generating the site/bond-cluster multipole basis in periodic crystals
as shown in Sec. 3.4.2. Finally, by combining the atomic and site/bond-cluster multipole basis, we
define the SAMB in Sec. 3.4.3. The matrix representation of the SAMB is shown in Sec. 3.4.4.

3.4.1 Site/Bond-Cluster

Figure 3.5: Site- and bond-clusters in point group C3. Sites with same color belong to the same site-cluster.
The numbers in parentheses denote the serial numbers of the symmetry operations.

Let us consider how to generate a basis describing site and bond degrees of freedom for any
isolated multi-site system belonging to a crystalline point group P . For this purpose, we classify all
sites and bonds constituting the isolated multi-site system into a set of site-clusters and bond-clusters
as follows. Figure 3.5 shows a simple example of the site-clusters and bond-clusters in a multi-site
system belonging to a point group C3, P = {1, 3+001, 3

−
001} (1 represents the identity operation).

Site-Cluster

Site-cluster is generated as follows. First, select a representative site R1 among the sites constituting
the isolated multi-site system. Then, a set of sites {R} = (R1,R2, . . . ,RNc), which are obtained
by applying the symmetry operations p ∈ P to R1, is called a site-cluster that is characterized by a
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Wyckoff position of Nc sites. As shown in Fig. 3.5, there are three independent site-clusters colored
by red, blue, and green.

The site obtained by applying the symmetry operation pg to R1, R′
g = pgR1(pg ∈ P ) sometimes

coincides with a site Rs in the site-cluster. We denote this relationship by s(g).
By selecting an another representative site that is not belonging to the site-cluster generated by

R1, and repeating the above procedure, the sites constituting the isolated multi-site system can be
classified into a set of site-clusters.

Bond-Cluster

The same procedure is used for generating bond clusters. First, we select a representative bond
Rn → Rm among the bonds in the isolated multi-site system and represent it as b1@c1 where
c1 = (Rm+Rn)/2 and b1 = Rm−Rn are the bond center and the bond vector. Then, a set of bond
{b@c} = (b1@c1, b2@c2, . . ., bNc@cNc), which are obtained by applying the symmetry operations
p ∈ P to b1@c1, is called a bond-cluster that is characterized by a Wyckoff position of Nc bond centers.
As shown in Fig. 3.5, there are two independent bond-clusters among the blue colored site-cluster
and green colored site-cluster.

The bond obtained by applying the symmetry operation pg to b1@c1, b′g@c′g = pgb1@c1 sometimes
coincides with a bond bs@cs in the bond-cluster. We denote this relationship by s(g). Note that
when the bond direction is reversed, b′g = −bs, a negative sign is added to s(g), i.e., −s(g),

By selecting an another representative bond that is not belonging to the bond-cluster generated
by b1@c1, and repeating the above procedure, the bonds within the isolated multi-site system can be
classified into a set of bond-clusters.

3.4.2 Site/Bond-Cluster Multipole Basis

From the above considerations, the basis for each site/bond-cluster can be generated independently.
Therefore, we focus on a single site/bond-cluster and present the method to generate a basis set
describing the site/bond degrees of freedom within the site/bond-cluster.

A basis set describing the site/bond degrees of freedom is obtained by evaluating the electric
multipole Qβ(r) at each site r = Rs or bond center r = cs within the given multi-site cluster.
However, this simple method have two difficulties. First, when cs = 0, e.g., the diagonal bond in
the square and honeycomb cluster, Qβ(cs) = 0 except for Q0(cs) = 1. Second, as discussed in
Sec. 3.5, since symmetry operations in nonsymmorphic space groups involve partial translations, the
sites in a site-cluster are not equidistant from the origin. Consequently, a multipole basis cannot be
constructed by the above simple method. To overcome these difficulties, we utilize the virtual-cluster
method [101].

Virtual-Cluster

Let us introduce a virtual-cluster generated by operations of a point group or a corresponding point
group by removing translation operations from the symmetry operation of a space group (called
associated point group). Virtual-clusters for all 32 crystallographic point groups were constructed by
selecting an arbitrary general point as R̃1 and applying symmetry operations to it to obtain all general
points. The virtual-cluster of the D6h point group is shown in Fig. 3.6, where 24 sites are labeled
by the index of the corresponding symmetry operation pg as shown in Table 3.4. Since the distances
between the origin and each site are same in the virtual-cluster, we can construct a virtual-cluster E
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Table 3.4: Symmetry operations of the point group D6h.

sym. op. EP sym. op. E sym. op. E
(1) 1 (x, y, z) (9) 3+001 (−y, x− y, z) (17) m001 (x, y,−z)

(2) 2001 (−x,−y, z) (10) 3−001 (−x+ y,−x, z) (18) m120 (x− y,−y, z)

(3) 2100 (x− y,−y,−z) (11) 6+001 (x− y, x, z) (19) m210 (−x,−x+ y, z)

(4) 2010 (−x,−x+ y,−z) (12) 6−001 (y,−x+ y, z) (20) m1−10 (y, x, z)

(5) 2110 (y, x,−z) (13) −1 (−x,−y,−z) (21) −3+001 (y,−x+ y,−z)

(6) 2120 (−x+ y, y,−z) (14) m100 (−x+ y, y, z) (22) −3−001 (x− y, x,−z)

(7) 2210 (x, x− y,−z) (15) m010 (x, x− y, z) (23) −6+001 (−x+ y,−x,−z)

(8) 21−10 (−y,−x,−z) (16) m110 (−y,−x, z) (24) −6−001 (−y, x− y,−z)

Figure 3.6: Schematic figure of the mapping from the virtual-cluster of D6h point group onto the original
honeycomb lattice. The virtual-cluster E octupole Q(vc)

3a is mapped to the site-cluster E octupole
Q(s)

3a , bond-cluster E octupole Q(b)
3a , and bond-cluster MT octupole T (b)

3a on the original honeycomb
lattice. Since the bond centers of the 3rd neighbor bond are located at the origin, cs = 0,
Q3a(cs) = 0.
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multipole basis as Ng (number of symmetry operations) dimensional vector:

|Q(vc)
β 〉 =

[
Qβ(R̃1), Qβ(R̃2), · · · , Qβ(R̃Ng)

]
(3.4.1)

where R̃s is the site position in the virtual-cluster. By generating from lower rank basis and following
the Gram-Schmidt orthonormalization, we can obtain the complete orthonormal virtual-cluster basis
set {Q̃(vc)

β } satisfying

〈Q̃(vc)
β |Q̃(vc)

β′ 〉 = δββ′ ,
∑

β

|Q̃(vc)
β 〉 〈Q̃(vc)

β | = 1Ng×Ng (3.4.2)

where 1Ng×Ng is the Ng ×Ng identity matrix.
Qβ(R̃) is transformed by a symmetry operation p of the point group P as

Qβ(p
−1R̃) =

∑

β′

Qβ′(R̃)D
Γβ

β′β(p) (3.4.3)

where D̂Γβ (p) is the representation matrix within Γβ subspace. Similarly, |Q̃(vc)
β 〉 is also transformed

by p as follows:

p |Q̃(vc)
β 〉 =

[
Q̃β(p

−1R̃1), Q̃β(p
−1R̃2), · · · , Q̃β(p

−1R̃Ng)
]
=
∑

β′

|Q̃(vc)
β′ 〉DΓβ

β′β(p) (3.4.4)

As shown in Fig. 3.6, the virtual-cluster E octupole Q(vc)
3a (Q3a =

√
10
4 y

(
3x2 − y2

)
) in the D6h

point group is given by

|Q̃(vc)
3a 〉 = [+1,−1,−1,−1,−1,+1,+1,+1,+1,+1,−1,−1,−1,+1,+1,+1,+1,−1,−1,−1,−1,−1,+1,+1]√

24
(3.4.5)

Mapping

To construct the site/bond-cluster multipole basis for the original isolated multi-site system, we map
the virtual-cluster E multipole basis, Eq. (3.4.1), onto the sites or bonds in the original cluster.

When we act the symmetry operation pg ∈ P to the representative site R1 in the original cluster,
some sites overlap at the same site unless R1 is a general point. Since the correspondence is given
by s(g) as described in Sec. 3.4.1, the site-cluster E multipole basis for the original cluster can be
constructed by adding some components in Eq. (3.4.1) that belong to the same site:

|Q(s)
β 〉 =

[
Q(s)

β (R1), Q
(s)
β (R2), · · · , Q(s)

β (RNc)
]
, Q(s)

β (Rj) =

s(g)=sj∑

g

Qβ(R̃g) (3.4.6)

The bond-cluster multipole basis can be obtained similarly. However, since the bond has di-
rectional information bs in addition to the bond center cs, there are symmetric and antisymmetric
basis with respect to reversal of bond directions. The symmetric bond-cluster basis S(b)

β (−bs@cs) =

S(b)
β (bs@cs), which is independent of the bond direction, is given by

|S(b)
β 〉 =

[
S(b)
β (b1@c1), S

(b)
β (b2@c2), · · · , S(b)

β (bNc@cNc)
]
, S(b)

β (bj@cj) =

|s(g)|=sj∑

g

Qβ(R̃g) (3.4.7)
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While the antisymmetric bond-cluster basis A(b)
β (−bs@cs) = −A(b)

β (bs@cs), which changes its sign
by the reversal of bond directions, is defined by using wg ≡ sgn(s(g)) as

|A(b)
β 〉 =

[
A(b)

β (b1@c1), A
(b)
β (b2@c2), · · · , A(b)

β (bNc@cNc)
]
, A(b)

β (bj@cj) =

|s(g)|=sj∑

g

wgQβ(R̃g)

(3.4.8)

Since the real hopping, t′(a†sas′ +h.c.), is T even and is symmetric against an exchange s ↔ s′, it
can be described by the bond-cluster E multipole basis defined as the 2Nc dimensional vector as

|Q(b)
β 〉 =

[
S(b)
β (b1@c1), . . . , S

(b)
β (bNc@cNc);S

(b)
β (−b1@c1), . . . , S

(b)
β (−bNc@cNc)

]
(3.4.9)

While the imaginary hopping, it′′(a†sas′ − h.c.), is T odd and is antisymmetric against an exchange
s ↔ s′, it can be described by the bond-cluster MT multipole basis defined as the 2Nc dimensional
vector as

|T (b)
β 〉 = i

[
A(b)

β (b1@c1), . . . , A
(b)
β (bNc@cNc);A

(b)
β (−b1@c1), . . . , A

(b)
β (−bNc@cNc)

]
(3.4.10)

Thus, by generating from lower rank site-cluster basis and following the Gram-Schmidt orthonor-
malization, we can construct the complete orthonormal site-cluster multipole basis set {Q̃(s)

β } satis-
fying

〈Q̃(s)
β |Q̃(s)

β′ 〉 = δββ′ ,
∑

β

|Q̃(s)
β 〉 〈Q̃(s)

β | = 1Nc×Nc (3.4.11)

where 1Nc×Nc is the Nc ×Nc identity matrix.

Similarly, we can also obtain the complete orthonormal bond-cluster multipole basis set {Ỹ (b)
β }

(β distinguishes between Q and T ) satisfying

〈Ỹ (b)
β |Ỹ (b)

β′ 〉 = δββ′ ,
∑

β

|Ỹ (b)
β 〉 〈Ỹ (b)

β | = 12Nc×2Nc (3.4.12)

where 12Nc×2Nc is the 2Nc × 2Nc identity matrix.

Using Eq. (3.4.3), |Q̃(s)
β′ 〉 and |Ỹ (b)

β 〉 are transformed by a symmetry operation p of the point group
P as follows:

p |Q̃(s)
β 〉 =

∑

β′

|Q̃(s)
β′ 〉D

Γβ

β′β(p) (3.4.13)

p |Ỹ (b)
β 〉 =

∑

β′

|Ỹ (b)
β′ 〉DΓβ

β′β(p) (3.4.14)

Figure 3.6 shows an example of mapping from the virtual-cluster of D6h point group onto the
original honeycomb lattice. The site-cluster of the original honeycomb lattice consists of the six sites,
(R1, . . . ,R6). The relationship between Rs and R̃g = pgR1 represented by s(g) is given by

1(g) = [1, 6, 14, 17], 4(g) = [7, 10, 15, 23]

2(g) = [2, 3, 13, 18], 5(g) = [5, 12, 20, 21]

3(g) = [4, 11, 19, 22], 6(g) = [8, 9, 16, 24]

(3.4.15)
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Then, the site-cluster E octupole Q(s)
3a is obtained by using Eq. (3.4.6):

|Q̃(s)
3a 〉 =

1√
6
(−1,+1,+1,−1,+1,−1) (3.4.16)

It is depicted in Fig. 3.6.
The 2nd neighbor bond-cluster consists of the six bonds, (b1@c1, . . . , b6@c6). The relationship

between bs@cs and b′g@c′g = pgb1@c1 represented by s(g) is given by

1(g) = [1,−6,−14, 17], 4(g) = [5,−12, 20,−21]

2(g) = [−2, 3,−13, 18], 5(g) = [7,−10, 15,−23]

3(g) = [−4, 11,−19, 22], 6(g) = [−8, 9,−16, 24]

(3.4.17)

The 2nd neighbor bond-cluster E octupole Q(b)
3a is obtained by using Eq. (3.4.9):

|Q̃(b)
3a 〉 =

1√
12

(+1,−1,−1,−1,+1,+1;+1,−1,−1,−1,+1,+1) (3.4.18)

It is depicted in Fig. 3.6. Note that the bond-cluster E and MT octupoles Q(b)
3a and T (b)

3a are not
active in the nearest neighbor bond-cluster. Similarly, the bond-cluster MT octupole T (b)

3a vanishes in
the 2nd neighbor bond-cluster.

The 3rd neighbor bond-cluster consists of the six bonds, (b1@c1, . . . , b6@c6). The relationship
between bs@cs and b′g@c′g = pgb1@c1 represented by s(g) is given by

1(g) = [1,−2,−3, 6,−13, 14, 17,−18]

2(g) = [5,−8,−9, 12,−16, 20, 21,−24]

3(g) = [−4, 7, 10,−11, 15,−19,−22, 23]

(3.4.19)

The 3rd neighbor bond-cluster MT octupole T (b)
3a is obtained by using Eq. (3.4.10):

|T̃ (b)
3a 〉 = i√

6
(+1,−1,+1;−1,+1,−1) (3.4.20)

It is depicted in Fig. 3.6. Note that the bond-cluster E octupole Q(b)
3a is not active in the 3rd neighbor

bond-cluster. It should be emphasized that the bond centers of the 3rd neighbor bond are located at
the origin, cs = 0, Q3a(cs) = 0. Therefore, the site/bond-cluster multipole basis can not be obtained
without the use of the virtual-cluster and mapping method in this case.

As shown above, using the virtual-cluster and mapping method, we can systematically generate
complete orthonormal site/bond-cluster multipole basis set.

3.4.3 Symmetry-Adapted Multipole Basis

Following the discussion in Sec. 3.1 and Eq. (3.1.6), the SAMB for isolated multi-site systems is
obtained by combining the atomic multipole basis X(a)

α and the site/bond-cluster multipole basis
Y (s/b)
β as follows:

|Zj〉 =
∑

αβ

〈X(a)
α ⊗ Y (s/b)

β |Zj〉 |X(a)
α ⊗ Y (s/b)

β 〉 =
∑

αβ

Cj
αβ |X

(a)
α ⊗ Y (s/b)

β 〉 (3.4.21)
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Figure 3.7: Schematic figure of decomposition of the non-collinear AFM ordering in Mn3Sn into the linear
combination of the product of the atomic M dipoles (Mx,My) and the site-cluster E quadrupoles
(Q(s)

x2−y2 , Q
(s)
xy ).

where j = (Γ,m, γ) and Γ, m, γ, are the irreducible representation of the point group, multiplicity, and
component, respectively. The multiplicity m is used to distinguish between multipole basis belonging
to the same rank and irreducible representation.

A point group symmetry operation p acts on |Zj〉 as follows:

p |Zj〉 =
∑

i

D
ΓZj

ij (p) |Zi〉 (3.4.22)

p |Zj〉 =
∑

αβ

Cj
αβ |pX

(a)
α ⊗ pY (s/b)

β 〉 =
∑

αβ

Cj
αβ

∑

γδ

D
ΓXα
γα (p)D

ΓYβ

δβ (p) |X(a)
γ ⊗ Y (s/b)

δ 〉 (3.4.23)

where Γj , Γα, and Γβ are the irreducible representations of Zj , X
(a)
α , and Y (s/b)

β , respectively, and
D̂Γ(p) is the representation matrix within Γ subspace. Cj

αβ = 〈X(a)
α ⊗ Y (s/b)

β |Zj〉 is the point-group
version of the Clebsch-Gordan (CG) coefficient that appears in reducing the direct product of the
irreducible representations Γα and Γβ into Γj . See Appendix C.3 for a detailed derivation of Cj

αβ .

Since both |X̃(a)
α 〉 and |Ỹ (s/b)

β 〉 are orthonormal and complete in fixed rank block (L1, L2) and
each site/bond-cluster, we can obtain the complete orthonormal SAMB by orthogonalizing the CG
coefficients {Cj

αβ} → {C̃j
αβ} according to the Gram-Schmidt orthonormalization:

|Z̃j〉 =
∑

αβ

C̃j
αβ |X̃

(a)
α ⊗ Ỹ (s/b)

β 〉 (3.4.24)

〈Z̃i|Z̃j〉 = δij ,




∑

j

|Z̃j〉 〈Z̃j |





aa′,bb′

= δabδa′b′ (3.4.25)

Hereafter, we neglect (̃ ) in X̃(a)
α , Ỹ (s/b)

β , and Z̃j for notational simplicity unless otherwise noticed.
Following the above procedure, the complete orthonormal SAMB set {Zj} can be obtained for each
pair of rank block and site/bond-cluster independently.

It should be emphasized that the CG coefficient Cj
αβ can be generated with only the labels (α,β)

of X(a)
α and Y (s/b)

β that contribute to Zj . In other words, the explicit matrix elements of X(a)
α and

Y (s/b)
β are not necessary. When the explicit matrix elements of Zj are necessary, they can be obtained

by the procedure described in Sec. 3.4.4.
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As shown in Fig. 3.7, the non-collinear AFM ordering in Mn3Sn can be described by the SAMB
of M dipole:

|Mx〉 = − 1√
2

(
|M (a)

x (−1)⊗Q(s)
x2−y2〉+ |M (a)

y (−1)⊗Q(s)
xy 〉
)

(3.4.26)

Equation (3.4.26) provides us an intuitive understanding for the occurrence of the AHE, σAHC
yz .= 0,

even under the AFM ordering in Mn3Sn. Note that since only the parity of rank (even or odd) has
a proper meaning in SAMB (see Appendix C.3 in detail), Mx is mixed with the M octupole M3u in
reality, which is consistent with the result previously reported by M.-T. Suzuki et al. in Ref. [29].

3.4.4 Final Matrix Form

In a practical calculation, the matrix form of Zj is useful. However, since Y (s/b)
β is defined by a

Nc/2Nc-dimensional vector, its size depends on each cluster. Similarly, the orbital spaces 〈φe| and
|ψe′〉 also depend on the site/bond-cluster. Consequently, the matrix elements 〈φe|X(a)

α |ψe′〉 and
Y (s/b)
β (s) have to be rearranged to the corresponding component (i, j) in the total Hilbert space of

the site/bond-cluster, 〈φe ⊗ s| and |ψe′ ⊗ s′〉. Assuming that each site/bond component consists of a
block of atomic orbitals, each element of (s, s′) space is a block matrix of X(a)

α . Therefore, only Y (s/b)
β

needs to be rearranged.
In the case of a site-cluster, Y (s)

β (s) should be placed on the diagonal element (s, s). While, in
the case of a bond-cluster, Y (b)

β (bs@cs) should be placed on the off-diagonal element based on the
correspondence bs@cs → (s, s′), where bs = Rs −Rs′ . These operations are denoted as follows:

Y (s/b)
β → M (t)

β (3.4.27)

If Y (s/b)
β is the complete orthonormal basis, M (t)

β also satisfies the orthonormal and complete relations

〈M (t)
β |M (t)

β′ 〉 = δββ′ ,




∑

β

|M (t)
β 〉 〈M (t)

β |





(s1s2),(s′1s
′
2)

= δs1s′1δs2s′2 (3.4.28)

For example, the matrix forms of Eqs. (3.4.16), (3.4.18), and (3.4.20) are given by

Q̃(s)
3a → Q̃(t,1)

3a =
1√
6





−1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1





, Q̃(b)
3a → Q̃(t,2)

3a =
1√
12





0 0 0 1 0 1

0 0 −1 0 −1 0

0 −1 0 0 −1 0

1 0 0 0 0 1

0 −1 −1 0 0 0

1 0 0 1 0 0





,

T̃ (b)
3a → T̃ (t)

3a =
1√
6





0 i 0 0 0 0

−i 0 0 0 0 0

0 0 0 −i 0 0

0 0 i 0 0 0

0 0 0 0 0 −i

0 0 0 0 i 0





(3.4.29)

where the superscript (t, i) (i = 1, 2) distinguishes the diagonal and off-diagonal basis.
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3.5 Multipole Basis for Periodic Multi-Site Systems

In this section, we present the SAMB for periodic multi-site systems such as crystals. The procedure
to obtain the SAMB is exactly the same as for the isolated multi-site systems. On the other hand,
some modification are essential to obtain the site/bond-cluster multipole basis for periodic multi-site
systems as shown below.

3.5.1 Symmetry-Adapted Multipole Basis

Figure 3.8: Site- and bond-clusters in the graphene. The black diamond represents the home unit cell. The
site-cluster consists of two sublattices, while the nearest neighbor bond-cluster is composed of three
bonds. The numbers in parentheses are the serial numbers of the symmetry operations.

Site/Bond-Cluster

Let us consider the site/bond-clusters constituting the periodic crystals belonging to a space group
G:

G =

Ng∑

g=1

GT (3.5.1)

G = {pg|τg} (3.5.2)

where pg is a point group symmetry operation, τg is a partial translation, and T denotes the lattice
translations. When the generated site (R′

g = GR1) or bond (b′g@c′g = Gb1@c1) is transferred outside
the home unit cell, it must be shifted into the home unit cell by appropriate lattice translation.

Figure 3.8 shows an example of the site/bond-cluster in the graphene whose space group is
P6/mmm (#191, D1

6h). The relationship between Rs and R′
g = GR1 represented by s(g) is given by

1(g) = [1, 6, 7, 8, 9, 10, 14, 15, 16, 17, 23, 24]

2(g) = [2, 3, 4, 5, 11, 12, 13, 18, 19, 20, 21, 22]
(3.5.3)
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While, the relationship between s = bs@cs and R̃g = Gb1@c1 represented by s(g) is given by

1(g) = [1,−2,−5, 8,−13, 16, 17,−20] (3.5.4)
2(g) = [3,−6,−10, 11,−14, 18, 22,−23] (3.5.5)
3(g) = [−4, 7, 9,−12, 15,−19,−21, 24] (3.5.6)

Virtual-Cluster

The virtual-cluster for space group G is generated as follows. In general, space group G can be
expanded as the sum of the cosets:

G =
Ncoset∑

j=1

{pj |τj}UT (3.5.7)

where U denotes the set of point group symmetry operations {p|0} in G and Ncoset is the number of
the cosets. Note that {p1|τ1} = {E|0} and τj .= 0 for j ≥ 2, and Ncoset = 1 (> 1) for symmorphic
(nonsymmorphic) space group. Then, the virtual-cluster for the space group G is generated by
considering the associated point group P defined by

P =
Ncoset∑

j=1

{pj |0}U (3.5.8)

There is a one-to-one correspondence between a symmetry operation G of the space group G and a
symmetry operation pg of the associated point group P , i.e., an operation G in the actual periodic
crystal corresponds to an operation pg in the virtual cluster:

G = {pg|τg} −→ {pg|0} = pg (3.5.9)

This is nothing but the mapping relation between the actual periodic crystal and the virtual cluster.
Thus, using the associated point group symmetry operations pg with neglecting the partial translation
τg, we can generate a virtual-cluster for both the symmorphic (τg = 0) and nonsymmorphic (τg .= 0)
space groups in the same way.

With the above considerations, the complete orthonormal site/bond-cluster multipole basis set
{Q̃(s)

β } and {Ỹ (b)
β } can be generated based on the mapping given by Eqs. (3.4.6)-(3.4.12). Thanks to

the mapping relation given by Eq. (3.5.9), we can define the irreducible representation matrix in the
actual periodic crystal D̂Γ(G) as

D̂Γ(G) ≡ D̂Γ(pg) (3.5.10)

Thus, |Q̃(s)
β 〉 and |Ỹ (b)

β 〉 are transformed by G as follows:

G |Q̃(s)
β 〉 =

∑

β′

|Q̃(s)
β′ 〉D

Γβ

β′β(G) =
∑

β′

|Q̃(s)
β′ 〉D

Γβ

β′β(pg) (3.5.11)

G |Ỹ (b)
β 〉 =

∑

β′

|Ỹ (b)
β′ 〉DΓβ

β′β(G) =
∑

β′

|Ỹ (b)
β′ 〉DΓβ

β′β(pg) (3.5.12)

As a result, |Q̃(s)
β 〉 and |Ỹ (b)

β 〉 are characterized by the irreducible representation Γβ of the associated
point group P of the original space group G regardless of the symmorphic (τg = 0) or nonsymmorphic
(τg .= 0) groups.
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Figure 3.9: Schematic figure of the mapping from the virtual-cluster of D6h point group onto the original
graphene lattice. The virtual-cluster E octupole Q(vc)

3a is mapped to the site-cluster E octupole
Q(s)

3a and bond-cluster MT octupole T (b)
3a on the original graphene lattice.

For example, the virtual-cluster of the graphene is that of the point group D6h as shown in Fig. 3.9.
The site-cluster E octupole Q(s)

3a and the nearest neighbor bond-cluster MT octupole T (b)
3a are obtained

by using Eq. (3.4.6) and (3.4.10) as follows:

|Q(s)
3a 〉 =

1√
2
(+1,−1) (3.5.13)

|T (b)
3a 〉 = 1√

2
(+i,−i,+i;−i,+i,−i) (3.5.14)

The schematic figures of Q(s)
3a and T (b)

3a are shown in Fig. 3.9. The site/bond-cluster multipole basis
for nonsymmorphic space group, i.e., elemental Tellurium, is shown in Chap. 5.

Thus, the SAMB of a periodic multi-site system is exactly same as that of an isolated multi-site
system given by Eq. (3.4.21):

|Zj〉 =
∑

αβ

〈X(a)
α ⊗ Y (s/b)

β |Zj〉 |X(a)
α ⊗ Y (s/b)

β 〉 =
∑

αβ

Cj
αβ |X

(a)
α ⊗ Y (s/b)

β 〉 (3.5.15)

A space group symmetry operation G = {pg|τg} acts on |Zj〉 as follows:

G |Zj〉 =
∑

i

D
ΓZj

ij (pg) |Zi〉 (3.5.16)

G |Zj〉 =
∑

αβ

Cj
αβ |GX

(a)
α ⊗ GY (s/b)

β 〉 =
∑

αβ

Cj
αβ

∑

γδ

D
ΓXα
γα (pg)D

ΓYβ

δβ (pg) |X(a)
γ ⊗ Y (s/b)

δ 〉 (3.5.17)

3.5.2 Final Matrix Form

The final matrix form of the site-cluster multipole basis Y (s)
β is obtained by the same way given in

Sec. 3.4.4. Therefore, we only consider the matrix form of the bond-cluster multipole basis Y (b)
β as
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follows.

Let us first define the E and MT momentum multipole basis fβ(k) by the Fourier transform of
the symmetric and antisymmetric bond-cluster basis, respectively:

Qβ(k) =
1√
2

Nc∑

s=1

S(b)
β (s) (Bs + c.c.) =

√
2

Nc∑

s=1

S(b)
β (s)Cs (3.5.18)

Tβ(k) =
1√
2i

Nc∑

s=1

A(b)
β (s) (Bs − c.c.) =

√
2

Nc∑

s=1

A(b)
β (s)Ss (3.5.19)

where Bs ≡ e−ik·bs , Cs = cos(k · bs), and Ss = sin(k · bs). Similar to Eq. (3.5.12), the obtained fβ(k)

is transformed in the same way as the irreducible representation Γβ for the symmetric operation on
the space group.

The matrix elements of the bond-cluster multipole basis Y (b)
β (s) is modified by the phase Bs as

Y (b)
β (s)Bs. Then, the final matrix form is denoted as M (t)

β (k). Note that M (t)
β = M (t)

β (k = 0).
M (t)

β (k) is expanded as the linear combination of the direct product of M (t)
γ and fδ(k) as

M (t)
β (k) =

∑

γδ

pβγδM
(t)
γ fδ(k) (3.5.20)

The expansion coefficient pβγδ can be obtained by solving a simultaneous linear equations for Bs given
in Eq. (3.5.20).

Since S(b)
β and A(b)

β are orthonormal, fβ(k) is also orthonormal:

〈fβ(k)|fβ′(k)〉 = V

(2π)d

∫

BZ
f∗
β(k)fβ′(k) = δββ′ (3.5.21)

Note that if all bond-clusters in the given system are considered, fβ(k) (β includes the bond-cluster)
satisfies the complete relation in the momentum space as

∑

β

f∗
β(k)fβ(k

′) = δkk′ (3.5.22)

Thus, M (t)
β (k) also satisfies both the orthonormal and complete relations:

〈M (t)
β (k)|M (t)

β′ (k)〉 =
V

(2π)d

∫

BZ
Tr
[
M (t)†

β (k)M (t)
β′ (k)

]
= δββ′ (3.5.23)




∑

β

|M (t)
β (k)〉 〈M (t)

β (k′)|





(s1s2),(s′1s
′
2)

= δs1s′1δs2s′2δkk′ (3.5.24)

Based on the above procedure, we obtain the SAMB of the momentum space representation as

|Zj(k)〉 =
∑

ββ

Cj
αβ |X

(a)
α ⊗M (t)

β (k)〉 (3.5.25)

[Zj(k)]
aa′
ss′ =

∑

αβ

Cj
αβ [X

(a)
α ]aa′ [M

(t)
β (k)]ss′ (3.5.26)
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Zj(k) satisfies both the orthonormal and complete relations:

〈Zi(k)|Zj(k)〉 =
V

(2π)d

∫

BZ
Tr
[
Z†
i (k)Zj(k)

]
= δij (3.5.27)

∑

j

(
|Zj(k)〉 〈Zj(k

′)|
)
aa′,bb′

= δkk′δabδa′b′ (3.5.28)

Note that the complete relation is satisfied only if all bond-clusters are considered.

3.6 Summary
In this Chapter, we have introduced the symmetry-adapted multipole basis, which enable us to
describe any electronic degrees of freedom in the isolated and periodic multi-site systems, such as
molecules and crystals.

In Sec. 3.1, we have decomposed the electronic degrees of freedom into the orbital/spin and the
sublattice parts. We have clarified the definition of the symmetry-adapted multipole basis that is given
by the linear combination of the direct product of the atomic multipole basis and the site/bond-cluster
multipole basis.

In Sec. 3.3, we have presented the definition of the atomic multipole basis for both spinless
and spinful single-centered electron systems. We have confirmed that the atomic multipole basis
constitutes the complete orthonormal basis set. Using the atomic multipole basis, any electronic
degrees of freedom in the isolated single-centered electron systems can be described.

In Sec. 3.4, we have introduced the virtual-cluster defined by the general points produced by the
symmetry operations of a point group, which enable us to systematically generate the site/bond-
cluster multipole basis without difficulty of choosing the origin and cluster unit especially for non-
centrosymmetric space group. Similar to the atomic multipole basis, the site/bond-cluster multipole
basis constitutes the complete orthonormal basis set in the sublattice space. Then, by combining the
atomic and site/bond-cluster multipole basis, we have defined the symmetry-adapted multipole basis.
In Sec. 3.5, we have extended the definition of the symmetry-adapted multipole basis to the peri-
odic crystals. Since both the atomic and site/bond-cluster multipole basis satisfy the complete and
orthonormal relations, the obtained symmetry-adapted multipole basis also constitutes the complete
orthonormal basis set in the given Hilbert space.

Using the symmetry-adapted multipole basis, we can describe any electronic degrees of freedom
in the isolated and periodic multi-site systems, such as molecules and crystals. In particular, since
the Hamiltonian must be fully-symmetric, it can be described by the sum of the fully-symmetric
symmetry-adapted multipole basis:

|H〉 =
∑

j

〈Zj |H〉 |Zj〉 =
∑

j

zj |Zj〉 (3.6.1)

zj = 〈Zj |H〉 (3.6.2)

where zj is the weight of the contribution of |Zj〉 in |H〉. We summarize the advantages of using the
above expression:

(1) Since each Zj is fully symmetric, the Hamiltonian satisfies the symmetry of a given system
precisely.

(2) By decomposing the Hamiltonian in the form of Eq. (3.6.1), we can unveil a hidden multipole
basis, which corresponds to a candidate order parameter, in a given system.
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(3) When the matrix elements of the given Hamiltonian are described in terms of the atomic orbital
basis, we can clarify the weight of each multipole basis by taking a matrix trace based on
Eq. (3.6.2).

(4) When we build up the Hamiltonian from scratch, zj corresponds to a controllable parameter.
In particular, given an energy band dispersion obtained from DFT calculations, we can also
construct a DFT-based symmetry-adapted TB model by optimizing zj to reproduce the DFT
band dispersion.

In Chap. 4, we will show a systematic generation scheme of the DFT-based symmetry-adapted
TB model based on the symmetry-adapted multipole basis.



Chapter 4

DFT-Based Symmetry-Adapted
Tight-Binding Model

4.1 Introduction

Eccentric orderings and their related physical phenomena are determined from symmetry and material-
specific microscopic properties such as electronic band structure. To understand them from a micro-
scopic point of view, constructing a realistic model satisfying the symmetry of a given system is
essential. The DFT-based electronic structure analysis is a powerful way to incorporate electronic
states in materials in detail and to evaluate a wide range of physical quantities. There are several
software packages to perform DFT calculations, such as VASP [65], QUANTUM ESPRESSO [66],
WIEN2K [67], OpenMX [68], ABINIT5 [69], Gaussian [70], and so on.

On the other hand, to understand low-energy physics, only a few electronic states close to the
Fermi level are crucial. The DFT-based Wannier TB model has been widely used for quantitative
analysis of various physical properties of interest, and it can be constructed by using an open-source
Wannier90 software package [72–74]. To our knowledge, there are also some open-source software
packages that provide an interface to the Wannier90 code and a tool to construct or analyze the Wan-
nier TB Hamiltonian systematically, such as PythTB (see http://www.physics.rutgers.edu/pythtb/),
WannierBerri [95], TBM [96], and so on. However, as discussed in Chap. 2, the Wannier TB model
has several disadvantages: (1) The symmetry of a given system is not rigorously satisfied during the
construction of the Wannier TB Hamiltonian. (2) The Wannier function is unsuitable for symmetry
arguments because it has no characteristic quantum number, such as the atomic orbital and magnetic
quantum numbers. (3) Many hopping parameters associated with long-range bonds are involved in
the Hamiltonian, which hampers the analysis of material properties from a microscopic point of view.
(4) The microscopic expression of the order parameter and the microscopic mechanism of the physical
properties of interest often remain unclear.

Meanwhile, the TB model based on the atomic orbitals with a small number of model parameters is
a suitable choice for symmetry arguments and electronic structure calculations with low computational
costs. In particular, adopting the Slater-Koster approach [99], we can construct a TB model which
uses moderate number of model parameters and approximately satisfies the symmetry of a given
system, which provides an intuitive and deeper understanding of the electronic band structure and
various physical properties of interest. However, as mentioned in Chap. 2, some essential hopping
parameters would be lost because of neglecting the exact symmetry around each bond.

In this regard, as shown in Chap. 3, the TB Hamiltonian constructed by the linear combination of
the symmetry-adapted multipole basis (SAMB) is the most suitable prescription since the symmetry
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of the system is considered rigorously. Henceforth, we refer to the TB Hamiltonian based on the
SAMB as the symmetry-adapted TB model. In the symmetry-adapted TB model, the weight of each
SAMB corresponds to the model parameter. Thus, the reliability of the calculations using this model
strongly depends on the choice of the weight of each SAMB. In particular, to construct the DFT-based
symmetry-adapted TB model, we must optimize the weights to reproduce the DFT band dispersion.
However, the optimization process is not easy and has yet to be developed. One of the difficulties is
that the accuracy of the optimization strongly depends on the initial guess of the model parameters.
This problem is pronounced when there are more than a few hundred model parameters owing to
many sublattices and orbital degrees of freedom. By these circumstances, developing a method to
overcome these difficulties is highly desirable.

In the last decades, machine learning (ML) techniques and deep neural networks (DNN) [153] have
developed rapidly with the improvement of computational resources. The ML techniques have been
utilized in various fields of science [154], such as chemistry [155–160], materials science [161–164], and
condensed matter physics, such as strongly correlated electron systems [165], identification of phase
transitions [166], strain engineering [167], exploration of topological band structures [168], prediction
of the electrical conductivity [169], thermal transport [170], and the band gap of materials [171–173],
and so on. Notably, the ML techniques to construct DFT-based TB Hamiltonian [174, 175] and to
systematically predict electronic band structures have been developed [168, 176, 177]. Although the
TB models generated by Z. Wang et al. [175] reproduce the DFT band dispersions with high accuracy,
the symmetry of the system is not considered because each matrix element of the Hamiltonian plays
the role of a neuron in the neural networks (NN) without any constraint by symmetry. On the other
hand, since the method proposed by M. Nakhaee et al. [175] adopted the Slater-Koster approach,
the resultant model satisfies the symmetry of the system. Nevertheless, as mentioned above, some
essential parameters would be lost in this Slater-Koster approach.

In the present study, we develop a systematic generation scheme of the DFT-based symmetry-
adapted TB model with the help of the ML techniques. The weights of the SAMB are optimized
by fitting the DFT band dispersion. To this end, we regard the symmetry-adapted TB model as a
fully-connected DNN that connects nonlinearly between every weight of the SAMB and every energy
eigenvalue obtained from the DFT calculation. It should be emphasized that since each SAMB is
fully symmetric, the symmetry of a given system is maintained during the optimization process. In
addition, the weight of each SAMB plays a role of the neuron, and the number of the model parameters
is equal to that of the independent SAMBs. Thus, these features overcome the disadvantages of the
methods proposed by M. Nakhaee et al. [174] and Z. Wang et al. [175]. Moreover, we have constructed
the symmetry-adapted multipole DNN (DNN-SAMB) system by inserting the hidden layers between
the SAMB and the DFT band dispersion layers. The DNN-SAMB shows high optimization accuracy
and less dependence on the initial guess for the model parameters. Additionally, from the optimization
results, we can unveil hidden characteristic multipole degrees of freedom in the system and evaluate
their contribution to the Hamiltonian and various physical quantities. Note that our method is
applicable to any crystallographic structure within 230 space group regardless of symmorphic or
nonsymmorphic groups in cooperation with the reliable DFT band dispersion data. Moreover, since
the SAMB can describe any electronic degrees of freedom, such as spin, orbital, and sublattice degrees
of freedom, and contains enough information to investigate the physical properties of the material of
interest, the DNN-SAMB could be useful to materials informatics.

The rest of this chapter is organized as follows. In Sec. 4.2, we briefly show the symmetry-adapted
TB model. In Sec. 4.3, we present the workflow of the DNN-SAMB and how to systematically
construct the DFT-based symmetry-adapted TB model. In Sec. 4.4, we show prime examples of the
method for graphene, SrVO3, and MoS2. We summarize the results in Sec. 4.5.
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4.2 Symmetry-Adapted Tight-Binding Model
Let us consider the general form of the TB Hamiltonian in the real space representation:

H =
∑

R

∑

ss′

∑

aa′

[H(R)]aa
′

ss′ c
†
asRca′s′0 (4.2.1)

c(†)asR denotes the annihilation (creation) operator of the electron characterized by the atomic orbital
|ϕasR〉 (See Eq. 2.2.2), where a(a′) denotes both the orbital and spin labels, R is a lattice vector, and
s(s′) is a position vector of the sublattice s(s′) in a unit cell. Note that H can describe any potentials
and hoppings, such as off-site SOC and mean-field potentials. In Ref. [175], since [H(R)]aa

′
ss′ is treated

as the model parameter, the optimized model without any symmetry restrictions does not satisfy
the symmetry of a system. Meanwhile, following the Slater-Koster approach, although [H(R)]aa

′
ss′

can be viewed as approximate symmetry-adapted model parameters given by Eq. (2.2.12), essential
parameters could be lost owing to the assumption of the axial symmetry along the bond direction.

On the other hand, as shown in Chap. 3, we introduced a complete orthonormal SAMB given by

Zj =
∑

αβ

Cj
αβX

(a)
α ⊗ Y (s/b)

β (4.2.2)

where X(a)
α and Y (s/b)

β are the atomic multipole basis and the site/bond-cluster multipole basis,
respectively. Since the Hamiltonian H is fully symmetric for all the symmetry operations, only the
SAMB characterized by the fully symmetric irreducible representation contributes to H. As a result,
the TB Hamiltonian can be expressed as the linear combination of the fully symmetric Zj as

H =
∑

j

zjZj (4.2.3)

where zj is the weight of each SAMB and is the model parameter. Since each Zj is fully symmetric, the
symmetry of a given system is precisely taken into account during the optimization process, and the
resultant optimized TB model is also fully symmetric. Furthermore, the number of model parameters
is equal to that of the SAMBs, in contrast to the Slater-Koster approach, in which some independent
parameters depend on each other due to additional axial symmetry along the bond direction.

In the momentum space representation, the TB Hamiltonian is expressed by

H =
∑

R

∑

ss′

∑

aa′

[H(k)]aa
′

ss′ c
†
askca′s′k (4.2.4)

[H(k)]aa
′

ss′ =
∑

R

[H(R)]aa
′

ss′ e
−ik·((R+s)−s′) (4.2.5)

Using the final matrix form of the complete orthonormal SAMB given by Eq. (3.5.25),

Zj(k) =
∑

αβ

Cj
αβX

(a)
α ⊗M (t)

β (k) (4.2.6)

H(k) can be expressed as

H (k) =
∑

j

zjZj(k) (4.2.7)

In the next section, we show how to optimize zj so as to reproduce the DFT band dispersion.
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4.3 DFT-Based Symmetry-Adapted TB Model
This section presents a systematic generation scheme of the DFT-based symmetry-adapted TB model
using the DNN-SAMB. In Sec. 4.3.1, we give an outline of the generation scheme. After that, we will
show the detailed description of workflow of the DNN-SAMB in Sec. 4.3.2.

4.3.1 Outline

Figure 4.1: Generation scheme of the DFT-based symmetry-adapted TB model based on the DNN-SAMB.

In this section, we briefly show an outline of the generation scheme summarized in Fig. 4.1. The
method consists of the following three steps:

(1) DFT Calculation

Prepare the DFT band dispersion data εDF = (εDF
1 , εDF

2 , . . . , εDF
Ntot

), where Ntot = Nk×Nn is the total
number of the eigenvalues, and Nk (Nn) is the number of k points (bands). When the bands are
entangled, one need to extract the bands of interest by implementing the disentanglement calculation
by using the Wannier90 software package [72–74] (See Chap. 2), for instance.

(2) Construct DNN-SAMB

Generate SAMB Z(k) = [Z1(k), Z2(k), . . . , ZNz(k)] from a minimum model information, such as
the space group, site/bond-clusters, electron spin and orbital degrees of freedom to be considered.
The TB Hamiltonian is constructed by the linear combination of Zj(k), H(k) =

∑Nz
j=1 zjZj(k), where

z = (z1, z2, . . . , zNz) is the set of model parameters. Then, construct the fully-connected DNN-SAMB
composed of the DFT band layer, hidden layer, SAMB layer, and TB band layers sequentially. The
DFT band layer consists of the energy eigenvalues obtained from the DFT calculations, εDF, and this
layer is connected to the hidden layer composed of the hidden neurons. Then, the last hidden layer
is connected to the SAMB layer that consists of the weight of each SAMB, z. In the TB band layer,
we calculate the TB band dispersion εTB(z) = (εTB

1 , εTB
2 , . . . , εTB

Ntot
).

(3) Parameter Optimization

Based on the back-propagation algorithm [153, 178], z and the additional parameters in the hidden
layers are iteratively updated until the desired accuracy of the optimization is achieved.
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4.3.2 Workflow of the DNN-SAMB

Figure 4.2: (a) Workflow of the DNN-SAMB that includes two hidden layers between the DFT band and
SAMB layers. The circles represent the neurons, and the solid black arrows denote the weights
that correspond to the strength of connections between neurons. u(1)

k (o(1)k ) and u(2)
l (o(2)l ) denote

the input (output) of the 1st and 2nd hidden layers, respectively. L1 and L2 are the number of
neurons in the 1st and 2nd hidden layers, respectively. (b) Schematic figure of a neural network
between the DFT band and a single neuron in the 1st hidden layers. An input of the 1st hidden
layer, u(1)

k , is given by the sum of the product of weights w(0)
ki and eigenvalues εDF

i plus the bias
b(0)k . Then, the corresponding output, o(1)k , is given by applying the activation function to u(1)

k ,
o(1)k = f(u(1)

k ).

In this section, we show a workflow of the DNN-SAMB summarized in steps (2) and (3) in Fig. 4.1.
It should be emphasized that the optimized z implicitly depend on the input εDF. We express these
nontrivial and nonlinear dependences by introducing the DNN-SAMB, a fully-connected DNN that
connects every εDF

i to the model parameter zj via the additional hidden layers. When the number of
the hidden layers is Nh, the number of neurons in the 1st, 2nd, . . ., Nhth hidden layers are fixed as
L1 = 2NhNz, L2 = 2Nh−1Nz, . . ., LNh = 21Nz, respectively. Figure 4.2(a) represents an example of
the workflow of DNN-SAMB with two hidden layers, Nh = 2. Every neuron depicted by the circles
is connected by the solid black arrows that denote the weights ŵ corresponding to the strength of
connections between neurons. As shown in Fig. 4.2(b), an output of the 1st hidden layer o(1)k is given
by

o(1)k = f
(
u(1)k

)
, u(1)k =

∑

i

w(0)
ki ε

DF
i + b(0)k (4.3.1)

where w(0)
ki represents the real weight between the ith eigenvalue εDF

i and the kth input u(1)k , in the
first hidden layer, while b(0)k denotes the real bias. Note that f represents the activation function,
and we adopt the hyperbolic tangent f(x) = tanh(x). Similarly, the output of the 2nd hidden layer
is given by

o(2)l = f
(
u(2)l

)
, u(2)l =

∑

k

w(1)
lk o(1)k + b(1)l (4.3.2)

The jth weight of the SAMB zj is obtained by

zj =
∑

l

w(2)
jl o

(2)
l + b(2)j (4.3.3)
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When there are Nh hidden layers, the input and output of each hidden layer and z are represented
by the matrix form as

o(1) = f
(
u(1)

)
, u(1) = ŵ(0)εDF + b(0)

o(2) = f
(
u(2)

)
, u(2) = ŵ(1)o(1) + b(1)

· · ·

o(Nh) = f
(
u(Nh)

)
, u(Nh) = ŵ(Nh−1)o(Nh−1) + b(Nh−1)

z = ŵ(Nh)o(Nh) + b(Nh)

(4.3.4)

As a result, we can express z as the nonlinear function of εDF. Using z, we can construct the TB
Hamiltonian as

H(k) = z ·Z(k) (4.3.5)

where z = (z1, z2, . . . , zNz) and Z(k) = (Z1(k), Z2(k), . . . , ZNz(k)). The TB band dispersion εTB

can be obtained by diagonalizing H(k).

As shown above, expressing the model parameters z as the nonlinear function of εDF, the opti-
mization parameters are regarded as the weights and biases between neurons in addition to z:

ŵ(0)(L1 ×Ntot), b(0)(L1)

ŵ(1)(L2 × L1), b(1)(L2)

· · ·

ŵ(Nh−1)(LNh × LNh−1), b(Nh−1)(LNh)

ŵ(Nh)(Nz × LNh), b(Nh)(Nz)

z(Nz)

(4.3.6)

In order to quantify the accuracy of the optimization, we introduce a loss function L(z), which is
defined by the dimensionless mean squared error (MSE) between the normalized energy eigenvalues
of the DFT calculation and our TB model:

L(z) =
1

2NkNn

∑

nk

(
εTB
nk (z)− εDF

nk

W

)2

=
1

2Ntot

(
εTB(z)− εDF

W

)2

(4.3.7)

By minimizing L(z), we can optimize the model parameters z.

The procedure to obtain the output, L(z), from the input εDF is the forward process. On the
other hand, to update the optimization parameters so as to minimize the loss function L(z), we
need to calculate the gradient of L(z) for all the optimization parameters using the back-propagation
algorithm [153, 178]. Following the back-propagation algorithm, we compute the gradient of L(z)

for each optimization parameter through a chain rule. Contrary to the above forward process, the
back-propagation computes the gradients from the output layer to the input layer sequentially. First,
the gradient of the loss function with respect to the model parameters z is given by

∇zL(z) =
1

NkNn

∑

nk

(
εTB
nk (z)− εDF

nk

W

)
∇zε

TB
nk (z) ,

1

NkNn

∑

nk

(
εTB
nk (z)− εDF

nk

W

)
〈ψnk|Z(k)|ψnk〉

(4.3.8)
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Figure 4.3: Back-propagation process of the derivative of L(z) with respect to w(1)
lk .

where the second equation is derived from the first-order perturbation theory [168,175,179]:

εTB
nk (z + δz) = εTB

nk (z) +∇zε
TB
nk (z) · δz +O(δz2) , εTB

nk (z) + 〈ψnk|Z(k)|ψnk〉 · δz +O(δz2) (4.3.9)

Then, to update all weights and biases, we back-propagate ∇zL(z) from the SAMB layer toward
the 1st hidden layer sequentially. For example, let us consider that there are only two hidden layers
as shown in Fig. 4.2. For simplicity, we here neglect the bias without loss of generality. Following the
chain rule, the derivative of L(z) with respect to w(2)

jl is given by

∂L

∂w(2)
jl

=
∂L

∂zj

∂zj

∂w(2)
jl

=

(
∂L

∂zj

)
o(2)l = δ(2)j o(2)l (4.3.10)

δ(2)j =
∂L

∂zj
(4.3.11)

Then, the derivative of L(z) with respect to w(1)
lk is given by

∂L

∂w(1)
lk

=
∑

j

∂L

∂zj

∂zj

∂o(2)l

∂o(2)l

∂u(2)l

∂u(2)l

∂w(1)
lk

=




∑

j

∂L

∂zj
w(2)
jl f

′(u(2)l )



 o(1)k = δ(1)l o(1)k (4.3.12)

δ(1)l =
∑

j

∂L

∂zj
w(2)
jl f

′(u(2)l ) =
∑

j

δ(2)j w(2)
jl f

′(u(2)l ) (4.3.13)

where f ′(x) = tanh′(x) = cosh−2(x). Lastly, the derivative of L(z) with respect to w(0)
ki is given by

∂L

∂w(0)
ki

=
∑

jl

∂L

∂zj

∂zj

∂o(2)l

∂o(2)l

∂u(2)l

∂u(2)l

∂o(1)k

∂o(1)k

∂u(1)k

∂u(1)k

∂w(0)
ki

=




∑

jl

∂L

∂zj
w(2)
jl f

′(u(2)l )w(1)
lk f ′(u(1)k )



 εDF
i = δ(0)k εDF

i

(4.3.14)

δ(0)k =
∑

l




∑

j

∂L

∂zj
w(2)
jl f

′(u(2)l )



w(1)
lk f ′(u(1)k ) =

∑

l

δ(1)l w(1)
lk f ′(u(1)k ) (4.3.15)

As a result, the derivative of L(z) can be calculated by using the values of inputs u, outputs o, weights
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w, and ∂L/∂zj , which can be obtained analytically without using numerical derivatives. Furthermore,
these expressions indicate that δ(m)

j can be calculated iteratively by using δ(m+1)
j , which has already

been obtained. These are the most substantial advantages of using the back-propagation algorithm.
Using the derivatives of L(z), each weight is updated based on the gradient descent algorithm as

follows:

ŵ(n+1) = ŵ(n) − α
∂L

∂ŵ(n)
(4.3.16)

where α is a learning rate, and ŵ(n) denotes the weights at the nth iteration of training. Note that
in the practical calculation, we have used the Adam optimizer [180] to update all the optimization
parameters.

As shown above, the back-propagation process is continuously optimizing all the optimization pa-
rameters until the numerical threshold for the loss function or the maximum number of training steps
is reached. The hyperparameters, such as the numerical threshold, the maximum number of training
steps, the number of hidden layers, and the learning rate, should be given in advance. The optimized
model parameters z are obtained by substituting the optimized weights and biases to Eq. (4.3.4). Us-
ing the optimized z, we can construct the optimized symmetry-adapted TB Hamiltonian and obtain
TB band dispersion that reproduces the DFT band dispersion. Note that if the above minimization
is failed, one needs to modify the hyperparameters mentioned above or the choices of the orbitals
and site/bond-clusters to be reconsidered. In addition, since the weights located upstream of the
DNN-SAMB are not significantly changed, a moderate number of hidden layers should be adjusted.
This is caused by the chain rule shown in Eq. (4.3.14), where the derivative of the activation function
is always less than 1, f ′(x) = cosh−2(x) ≤ 1.
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4.4 Usage Examples
In this section, we show some examples of using the above generation scheme based on DNN-SAMB
for some typical materials: graphene in Sec. 4.4.1, SrVO3 in Sec. 4.4.2, and MoS2 in Sec. 4.4.3.
We construct the DFT-based symmetry-adapted TB Hamiltonians of these materials based on the
generation scheme. We will show the validity and advantages of our method in the following sections.

For the DFT calculations, we have used QUANTUM ESPRESSO open-source software pack-
age [66]. We have optimized the model parameters by using the TensorFlow framework [181], Keras
library [182], and Adam optimizer [180].

4.4.1 Graphene
First, we demonstrate our method by taking a simple example, two-dimensional graphene. Following
the three steps summarized in Sec. 4.3.1, we construct the DFT-based symmetry-adapted TB model
for graphene.

DFT Calculation for Graphene

Figure 4.4: (a) Crystal structure and (b) Brillouin zone of the two-dimensional graphene. (c) Band dispersion
obtained from the DFT calculation (solid grey lines) and the Wannier TB model (dashed red lines).
The Fermi energy is taken as the origin.

Graphene has a honeycomb structure involving C1 = (1/3, 2/3, 0) and C2 = (2/3, 1/3, 0) sublat-
tices in a unit cell, as shown in Fig. 4.4(a), The space group of graphene is P6/mmm (#191, D1

6h).
We set the lattice constant to be a = 2.435 Å and the length of the vacuum layer along the c axis to
be 4×a. We have used the Perdew-Zunger (PZ-LDA) correlation functional [183] (See Appendix A.5
in detail) and the ultrasoft pseudopotential. For the self-consistent field (SCF) calculation to solve
the KS equation, we have used (N1, N2, N3) = (12, 12, 1) k grid, while the kinetic energy cutoff of the
Kohn-Sham wave functions is set to be 30 Ry, and the convergence threshold is set to be 1×10−10

Ry.
As shown in Fig. 4.4(c), the bands near the Fermi level are entangled. Therefore, we have used

the Wannier90 open-source software package [72–74] to extract the two bands near the Fermi level.
We choose the pz orbital for each C atom as the initial guess function. The outer energy window is set
to be [−30 eV, 12 eV], while the inner energy window is set to be [−3.0 eV, 2.6 eV]. Then, we obtain
the pz-like two WFs as shown in Fig. 2.3(a), and the corresponding band dispersion is depicted by
the solid red lines in Fig. 4.4(c). We optimize the symmetry-adapted TB model to reproduce these
two DFT-based Wannier band dispersions.
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Symmetry-Adapted TB Hamiltonian for Graphene

To construct the symmetry-adapted TB Hamiltonian for graphene, we first generate the SAMB. We
consider pz ∝ z orbital for each C atom. The Hilbert space consists of the two basis functions,
[|pz;C1〉 , |pz;C2〉]. Then, we construct the spinless TB Hamiltonian in a 2 × 2 matrix by using the
SAMB Zj as shown in Sec. 4.2. First, we prepare the atomic and site/bond-cluster multipole basis
independently. Afterward, we construct the SAMB by combining them.

Atomic multipole basis
Within the spinless pz orbital, there is only one active atomic E monopole,

Q(a)
0 = (1) (4.4.1)

The irreducible representation of Q(a)
0 is A1g.

Site/bond-cluster multipole basis
To describe the crystal field Hamiltonian and the hopping Hamiltonian, we introduce the site-cluster
E multipole basis and bond-cluster E/MT multipole basis defined in the (C1, C2) sublattice space.
We restrict our demonstration up to the nearest-neighbor bond-cluster. There are two independent
site-cluster multipole basis:

Q(s)
0 =

1√
2
(1, 1), Q(s)

3a =
1√
2
(1,−1) (4.4.2)

While there are six independent bond-cluster multipole basis:

Q(b)
0 =

1√
6
(1, 1, 1; 1, 1, 1)

Q(b)
v =

1

2
√
3
(1, 1,−2; 1, 1,−2)

Q(b)
xy =

1

2
(−1, 1, 0;−1, 1, 0)

T (b)
x =

1

2
(i, i, 0;−i,−i, 0)

T (b)
y =

1

2
√
3
(i,−i, 2i;−i, i,−2i)

T (b)
3a =

1√
6
(i,−i,−i;−i, i, i)

(4.4.3)

The elements correspond to the following three bond vectors of the form b@c:

b1@c1 = [2/3, 1/3, 0]@[0, 1/2, 0]

b2@c2 = [1/3,−1/3, 0]@[1/2, 1/2, 0]

b3@c3 = [1/3, 2/3, 0]@[1/2, 0, 0]

(4.4.4)
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Figure 4.5: Site/bond-cluster multipoles for graphene and their irreducible representations. The red and blue
circles in the “site-cluster” column represent the weight and sign of the elements. The red and
blue lines in the “bond-cluster (Re)” column represent the weight and sign of the real part of the
elements. Similarly, the arrows in the “bond-cluster (Im)” column represent the weight and sign of
the imaginary part of the elements.

The schematic figures of the site/bond-cluster multipole basis are shown in Fig. 4.5.
The final matrix forms of the site/bond-cluster multipoles are given by

Q(t,1)
0 =

1√
2

(
1 0

0 1

)
, Q(t)

3a =
1√
2

(
1 0

0 −1

)
, Q(t,2)

0 =
1√
2

(
0 1

1 0

)
, T (t)

3a =
1√
2

(
0 −i

i 0

)

(4.4.5)

where Q(t,1)
0 and Q(t,2)

0 are the diagonal and off-diagonal basis, respectively.
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Momentum multipole basis
To describe the real and imaginary parts of the hopping Hamiltonian, we introduce the momentum
E and MT multipole basis by using Eqs. (3.5.18) and (3.5.19) as

Q0(k) =

√
6

3

[
2 cos

(
kxa

2

)
cos

(√
3kya

6

)
+ cos

(√
3kya

3

)]
(4.4.6)

Qv(k) =
2
√
3

3

[
cos

(
kxa

2

)
cos

(√
3kya

6

)
− cos

(√
3kya

3

)]
(4.4.7)

Qxy(k) = 2 sin

(
kxa

2

)
sin

(√
3kya

6

)
(4.4.8)

Tx(k) = 2 sin

(
kxa

2

)
cos

(√
3kya

6

)
(4.4.9)

Ty(k) =
2
√
3

3

[
sin

(√
3kya

6

)
cos

(
kxa

2

)
+ sin

(√
3kya

3

)]
(4.4.10)

T3a(k) =

√
6

3

[
2 sin

(√
3kya

6

)
cos

(
kxa

2

)
− sin

(√
3kya

3

)]
(4.4.11)

SAMB and symmetry-adapted TB Hamiltonian for graphene

Using Eqs. (4.4.1), (4.4.2), and (4.4.3), the SAMB is expressed by the direct product of the atomic
multipole basis and the site/bond-cluster multipole basis. The only SAMB belonging to A1g identity
irreducible representation of D6h contribute to the Hamiltonian. Therefore, considering the irreducible
decompositions,

A1g/u ⊗A1g/u = B1g/u ⊗ B1g/u = A2g/u ⊗A2g/u = B2g/u ⊗ B2g/u = A1g

E1g/u ⊗ E1g/u = E2g/u ⊗ E2g/u = A1g ⊕A2g ⊕ E2g

(4.4.12)

we obtain the fully symmetric SAMB as follows:

Q(as)
0 = Q(a)

0 ⊗Q(s)
0 (4.4.13)

Q(ab)
0 = Q(a)

0 ⊗Q(b)
0 (4.4.14)

The final matrix form of them are explicitly given by

Q(as)
0 = Q(a)

0 ⊗Q(t,1)
0 =

1√
2

(
1 0

0 1

)
(4.4.15)

Q(ab)
0 (k) =

1√
2
Q(a)

0 ⊗
(
Q(t,2)

0 Q0(k) + T (t)
3a T3a(k)

)
=

1

2

[(
0 1

1 0

)
Q0(k) +

(
0 −i

i 0

)
T3a(k)

]

(4.4.16)

Using these SAMB, the symmetry-adapted TB hamiltonian can be expressed as

H(k) = z1Q
(as)
0 + z2Q

(ab)
0 (k) (4.4.17)

where z1 and z2 are the weights for each SAMB. Note that Q(as)
0 corresponds to the onsite potential
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Figure 4.6: Schematic figure of the multipole decomposition of the nearest neighbor hopping Hamiltonian of
graphene. The Hamiltonian has hidden E monopole and MT octupole degrees of freedom.

causing the energy shift, while Q(ab)
0 (k) corresponds to the nearest-neighbor hopping. By decomposing

the TB Hamiltonian by means of the multipole basis, we found the E monopole and MT octupole
degrees of freedom, as shown in Fig. 4.6.

Let us focus on the electronic states near the Fermi level around the ±K point,

±kK = ±(1/3, 1/3, 0) (4.4.18)

The expansions of Q0(k) and T3a(k) around the ±K point are given by

Q0(±kK + k) ∝ ∓
√
2

4

(
kx +

√
3ky
)
a+O(k2) (4.4.19)

T3a(±kK + k) ∝ −
√
2

4

(√
3kx + ky

)
a+O(k2) (4.4.20)

Neglecting the energy shift term, z1 → 0, the hopping Hamiltonian around the ±K point is given by

H(±kK + k) , z2a

√
2

4

(
0 c(kx ± iky)

c∗(kx ∓ iky) 0

)
, c =

1

2
(∓1 + i

√
3) (4.4.21)

where c is the phase factor which can be excluded. Then, the band dispersion around the ±K point
is given by

ε±,kK+k = ±
√
2

4
a|z2||k| (4.4.22)
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Thus, the gradient of the linear band dispersion at the ±K point is characterized by the weight z2 of
Q(ab)

0 (k). Notably, its explicit value can be evaluated by using our method as shown in the following
section.

In the next section, we consider up to 6th neighbor hoppings. The total Hamiltonian in the
momentum space representation is given by

H(k) = z1Q
(as)
0 +

6∑

n=1

zi+1Q
(ab,n)
0 (k) (4.4.23)

where Q(ab,n)
0 (k) corresponds to the nth neighbor hopping and their explicit expressions are given in

Appendix D.1. There are 7 independent weights in total.
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Parameter Optimization

Table 4.1: Parameters and hyperparameters used for the optimization process.

high symmetry lines Γ−K−M−Γ
number of k points Nk = 151
number of bands Nn = 2
total number of the eigenvalues Ntot = Nk ×Nn = 302

maximum number of neighbor bonds N (b)
max = 1-6

number of hidden layers Nh = 0-6
maximum number of iterations Niter = 250
learning rate α = 0.1

Table 4.2: N (b)
max dependence of the number of neurons and the optimization parameters in the DNN-SAMB

with Nh = 3.

Layer N (b)
max = 1 2 3 4 5 6

neurons # params #
DFT band 302 302 302 302 302 302
1st hidden 16 4848 24 7272 32 9696 40 12120 48 14736 56 16968
2nd hidden 8 136 12 300 16 528 20 820 24 1176 28 1596
3rd hidden 4 36 6 78 8 136 10 210 12 300 14 406

SAMB 2 10 3 21 4 36 5 55 6 78 7 105
TB band 302 302 302 302 302 302
total # 634 5030 649 7671 664 10396 679 13205 694 16290 709 19075

In this section, we show the results of model parameter optimization of the TB model for graphene
to demonstrate the validity of our generation scheme using the DNN-SAMB,

The parameters and hyperparameters used for the optimization process are summarized in Ta-
ble 4.1. We choose the high symmetry lines Γ−K−M−Γ. We use bands at 50 k points in each line,
then the number of k points is Nk = 151 and the number of the bands is Nn = 2. Thus, the total
number of the eigenvalues is Ntot = Nk×Nn = 302. For comparison, we change the maximum number
of neighbor bonds from nearest to 6th neighbor bonds, N (b)

max =1-6, and we also change the number
of hidden layers from 0 to 6, Nh = 0-6. When Nh = 0, the DFT band layer is directly connected to
the SAMB layer. The maximum number of iterations is fixed as Niter = 250 that is sufficient to reach
convergence. The learning rate is fixed as α = 0.1.

Table 4.2 shows the N (b)
max dependence of the number of neurons and the optimization parameters

in the DNN-SAMB with Nh = 3. We also perform the parameter optimization using the conventional
linear regression (LR) method without using the DNN-SAMB. Note that the total number of the
optimization parameters for the LR method corresponds to the number of the SAMB. Although the
total number of optimization parameters increases drastically by using the DNN-SAMB, the DNN-
SAMB method is superior to the conventional LR method in terms of efficiency and less dependence
on initial guess as shown below.

To investigate the dependence of the initial estimates of the parameters in the results of opti-
mization, we have performed 50 optimization calculations with different random initial parameters
for each pair of (N (b)

max, Nh).
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Figure 4.7: The comparisons of the band dispersion between the Wannier TB model (solid grey lines) and our
TB models (dashed red lines) obtained using the DNN-SAMB with Nh = 3. (a)-(f) N (b)

max =1-6.
The Fermi energy is taken as the origin.

Table 4.3: The minimum, maximum, and average loss function, Lmin, Lmax, and Lavg in 50 optimization
calculations with different initial guess using the LR method and DNN-SAMB with Nh = 3.

N (b)
max Lmin Lmax Lavg

LR DNN-SAMB LR DNN-SAMB LR DNN-SAMB
1 2.1× 10−2 2.1× 10−2 2.3× 10−2 2.1× 10−2 2.1× 10−2 2.1× 10−2

2 6.4× 10−4 6.4× 10−4 1.1× 10−3 6.4× 10−4 6.6× 10−4 6.4× 10−4

3 9.5× 10−5 9.5× 10−5 1.2× 10−2 2.1× 10−3 1.5× 10−3 3.5× 10−4

4 9.2× 10−5 9.2× 10−5 3.5× 10−2 1.1× 10−2 6.7× 10−3 4.7× 10−4

5 1.7× 10−5 1.7× 10−5 3.8× 10−2 3.3× 10−4 9.7× 10−3 1.3× 10−4

6 7.7× 10−6 7.7× 10−6 9.3× 10−2 3.2× 10−4 1.5× 10−2 1.4× 10−4

Figure 4.7 shows the results of optimization using the DNN-SAMB with Nh = 3. The quality of
the optimization gradually improves as N (b)

max increases. In particular, when N (b)
max ≥ 5, the optimized

TB model reproduces the DFT band dispersions with high accuracy. The results of optimization
based on the LR method is shown in Appendix D.2.

Table 4.3 summarizes the N (b)
max dependence of the minimum, maximum, and average loss function,

Lmin, Lmax, and Lavg, in 50 optimization calculations with different initial guess using the LR method
and DNN-SAMB with Nh = 3. Remarkably, by taking up to 6th neighbor hoppings, we have achieved
an accuracy less than 10−5 of the MSE between the normalized energy eigenvalues of our TB model
and the Wannier TB model. Moreover, as shown in Table 4.3, the LR method and our method using
DNN-SAMB are almost identical for Lmin, whereas Lmax and Lavg of our method are always smaller
than that of the LR method. These results indicate that our method based on the DNN-SAMB is
more efficient than the LR method and shows less dependence on the initial guess of the optimization
parameters.
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Figure 4.8: Convergence behavior of the loss function for the LR method (grey) and the DNN-SAMB with
Nh = 0 (red), 1 (blue), 2 (green), 3 (orange), 4 (purple), 5 (turquoise), and 6 (pink), and N (b)

max = 6.

Table 4.4: The optimized model parameters zj in eV units obtained by using DNN-SAMB with Nh = 3.

N (b)
max 1 2 3 4 5 6
z1 0.029 -0.076 -0.076 -0.076 -0.190 -0.160
z2 7.448 7.448 7.244 -7.273 7.273 -7.273
z3 0.882 0.882 0.882 0.851 0.874
z4 0.680 -0.698 0.698 -0.698
z5 0.065 -0.065 0.065
z6 0.212 0.202
z7 -0.073

Next, we show the convergence behavior of the loss function for the LR method and our method
using the DNN-SAMB with N (b)

max = 6 in Fig. 4.8. The results show that using DNN-SAMB leads to
the rapid convergence of the loss function. The loss function converges more rapidly as Nh increases.
On the other hand, the LR method shows relatively slow convergence behavior. Thus, our method
with DNN-SAMB can reach convergence faster than the usual LR method.

We summarize the explicit values of the optimized model parameters in Table 4.4. As shown
in Eqs. (4.4.17) and (4.4.23), z1 and zj (2 ≤ j ≤ 7) correspond to the energy shift term and the
jth neighbor hopping, respectively. Remarkably, the value of the hopping terms does not change
significantly as N (b)

max increases, indicating our method works correctly. Furthermore, we find that the
absolute value of z2, which characterizes the linear band dispersion around the ±K point as shown
in Eq. (4.4.22), converges to |z2| = 7.273. Note that the signs of z2, z4, and z5 are not determined
uniquely because they correspond to the hoppings between C1 and C2 atoms. The two different
optimized models with opposite signs of these weights are interconverted by redefining the phase of
|C2〉 as |C2〉 → eiπ |C2〉.
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Figure 4.9: Optimized TB model obtained using the DNN-SAMB with Nh = 3 and N (b)
max = 6. The comparisons

of the (a) band dispersion and density of states (DOS), (b) isoenergy surface (µ = −1.5 [eV]), and
the bond length dependence of the absolute maximum value of the hopping parameters (2 ≤ j ≤ 7)
in eV units between the Wannier TB model (solid grey lines) and our TB model (dashed red lines).
The Fermi energy is taken as the origin.

Figure 4.9 summarizes the optimized TB model obtained using the DNN-SAMB with Nh = 3

and N (b)
max = 6. As shown in Fig. 4.9(a) and (b), our TB model reproduces the band dispersion, the

density of states (DOS), and the isoenergy surface obtained by the Wannier TB model. Moreover,
as shown in Fig. 4.9(c), the magnitude of the hopping parameters of our TB model rapidly decreases
for further neighbor hoppings, and the size of the model becomes compact. On the other hand, the
Wannier TB model includes many long-range hopping parameters with negligible values.

As discussed above, by using the DNN-SAMB, we can efficiently construct the symmetry-adapted
TB model for graphene that reproduces the calculation results obtained by the DFT-based Wannier
model, such as the band dispersion, DOS, and Fermi surface, with high accuracy. As compared with
the conventional LR method, our method based on the DNN-SAMB is superior concerning both the
efficiency and less dependence on the initial guess of the optimization parameters. Moreover, our
TB model contains the minimum number of model parameters, making it more compact than the
Wannier TB model.
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4.4.2 SrVO3

Next, we show the results of using our method for bulk crystalline SrVO3 that is a typical material and
is often chosen as the benchmark for developing the methodology associated with DFT calculation.

DFT Calculation for SrVO3

Figure 4.10: (a) Crystal structure and (b) Brillouin zone of bulk crystalline SrVO3. (c) Band dispersion
obtained from the DFT calculation, where the red solid lines represent the t2g orbitals of V atom.
The Fermi energy is taken as the origin.

The bulk crystalline SrVO3 has the cubic structure including Sr, V, and O sublattices in a unit
cell as shown in Fig. 4.10(a). The space group of SrVO3 is Pm3̄m (#221, O1

h). We set the lattice
constant to be a = 3.8409 Å. For the DFT calculation, we use the PBEsol exchange-correlation
functional [184] (See Appendix A.5 in detail) and the PAW pseudopotential. For the SCF calculation,
we use (N1, N2, N3) = (6, 6, 6) k grid, and the kinetic energy cutoff of the Kohn-Sham wave functions
is set to be 100 Ry, and the convergence threshold for the SCF calculation is set to be 1×10−10 Ry.

As shown in Fig. 4.10(c), the bands near the Fermi level are isolated. As a result, we can directly fit
our TB model to these bands obtained from the DFT calculation without using the Wannier90 [72–74].
The isolated three electronic states near the Fermi level are mainly composed of the t2g orbitals of
V atom as depicted by the solid red lines in Fig. 4.10(c). Therefore, we choose the (dyz, dzx, dxy)

orbitals of the V atom as basis functions for the TB model. Note that we only consider the V atom
and neglect the contributions of the Sr and O atoms.



72 CHAPTER 4. DFT-BASED SYMMETRY-ADAPTED TIGHT-BINDING MODEL

Symmetry-Adapted TB Hamiltonian for SrVO3

To construct the symmetry-adapted TB model for SrVO3, we first construct the SAMB. We use
(dyz, dzx, dxy) orbitals for each V atom. The Hilbert space consists of the three basis functions,
[|dyz;V 〉 , |dzx;V 〉 , |dxy;V 〉]. Similar to the TB model for graphene, we first prepare the atomic and
site/bond-cluster multipole basis independently, and then we construct the SAMB by combining
them.

Atomic multipole basis
Within the spinless (dyz, dzx, dxy) orbitals, there are 9 independent atomic multipole basis whose
explicit operator expressions and matrix forms are summarized in Table 4.5.

Table 4.5: Operator expressions and matrix forms of the atomic multipole basis defined in the spinless
dyz, dzx, dxy orbitals in the point group Oh. E, M, ET, and MT stand for electric, magnetic,
electric toroidal, and magnetic toroidal, respectively. The superscript (a) denotes the atomic mul-
tipole. l and σ/2 represent the dimensionless orbital and spin angular-momentum operators, and
σi (i = x, y, z) and σ0 are the Pauli matrices and 2× 2 identity matrix.

rank type irrep. symbol expression matrix element

0 E A+
1g Q(a)

0 1 1√
3




1 0 0

0 1 0

0 0 1





1 M T−
1g M (a)

x ,M (a)
y ,M (a)

z lx, ly, lz 1√
2




0 0 0

0 0 i

0 −i 0



 , 1√
2




0 0 −i

0 0 0

i 0 0



 , 1√
2




0 i 0

−i 0 0

0 0 0





2 E E+
g Q(a)

u , Q(a)
v 3z2 − r2, x2 − y2 1√

6




−1 0 0

0 −1 0

0 0 2



 , 1√
2




1 0 0

0 −1 0

0 0 0





T+
2g Q(a)

yz , Q
(a)
zx , Q

(a)
xy yz, zx, xy 1√

2




0 0 0

0 0 1

0 1 0



 , 1√
2




0 0 1

0 0 0

1 0 0



 , 1√
2




0 1 0

1 0 0

0 0 0





Site/bond-cluster multipole basis
To describe the crystal field Hamiltonian and the hopping Hamiltonian, we introduce the site-cluster
E multipole basis and bond-cluster E/MT multipole basis. We restrict our demonstration up to
the nearest-neighbor bond-cluster. Since the size of the cluster is 1, there is only one site-cluster E
monopole basis:

Q(s)
0 = (1) (4.4.24)

The final matrix form of Q(s)
0 is also given by

Q(t)
0 = (1) (4.4.25)
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Figure 4.11: Schematic figures of the site/bond-cluster multipoles for SrVO3 and their irreducible representa-
tions. The red and blue circles in the “site-cluster” column represent the weight and sign of the
elements. The red and blue lines in the “bond-cluster (Re)” column represent the weight and sign
of the real part of the elements. Similarly, the arrows in the “bond-cluster (Im)” column represent
the weight and sign of the imaginary part of the elements.

There are six independent bond-cluster multipole basis:

Q(b)
0 =

1√
6
(1, 1, 1; 1, 1, 1)

Q(b)
u =

1

2
√
3
(−2, 1, 1; 1, 1, 1)

Q(b)
v =

1

2
(0,−1, 1; 0,−1, 1)

T (b)
x =

1√
2
(0, i, 0; 0,−i, 0)

T (b)
y =

1√
2
(0, 0, i; 0, 0,−i)

T (b)
z =

1√
2
(i, 0, 0;−i, 0, 0)

(4.4.26)

The elements correspond to the bond vectors described by b@c:

b1@c1 = [0, 0, 1]@[0, 0, 1/2]

b2@c2 = [1, 0, 0]@[1/2, 0, 0]

b3@c3 = [0, 1, 0]@[0, 1/2, 0]

(4.4.27)

We schematically depict the site/bond-cluster multipole basis as shown in Fig. 4.11.



74 CHAPTER 4. DFT-BASED SYMMETRY-ADAPTED TIGHT-BINDING MODEL

Momentum multipole basis
To describe the real and imaginary parts of the hopping Hamiltonian, we introduce the momentum
E/MT multipole basis by using Eqs. (3.5.18) and (3.5.19) as

Q0(k) =

√
6

3
[cos kxa+ cos kya+ cos kza] (4.4.28)

Qu(k) =

√
3

3
[cos kxa+ cos kya− 2 cos kza] (4.4.29)

Qv(k) = − cos kxa+ cos kya (4.4.30)
Tx(k) =

√
2 sin (kxa) (4.4.31)

Ty(k) =
√
2 sin (kya) (4.4.32)

Tz(k) =
√
2 sin (kza) (4.4.33)

SAMB and symmetry-adapted TB Hamiltonian for SrVO3

Using the atomic multipole basis given by Table 4.5 and the site/bond-cluster multipole basis given
by Eqs. (4.4.24) and (4.4.26), the SAMB is defined by the direct product of them. Note that the
only SAMB belonging to A1g identity irreducible representation of Oh contribute to the Hamiltonian.
Considering the irreducible decompositions,

A1g/u ⊗A1g/u = A2g/u ⊗A2g/u = A1g

Eg/u ⊗ Eg/u = A1g ⊕A2g ⊕ Eg

T1g/u ⊗ T1g/u = T2g/u ⊗ T2g/u = A1g ⊕ Eg ⊕ T1g ⊕ T2g

(4.4.34)

we obtain the fully symmetric SAMB as follows:

Q(as)
0 = Q(a)

0 ⊗Q(s)
0 (4.4.35)

Q(ab)
0,1 = Q(a)

0 ⊗Q(b)
0 (4.4.36)

Q(ab)
0,2 =

1√
2

(
Q(a)

u ⊗Q(b)
u +Q(a)

v ⊗Q(b)
v

)
(4.4.37)

where the subscripts “1” and “2” denote the multiplicity. The final matrix forms of them are explicitly
given by

Q(as)
0 = Q(a)

0 ⊗Q(t)
0 =

1√
3




1 0 0

0 1 0

0 0 1



 (4.4.38)

Q(ab)
0,1 (k) = Q(a)

0 ⊗Q0(k) =
1√
3




1 0 0

0 1 0

0 0 1



Q0(k) (4.4.39)

Q(ab)
0,2 (k) =

1√
2

(
Q(a)

u ⊗Qu(k) +Q(a)
v ⊗Qv(k)

)

=
1√
2




1√
6




−1 0 0

0 −1 0

0 0 2



Qu(k) +
1√
2




1 0 0

0 −1 0

0 0 0



Qv(k)



 (4.4.40)
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Using these SAMB, the symmetry-adapted TB hamiltonian is given by

H(k) = z1Q
(as)
0 + z2Q

(ab)
0,1 (k) + z3Q

(ab)
0,2 (k) (4.4.41)

where z1, z2, and z3 are the weights for each SAMB and act as the model parameters. Note that Q(as)
0

corresponds to the onsite potential causing the energy shift, while Q(ab)
0,1 (k) and Q(ab)

0,2 (k) correspond
to the nearest neighbor hoppings. Expressing the TB Hamiltonian by means of the multipole basis,
we find the E quadrupoles degrees of freedom as shown in Eq. (4.4.40).

In the next section, we consider up to 6th neighbor hoppings. The total Hamiltonian in the
momentum space representation is given by

H(k) =z1Q
(as)
0 + z2Q

(ab,1)
0,1 (k) + z3Q

(ab,1)
0,2 (k)

+ z4Q
(ab,2)
0,1 (k) + z5Q

(ab,2)
0,2 (k) + z6Q

(ab,2)
0,3 (k)

+ z7Q
(ab,3)
0,1 (k) + z8Q

(ab,3)
0,2 (k)

+ z9Q
(ab,4)
0,1 (k) + z10Q

(ab,4)
0,2 (k)

+ z11Q
(ab,5)
0,1 (k) + z12Q

(ab,5)
0,2 (k) + z13Q

(ab,5)
0,3 (k) + z14Q

(ab,5)
0,4 (k)

+ z15Q
(ab,6)
0,1 (k) + z16Q

(ab,6)
0,2 (k) + z17Q

(ab,6)
0,3 (k) + z18Q

(ab,6)
0,4 (k) (4.4.42)

where Q(ab,n)
0,m (k) denotes the nth neighbor hopping with the multiplicity m, and their explicit expres-

sions are given in Appendix E.1. There are 18 independent weights in total.
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Parameter Optimization

Table 4.6: Parameters and hyperparameters used for the optimization process.

high symmetry lines M−Γ−X−M−R−Γ
number of k points Nk = 251
number of bands Nn = 3
total number of the eigenvalues Ntot = Nk ×Nn = 753

maximum number of neighbor bonds N (b)
max = 1-6

number of hidden layers Nh = 0-6
maximum number of iterations Niter = 250
learning rate α = 0.01

Table 4.7: N (b)
max dependence of the number of neurons and the optimization parameters in the DNN-SAMB

with Nh = 4.

Layer N
(b)
max = 1 2 3 4 5 6

neurons # params #
DFT band 753 753 753 753 753 753
1st hidden 48 36192 96 72384 128 96512 160 120640 224 168896 288 217152
2nd hidden 24 1176 48 4656 64 8256 80 12880 112 25200 144 41616
3rd hidden 12 300 24 1176 32 2080 40 3240 56 6328 72 10440
4th hidden 6 78 12 300 16 528 20 820 28 1596 36 2628

SAMB 3 21 6 78 8 136 10 210 14 406 18 666
TB band 753 753 753 753 753 753
total # 1599 37767 1692 78594 1754 107512 1816 137790 1940 202426 2064 272502

In this section, we show the results of the parameter optimization. The parameters and hy-
perparameters used for the optimization process are summarized in Table 4.1. We choose the high
symmetry lines M−Γ−X−M−R−Γ. We use bands at 50 k points in each line, then the number of
k points is Nk = 251 and the number of bands is Nn = 3. The total number of the eigenvalues is
Ntot = Nk × Nn = 753. For comparison, we change the maximum number of neighbor bonds from
nearest to 6th neighbor bonds, N (b)

max =1-6, and we also change the number of hidden layers from
1 to 6, Nh =0-6. The maximum number of iterations is fixed as Niter = 250 that is sufficient to
reach convergence. The learning rate is fixed as α = 0.01. Table 4.7 shows the N (b)

max dependence
of the number of neurons and the optimization parameters in the DNN-SAMB with Nh = 4. When
N (b)

max = 6, the total number of the optimization parameters is about 270000.
Similar to the previous section 4.4.1, we implement 50 optimization calculations with different

random initial parameters for each pair of (N (b)
max, Nh) in order to investigate the dependence of

the initial guess of the parameters in the results of optimization. In addition, we also perform the
parameter optimization using the conventional LR method with Niter = 3000 and α = 0.01.
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Figure 4.12: The comparisons of the band dispersion between the DFT calculation (solid grey lines) and our
TB models (dashed red lines) obtained by using DNN-SAMB with Nh = 4. (a)-(f) N (b)

max =1-6.
The Fermi energy is taken as the origin.

Table 4.8: The minimum, maximum, and average loss function, Lmin, Lmax, and Lavg, in 50 optimization
calculations with different initial guess using the LR method and the DNN-SAMB method with
Nh = 4.

N (b)
max Lmin Lmax Lavg

LR DNN-SAMB LR DNN-SAMB LR DNN-SAMB
1 8.6× 10−3 8.6× 10−3 1.5× 10−2 1.5× 10−2 1.1× 10−3 1.0× 10−3

2 5.1× 10−4 5.1× 10−4 1.1× 10−2 1.1× 10−2 6.0× 10−3 2.4× 10−3

3 3.5× 10−4 3.5× 10−4 1.3× 10−2 1.1× 10−2 5.6× 10−3 2.6× 10−3

4 3.5× 10−4 3.5× 10−4 9.8× 10−2 9.7× 10−3 1.3× 10−2 1.9× 10−3

5 5.2× 10−4 7.2× 10−5 2.1× 10−1 8.5× 10−3 3.6× 10−2 4.6× 10−4

6 5.0× 10−4 5.3× 10−5 7.9× 10−1 9.1× 10−3 6.2× 10−2 8.9× 10−4

Figure 4.12 shows the results of parameter optimization using the DNN-SAMB with Nh = 4.
As N (b)

max increases, the quality of the optimization are increased gradually. In particular, when
N (b)

max ≥ 5, the obtained TB model reproduces the DFT band dispersions with high accuracy. The
results of optimization based on the LR method is shown in Appendix E.2.

Table 4.8 summarizes the N (b)
max dependence of the minimum, maximum, and average loss function,

Lmin, Lmax, and Lavg, in 50 optimization calculations with different initial guess using the LR method
and DNN-SAMB with Nh = 4. By taking more than 5th neighbors, we achieve an accuracy less than
10−4 of the MSE between the normalized energy eigenvalues of our TB model and the DFT calculation.
Moreover, Lmin, Lmax and Lavg of the DNN-SAMB method are always smaller than that of the LR
method, indicating that the DNN-SAMB method is more efficient than the LR method and shows
less dependence on the initial guess of the optimization parameters.

Next, we show the convergence behavior of the loss function for the DNN-SAMB method with
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Figure 4.13: Convergence behavior of the loss function for (a) the DNN-SAMB with Nh = 0 (red), 1 (blue), 2
(green), 3 (orange), 4 (purple), 5 (turquoise), and 6 (pink) and (b) the LR method (grey) with
N (b)

max = 5.

Table 4.9: The optimized model parameters zj in eV units obtained using DNN-SAMB with Nh = 4.

N (b)
max 1 2 3 4 5 6
z1 22.546 22.652 22.660 22.654 22.637 22.632
z2 -0.867 -0.841 -0.826 -0.826 -0.791 -0.791
z3 0.475 0.524 0.524 0.525 0.461 0.461
z4 -0.158 -0.160 -0.160 -0.157 -0.147
z5 0.268 0.268 0.269 0.265 0.274
z6 -0.053 -0.042 -0.042 -0.043 0.141
z7 -0.034 -0.034 -0.031 -0.030
z8 -0.032 -0.031 -0.031 -0.287
z9 0.006 0.0127 0.0156
z10 -0.009 0.010 0.003
z11 -0.033 -0.033
z12 0.068 0.067
z13 0.008 0.009
z14 -0.001 0.130
z15 -0.012
z16 -0.011
z17 -0.131
z18 -0.089
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Figure 4.14: The atomic orbital dependence of (a) the band dispersion and DOS, and (b) the Fermi surfaces at
µ = 0 [eV] on the kz = 0 plane of the optimized TB model with Nh = 4 and N (b)

max = 5. The red,
green, and blue lines represent the atomic orbitals dyz, dzx, and dxy, respectively. The MLWF
dependence of (c) the band dispersion and DOS, and (d) the Fermi surfaces at µ = 0 [eV] on the
kz = 0 plane of the Wannier TB model. The red, green, and blue lines represent the MLWFs that
have similar symmetry properties of the atomic d orbitals, d′yz, d′zx, and d′xy, respectively. The
d′xy orbital is shown in Fig. 2.2(b).

N (b)
max = 6 and the LR method in Fig. 4.13(a) and (b), respectively. As shown in Fig. 4.13(a), the

loss function for the DNN-SAMB method converges rapidly owing to the use of the DNN-SAMB. On
the other hand, as shown in Fig. 4.13(b), the LR method shows relatively slow convergence behavior.
Thus, the DNN-SAMB method can reach convergence faster than the usual LR method.

We summarize the explicit values of the optimized weights for each SAMB in Table 4.9 obtained
by using DNN-SAMB with Nh = 4. The optimized value of each hopping term does not change
significantly as N (b)

max increases, confirming that our method is working well.
Figures. 4.14 (a) and (b) represent the orbital dependence of the band dispersion, DOS, and

Fermi surfaces, which are calculated by our optimized TB model with Nh = 4 and N (b)
max = 5. While

Figs. 4.14 (c) and (d) show that obtained from the DFT-based Wannier TB model. Note that dyz,
dzx, and dxy in Figs. 4.14 (a) and (b) denote the atomic orbitals, whereas d′yz, d′zx, and d′xy in
Figs. 4.14 (c) and (d) represent the MLWFs having similar symmetry properties of the above three
atomic d orbitals. The results indicate that our TB model reproduces the band dispersion, DOS,
Fermi surfaces, and their orbital dependences obtained by the Wannier TB model with high accuracy.
It should be emphasized that the orbital basis functions used in our TB model is the pure atomic
orbitals. Therefore, we can construct the matrix form of various electronic multipole operators, which
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Figure 4.15: The comparison of the bond length dependence of the absolute maximum value of the hopping
parameters (2 ≤ j ≤ 18) in eV units between the Wannier TB model (solid grey lines) and our
TB model (dashed red lines) with Nh = 4 and N (b)

max = 5.

is in marked contrast to the Wannier TB model as mentioned in Sec. 2.1.
Moreover, as shown in Fig. 4.15, the magnitude of the hopping parameters of our TB model

decreases for further neighbor hoppings, and the number of the parameters is less than the Wannier
TB model. As a result, our TB model is more compact than the Wannier TB model.

As discussed above, by using the DNN-SAMB, we can efficiently construct the symmetry-adapted
TB model for SrVO3. Remarkably, although our TB model contains fewer model parameters than the
Wannier TB model, it retains high accuracy in reproducing the electronic structures, including orbital
dependences. Note that the proposed method refers only to the energy eigenvalues. Therefore, there
is no guarantee to reproduce the orbital dependence of the electronic states in the reference bands.
Nevertheless, our optimized TB Hamiltonian well reproduce the orbital dependence of the electronic
states as well. This success is ascribed to the use of the SAMB, which imposes strong constraint by
symmetry.
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4.4.3 MoS2

As a more general example, we present the results of applying the present method to monolayer MoS2

in this section.

DFT Calculation for Monolayer MoS2

Figure 4.16: Crystal structure of (a) bulk and (b) monolayer MoS2 where blue shaded area represents the unit
cell. (c) The Brillouin zone of the monolayer MoS2. (d) Band dispersion obtained from the DFT
calculation (solid grey lines) and the Wannier TB model (dashed red lines). The Fermi energy
is taken as the origin. (e), The Wannier orbitals dependence of the band dispersion. The red,
green, and blue points represent the contributions of the d′u, d′v + d′xy, and d′yz + d′zx orbitals of
Mo atom, while the orange points denote the contributions of the 3 p orbitals, p′x + p′y + p′z, of S
atoms. The size of the points represents the magnitude of contribution of each orbital.

The bulk MoS2 consists of two units, and each unit is composed of one Mo atom located at
the center of six S atoms at the corners of the triangular prism. The triangular prism constitutes
a building block of a MoS2 monolayer [185]. The bulk MoS2 has the inversion center between two
monolayers as shown in Fig. 4.16(a), whereas the monolayer MoS2 lacks the inversion symmetry as
shown in Fig. 4.16(b). The space group of monolayer MoS2 is P 6̄m2 (#187, D1

3h).
We set the lattice constant to be a = 3.1661 Å, and the length of the vacuum layer along the c

axis to be 4×a. The Mo atom is located at the origin Mo = (0, 0, 0), and the two S atoms are located
at S1 = (2/3, 1/3, z) and S2 = (2/3, 1/3,−z) with z = 0.12425. For the DFT calculation, we use the
PBE exchange-correlation functional [186] (See Appendix A.5 in detail) and the PAW pseudopotential.
The kinetic energy cutoff of the Kohn-Sham wave functions is 50 Ry, and the convergence threshold
for the SCF calculation is set to be 1×10−10 Ry. We use (N1, N2, N3) = (12, 12, 1) grid.

As shown in Fig. 4.16(d), since the bands near the Fermi level are entangled, we optimize our TB
model to reproduce the band dispersion obtained from the Wannier TB model represented by the
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Figure 4.17: The five Wannier orbitals of MoS2, d′u, d′v, d′xy, d′yz, and d′zx, which have similar symmetry
properties of the atomic d orbitals.

solid red lines. Figure 4.16 (e) represents the Wannier orbitals dependence of the band dispersion.
The five Wannier orbitals are depicted in Fig. 4.17.

The Mo five atomic d orbitals split into A′
1 (du), E′ (dv, dxy), and E′′ (dyz, dzx) orbitals owing to the

trigonal prismatic structure of S atoms. The xy mirror symmetry hybridizes the A′
1 and E′ orbitals,

giving rise to the direct band gap at the K point. The top valance band and two bottom conduction
bands are mainly composed of the A′

1 and E′ orbitals, whereas E′′ orbitals have less contribution
near the Fermi level. On the other hand, the S three p orbitals contribute to the six bottom valence
bands. We choose five atomic d orbitals (du, dv, dyz, dzx, dxy) for Mo atom and three atomic p orbitals
(px, py, pz) for two S atoms as the basis function of the TB model. Note that the SOC is neglected in
the following calculations.
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Symmetry-Adapted TB Hamiltonian for MoS2

We first construct the SAMB for MoS2. We consider five d orbitals (du, dv, dyz, dzx, dxy) for Mo atom
and three p orbitals (px, py, pz) for two S atoms, and the Hilbert space consisting of the eleven basis
functions:

(|du;Mo〉 , |dv;Mo〉 , |dyz;Mo〉 , |dzx;Mo〉 , |dxy;Mo〉 , |px; S1〉 , |py; S1〉 , |pz; S1〉 , |px; S2〉 , |py; S2〉 , |pz; S2〉)
(4.4.43)

Then, we construct the spinless TB Hamiltonian in an 11×11 matrix by using the SAMB Zj as shown
in Sec. 4.2. First, we prepare the atomic and site/bond-cluster multipole basis for each site/bond-
cluster independently, and then we construct the SAMB by combining them.

Atomic multipole basis
Within the spinless (px, py, pz, du, dv, dyz, dzx, dxy) orbitals, there are 64 independent atomic multipole
basis. The explicit operator expressions of these multipoles are summarized in Tables 4.10 and 4.12.

Table 4.10: Operator expressions of the even parity atomic multipoles defined in the spinless p and d non-hybrid
orbitals in the point group D3h. E, M, ET, and MT stand for electric, magnetic, electric toroidal,
and magnetic toroidal, respectively. The superscript (a) denotes the atomic multipole. l and σ/2
represent the dimensionless orbital and spin angular-momentum operators, and σi (i = x, y, z) and
σ0 are the Pauli matrices and 2× 2 identity matrix.

rank type irrep. symbol expression
0 E A′+

1 Q(a)
0 1

1 M A′−
2 M (a)

z lz

E′′− M (a)
x ,M (a)

y lx, ly

2 E A′+
1 Q(a)

u 3z2 − r2

E′+ Q(a)
v , Q(a)

xy x2 − y2, xy

E′′+ Q(a)
yz , Q

(a)
zx yz, zx

3 M A′−
2 M (a)

zα
1
4(3z

2 − r2)lz − 1
2z(xlx + yly)

A′′−
1 M (a)

3a
1
2(x

2 − y2)lx − xyly

A′′−
2 M (a)

3b xylx +
1
2(x

2 − y2)ly

E′− M (a)
zβ ,M (a)

xyz
1
4(x

2 − y2)lz +
1
2z(xlx − yly), yzlx + zxly + xylz

E′′+ M (a)
3u ,M (a)

3v
1
2(5z

2 − r2)lx + x(5zlz − r · l), 12(5z
2 − r2)ly + y(5zlz − r · l)

4 E A′+
1 Q(a)

40
1
8

(
35z4 − 30z2r2 + 3r4

)

A′′+
1 Q(a)

4a

√
70
4 zx

(
x2 − 3y2

)

A′′+
2 Q(a)

4b

√
70
4 yz

(
3x2 − y2

)

E′′+ Q(a)
4uα, Q

(a)
4vα

√
10
4 zx

(
7z2 − 3r2

)
,
√
10
4 yz

(
7z2 − 3r2

)

E′+ Q(a)
4uβ1, Q

(a)
4vβ1

√
35
8

(
x4 − 6x2y2 + y4

)
,
√
35
2 xy

(
x2 − y2

)

E′+ Q(a)
4uβ2, Q

(a)
4vβ2

√
5
4

(
x2 − y2

) (
7z2 − r2

)
,−

√
5
2 xy

(
7z2 − r2

)
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Table 4.12: Operator expressions of the odd parity atomic multipoles defined in the (p, d) hybrid orbitals in the
point group D3h. E, M, ET, and MT stand for electric, magnetic, electric toroidal, and magnetic
toroidal, respectively. The superscript (a) denotes the atomic multipole. l and σ/2 represent the
dimensionless orbital and spin angular-momentum operators, and σi (i = x, y, z) and σ0 are the
Pauli matrices and 2× 2 identity matrix. tαl = 2(r × l)α/((l + 1)(l + 2)) and gαβl = 2/(l + 1)lαtβl
are the rank-l MT and ET multipole operator.

rank type irrep. symbol expression
1 E A′′+

2 Q(a)
z z

E′+ Q(a)
x , Q(a)

y x, y

1 MT A′′−
2 T (a)

z (r × l)z

E′− T (a)
x , T (a)

y (r × l)x, (r × l)y

2 M A′′−
1 M (a)

u 3zlz − r · l
E′′− M (a)

v ,M (a)
xy xlx − yly, xly + ylx

E′− M (a)
yz ,M (a)

zx ylz + zly, zlx + xlz

ET A′′+
1 G(a)

u 3gzz2 −
∑

α g
αα
2

E′′+ G(a)
v , G(a)

xy gxx2 − gyy2 , gxy2
E′+ G(a)

yz , G
(a)
zx gyz2 , gzx2

3 E A′′+
2 Q(a)

zα
1
2z
(
5z2 − 3r2

)

A′+
1 Q(a)

3a

√
10
4 y

(
3x2 − y2

)

A′+
2 Q(a)

3b

√
10
4 x

(
x2 − 3y2

)

E′′+ Q(a)
zβ , Q

(a)
xyz

√
15
2 z

(
x2 − y2

)
,
√
15xyz

E′+ Q(a)
3u , Q(a)

3v

√
6
4 x
(
5z2 − r2

)
,
√
6
4 y
(
5z2 − r2

)

MT A′′−
2 T (a)

zα
1
2(3z

2 − r2)tz3 − z(xtx3 + yty3)

A′−
1 T (a)

3a (x2 − y2)tx3 − 2xyty3
A′−

2 T (a)
3b 2xytx3 + (x2 − y2)ty3

E′′− T (a)
zβ , T (a)

xyz
1
2(x

2 − y2)tz3 + z(xtx3 − yty3), yzt
x
3 + zxty3 + xytz3

E′− T (a)
3u , T (a)

3v (5z2 − r2)tx3 + 2x(5ztz3 − r · t3), (5z2 − r2)ty3 + 2y(5ztz3 − r · t3)

Rank block (2,2)
Matrix expressions of the 25 atomic multipoles defined in the non-hybrid (du, dv, dyz, dzx, dxy) orbitals
are given by

Q(a)
0 =

√
5

5





1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




(4.4.44)

M (a)
z =

√
10

10





0 0 0 0 0

0 0 0 0 2i

0 0 0 i 0

0 0 −i 0 0

0 −2i 0 0 0




(4.4.45)
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M (a)
x =

√
10

10





0 0
√
3i 0 0

0 0 i 0 0

−
√
3i −i 0 0 0

0 0 0 0 −i

0 0 0 i 0




,M (a)

y =

√
10

10





0 0 0
√
3i 0

0 0 0 −i 0

0 0 0 0 −i

−
√
3i i 0 0 0

0 0 i 0 0




(4.4.46)

Q(a)
u =

√
14

14





2 0 0 0 0

0 −2 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 −2




(4.4.47)

Q(a)
v =

√
14

14





0 2 0 0 0

2 0 0 0 0

0 0
√
3 0 0

0 0 0 −
√
3 0

0 0 0 0 0




, Q(a)

xy =

√
14

14





0 0 0 0 −2

0 0 0 0 0

0 0 0 −
√
3 0

0 0 −
√
3 0 0

−2 0 0 0 0




(4.4.48)

Q(a)
yz =

√
14

14





0 0 1 0 0

0 0 −
√
3 0 0

1 −
√
3 0 0 0

0 0 0 0 −
√
3

0 0 0 −
√
3 0




, Q(a)

zx =

√
14

14





0 0 0 1 0

0 0 0
√
3 0

0 0 0 0 −
√
3

1
√
3 0 0 0

0 0 −
√
3 0 0




(4.4.49)

M (a)
zα =

√
10

10





0 0 0 0 0

0 0 0 0 −i

0 0 0 2i 0

0 0 −2i 0 0

0 i 0 0 0




(4.4.50)

M (a)
3a =

1

2





0 0 0 0 0

0 0 0 i 0

0 0 0 0 −i

0 −i 0 0 0

0 0 i 0 0




(4.4.51)

M (a)
3b =

1

2





0 0 0 0 0

0 0 −i 0 0

0 i 0 0 0

0 0 0 0 −i

0 0 0 i 0




(4.4.52)

M (a)
zβ =

√
2

2





0 0 0 0 −i

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

i 0 0 0 0




,M (a)

xyz =

√
2

2





0 i 0 0 0

−i 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




(4.4.53)

M (a)
3u =

√
14

14





0 0 1 0 0

0 0 −
√
3 0 0

1 −
√
3 0 0 0

0 0 0 0 −
√
3

0 0 0 −
√
3 0




,M (a)

3v =

√
14

14





0 0 0 1 0

0 0 0
√
3 0

0 0 0 0 −
√
3

1
√
3 0 0 0

0 0 −
√
3 0 0




(4.4.54)
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Q40 =

√
70

70





6 0 0 0 0

0 1 0 0 0

0 0 −4 0 0

0 0 0 −4 0

0 0 0 0 1




(4.4.55)

Q4a =
1

2





0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0




(4.4.56)

Q4b =
1

2





0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 −1

0 0 0 −1 0




(4.4.57)

Qα
4u =

√
7

14





0 0 0 2
√
3 0

0 0 0 −1 0

0 0 0 0 1

2
√
3 −1 0 0 0

0 0 1 0 0




, Qα

4v =

√
7

14





0 0 2
√
3 0 0

0 0 1 0 0

2
√
3 1 0 0 0

0 0 0 0 1

0 0 0 1 0




(4.4.58)

Qβ1
4u =

√
2

2





0 0 0 0 0

0 0 0 0 −1

0 0 0 0 0

0 0 0 0 0

0 −1 0 0 0




, Qβ1

4v =

√
2

2





0 0 0 0 0

0 −1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1




(4.4.59)

Qβ2
4u =

√
14

14





0 0 0 0
√
3

0 0 0 0 0

0 0 0 −2 0

0 0 −2 0 0√
3 0 0 0 0




, Qβ2

4v =

√
14

14





0 −
√
3 0 0 0

−
√
3 0 0 0 0

0 0 2 0 0

0 0 0 −2 0

0 0 0 0 0




(4.4.60)

Rank block (1,1)
Matrix expressions of the 9 atomic multipoles defined in the non-hybrid (px, py, pz) orbitals are given
by

Q(a)
0 =

√
3

3




1 0 0

0 1 0

0 0 1



 (4.4.61)

M (a)
x =

√
2

2




0 0 0

0 0 −i

0 i 0



 ,M (a)
y =

√
2

2




0 0 −i

0 0 0

i 0 0



 ,M (a)
z =

√
2

2




0 −i 0

i 0 0

0 0 0



 (4.4.62)

Q(a)
u =

√
6

6




−1 0 0

0 −1 0

0 0 2



 (4.4.63)
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Q(a)
yz =

√
2

2




0 0 0

0 0 1

0 1 0



 , Q(a)
zx =

√
2

2




0 0 1

0 0 0

1 0 0



 (4.4.64)

Q(a)
v =

√
2

2




−1 0 0

0 1 0

0 0 0



 , Q(a)
xy =

√
2

2




0 −1 0

−1 0 0

0 0 0



 (4.4.65)

Rank block (1,2)
Matrix expressions of the 30 atomic multipoles defined in the hybrid orbitals,

[(〈px| , 〈py| , 〈pz|), (|du〉 , |dv〉 , |dyz〉 , |dzx〉 , |dxy〉)] (4.4.66)

are given by

Q(a)
z =

√
10

10




0 0 0

√
3 0

0 0
√
3 0 0

2 0 0 0 0



 (4.4.67)

Q(a)
x =

√
10

10




−1

√
3 0 0 0

0 0 0 0 −
√
3

0 0 0
√
3 0



 , Q(a)
y =

√
10

10




0 0 0 0 −

√
3

−1 −
√
3 0 0 0

0 0
√
3 0 0



 (4.4.68)

T (a)
α = iQα (4.4.69)

M (a)
u =

√
2

2




0 0 −i 0 0

0 0 0 i 0

0 0 0 0 0



 (4.4.70)

M (a)
v =

√
6

6




0 0 −i 0 0

0 0 0 −
√
6i
6 0

0 0 0 0 −2i



 ,M (a)
xy =

√
6

6




0 0 0 −i 0

0 0 i 0 0

0 2i 0 0 0



 (4.4.71)

M (a)
yz =

√
6

6




−
√
3i −i 0 0 0

0 0 0 0 i

0 0 0 i 0



 ,M (a)
zx =

√
6

6




0 0 0 0 i

−
√
3i i 0 0 0

0 0 i 0 0



 (4.4.72)

G(a)
α = iM (a)

α (4.4.73)

Q(a)
zα =

√
5

5




0 0 0 −1 0

0 0 −1 0 0√
3 0 0 0 0



 (4.4.74)

Q(a)
3a =

√
2

2




0 0 0 0 −1

0 1 0 0 0

0 0 0 0 0



 (4.4.75)

Q(a)
3b =

√
2

2




0 1 0 0 0

0 0 0 0 1

0 0 0 0 0



 (4.4.76)

Q(a)
3u =

√
3

3




0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 1



 , Q(a)
3v =

√
3

3




0 0 0 −1 0

0 0 1 0 0

0 −1 0 0 0



 (4.4.77)
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Q(a)
zβ =

√
30

30




2
√
3 −1 0 0 0

0 0 0 0 1

0 0 0 4 0



 , Q(a)
xyz =

√
30

30




0 0 0 0 1

2
√
3 1 0 0 0

0 0 4 0 0



 (4.4.78)

T (a)
α = iQ(a)

α (4.4.79)

Site-cluster multipole basis
Next, we introduce the E site-cluster multipole basis for Mo and S site-clusters independently.

Since the size of the Mo site-cluster is 1, there is only one site-cluster E monopole basis:

Q(s,Mo)
0 = (1) (4.4.80)

On the other hand, the size of the S site-cluster (S1, S2) is 2, there are two site-cluster E multipole
basis:

Q(s,S)
0 =

1√
2
(1, 1), Q(s,S)

z =
1√
2
(1,−1) (4.4.81)

The final matrix form of the on/off-site cluster multipole basis are given in the site space (Mo,
S1, S2) as

Q(t,Mo)
0 =




1 0 0

0 0 0

0 0 0



 (4.4.82)

Q(t,S)
0 =

√
2

2




0 0 0

0 1 0

0 0 1



 , Q(t,S)
z =

√
2

2




0 0 0

0 1 0

0 0 −1



 (4.4.83)

Q(t,S−S)
0 =

√
2

2




0 0 0

0 0 1

0 1 0



 , T (t,S−S)
z =

√
2

2




0 0 0

0 0 i

0 −i 0



 (4.4.84)

Q(t,Mo−S)
0 =

1

2




0 1 1

1 0 0

1 0 0



 , Q(t,Mo−S)
z =

1

2




0 1 −1

1 0 0

−1 0 0



 (4.4.85)

T (t,Mo−S)
0 =

1

2




0 i i

i 0 0

i 0 0



 , T (t,Mo−S)
z =

1

2




0 i −i

i 0 0

−i 0 0



 (4.4.86)
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Bond-cluster multipole basis
To describe the hopping Hamiltonian, we introduce the E/MT bond-cluster multipole basis. We
restrict our demonstration up to the nearest-neighbor Mo−Mo, S−S, and Mo−S bond-clusters as
shown in Fig. 4.18(a), (b), and (c), respectively.

Figure 4.18: (a) Nearest-neighbor Mo−Mo, (b) S−S, and (c) Mo−S bond-clusters of monolayer MoS2.

Nearest-neighbor Mo−Mo bond-cluster
There are six independent bond-cluster multipole basis:

Q(b,Mo−Mo)
0 =

1√
6
(1, 1, 1; 1, 1, 1)

Q(b,Mo−Mo)
v =

1

2
√
3
(1, 1,−2; 1, 1,−2)

Q(b,Mo−Mo)
xy =

1

2
(1,−1, 0; 1,−1, 0)

T (b,Mo−Mo)
x =

1

2
(−i,−i, 0; i, i, 0)

T (b,Mo−Mo)
y =

1

2
√
3
(i,−i, 2i;−i, i,−2i)

T (b,Mo−Mo)
3b =

1√
6
(i,−i,−i;−i, i, i)

(4.4.87)

The elements correspond to the bond vectors described by b@c:

b1@c1 = [0, 1, 0]@[0, 1/2, 0]

b2@c2 = [1, 1, 0]@[1/2, 1/2, 0]

b3@c3 = [−1, 0, 0]@[1/2, 0, 0]

(4.4.88)
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Nearest-neighbor S−S bond-cluster
There are twelve independent bond-cluster multipole basis:

Q(b,S−S)
0 =

1

2
√
3
(1, 1, 1, 1, 1, 1; 1, 1, 1, 1, 1, 1)

Q(b,S−S)
z =

1

2
√
3
(1,−1,−1,−1, 1, 1; 1,−1,−1,−1, 1, 1)

Q(b,S−S)
v =

1

2
√
6
(−2,−2, 1, 1, 1, 1;−2,−2, 1, 1, 1, 1)

Q(b,S−S)
xy =

1

2
√
2
(0, 0,−1, 1, 1,−1; 0, 0,−1, 1, 1,−1)

Q(b,S−S)
3u =

1

2
√
6
(−2, 2,−1,−1, 1, 1;−2, 2,−1,−1, 1, 1)

Q(b,S−S)
3v =

1

2
√
2
(0, 0, 1,−1, 1,−1; 0, 0, 1,−1, 1,−1)

T (b,S−S)
x =

1

2
√
6
(2i,−2i, i, i,−i,−i;−2i, 2i,−i,−i, i, i)

T (b,S−S)
y =

1

2
√
2
(0, 0, i,−i, i,−i; 0, 0,−i, i,−i, i)

T (b,S−S)
yz =

1

2
√
6
(2i, 2i,−i,−i,−i,−i;−2i,−2i, i, i, i, i)

T (b,S−S)
zx =

1

2
√
2
(0, 0,−i, i, i,−i; 0, 0, i,−i,−i, i)

T (b,S−S)
3b =

1

2
√
3
(i,−i,−i,−i, i, i;−i, i, i, i,−i,−i)

T (b,S−S)
4a =

1

2
√
3
(i, i, i, i, i, i;−i,−i,−i,−i,−i,−i)

(4.4.89)

The elements correspond to the bond vectors described by b@c:

b1@c1 = [1, 0, 0]@[1/6, 1/3, z]

b2@c2 = [−1, 0, 0]@[1/6, 1/3,−z]

b3@c3 = [1, 1, 0]@[1/6, 5/6,−z]

b4@c4 = [0,−1, 0]@[2/3, 5/6,−z]

b5@c5 = [0, 1, 0]@[2/3, 5/6, z]

b6@c6 = [−1,−1, 0]@[1/6, 5/6, z]

(4.4.90)

where z = 0.12425.
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Nearest-neighbor Mo−S bond-cluster
There are twelve independent bond-cluster multipole basis:

Q(b,Mo−S)
0 =

1

2
√
3
(1, 1, 1, 1, 1, 1; 1, 1, 1, 1, 1, 1)

Q(b,Mo−S)
z =

1

2
√
3
(1,−1,−1,−1, 1, 1; 1,−1,−1,−1, 1, 1)

Q(b,Mo−S)
v =

1

2
√
6
(1, 1, 1,−2, 1,−2; 1, 1, 1,−2, 1,−2)

Q(b,Mo−S)
xy =

1

2
√
2
(1,−1, 1, 0,−1, 0; 1,−1, 1, 0,−1, 0)

Q(b,Mo−S)
yz =

1

2
√
6
(1,−1,−1, 2, 1,−2; 1,−1,−1, 2, 1,−2)

Q(b,Mo−S)
zx =

1

2
√
2
(1, 1,−1, 0,−1, 0; 1, 1,−1, 0,−1, 0)

T (b,Mo−S)
0 =

1

2
√
3
(i, i, i, i, i, i;−i,−i,−i,−i,−i,−i)

T (b,Mo−S)
z =

1

2
√
3
(i,−i,−i,−i, i, i;−i, i, i, i,−i,−i)

T (b,Mo−S)
x =

1

2
√
2
(i,−i, i, 0,−i, 0;−i, i,−i, 0, i, 0)

T (b,Mo−S)
y =

1

2
√
6
(i, i, i,−2i, i,−2i;−i,−i,−i, 2i,−i, 2i)

T (b,Mo−S)
zβ =

1

2
√
6
(i,−i,−i, 2i, i,−2i;−i, i, i,−2i,−i, 2i)

T (b,Mo−S)
xyz =

1

2
√
2
(i, i,−i, 0,−i, 0;−i,−i, i, 0, i, 0)

(4.4.91)

The elements correspond to the bond vectors described by b@c:

b1@c1 = [2/3, 1/3, z]@[1/3, 1/6, z/2]

b2@c2 = [−1/3, 1/3,−z]@[5/6, 1/6,−z/2]

b3@c3 = [2/3, 1/3,−z]@[1/3, 1/6,−z/2]

b4@c4 = [−1/3,−2/3,−z]@[5/6, 2/3,−z/2]

b5@c5 = [−1/3, 1/3, z]@[5/6, 1/6, z/2]

b6@c6 = [−1/3,−2/3, z]@[5/6, 2/3, z/2]

(4.4.92)

where z = 0.12425.

SAMB and symmetry-adapted TB Hamiltonian for MoS2

Considering the irreducible decompositions,

A′
1/2 ⊗A′

1/2 = A′′
1/2 ⊗A′′

1/2 = A′
1, E′ ⊗ E′ = E′′ ⊗ E′′ = A′

1 ⊕A′
2 ⊕ E′ (4.4.93)

we obtain the fully symmetric 28 SAMB as follows:

Q0[Mo] = Q(a)
0 ⊗Q(s,Mo)

0 , Qu[Mo] = Q(a)
u ⊗Q(s,Mo)

0 , Q40[Mo] = Q(a)
40 ⊗Q(s,Mo)

0 (4.4.94)

Q0[S] = Q(a)
0 ⊗Q(s,S)

0 , Qu[S] = Q(a)
u ⊗Q(s,S)

0 (4.4.95)
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Q0[Mo−Mo, 1] = Q(a)
0 ⊗Q(b,[Mo−Mo])

0 , Qu[Mo−Mo] = Q(a)
u ⊗Q(b,[Mo−Mo])

0

Q40[Mo−Mo] = Q(a)
40 ⊗Q(b,[Mo−Mo])

0

Q3a[Mo−Mo, 1] = M (a)
z ⊗ T (b,[Mo−Mo])

3b , Q3a[Mo−Mo, 2] = M (a)
zα ⊗ T (b,[Mo−Mo])

3b

Q0[Mo−Mo, 2] =
1√
2

(
Q(a)

v ⊗Q(b,Mo−Mo)
v +Q(a)

xy ⊗Q(b,Mo−Mo)
xy

)

Qu[Mo−Mo, 2] =
1√
2

(
Q(a)

4uβ1 ⊗Q(b,Mo−Mo)
v +Q(a)

4vβ1 ⊗Q(b,Mo−Mo)
xy

)

Qu[Mo−Mo, 3] =
1√
2

(
Q(a)

4uβ2 ⊗Q(b,Mo−Mo)
v +Q(a)

4vβ2 ⊗Q(b,Mo−Mo)
xy

)

Q3a[Mo−Mo, 3] =
1√
2

(
M (a)

zβ ⊗ T (b,Mo−Mo)
x +M (a)

xyz ⊗ T (b,Mo−Mo)
y

)

(4.4.96)

Q0[S− S, 1] = Q(a)
0 ⊗Q(b,S−S)

0 , Qu[S− S, 1] = Q(a)
u ⊗Q(b,S−S)

0 , Q3a[S− S, 1] = M (a)
z ⊗ T (b,S−S)

3b

Qu[S− S, 2] =
1√
2

(
M (a)

x ⊗ T (b,S−S)
yz +M (a)

y ⊗ T (b,S−S)
zx

)

Q3[S− S, 2] =
1√
2

(
Q(a)

yz ⊗Q(b,S−S)
3u +Q(a)

zx ⊗Q(b,S−S)
3v

)

Q0[S− S, 2] =
1√
2

(
Q(a)

v ⊗Q(b,S−S)
v +Q(a)

xy ⊗Q(b,S−S)
xy

)

(4.4.97)

Q0[Mo− S, 1] = Q(a)
z ⊗Q(b,Mo−S)

z , Qu[Mo− S, 1] = Q(a)
zα ⊗Q(b,Mo−S)

z

Q3a[Mo− S, 1] =
1√
2

(
Q(a)

x ⊗Q(b,Mo−S)
v +Q(a)

y ⊗Q(b,Mo−S)
xy

)

Q3a[Mo− S, 2] =
1√
2

(
G(a)

yz ⊗Q(b,Mo−S)
v +G(a)

zx ⊗Q(b,Mo−S)
xy

)

Qu[Mo− S, 2] =
1√
2

(
Q(a)

3u ⊗Q(b,Mo−S)
v +Q(a)

3v ⊗Q(b,Mo−S)
xy

)

Q3a[Mo− S, 3] =
1√
2

(
G(a)

v ⊗Q(b,Mo−S)
yz +G(a)

xy ⊗Q(b,Mo−S)
zx

)

Q3a[Mo− S, 4] =
1√
2

(
Q(a)

zβ ⊗Q(b,Mo−S)
yz +Q(a)

xyz ⊗Q(b,Mo−S)
zx

)

Q3a[Mo− S, 5] = Q(a)
3a ⊗Q(b,Mo−S)

0

(4.4.98)

where the numbers in the parentheses denote the multiplicity. As shown in Eq. (4.4.98), the nearest
neighbor Mo−S hoppings, Q3a[Mo−S, 2] and Q3a[Mo−S, 3] contain the ET quadrupoles, G(a)

yz , G(a)
zx ,

G(a)
v , and G(a)

xy . Using these SAMB, the TB hamiltonian can be expressed as

H =
28∑

j=1

zjZj (4.4.99)

The momentum representation of the SAMB is given in Appendix F.2.
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Parameter Optimization

Table 4.14: Parameters and hyperparameters used for the optimization process.

high symmetry lines Γ−K−M−Γ
number of k points Nk = 151
number of bands Nn = 11
total number of the eigenvalues Ntot = Nk ×Nn = 1661

maximum number of neighbor bonds N (b)
max = 1-3

number of hidden layers Nh = 0-3
maximum number of iterations Niter = 500
learning rate α = 0.01

Table 4.15: N (b)
max dependence of the number of neurons and the optimization parameters in the DNN-SAMB

with Nh = 3.

Layer N (b)
max = 1 2 3

neurons # params #
DFT band 1661 1661 1661
1st hidden 224 372288 360 598320 592 983904
2nd hidden 112 25200 180 64980 296 175528
3rd hidden 56 6328 90 16290 148 43956

SAMB 28 1596 45 4095 74 11026
TB band 1661 1661 1661
total # 4162 405412 3997 683685 4432 1214414

In this section, we show the results of the parameter optimization. The parameters and hyperpa-
rameters used for the optimization process are summarized in Table 4.14. We chose the high symmetry
lines Γ−K−M−Γ. We use bands at 50 k points in each line, then the number of k points is Nk = 151

and the number of bands is Nn = 11. The total number of the eigenvalues is Ntot = Nk×Nn = 1661.
For comparison, we change the maximum number of neighbor bonds from nearest to 3rd neighbor
Mo−Mo, S−S, and Mo−S bond-clusters, N (b)

max = 1-3, and we also change the number of hidden layers
from 1 to 3, Nh =1-3. The maximum number of iterations is fixed as Niter = 500 that is sufficient to
reach convergence, and the learning rate is fixed as α = 0.01. Table 4.15 shows the N (b)

max dependence
of the number of neurons and the optimization parameters in the DNN-SAMB with Nh = 3. When
N (b)

max = 3, the total number of the optimization parameters is about 1200000.
Similar to the previous sections 4.4.1 and 4.4.2, we implement 50 optimization calculations with

different random initial parameters for each pair of (N (b)
max, Nh). In addition, we also perform the

parameter optimization using the conventional LR method with Niter = 3000 and α = 0.01.
The results of parameter optimization using the DNN-SAMB with Nh = 3 are shown in Figs. 4.19

(a)-(c). As shown in Figs. 4.19 (a)-(c), the quality of the optimization are improved gradually by
increasing N (b)

max. In particular, when N (b)
max = 3, the obtained TB model reproduces the DFT-based

Wannier band dispersions with high accuracy. As shown in Table 4.16, by taking up to 3rd neighbor
Mo−Mo, S−S, and Mo−S bond-clusters, we achieved an accuracy less than 10−4 of the MSE between
the normalized energy eigenvalues of our TB model and the Wannier TB model.

Meanwhile, as shown in Figs. 4.19 (d)-(f), the optimized results obtained using LR method show
less quality especially when N (b)

max = 2 and 3. This is because the numbers of optimization parameters
are 45 and 74 when N (b)

max = 2 and 3, the optimization quality highly depends on the initial guess
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Figure 4.19: The comparisons of the band dispersion between the Wannier TB model (solid grey lines) and
our TB models (dashed red lines) obtained by using DNN-SAMB and LR method. (a)-(c) The
optimized results obtained by using DNN-SAMB with N (b)

max =1-3 and Nh = 3. (d)-(e) The
optimized results obtained by using LR method with N (b)

max =1-3. The Fermi energy is taken as
the origin.

Table 4.16: The minimum, maximum, and average loss function, Lmin, Lmax, and Lavg, in 50 optimization
calculations with different initial guess using the LR method and the DNN-SAMB method with
Nh = 3.

N (b)
max Lmin Lmax Lavg

LR DNN-SAMB LR DNN-SAMB LR DNN-SAMB
1 5.3× 10−4 1.6× 10−4 2.3× 10−3 1.5× 10−3 1.3× 10−3 4.7× 10−4

2 4.7× 10−4 9.3× 10−5 2.5× 10−3 8.7× 10−4 1.3× 10−3 3.8× 10−4

3 6.9× 10−4 2.5× 10−5 2.4× 10−3 6.4× 10−4 1.5× 10−3 2.5× 10−4
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Figure 4.20: Convergence behavior of the loss function for (a) the DNN-SAMB with Nh = 0 (red), 1 (blue), 2
(green), and 3 (orange) and (b) the LR method (grey) with N (b)

max = 3.

Table 4.17: The optimized model parameters zj of up to nearest-neighbor hopping in eV units obtained using
DNN-SAMB with Nh = 3 and N (b)

max = 3.

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10
6.573 -0.679 -0.510 -0.299 0.986 -0.225 -2.166 -1.717 -1.932 -0.500
z11 z12 z13 z14 z15 z16 z17 z18 z19 z20

0.460 -1.666 -0.075 0.715 0.683 -0.595 -1.262 0.915 -1.507 1.014
z21 z22 z23 z24 z25 z26 z27 z28

0.217 -1.937 -0.577 -1.83 0.427 0.450 -2.520 0.839

of them. Indeed, As shown in Table 4.16, Lmin, Lmax and Lavg of the LR method increase as N (b)
max

becomes larger.
Similar to the graphene and SrVO3 models, Lmin, Lmax and Lavg of the DNN-SAMB method are

always smaller than that of the LR method. Therefore, the DNN-SAMB method is more efficient
than the LR method and shows less dependence on the initial guess of the optimization parameters.

Next, we show the convergence behavior of the loss function for the LR method and the DNN-
SAMB method with N (b)

max = 3 in Fig. 4.20. As shown in Fig. 4.20(a), the loss function for the
DNN-SAMB method converges rapidly owing to the use of the DNN-SAMB. As Nh increases, the
loss function exhibits more rapid convergence behavior. On the other hand, as shown in Fig. 4.20(b),
the LR method shows relatively slow convergence behavior. Thus, the DNN-SAMB method can reach
convergence faster than the usual LR method.

We summarize the explicit values of the optimized weights for each SAMB up to nearest-neighbor
hopping in Table 4.17 obtained by using DNN-SAMB with Nh = 3.
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Figure 4.21: The atomic orbital dependence of (a) the band dispersion and DOS, and (b) the isoenergy surfaces
at µ = −1.2 [eV] of the optimized TB model with Nh = 3 and N (b)

max = 3. The MLWF dependence
of (c) the band dispersion and DOS, and (d) the isoenergy surfaces at µ = −1.2 [eV] of the
Wannier TB model. The MLWFs are shown in Fig. 4.17.

Figure 4.21 (a) and (b) represent the atomic orbital dependence of the band dispersion, DOS,
and the isoenergy surfaces, which are calculated by our optimized TB model obtained using the
DNN-SAMB with Nh = 3 and N (b)

max = 3. While Figs. 4.21 (c) and (d) show that obtained from the
DFT-based Wannier TB model. Our TB model reproduces the orbital dependence of the electronic
states in the valance bands of the Wannier TB model. However, the orbital dependence of the
conduction bands of our TB model is not consistent with that of the Wannier TB model. This is
because our TB model is optimized to reproduce only the energy eigenvalues of the reference bands,
and there is no guarantee to reproduce the orbital dependence of the reference bands. Since the TB
model of MoS2 includes both sublattice and orbital degrees of freedom and is more complicated than
the relatively simple SrVO3 model, it is difficult to reproduce the orbital dependence of the reference
bands with high accuracy. This is a limitation of our method at moment, and we will improve a
method to reproduce the orbital dependence of the reference bands in the future work.

As shown in Fig. 4.22, the magnitude of the hopping parameters of our TB model decreases for
further neighbor hoppings. As a result, our TB model is more compact than the Wannier TB model.
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Figure 4.22: Bond length dependence of the absolute maximum value of the hopping parameters (6 ≤ j ≤ 74)
in eV units between the Wannier TB model (solid grey lines) and our TB model (dashed red
lines) with Nh = 3 and N (b)

max = 3.

4.5 Summary
In summary, we have developed a systematic generation scheme of the DFT-based symmetry-adapted
tight-binding model which is described as the linear combination of the fully symmetric symmetry
adapted multipole basis. We can optimize the weights of each multipole basis so as to reproduce
the DFT band dispersion. Owing to the use of a deep neural network, the method shows high
efficiency and less dependence on the initial guess of the optimization parameters. Since each multipole
basis is fully symmetric, the obtained model precisely satisfies the symmetry of a given system with
fewer parameters of the Wannier tight-binding model. In addition, our method is applicable to any
crystallographic structure within 230 space group.

We have demonstrated our method by constructing the symmetry-adapted tight-binding model
for graphene, SrVO3, and monolayer MoS2. The results indicate that our optimized tight-binding
model can well reproduce the DFT or DFT-based Wannier band dispersions. We achieve an accuracy
of less than 10−4 of the mean squared error between the normalized energy eigenvalues of our tight-
binding model and that of the DFT or DFT-based Wannier calculation. Our tight-binding model can
also roughly reproduce the orbital dependences of the band dispersion, density of states, and Fermi
surfaces. Moreover, our tight-binding model is compact and contains fewer model parameters than the
Wannier tight-binding model. In this way, our method is a powerful tool to systematically construct
a symmetry-adapted tight-binding model with a small number of parameters, which reproduces the
DFT band dispersion with high accuracy.

Lastly, the problems of the present method and their possible solutions are summarized below:

1. When the reference bands are entangled, we need to disentangle them by using the Wannier90
Referring to the disentanglement procedure implemented in Wannier90, we will develop a similar
method without the use of Wannier90.

2. Optimization accuracy
In the present method, the input data of eigenvalues obtained from the DFT calculation are
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first transformed into a one-dimensional vector and it is connected nonlinearly to every weight
of the symmetry-adapted multipole basis. Consequently, the topology of the band structure
at each k point and the correlation between adjacent eigenvalues within and between bands
are not considered. Since the band dispersions can be viewed as a 3D images, with the band
indices corresponding to the color indices of a picture, using the convolutional neural network
(CNN) [153] might be more appropriate choice than the DNN. Indeed, recent studies have
discussed some methods using the CNN to systematically predict electronic band structures
based on the DFT calculations [176,177,177]. Using the CNN instead of the DNN, the present
method can be improved to consider the microscopic structures of the DFT band dispersion,
and the optimization accuracy might be improved.

3. Orbital dependence is not considered in the optimization process
In the present method, the orbital dependence of the band dispersion is not considered. There-
fore, we will develop an optimization method that considers the orbital dependence of the
reference band in the future work.

4. Extension to phonon system
Since the present method is based on the symmetry, we can apply this method to phonon
systems in a similar manner.



Chapter 5

Microscopic Description of Chirality

We investigate the microscopic origin of chirality, possible electric-field induced static rotational lattice
deformation, and rotation-field induced electric polarization. We construct a DFT-based symmetry-
adapted TB model for the elemental Te crystal as in the previous section. Based on this microscopic
model, we clarify the quantum-mechanical operator expressions of the chirality and their weights
numerically. We also elucidate essential couplings among polar and axial vectors with the same time-
reversal properties that induce the electric-field induced rotation and its inverse response. Based
on these couplings unique to chiral materials, we also propose a possible experimental approach to
achieve absolute enantioselection by simultaneously applying electric and rotation fields, or magnetic
field and electric current, and so on, as a conjugate field of the chirality. This chapter is based on
the contents of Ref. [187] and is organized as follows. In Sec. 5.1, we briefly review recent studies
on the origin of chirality and related phenomena. We show the symmetry-adapted TB model for the
elemental Te in Sec. 5.2 and show the microscopic origin of the electric field induced static rotational
lattice deformation in Sec. 5.4. Then, we discuss a possible experimental approach to achieve absolute
enantioselection by simultaneously applying electric and rotation fields in Sec. 5.5. We summarize
this chapter in Sec. 5.6.

5.1 Introduction
Chirality is three-dimensional geometric property exhibiting ubiquitously in nature. The definition of
chirality was first given by Lord Kelvin in 1984 [188] as “any geometrical figure, or group of points, is
chiral, if its image in a plane mirror, ideally realized, cannot be brought to coincide with itself.” In this
regard, chiral systems must be three-dimensional because if the system is two-dimensional, rotational
symmetry always connects the mirrored object to the original one. Later, Barron has extended the
definition of chirality to dynamics of materials by using the term truely/falsely chirality which denote
the chirality associated with T -even/T -odd properties. In the present study, we focus on the T -even
(truely) chirality, (P, T ) = (−,+). Handedness or enantiomer in chiral materials, which is a static
quantity, is characterized by a T -even pseudoscalar quantity [189–192], whose sign corresponds to left
or right handedness. This significant quantity in chiral materials has not fully been understood at
microscopic level.

However, recent studies elucidated that the ET monopole G0 corresponds to the order parameter
for chirality [26, 64] based on the electronic multipole theory [25, 26, 28]. G0 has the same symmetry
properties as the T -even pseudoscalar, (P, T ) = (−1,+1), which is consistent with the Barron’s
definition of the T -even chirality. G0 belongs to the fully symmetric irreducible representation (IR)
and becomes active only in the 11 chiral point groups, O, T, D4, C4, D2, C2, D6, C6, D3, C3, C1 [26].

99
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Figure 5.1: (a), (b) G0 related essential couplings existing in chiral crystals. The conjugate fields of T , M ,
Q, and G, are given in the parenthesis. (c) ET monopole G0 in terms of the flux structure of the
ET dipoles G, whose direction determines the handedness of the chirality. (d) Classical view of
the ET dipole, which is a vortex-like alignment of the E dipoles, Q. (e) The atomic ET dipole,
which is an outer product of the orbital angular momentum l and the spin angular momentum σ.

Since the scalar products of polar and axial vectors with the same T property belong to the same IR
of G0, G0 can couple with them in the sense of Landau free energy. For example, G0 can couple with
the scalar product of a MT dipole T , (P, T ) = (−,−), and M dipole M , (P, T ) = (+,−):

g G0(T ·M) (5.1.1)

where g is a coupling constant. Figure 5.1(a) schematically represents this coupling. As an electric
current J induces its conjugate quantity T , it also induces M through Eq. (5.1.1) in a chiral system
with active G0. Indeed, the current-induced optical activity [193] and the kinetic magneto-electric
(Edelstein) effect [54,55] were proposed and observed in elemental Te crystal [56–58]. On the contrary,
the magnetic field B induces not only M but also T through Eq. (5.1.1). Similarly, the Hamiltonian
of chiral systems contains the k-space representation of G0 [26], i.e., k · σ, which is the origin of the
hedgehog spin texture observed around the H point of the Brillouin zone in Te [194,195]. Meanwhile,
from the microscopic point of view, the atomic ET monopole can be active in the spinful hybrid
orbital space as the form G(a)

0 = t · σ (t = r × l is the atomic MT dipole) (See Table 3.3).
As shown in Fig. 5.1(b), an ET monopole G0 can couple with in another way:

g′G0(Q ·G) (5.1.2)

where Q is an E dipole, (P, T ) = (−,+), and G is an ET dipole G (P, T ) = (+,+). Since a position
vector R has the same symmetry property of Q, G-flux structure, R ·G, exists in chiral crystals as
shown in Fig. 5.1(c), where the direction of the fluxes characterizes the handedness. As shown in
Fig. 5.1(d), a classical representation of G is given by a vortex-like alignment of E dipoles Q, G(c) =∑

j Rj ×Qj , where Qj denotes the E dipole at the position Rj . G(c) solely plays a role of the order
parameter of the ferro-axial (rotational) orderings which have been observed in several materials, such
as RbFe(MoO4)2 [34–39], NiTiO3 [40–42], Ca5Ir3O12 [39], superlattices of PbTiO3/SrTiO3 [43], and
so on. Note that the rotational orderings are closely related to chirality through Eq. (5.1.2). Indeed,
the spontaneous ferro-chiral structural transition observed in Ba(TiO)Cu4(PO4)4 [45], is realized by
the emergence of the antiferroaxial ordering of the anti-polar units, which can be characterized by
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finite G0.
Since G(c) is given by a vortex-like alignment of E dipoles Q as shown in Fig. 5.1(d), its conjugate

field is a rotation of electric field, ωE = ∇×E, which is equivalent to time-dependent magnetic field
through Maxwell’s equation. Moreover, from the symmetry property of G, a static lattice rotation
ω = ∇×u (u is a displacement vector of atoms) could be an alternative conjugate field to G, provided
a proper electron-lattice coupling. In this way, G plays a significant role in the transverse rotational
phonon modes discussed in both achiral [196–198] and chiral crystals [63, 199, 200]. In addition, the
atomic ET dipole is defined as G(a) = l × σ as shown in Fig. 5.1(e), and then the Hamiltonian of
chiral systems contain a lattice-spin-orbit coupling, R · (l×σ), which induce the G(a)-flux structure.
Namely the atomic ET monopole is transformed as G(a)

0 = t · σ = (r × l) · σ = r · (l× σ) = r ·G(a)

that corresponds to the atomic scale G(a)-flux structure.
As discussed above, there are G0-related third-order couplings in the free energy of chiral systems

as shown in Figs. 5.1(a) and (b):

F (3)
c = g(E)⊥ G(1)

0 (QxGx +QyGy) + g(E)z G(2)
0 QzGz + g(M)

⊥ G(3)
0 (TxMx + TyMy) + g(M)

z G(4)
0 TzMz

(5.1.3)

The coupling constants satisfy g(E/M)
z = g(E/M)

⊥ in cubic chiral crystals belonging to O/T point group
symmetries, otherwise gz .= g⊥ (z is along the screw axis). Note that G(1)

0 , G(2)
0 , G(3)

0 , and G(4)
0 can

be independent ET monopoles in general. In this study, we focus on the couplings among G0, Q,
and G. This coupling gives rise to a interconversion between a polar vector field such as the electric
field or temperature gradient and an axial vector field such as a static rotation of the lattice. In other
words, an electric-field induced rotation (EIR) and its inverse response, i.e., a rotation-field induced
electric polarization (RIP), could appear in chiral materials. Note that one can apply a rotational
lattice deformation using transverse ultrasonic wave as it generates both the strain and rotation fields.
Although the RIP (called rotoelectricity there) was already predicted by Gopalan and Litvin based
on the symmetry argument [201], its origin and the connection to the chirality remain unclear at the
microscopic level. It should be also emphasized that the present EIR (static rotational deformation)
is qualitatively different from a heat-current/electric-field induced phonon angular momentum, i.e.,
dynamical (T -odd) lattice rotation, predicted by Hamada et al. [59, 60].

As shown above, the order parameter of chirality is the ET monopole G0 in general. However,
the explicit quantum treatment of G0, depending on the Hilbert space of the given chiral materials,
has yet to be developed. With this circumstance, we develop a systematic prescription for clarifying
the quantum-mechanical operator of G0 and to evaluate it quantitatively. In the following sections,
we take Te as a specific example and clarify the quantum-mechanical operators of G0 in Te and their
weights in the Hamiltonian. First, we construct a DFT-based symmetry-adapted TB model of Te
using the band dispersion data obtained from the DFT calculation. Since the TB model is expressed
as the linear combination of the SAMB, we can easily identify the quantum-mechanical operator
of G0, and evaluate the relevant couplings to it quantitatively. Then, we elucidate the microscopic
origin of the G0 related responses, EIR and RIP. We also propose a possible experimental approach
to achieve absolute enantioselection by utilizing the G0 related couplings given in Eq. (5.1.3).
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5.2 Tight-Binding Model for Te
Let us first construct the symmetry-adapted TB model for Te based on the generation scheme given
in Chap. 4.

5.2.1 DFT Calculation for Te

Figure 5.2: (a) Crystal structure of the right-handed Te. (b) A unit cell contains A, B, and C sublattices along
a helical chain. (c) First Brillouin zone of Te. (d) The band dispersion of the Wannier TB model
where the Fermi energy is taken as the origin and the blue shaded area represents the insulating
gap. (e) The enlarged view of the band dispersion close to the Fermi level.

As shown in Fig. 5.2(a), the bulk Te crystal consists of the threefold-symmetric helical chains,
which contain A, B, and C sublattices in a unit cell as shown in Fig. 5.2(b). The space group of
the right- and left-handed Te are P3121 (#152, D4

3) and P3221 (#154, D6
3), respectively. Hereafter,

we focus on the right-handed Te. The lattice constants are a = 4.458 Å, c = 5.925 Å, and relaxed
value is u = r/a = 0.274 for the dimensionless helix parameter [202], where r denotes the radius of
the helix. Since the bands near the Fermi level are entangled to the upper bands, we optimize our
TB model so as to reproduce the Wannier TB model of Te. Figure 5.2(d) shows the band dispersion
of the Wannier TB model of Te obtained by the fully relativistic DFT calculation using the HSE06
hybrid functional [203]. Although the energy gap at the H point is 0.356 eV in Fig. 5.2(e), several
values of the energy gap were reported as the experimental value of 0.323 eV [204], the GW method
of 0.314 eV [205], and the other fully relativistic calculations of 0.312 eV [206] and 0.322 eV [207].
Since the electronic states near the band edges (Fermi level) in Te mainly consist of three p orbitals,
(px, py, pz) [207], we consider the spinful TB Hamiltonian in 18×18 matrix.
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5.2.2 Symmetry-Adapted TB Hamiltonian for Te
Let us consider the TB Hamiltonian given by

H0 = HCEF +HSOC +
8∑

n=1

H(n)
t (5.2.1)

where HCEF and HSOC represent the crystalline electric field (CEF) and spin-orbit coupling (SOC)
within the unit cell, and H(n)

t is the n-th neighbor hopping term. In this section, we express HCEF,
HSOC, and the nearest-neighbor (NN) hopping H(1)

t in terms of the SAMB according to the procedure
given in Chap. 4. First, we introduce the atomic and site/bond-cluster multipole basis. Afterward,
we generate the SAMB as a direct product of them.

Atomic Multipole Basis

Let us first introduce the atomic multipole basis within the Hilbert space of spinful p orbitals. There
are 9 (27) independent spinless (spinful) E, M, ET, and MT atomic multipole basis. The explicit
operator expressions and matrix elements of these basis are summarized in Table 5.1.
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Table 5.1: Operator expressions and matrix elements of the atomic multipole basis defined in the spinful
px, py, pz orbitals in the point group D3. E, M, ET, and MT stand for electric, magnetic, electric
toroidal, and magnetic toroidal, respectively. The superscript (a) denotes the atomic multipole.
l and σ/2 represent the dimensionless orbital and spin angular-momentum operators, and σi (i =
x, y, z) and σ0 are the Pauli matrices and 2×2 identity matrix. The upper and lower parts separated
by double line represent the spinless and spinful multipoles, respectively. The prime in the upper
script represents the spinful multipole.

rank type irrep. symbol expression matrix element

0 E A+
1 Q(a)

0 1 1√
6




1 0 0
0 1 0
0 0 1



σ0

1 M A−
2 M (a)

z lz
1
2




0 −i 0
i 0 0
0 0 0



σ0

E− M (a)
x ,M (a)

y lx, ly
1
2




0 0 0
0 0 −i
0 i 0



σ0,
1
2




0 0 i
0 0 0
−i 0 0



σ0

2 E A+
1 Q(a)

u 3z2 − r2 1
2
√
3




−1 0 0
0 −1 0
0 0 2



σ0

E+ Q(a)
zx , Q

(a)
yz zx, yz 1

2




0 0 1
0 0 0
1 0 0



σ0,
1
2




0 0 0
0 0 1
0 1 0



σ0

E+ Q(a)
v , Q(a)

xy x2 − y2, xy 1
2




1 0 0
0 −1 0
0 0 0



σ0,
1
2




0 1 0
1 0 0
0 0 0



σ0

0 E A+
1 Q(a)′

0 — 1√
3
M (a) · σ

1 M A−
2 M (a)′

z [1] — Q(a)
0 σz

E− M (a)′

x [1],M (a)′

y [1] — Q(a)
0 σx, Q(a)

0 σy

A−
2 M (a)′

z [2] — 1√
10

[
2Q(a)

u σz +
√
3
(
Q(a)

yz σy +Q(a)
zx σx

)]

E− M (a)′

x [2] — 1√
10

[(√
3Q(a)

v −Q(a)
u

)
σx +

√
3
(
Q(a)

xy σy +Q(a)
zx σz

)]

M (a)′

y [2] — − 1√
10

[(√
3Q(a)

v +Q(a)
u

)
σy +

√
3
(
Q(a)

yz σz +Q(a)
xy σx

)]

ET A+
2 G(a)′

z — 1√
2
(M (a) × σ)z

E+ G(a)′

x , G(a)′

y — 1√
2
(M (a) × σ)x,

1√
2
(M (a) × σ)y

2 E A+
1 Q(a)′

u — 1√
6

(
3M (a)

z σz −M (a) · σ
)

E+ Q(a)′

zx , Q(a)′

yz — 1√
2

(
M (a)

x σz +M (a)
z σx

)
, 1√

2

(
M (a)

z σy +M (a)
y σz

)

E+ Q(a)′

v , Q(a)′

xy — 1√
2

(
M (a)

x σx −M (a)
y σy

)
, 1√

2

(
M (a)

x σy +M (a)
y σx

)

MT A−
1 T (a)′

u — 1√
2
(Q(a)

yz σx −Q(a)
zx σy)

E− T (a)′

zx — 1√
6

[(√
3Q(a)

u −Q(a)
v

)
σy −Q(a)

yz σz +Q(a)
xy σx

]

T (a)′

yz — − 1√
6

[(√
3Q(a)

u +Q(a)
v

)
σx +Q(a)

xy σy −Q(a)
zx σz

]

E− T (a)′

v — 1√
6

(
Q(a)

yz σx +Q(a)
zx σy − 2Q(a)

xy σz
)

T (a)′

xy — 1√
6

(
−Q(a)

zx σx +Q(a)
yz σy + 2Q(a)

v σz
)

3 M A−
1 M (a)′

3γ — 1√
2

(
Q(a)

v σx −Q(a)
xy σy

)

A−
2 M (a)′

3α — 1√
5

(√
3Q(a)

u σz −Q(a)
zx σx −Q(a)

yz σy
)

A−
2 M (a)′

3β — 1√
2

(
Q(a)

xy σx +Q(a)
v σy

)

E− M (a)′

3xα — 1√
30

[(
2
√
3Q(a)

u −Q(a)
v

)
σx −Q(a)

xy σy + 4Q(a)
zx σz

]

M (a)′

3yα — − 1√
30

[(
2
√
3Q(a)

u +Q(a)
v

)
σy −Q(a)

xy σx + 4Q(a)
yz σz

]

E− M (a)′

3xβ — 1√
3

(
Q(a)

v σz +Q(a)
zx σx −Q(a)

yz σy
)

M (a)′

3yβ — − 1√
3

(
Q(a)

xy σz +Q(a)
yz σx +Q(a)

zx σy
)
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Site/Bond-Cluster Multipole Basis

To describe HCEF and HSOC, and H(1)
t , we introduce the site/bond-cluster multipole basis defined in

the ABC sublattice space. Here, we restrict our demonstration up to the NN hoppings.
There are three independent site-cluster multipole basis:

Q(s)
0 =

1√
3
(1, 1, 1), Q(s)

x =
1√
6
(−1, 2,−1), Q(s)

y =
1√
2
(−1, 0, 1) (5.2.2)

While there six bond-cluster multipole basis:

Q(b)
0 =

1√
6
(1, 1, 1; 1, 1, 1)

Q(b)
x =

1

2
√
3
(1, 1,−2; 1, 1,−2)

Q(b)
y =

1

2
(−1, 1, 0;−1, 1, 0)

(5.2.3)

T (b)
z =

1√
6
(i,−i,−i;−i, i, i)

T (b)
x =

1

2
(i, i, 0;−i,−i, 0)

T (b)
y =

1

2
√
3
(i,−i, 2i;−i, i,−2i)

(5.2.4)

The elements correspond to the bond vectors described by b@c:

b1@c1 = [2u, u, 1/3]@[0, 1− u/2, 1/6]

b2@c2 = [u,−u,−1/3]@[u/2, u/2, 1/2]

b3@c3 = [u, 2u,−1/3]@[1− u/2, 0, 5/6]

(5.2.5)

The schematic figures of the site/bond-cluster multipole basis are shown in Fig. 5.3.
The matrix form of the site/bond-cluster multipoles are summarized in Table 5.2.

SAMB and Symmetry-Adapted TB Hamiltonian for Te

Using the atomic and site/bond-cluster multipole basis, the SAMB is defined by the direct product
of them. We show the SAMB belonging to A1 identity irreducible representation of D4

3 because the
Hamiltonian must be fully-symmetric. Considering the irreducible decompositions,

A1 ⊗A1 = A2 ⊗A2 = A1 (5.2.6)
A1 ⊗A2 = A2 (5.2.7)
E⊗ E = A1 ⊕A2 ⊕ E (5.2.8)
A1 ⊗ E = A2 ⊗ E = E (5.2.9)

we obtain the SAMB as summarized in Table 5.3. In addition, some SAMB belonging to A2 and E
irreducible representations are given, i.e., the E and ET dipoles, Q(as)′

z and G(as)′
z shown in Table 5.3.
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Using the SAMB Zj given in Sec. 5.2.2, the symmetry-adapted TB Hamiltonian of Te is con-
structed as

H0 =
∑

j

zjZj . (5.2.10)

HCEF in Eq. (5.2.1) is expressed by using the four spinless (as) SAMB given in Sec. 5.2.2:

HCEF = ∆Q
0 Q

(as)
0 +∆Q

1 Q
(as)
u +∆Q

2 Q
(as)
3γ +∆G

1 G
(as)
u . (5.2.11)

The atomic SOC HSOC is represented by using the five spinful (as) SAMB given in Sec. 5.2.2:

HSOC = λQ1 Q
(as)′

0 + λQ2 Q
(as)′
u + λQ3 Q

(as)′

3γ + λG1 G
(as)′

0⊥ + λG2 G
(as)′
u . (5.2.12)

Similarly, the NN hopping H(1)
t is expressed as the linear combination of the six spinless and fifteen

Figure 5.3: Schematic figures of cluster and bond multipoles. The blue, red, and green square cells denote
that its irreducible representation is A1, A2, and E, respectively. The red and blue circles in the
“site-cluster” column represent the weight and sign of the diagonal elements. The red and blue lines
in the “bond-cluster (Re)” column represent the weight and sign of the real part of the off-diagonal
elements. Similarly, the arrows in the “bond-cluster (Im)” column represent the weight and sign of
the imaginary part of the off-diagonal elements. The gray lines represent zero values.
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Table 5.2: Matrix elements of the site/bond-cluster multipole basis defined in the ABC sublattice space in
the point group D3. E (MT) stands for electric (magnetic toroidal). The upper and lower parts
separated by double line represent the cluster and bond multipoles.

rank type irrep. symbol matrix element

0 E A+
1 Q(t,1)

0
1√
3




1 0 0

0 1 0

0 0 1





1 E E+ Q(t,1)
x , Q(t,1)

y
1√
6




−1 0 0

0 2 0

0 0 −1



 , 1√
2




−1 0 0

0 0 0

0 0 1





0 E A+
1 Q(t,2)

0
1√
6




0 1 1

1 0 1

1 1 0





1 E E+ Q(t,2)
x , Q(t,2)

y
1

2
√
3




0 1 −2

1 0 1

−2 1 0



 , 1
2




0 −1 0

−1 0 1

0 1 0





MT A−
2 T (t)

z
1√
6




0 −i i

i 0 −i

−i i 0





E− T (t)
x , T (t)

y
1
2




0 −i 0

i 0 i

0 −i 0



 , 1
2
√
3




0 −i −2i

i 0 −i

2i i 0





spinful (ab) SAMB given in Sec. 5.2.2:

H(1)
t = tQ1 Q

(ab)
0 + tQ2 Q

(ab)
u + tQ3 Q

(ab)
3γ + tG1 G

(ab)
0z + tG2 G

(ab)
0⊥ + tG3 G

(ab)
u

+ αQ
1 Q

(ab)′

0 + αQ
2 Q

(ab)′
u + αQ

3 Q
(ab)′

3γ [1] + αQ
4 Q

(ab)′

3γ [2] + αQ
5 Q

(ab)′

3γ [3] + αQ
6 Q

(ab)′

3γ [4] + αQ
7 Q

(ab)′

3γ [5]

+ αG
1 G

(ab)′

0⊥ [1] + αG
2 G

(ab)′

0z [1] + αG
3 G

(ab)′

0⊥ [2] + αG
4 G

(ab)′

0z [2] + αG
5 G

(ab)′

0⊥ [3] + αG
6 G

(ab)′
u [1] + αG

7 G
(ab)′
u [2]

+ αG
8 G

(ab)′
u [3].

(5.2.13)

Note that the higher-order terms H(i)
t (1 < i ≤ 8) are derived by the similar procedure. There are

255 independent parameters zj in total, and 30 parameters are within the NN hopping; four CEF
parameters, five SOC parameters, and twenty one NN intra-chain hopping parameters. Then, the
weights zj (∆Q

i , λQi , tQi , αQ
i , ... etc.) are determined so as to reproduce the DFT-based Wannier band

dispersion based on the method shown in Chap. 4. In this model construction, terms containing G0

are significant, since they characterize the chirality of Te.
The G0 terms in Eq. (5.2.13) represent the chirality in the quantum-mechanical level, and their

weights correspond to the “chiralization”. Therefore, in the next section, we evaluate the weights of
them by optimizing the TB model so as to reproduce the DFT-based Wannier band dispersion of Te.
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Table 5.3: The explicit expressions of the SAMB. E and ET stand for electric and electric toroidal, respectively.
The superscript (as) ((ab)) denotes the direct product of the cluster and atomic (bond and atomic)
multipoles. The first, second, third, and fourth parts separated by double line represent the spinless
(as), spinful (as), spinless (ab), and spinful (ab) multipoles. The number in the square bracket is
the multiplicity to distinguish the independent multipoles.

rank type irrep. symbol expression
0 E A+

1 Q(as)
0 Q(a)

0 ⊗Q(s)
0

2 E A+
1 Q(as)

u Q(a)
u ⊗Q(s)

0

ET A+
1 G(as)

u
1√
2

(
Q(a)

yz ⊗Q(s)
x −Q(a)

zx ⊗Q(s)
y

)

3 E A+
1 Q(as)

3γ
1√
2

(
Q(a)

v ⊗Q(s)
x −Q(a)

xy ⊗Q(s)
y

)

0 E A+
1 Q(as)′

0 Q(a)′

0 ⊗Q(s)
0

ET A+
1 G(as)′

0⊥
1√
2

(
G(a)′

x ⊗Q(s)
x +G(a)′

y ⊗Q(s)
y

)

1 E A+
2 Q(as)′

z
1√
2

(
G(a)′

y ⊗Q(s)
x −G(a)′

x ⊗Q(s)
y

)

ET A+
2 G(as)′

z G(a)′
z ⊗Q(s)

0

2 E A+
1 Q(as)′

u Q(a)′
u ⊗Q(s)

0

ET A+
1 G(as)′

u
1√
2

(
Q(a)′

yz ⊗Q(s)
x −Q(a)′

zx ⊗Q(s)
y

)

3 E A+
1 Q(as)′

3γ
1√
2

(
Q(a)′

v ⊗Q(s)
x −Q(a)′

xy ⊗Q(s)
y

)

0 E A+
1 Q(ab)

0 Q(a)
0 ⊗Q(b)

0

ET A+
1 G(ab)

0z M (a)
z ⊗ T (b)

z

A+
1 G(ab)

0⊥
1√
2

(
M (a)

x ⊗ T (b)
x +M (a)

y ⊗ T (b)
y

)

2 E A+
1 Q(ab)

u Q(a)
u ⊗Q(b)

0

ET A+
1 G(ab)

u
1√
2

(
Q(a)

yz ⊗Q(b)
x −Q(a)

zx ⊗Q(b)
y

)

3 E A+
1 Q(ab)

3γ
1√
2

(
Q(a)

v ⊗Q(b)
x −Q(a)

xy ⊗Q(b)
y

)

0 E A+
1 Q(ab)′

0 Q(a)′

0 ⊗Q(b)
0

ET A+
1 G(ab)′

0⊥ [1] 1√
2

(
G(a)′

x ⊗Q(b)
x +G(a)′

y ⊗Q(b)
y

)

A+
1 G(ab)′

0z [1] M (a)′
z [1]⊗ T (b)

z

A+
1 G(ab)′

0⊥ [2] 1√
2

(
M (a)′

x [1]⊗ T (b)
x +M (a)′

y [1]⊗ T (b)
y

)

A+
1 G(ab)′

0z [2] M (a)′
z [2]⊗ T (b)

z

A+
1 G(ab)′

0⊥ [3] 1√
2

(
M (a)′

x [2]⊗ T (b)
x +M (a)′

y [2]⊗ T (b)
y

)

2 E A+
1 Q(ab)′

u Q(a)′
u ⊗Q(b)

0

ET A+
1 G(ab)′

u [1] 1√
2

(
Q(a)′

yz ⊗Q(b)
x −Q(a)′

zx ⊗Q(b)
y

)

A+
1 G(ab)′

u [2] 1√
2

(
T (a)′
yz ⊗ T (b)

x − T (a)′
zx ⊗ T (b)

y

)

A+
1 G(ab)′

u [3] 1√
2

(
M (a)′

3xα ⊗ T (b)
x −M (a)′

3yα ⊗ T (b)
y

)

3 E A+
1 Q(ab)′

3γ [1] 1√
2

(
Q(a)′

v ⊗Q(b)
x −Q(a)′

xy ⊗Q(b)
y

)

A+
1 Q(ab)′

3γ [2] M (a)′

3α ⊗ T (b)
z

A+
1 Q(ab)′

3γ [3] M (a)′

3β ⊗ T (b)
z

A+
1 Q(ab)′

3γ [4] 1√
2

(
T (a)′
v ⊗ T (b)

x − T (a)′
xy ⊗ T (b)

y

)

A+
1 Q(ab)′

3γ [5] 1√
2

(
M (a)′

3yβ ⊗ T (b)
x +M (a)′

3xβ ⊗ T (b)
y

)
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5.3 Parameter Optimization

Table 5.4: Parameters and hyperparameters used for the optimization process.

high symmetry lines A−Γ−H−A−L−J−K−Γ−M-K.
number of k points Nk = 451
number of bands Nn = 18
total number of the eigenvalues Ntot = Nk ×Nn = 8118

maximum number of neighbor bonds N (b)
max = 8

number of hidden layers Nh = 4
maximum number of iterations Niter = 500
learning rate α = 0.01

Table 5.5: The number of neurons and the optimization parameters in the DNN-SAMB with Nh = 4.

Layer N (b)
max = 8

neurons # params #
DFT band 8118
1st hidden 4080 33125520
2nd hidden 2040 8325240
3rd hidden 1020 2081820
4rd hidden 510 520710

SAMB 255 130305
TB band 8118
total # 24141 44183595

In this section, we show the results of the parameter optimization and the weight of each SAMB
zj given by Eqs. (5.2.11), (5.2.12), and (5.2.13), to reproduce the Wannier band dispersions obtained
by the DFT calculation using the HSE06 hybrid functional [203]. We choose the high symmetry
lines A−Γ−H−A−L−J−K−Γ−M-K. We use bands at 50 k points in each line, then the number of
k points is Nk = 451 and the number of bands is Nn = 18. The total number of the eigenvalues is
Ntot = Nk × Nn = 8118. We consider up to 8th neighbor bond-cluster, N (b)

max = 8, and we fix the
number of hidden layers as Nh = 4. The maximum number of iterations is fixed as Niter = 500 that
is sufficient to reach convergence, and the learning rate is fixed as α = 0.01. Table 5.5 shows the
number of neurons and the optimization parameters in the DNN-SAMB. The total number of the
SAMB is 255 by considering up to 8th neighbor hopping.
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Figure 5.4: (a) The comparison of the band dispersion and DOS between our optimized TB model (dashed
red lines) and the DFT-based Wannier TB model (solid grey lines). The Fermi energy is taken as
the origin, and the blue shaded area represents the band gap. (b) The enlarged view of the band
dispersion near the Fermi level. (c), (d) The Spin texture around the H point of the Brillouin zone
in Te at the energy, (a) +0.52 eV and (b) +0.45 eV from the Fermi energy. The green arrows denote
the spin direction projected onto each plane. (e) The comparison of the bond length dependence of
the absolute maximum value of the hopping parameters in eV units between the Wannier TB model
(solid grey lines) and our TB model (dashed red lines) considering up to 8th neighbor hoppings.

Following the workflow of the DNN-SAMB shown in Chap. 4, we optimize 255 weights of the
SAMB by minimizing the MSE:

L(z) =
1

2NkNn

∑

nk

(
εTB
nk (z)− εDF

nk

W

)2

, (5.3.1)

where εDF
nk and εTB

nk (z) are the n-th energy eigenvalue of DFT-based Wannier model and our TB
model, and W is the bandwidth of the Wannier model.

The comparison of the band dispersion and DOS between our TB model and the Wannier TB
model are shown in Fig. 5.4(a). By taking up to the 8th neighbors, we achieve the accuracy,

L(z) = 4.4× 10−5. As shown in Fig. 5.4(b), the energy gap at the H point of our optimized TB
model of 0.380 eV is slight larger than that of the reference band of 0.356 eV.

Figures 5.4(c) and (d) show the hedgehog spin texture of the electronic states near the bottom of
the conduction band calculated using the obtained TB model. Although the present method does not
ensure the reproduction of the spin textures of the reference bands, the optimized TB model roughly
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Table 5.6: The optimized parameters of the TB model of Te. The parameters are in units of eV.

∆Q
0 ∆Q

1 ∆Q
2 ∆G

1 λQ1 λQ2 λQ3 λG1 λG2

17.98 0.7596 1.214 -0.6235 -0.3969 -0.4858 0.8596 1.718 -0.3465

tQ1 tQ2 tQ3 tG1 tG2 tG3

-0.6801 -0.8710 0.5200 0.8700 1.624 0.5276

αQ
1 αQ

2 αQ
3 αQ

4 αQ
5 αQ

6 αQ
7

-0.02656 -1.745 -0.8838 0.2195 -2.212 -0.7095 -0.4033

αG
1 αG

2 αG
3 αG

4 αG
5 αG

6 αG
7 αG

8

0.4031 1.749 0.5854 0.1484 -0.5261 0.04437 -1.126 -0.4538

Figure 5.5: (a) The optimized parameters in HCEF and HSOC. (b), (c) The optimized parameters of the (b)
E and (c) ET multipoles in H(1)

t . The orange bars represent the maximum value in each group.

reproduces that obtained by the DFT calculation [194,195]. This success is ascribed to the use of the
SAMB, which imposes strong constraint by symmetry.

Figure 5.4(e) describes the comparison of the bond length dependence of the absolute maximum
value of the hopping parameters between the Wannier TB model and our TB model considering up
to 8th neighbor hoppings. This result indicates that the magnitude of the parameters decreases for
further neighbor hoppings. It should be emphasized that the total number of parameters is much less
than that of the Wannier TB model.

The optimized weights of SAMB in HCEF, HSOC, and H(1)
t are summarized in Table 5.6 and

Fig. 5.5. Among these SAMB, the most dominant contributions containing the ET monopole G0 are
G(as)

0⊥ in HSOC and G(ab)
0z , G(ab)

0⊥ in H(1)
t , which are explicitly given by (See Table 5.3)

G(as)
0⊥ =

1√
2

(
Q(s)

x ⊗G(a)
x +Q(s)

y ⊗G(a)
y

)
, (5.3.2)

G(ab)
0z = T (b)

z ⊗ σ(a)z , (5.3.3)

G(ab)
0⊥ =

1√
2

(
T (b)
x ⊗ σ(a)x + T (b)

y ⊗ σ(a)y

)
, (5.3.4)

The weight of G(as)
0⊥ is λG1 = 1.718 eV which is the most dominant contribution among HCEF+HSOC,

and that of G(ab)
0z is αG

2 = 1.749 eV which is the most dominant contribution among the ET monopoles



112 CHAPTER 5. MICROSCOPIC DESCRIPTION OF CHIRALITY

Figure 5.6: Schematic picture of multipole basis for Te. (a) Local ET monopole, G(as)
0⊥ , (b) itinerant ET

monopole, G(ab)
0z , and (c) local E dipole, Q(as)

z . (d) The inter-parity coupling between the ET
dipole G(as)

z and E dipole Q(as)
z via G(as)

0⊥ .

in H(t)
t , while that of G(ab)

0⊥ is αG
3 = 0.5854 eV. Note that G(as)

0z does not appear as shown in Table 5.3,
because the z component of the E dipole Q(s)

z identically vanishes in the present Hilbert space. Here,
G(a) = l× σ is the atomic ET dipole (l and σ are the dimensionless orbital and half of spin angular
momenta, respectively). Q(s)

µ (µ = x, y) and T (b)
µ (µ = x, y, z) are the µ component of the site-cluster

E dipole and bond-cluster MT dipole, which are defined in Eqs. (5.2.3) and (5.2.4), respectively.
Although there are also the spinless version of G(ab)

0z and G(ab)
0⊥ which are given by replacing σ with

l in Eqs. (5.3.3) and (5.3.4), the weight of these multipole basis is much smaller than that for the
spinful ones.

Figures 5.6(a) and (b) schematically show G(as)
0⊥ and G(ab)

0z , respectively. As shown in Fig. 5.6(a),
G(as)

0⊥ is the local ET monopole having the G(a)-flux structure in the unit cell as Eq. (5.1.2). On
the other hand, G(ab)

0z in Fig. 5.6(b) is the itinerant ET monopole which is a kind of off-site SOC
corresponding to the spin-dependent imaginary hopping. The itinerant ET monopole G(ab)

0z is the
main origin of the Edelstein effect observed in Te [57, 58].

Moreover, the Fourier transform of G(ab)
0z together with G(ab)

0⊥ give rise to the hedgehog spin texture
around the H point in the momentum space as shown in Figs. 5.4(c) and (d) [194,195]. The expansions
of the Fourier-transform of the itinerant ET monopoles matrix G(ab)′

0z [1] and G(ab)′

0⊥ [2] around the H
point, kH, are given as

G(ab)′

0z [1](kH + k) =




0 1 1

1 0 1

1 1 0



⊗ (Czkzσz) + · · · , (5.3.5)

G(ab)′

0⊥ [2](kH + k) =




0 1 1

1 0 1

1 1 0



⊗ (Cxkxσx + Cykyσy) + · · · , (5.3.6)



5.3. PARAMETER OPTIMIZATION 113

where the off-diagonal 3×3 matrix is defined in the ABC sublattice space, and the explicit values of
the coefficients Cz, Cx, and Cy are given by

Cz = − c

18

[
4 sin2(πu)− 3

]
= 0.2221, (5.3.7)

Cx = −
√
3au

8
[2 cos(2πu+ π/3) + 1] = 0.2321, (5.3.8)

Cy = −au

24

[
9 sin(2πu) + 5

√
3 cos(2πu)

√
3
]
= 0.4718. (5.3.9)

Since both αG
2 and αG

3 , corresponding to G(ab)′

0z [1] and G(ab)′

0⊥ [2], and Cz, Cx, and Cy are positive, the
momentum-space representation of the SOC Hamiltonian around the H point is summarized as

HSOC(kH + k) =




0 1 1

1 0 1

1 1 0



 (cxkxσx + cykyσy + czkzσz), (5.3.10)

where ci (i = x, y, z) are positive constants. From the above results, the highest-weight term G(ab)′

0z [1]

together with G(ab)′

0⊥ [2] are the key elements to exhibit the hedgehog spin texture.
These ET monopoles, G(ab)

0z and G(as)
0⊥ , play roles of G(1)

0 and G(2)
0 in Eq. (5.1.3), respectively. As

discussed below, both of them give dominant contributions to the EIR and RIP.
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5.4 Electric-Field Induced Rotation
In this section, we demonstrate the inter-parity conversion between polar and axial vectors expected to
occur in chiral materials via Eq. (5.1.3). Using the obtained TB model, we investigate the electric-field
induced ET dipole response from a microscopic point of view.

Let us consider the linear electric-field induced ET dipole response described by Gi = di;jEj .
Following Ref. [26] and using E dipoles, Qµ (µ = x, y, z), and ET monopole, G0, and quadrupoles,
Gν (ν = u, v, yz, zx, xy), the response tensor di;j is expressed from symmetry point of view as

d =




G0 −Gu +Gv Gxy +Qz Gzx −Qy

Gxy −Qz G0 −Gu −Gv Gyz +Qx

Gzx +Qy Gyz −Qx G0 + 2Gu



 (5.4.1)

Then, nonzero d occurs in the 17 gyrotropic point groups in which one of Qµ, G0, and Gν belong
to the fully symmetric irreducible representation (see Table XVI in Ref. [26]). In particular, the
longitudinal response occurs in eleven chiral point groups, O, T, D4, C4, D2, C2, D6, C6, D3, C3, C1

and two achiral gyrotropic point groups, D2d and S4 (Gv belongs to the fully symmetric irreducible
representation). This constraint is similar to that for the so-called Villari effect in magnetism but the
latter requires time-reversal symmetry breaking in contrast to EIR. In the point group D3, Eq. (5.4.1)
is reduced as

d =




G0 −Gu 0 0

0 G0 −Gu 0

0 0 G0 + 2Gu



 (5.4.2)

Thus, only longitudinal responses can be realized in Te, and then we focus on the screw axis compo-
nent, Gz = dz;zEz.

Before showing the results, we explicitly define the local E- and ET-dipole operators that describe
the input and output of the response. The definition of the E dipole Q(as)

z is given by (See Table 5.3)

Q(as)
z =

1√
2

(
Q(s)

x ⊗G(a)
y −Q(s)

y ⊗G(a)
x

)
, (5.4.3)

Eq. (5.4.3) is similar to Eq. (5.3.2) with a minus sign for the second term, which is schematically shown
in Fig. 5.6(c), i.e., the vortex-like alignment of G(a)

x and G(a)
y (cf. the roles of G and Q are reverted

in Fig. 5.1(d)). The static rotational response is also described by the ET dipole (See Table 5.3),

G(as)
z = Q(s)

0 ⊗G(a)
z (5.4.4)

Using the Kubo formula, the response function in G(as)
z = dz;zEz is expressed as

dz;z = dPz;z[Q] + dVV
z;z [Q] + dVV

z;z [v], (5.4.5)

dPz;z[Q] =
ec

N

εnk=εmk∑

knm

∂fnk
∂εnk

Gnm
zk Qmn

zk , (5.4.6)

dVV
z;z [Q] =

ec

N

εnk #=εmk∑

knm

fnk − fmk

εnk − εmk
Gnm

zk Qmn
zk , (5.4.7)

dVV
z;z [v] = − e!

iN

εnk #=εmk∑

knm

fnk − fmk

(εnk − εmk)2
Gnm

zk vmn
zk . (5.4.8)
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Figure 5.7: (a) Chemical potential µ dependence of dPz;z and dVV
z;z with Eqs. (5.4.6), (5.4.7), and (5.4.8) at

T = 0.01 eV, and N = 643. The inset shows the enlarged plot near the Fermi level. (b) The electric-
field angle dependence of the spin current in yz plane J̄z(s)

z (φ) ∝ cos2(φ) and J̄z(s)
y (φ) ∝ sin(2φ),

and the magnetization due to the Edelstein effect, m̄z(φ) ∝ cos(φ). Ō(φ) denotes the normalized
value of O(φ) by its absolute maximum value.

Here, the matrix element of an operator is Onm
ik = 〈ψnk|Ôi|ψmk〉, fnk = f(εnk) denotes the Fermi

distribution function, e (> 0) is the elementary charge, c is the lattice constant, and N is the number
of lattice sites. The response functions dPz;z and dVV

z;z represent the intra-band Pauli contribution
proportional to the DOS, and inter-band van Vleck contributions, respectively. [Q] and [v] denote
the contributions from the local E dipole and itinerant hopping process via the velocity operator,
vk = ∂H0/∂!k, respectively. Note that dPz;z[v] vanishes identically by the symmetry. We have used
N = 643 and the temperature T = 0.01 eV in the following results.

Figure 5.7(a) shows the chemical potential µ dependence of the response functions. The inter-band
contribution from the itinerant hopping process, dVV

z;z [v], is always dominant irrespective of µ, and the
EIR occurs even in the insulator. Note that the EIR and RIP could occur in any chiral insulators,
which are qualitatively different from the kinetic magneto-electric (Edelstein) effect expected only in
metals due to its intra-band origin. Note that the inverse RIP process is also expected to occur in
both metals and insulators, as their response functions are common with Eqs. (5.4.6) and (5.4.7).

Based on the systematic analysis method [1], we elucidate the dominant contribution in the
response function dz;z. For simplicity, we here consider the TB Hamiltonian in the momentum space
including up to the NN hoppings:

h(k) = HCEF +HSOC +H(1)
t (k). (5.4.9)

The essential parameters in dz;z[Q] which is the contributions arising from the local E dipole
(Q(as)′

z ) are given by evaluating the following quantity [1],

Γij
z;z[Q] =

∑

k

Tr
[
G(as)′

zk hi(k)Q(as)′

zk hj(k)
]
, (5.4.10)
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where G(as)′

zk (Q(as)′

zk ) is the ET (E) dipole operator matrix at k, and hi(k) represents the i-th power
of the Hamiltonian matrix at k, respectively.

In order to clarify the most dominant contributions to dz;z[Q], we show the lowest-order term of
Eq. (5.4.10) at (i, j) = (1, 0):

Γ10
z;z[Q] =

√
3

24
(∆G

1 −
√
2λG2 ). (5.4.11)

As a result, both ∆G
1 and λG2 corresponding to the local ET quadrupoles, G(as)

u and G(as)′
u , contribute

to dz;z[Q]. Note that the higher-order terms of Eq. (5.4.10), which give less important contributions
than the lowest-order one, consist of a linear combination of the terms proportional to the local and
itinerant ET monopoles and quadrupoles. There results are consistent with the above symmetry
argument and Eq. (5.4.2).

On the other hand, the essential parameters in dVV
z;z [v] which is the van Vleck contribution arising

from the itinerant hopping process via the velocity operator, vk = ∂h(k)/∂!k, is given by evaluating
the following quantity [1],

Im
[
Γij
z;z[v]

]
=
∑

k

Tr
[
G(as)′

zk hi(k)vzkh
j(k)

]
. (5.4.12)

where vzk is the z component of the velocity operator.
Similar to Eq. (5.4.11), the most dominant contributions to dVV

z;z [v] is arising from the lowest-order
term at (i, j) = (1, 0) in Eq. (5.4.12):

Im
[
Γ10
z;z[v]

]
=

79

720

[
(
√
2αQ

1 − αQ
2 )(2

√
6αG

2 − 3tG1 )−
3
√
3

2
(αG

1 − αG
6 )t

G
2 − 3

√
2(αG

1 + αG
6 )α

G
3

]
+ F ({z})

(5.4.13)

F ({z}) = − 79

7200

[
−15

√
10αG

1 α
G
5 − 10

√
15αQ

1 α
G
4 − 4

√
30αQ

2 α
G
4 + 18

√
5αQ

2 α
Q
4 − 30

√
2αQ

3 α
Q
6

− 30αQ
3 α

Q
7 − 18

√
15αG

4 t
Q
2 + 18

√
10αQ
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Since both αQ
2 and αG

2 corresponding to the itinerant E quadrupole and ET monopole, Q(ab)′
u and

G(ab)′

0z [1], are relatively large parameters as shown in Figs. 5.5(c) and (d), the term proportional to
αQ
2 α

G
2 in the first term of Eq. (5.4.13) is the most dominant contribution to dVV

z;z [v]. On the other
hand, the second term of Eq. (5.4.13), F ({z}), is less important as shown in Figs. 5.5(c) and (d).
Using the optimized values, ∆G

1 = −0.6235 eV, λG2 = −0.3465 eV, αQ
2 = −1.745 eV, and αG

2 = 1.749

eV, the ratio of the term proportional to αQ
2 α

G
2 in Eq. (5.4.13) to the Eq. (5.4.11) is given by

r =
79

√
6

360 α
Q
2 α

G
2√

3
24

(
∆G

1 −
√
2λG2

) ∼ 170. (5.4.15)

This result indicates that dVV
z;z [v] is dominant, which is consistent with the numerical result as shown in

Fig. 5.7(a) and the highest-weight of the ET monopole G(ab)′

0z [1] gives the most dominant contribution
to dVV

z;z [v]. Thus, the itinerant ET monopole G(ab)
0z is the key component of the EIR response in Te.

Although we have concentrated on the electronic responses in the above, the actual static rota-
tional lattice deformation should occur via electron-lattice couplings. When we restrict our discus-
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sion to a static rotational lattice deformation with the angle ωz with respect to z screw axis, the
electron-lattice coupling can be evaluated by rotating inversely the electronic system by the angle
−ωz [208–210]:

H(z)
el-rot = e−ij

(as)
z ωzH0e

ij
(as)
z ωz −H0 = i[H0, j

(as)
z ]ωz + · · · (5.4.16)

where j(as)z = Q(s)
0 ⊗ (lz +σz/2) represents the total angular momentum. We find the most important

contribution from λG1 G
(as)
0⊥ term in H0 as

H(z)
el-rot ∼ λG1 Q

(as)
z ωz, (5.4.17)

with λG1 = 1.718 eV. Similarly, the perpendicular components are obtained, and they are a factor
1/

√
2 smaller than H(z)

el-rot. This term causes the electric polarization directly by applying a lattice
rotation field with transverse ultrasound waves, for instance.

The induced electronic ET dipole can also be indirectly observed by spin current measurements.
When the induced ET dipole by the electric field Ez is present, two types of nonlinear spin currents
are expected: Jz(s)

z = σz(s)z;zzE2
z and Jz(s)

y = σz(s)y;yzEyEz, where Jν(s)
µ ≡ (Jµσν + σνJµ)/2 is the spin

current operator where Jµ is the electric current operator. As shown in Fig. 5.7(b), the electric-field
angle φ dependences of Jν(s)

µ in yz plane are given by Jz(s)
z (φ) ∝ cos2(φ) and Jz(s)

y (φ) ∝ sin(2φ),
respectively. Note that they are in marked contrast to that of the magnetization due to the Edelstein
effect, mz(φ) = α(J)

z;zEz ∝ cos(φ). Thus, the electric-field induced ET dipole is verifiable by examining
the φ dependence of Jz(s)

z (φ) and Jz(s)
y (φ).

5.5 Absolute Enantioselection by Rotation and Electric
Fields

Finally, we propose a possible experimental approach to achieve absolute enantioselection in chiral
materials without using seed crystals [211]. As shown phenomenologically and microscopically, there
are couplings among G0, G, and Q in chiral materials. Since the conjugate field of Q is an electric field
E and that of G is a rotation field ω such as a rotation of electric field or equivalently time-dependent
magnetic field, the conjugate field of chirality, that is G0, is a product of polar and axial vector fields,
Eµ and ωµ. In the electromagnetism, it is known as the quantity called zilch, which describes optical
chirality [212]. Therefore, as shown in Fig. 5.8 in the case of µ = z, absolute enantioselection can be
achieved by simultaneous application of electric (Eµ) and rotation (ωµ) fields, for instance. The sign

Figure 5.8: Free-energy differences for absolute enantioselection under simultaneous application of rotation
(ωz) and electric (Ez) fields. The sign of ωzEz controls the preferred handedness during crystal-
lization process.
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of ωµEµ controls the preferred handedness during crystallization process, as shown in the left-most
and right-most panels in Fig. 5.8. It should be emphasized that a time-dependent magnetic field Bµ(t)

is favorable with the constant time derivative or net accumulation with definite sign. Additionally,
both electric and magnetic fields must be parallel with each other. Moreover, G0 could also couple
with MµTµ as shown in Eq. (5.1.1), Thus, the combined static magnetic field and time-dependent
electric field (i.e., ∇×B, which is a conjugate field of Tµ), or the combined static magnetic field and
electric current, can be used to achieve absolute enantioselection as well. This generic approach is
applicable to any chiral material.

5.6 Summary
We have unveiled the microscopic description of chirality and possible electric-field induced static
rotational lattice deformation and its inverse response, rotation-field induced electric polarization.

First, based on the symmetry and electronic multipole theory, we have phenomenologically shown
that the chirality corresponds to the electric toroidal monopole G0, which couples with the G0-type
quantities as in Eqs. (5.1.1)-(5.1.3). Note that their conjugate fields are the electric and magnetic
parts of the optical zilch [212], for instance. Thus, the essential couplings as Eqs. (5.1.1)-(5.1.3),
which arise from the higher-order coupling of our TB hamiltonian, are the key element for both the
electric-field induced static rotational lattice deformation and its inverse response.

Second, we have constructed the DFT-based realistic tight-binding model of elemental Te crystal in
terms of the symmetry-adapted multipole basis. As a result, we have derived the quantum-mechanical
operator expressions of G0. Then, from the result of the parameter optimization, we have elucidated
that the local and itinerant G0, shown in Fig. 5.6(b), are the most dominant contributions in the
optimized Hamiltonian. We have also clarified that the itinerant G0 is the key element to exhibit the
hedgehog spin texture in the momentum space.

Third, using the realistic tight-binding model, we have elucidated that an inter-band process,
driven by the itinerant G0 is the crucial ingredient in electric-field induced static rotational lattice
deformation and its inverse response. These responses occur even in the insulators, which is in marked
contrast to the kinetic magneto-electric (Edelstein) effect observed in Te.

Lastly, based on the above responses, we have proposed a generic experimental approach to
realize the absolute enantioselection in chiral materials by the conjugate field of the chirality, such
as simultaneously applied electric and rotation fields, or magnetic field and electric current, and so
on. Since the larger magnitude of a coupling between G0 and its conjugate field is favorable for
efficient achievement of an absolute enantioselection, the quantitative experimental observation of
the responses related to the coupling is crucially important in future development.



Chapter 6

Summary

In this thesis, we have developed a generation scheme of a density-functional theory (DFT) based
effective tight-binding (TB) model by means of the symmetry-adapted multipole theory. Using the
generation scheme, we have constructed the DFT-based realistic tight-binding model for graphene,
SrVO3, MoS2, and elemental Tellurium crystals. In particular, we have investigated the microscopic
description of chirality and its related responses. Since we have already summarized the results in
each chapter, we here summarize this thesis by highlighting the main results.

In Chap. 2, we have clarified the advantages and disadvantages of using a de facto standard DFT-
based tight-binding model based on the Wannier functions and atomic orbitals. Although the Wannier
TB model is superior in terms of its quantification and the localization of the Wannier functions, the
symmetry of the given system is not taken into account in the model construction process. Due to
the irrelevance of the symmetry in the model construction, the microscopic expression of the order
parameter and the microscopic mechanism of their related physics often remain unclear. On the other
hand, the widely used Slater-Koster approach takes partially into account the symmetry and provides
an intuitive understanding of the electronic band structure and various physics of interest base on
a few parameters. However, essential parameters would often be lost in the TB model owing to the
lack of the effect from the surrounding environment around the bond of the electron hopping.

In Chap. 3, we have introduced the symmetry-adapted multipole basis. First, we have decomposed
the electronic degrees of freedom into orbital/spin and the sublattice parts which are described by the
atomic multipole basis and the site/bond-cluster multipole basis, respectively. We have clarified that
the both atomic and site/bond-cluster multipole basis constitute the complete orthonormal basis set
in the given Hilbert space. By combining the atomic and site/bond-cluster multipole basis, we have
constructed the symmetry-adapted multipole basis which enable us to describe any electronic degrees
of freedom in the isolated and periodic multi-site systems, such as molecules and crystals.

In Chap. 4, we have demonstrated a systematic generation scheme of the DFT-based symmetry-
adapted tight-binding model given by the linear combination of the symmetry-adapted multipole
basis. We optimize the model parameters, i.e., the weights of each multipole basis, so as to reproduce
a given DFT band dispersion. To efficiently optimize the weights, we utilized machine learning
techniques and introduced a deep neural network where the symmetry-adapted multipole basis plays
a role of a neuron in the network. With the use of the deep neural network, we can perform highly
efficient optimization with high accuracy and less initial guess dependence of the model parameters.
We have demonstrated our method for graphene, SrVO3, and monolayer MoS2. We have achieved
accuracy of less than 10−4 of the mean squared error between the normalized energy eigenvalues of
the optimized tight-binding model and that of the DFT or DFT-based Wannier calculation. Most
remarkably, we obtain highly accurate optimized TB model although our TB model contains fewer
model parameters than the Wannier TB model. The proposed method refers only to the energy
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eigenvalues. As a consequence, there is no guarantee to reproduce the orbital dependence of the
electronic states in the reference bands. Nevertheless, the optimized TB Hamiltonian well reproduce
the orbital dependence of the electronic states of SrVO3. This success is ascribed to the use of the
symmetry-adapted multipole basis, which imposes strong constraint by symmetry. However, when
the model contains multiple sublattices or orbitals, such as monolayer MoS2, our method can not
precisely reproduce the orbital dependence of the electronic states of the reference bands. Thus, it is
a future work to develop an optimization method that takes into account the orbital dependence of
the reference bands. It should be emphasized that our method is applicable to any crystallographic
structure within 230 space group. Furthermore, the deep neural network consisting of the symmetry-
adapted multipole basis could be useful in various fields such as materials informatics.

In Chap. 5, we have elucidated the microscopic description of chirality, i.e., electric toroidal
monopole, by taking elemental Te crystal as the simplest example of chiral crystals. Based on the
systematic generation scheme introduced in Chap. 4, we have constructed the DFT-based realistic
tight-binding Hamiltonian of Te. Then, we have elucidated that the local and itinerant electric toroidal
monopoles are the most dominant contributions in the Hamiltonian. Furthermore, we have clarified
that the itinerant electric toroidal monopole is the crucial element to realize the possible electric-field
induced static rotational lattice deformation. In contrast to the kinetic magneto-electric (Edelstein)
effect observed in chiral metals, the above response and its inverse response, a rotation-field induced
electric polarization, could appear in both chiral metals and insulators. Lastly, we have also proposed
a possible experimental approach to realize the absolute enantioselection in chiral materials by means
of the conjugate field of chirality. The conjugate field of chirality is a product of polar and axial
vectors with the same time-reversal symmetry, such as electric and rotation fields, or magnetic field
and electric current, and so on. The sign of the combined field controls the preferred handedness
during the crystallization process.

In future works, based on the proposed generation scheme of the DFT-based tight-binding model,
we will study various unconventional multipole orders, including chirality, and their related linear and
nonlinear responses. We will also resolve some of the difficulties in the present method. In particular,
we will develop a method to reproduce the orbital dependence of the reference bands, which will
broaden the range of applications of our method. For example, the improved method is expected to
allow us to discuss the relationship between band topology and multipole basis. We will also extend
the range of the method from the electronic system to the phononic system. We can use the method to
discuss the chiral-phonon-related phenomena and the unconventional spin-triplet superconductivity
mediated by a proper electron-phonon coupling hidden in the chiral materials.



Appendix A

Density Functional Theory

A.1 Born-Oppenheimer Approximation

Some approximations are indispensable to calculate the many-body problem of materials consisting
of electrons and nuclei. The first step is the Born-Oppenheimer (BO) approximation [213]. BO
approximation is based on the fact that the kinetic energy of nuclei is much smaller than that of elec-
trons, which rationalizes neglecting the nuclear motion and simplifies the problem to the interacting
electronic systems within the space-fixed nuclei.

Let us consider the non-relativistic Schrödinger equation of electrons and nuclei in materials:

HΨ(r,R) = EΨ(r,R) (A.1.1)

where H(E) is the total Hamiltonian (energy spectra) of the system and Ψ(r,R) is the many body
wave function containing Ne electrons r = (r1, r2, . . . , rNe) and Nn nuclei R = (R1,R2, . . . ,RNn).
The explicit expression of the Hamiltonian is given by

H = T (e) + T (n) + V (ee) + V (nn) + V (en) (A.1.2)

T (e) = −
Ne∑

i

!2
2me

∇2
i , T (n) = −

Nn∑

I

!2
2MI

∇2
I (A.1.3)

V (ee) =
e2

2

∑

i>j

1

|ri − rj |
, V (nn) =

e2

2

∑

I>J

zIzJ
|RI −RJ |

, V (en) = −e2
Ne∑

i

Nn∑

I

zI
|ri −RI |

(A.1.4)

where me, MI , and e are mass of electrons, mass of nuclei, and elementary charge, respectively.
T (e) (T (n)) represents the kinetic energy operator of electrons (nuclei). V (ee), V (nn), and V (en) de-
scribe the Coulomb interactions between pairs of electrons, pairs of nuclei, and between electrons
and nuclei, respectively. The Hamiltonian includes microscopic information about the system, i.e.,
crystallographic symmetry, species and positions of atoms, and interactions between pairs of electrons
and nuclei.

The BO approximation is based on T (e) 7 T (n) because me/M 8 1 (M is an average value of
MI). As a consequence, T (n) can be approximately neglected in Eq. (A.1.2) and the nuclear positions
R are fixed in space. In the range of the BO approximation, the electronic Hamiltonian is given by

H(e) = T (e) + V (ee) + Vext(R) + E(nn)(R) (A.1.5)

where Vext(R) ≡ V (en)(fixedR) represents the external potential from the nuclei fixed in space and
121
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E(nn)(R) ≡ V (nn)(fixedR) is a constant value of the interaction between pairs of nuclei fixed in space.
The corresponding Schrödinger equation is given by

H(e)Ψ(e)(r;R) = E(e)Ψ(e)(r;R) (A.1.6)

where Ψ(e)
n (r;R) is an electronic wave function as a function of R. Note that T (e) and V (ee) are

material-independent terms, while microscopic information unique to the system is involved in Vext.
The BO approximation separates the electronic and nuclear degrees of freedom, and then the many-
body wave function is expressed as a multiplication of the electronic and nuclear parts:

Ψ(r,R) , Φ(n)(R)Ψ(e)(r;R) (A.1.7)

where Φ(n)(R) is a nuclear wave function obtained by solving the following nuclear Schrödinger
equation:

H(n)Φ(n)(R) = EΦ(n)(R) (A.1.8)

H(n) ≡ T (n) + E(e) (A.1.9)

A.2 Density Functional Theory

This section summarizes the concept of DFT and several related approximations [214–219]. In this
section, we neglect the spin degrees of freedom for simplicity without loss of generality.

A.2.1 Hohenberg-Kohn Theorems

Figure A.1: Schematic picture of the Hohenberg-Kohn Theorem I. Based on the Schrödinger equation (SE),
described by a black thick arrow, Vext(r) determines the Hamiltonian H, Ψ0(r), and n0(r) in
a sequence. The Hohenberg-Kohn Theorem I is described by a red arrow, which complete the
one-to-one correspondence between Vext(r) and n0(r).

According to the Born-Oppenheimer (BO) approximation [213] (See Appendix A.1 in detail), we
focus on the electron degrees of freedom and consider the electronic Hamiltonian:

H = T + Vint + Vext (A.2.1)

T = −
N∑

i

!2
2me

∇2
i , Vint =

e2

2

∑

i>j

1

|ri − rj |
, Vext = −e2

N∑

i

M∑

I

zI
|ri −RI |

(A.2.2)

The heart of DFT is based on the two Hohenberg-Kohn Theorems [220]:
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I. The external potential Vext(r), which reproduce the ground-state electron density n0(r), is
uniquely determined by n0(r).

The proof of Theorem I is given in Appendix A.3. Since the Hamiltonian H is also obtained by
Theorem I, many-body states including ground-state Ψ0(r) and any exited state Ψn(r) are determined
uniquely by n0(r). Furthermore, any physical quantity obtained by using Ψn(r), such as total energy,
kinetic energy, and the expectation value of Coulomb potential, is also determined by n0(r). Note
that Theorem I provides no prescription for solving the many-body problem with given Vext(r). The
schematic picture of Theorem I is shown in Fig. A.1.

II. The total energy as the electron density functional is given by

E[n] = F [n] +

∫
dr n(r)Vext(r) (A.2.3)

F [n] = T [n] + Eint[n] (A.2.4)

where F [n] is defined universally independent of the systems. Based on the variational principle,
the electron density that gives the minimum energy corresponds to the ground-state electron
density.

The proof of Theorem II is given in Appendix A.4. Theorem II enables us to obtain the ground-state
energy without solving the many-body problem. It should be emphasized that there are still two
problems. First, Theorem II only provides the properties of the ground state, and no information on
the excited states is given. Second, although Theorem II proves the existence of F [n], the explicit
expression of F [n] has been still unknown until the present day.

A.2.2 Kohn-Sham Approach

Figure A.2: Schematic picture of the KS approach. A blue symbol of “=” represents the equivalency between
the exact many-body system and the auxiliary one-particle system. By solving the KS equation
self-consistently, one can obtain the KS orbitals ψi(r). In principle, ψi(r) determines any property
of the exact many-body system.

Following the Hohenberg-Kohn Theorems, we can obtain the exact ground-state energy and elec-
tron density by minimizing the functional E[n]. However, there is still no concrete prescription for
solving the many-body problem because of the absence of the exact form of F [n]. Nevertheless, the
DFT calculation has been widely used since the advent of an approach proposed by Kohn and Sham
in 1965, so-called Kohn-Sham (KS) approach [221].

A crucial idea of the KS approach is to replace the difficult-to-analyze many-body system with
an auxiliary one-particle system described by

HKS = T + VKS(r) (A.2.5)
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where VKS(r) represents an auxiliary external potential whose explicit expression is not given at this
stage. The KS approach assumes that the ground-state electron density of the auxiliary system nKS(r)

is equivalent to that of the exact ground-state of the real system, n0(r) = nKS(r) as shown in Fig. A.2.
Since the Hohenberg-Kohn Theorems hold even in the absence of the Coulomb interaction among
electrons, VKS(r) is uniquely determined by n0(r). The ground-state wave function of Eq. (A.2.5) is
given by the Slater determinant of the KS orbitals ||ψ1(r) · · ·ψN (r)|| (N is the number of electrons)
with the energy eigenvalues {εi(r)}. As a result, the electron density is given by

n(r) = nKS(r) =
N∑

i=1

|ψi(r)|2 (A.2.6)

and the kinetic energy is given by

TKS[n] =
!2
2me

N∑

i=1

∫
dr |∇ψi(r)|2 (A.2.7)

Here, let us define the Hartree energy as

EH[n] =
e2

2

∫
drdr′

n(r)n(r′)

|r − r′| (A.2.8)

Using TKS[n] and EH[n], the total energy functional given in Eq. (A.2.3) recast as follow:

EKS[n] = TKS[n] + EH[n] + Exc[n] +

∫
dr n(r)Vext(r) (A.2.9)

Exc[n] = F [n]− (TKS[n] + EH[n]) = (T [n]− TKS[n]) + (Eint[n]− EH[n]) (A.2.10)
F [n] = T [n] + Eint[n] (A.2.11)

where Exc[n] represents the exchange-correlation energy that is also the functional of n(r). Exc[n]

is the difference between the kinetic energy (interaction energy) of the exact many-body system and
that of the auxiliary one-body system where the electron-electron interaction is replaced with the
Hartree energy. In other words, all difficulties in the calculation are absorbed in Exc[n].

Using Lagrange’s method of undetermined multipliers, the variational equation of Eq. (A.2.9)
with respect to ψ∗

i (r) is given by

HKSψi(r) = εiψi(r) (A.2.12)

Equation (A.2.12) is called KS equation, and ψi(r) and εi are KS orbital and KS energy corre-
sponding to ψi(r), respectively. Note that εi is introduced as an undetermined multiplier under the
normalization condition 〈ψi|ψi〉 = 1. KS Hamiltonian HKS is explicitly given by

HKS = − !2
2me

∇2 + VKS(r) (A.2.13)

VKS(r) = Vext(r) + VH(r) + Vxc(r) (A.2.14)

VH(r) =
δEH

δn(r)
=

∫
dr′

n′(r)

|r − r′| (A.2.15)

Vxc(r) =
δExc

δn(r)
(A.2.16)

By solving Eq. (A.2.12) self-consistently, the ground-state wave function and energy are obtained,
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and the total energy is given by Eq. (A.2.9).
Following Hellman-Feynman theorem, Exc[n] can be reexpressed as

Exc[n] =
e2

2

∫
drdr′

n(r)n(r′)

|r − r′|
[
ḡ(r, r′)− 1)

]
(A.2.17)

ḡ(r, r′) =

∫ 1

0
dλ

[
1 +

〈Ψλ | δn̂(r)δn̂(r′) |Ψλ〉 − δ(r − r′)n(r)

n(r)n(r′)

]
(A.2.18)

where δn̂(r) = n̂(r) − n(r), Ψλ is the electron wave function when the electron charge is
√
λe2

(0 ≤ λ ≤ 1), and ḡ(r, r′) is the pair-correlation function averaged over λ. In Eq. (A.2.17),

nxc(r, r
′) = n(r′)

[
ḡ(r, r′)− 1)

]
(A.2.19)

∫
dr′ nxc(r, r

′) = −1 (A.2.20)

is called the exchange-correlation hole. Thus, Eq. (A.2.17) can be interpreted as the Coulomb inter-
action between the electron and exchange-correlation hole:

Exc[n] =

∫
dr n(r)εxc([n], r) (A.2.21)

εxc([n], r) =
e2

2

∫
dr′

nxc(r, r′)

|r − r′| (A.2.22)

where εxc([n], r) is a per volume exchange-correlation energy.
By using the spherical harmonics Ylm(r̂), r̂ = r/|r|, nxc(r, r′) is expressed as

nxc(r, r
′) =

∞∑

l=0

l∑

m=−l

nlm(r, |r − r′|)Ylm(r̂ − r′) (A.2.23)

nlm(r, |r − r′|) =
∫

dr̂ nxc(r, r
′)Y ∗

lm(r̂) (A.2.24)

Substituting Eq. (A.2.23) into Eq. (A.2.22), εxc([n], r) is expanded as

εxc([n], r) =
e2

2

√
π

∫ ∞

0
dη η2

n00(r, η)

η
, η =

∣∣r − r′
∣∣ (A.2.25)

This result indicates that the exchange-correlation energy depends only on the angular mean of
nxc(r, r′) instead of its detailed shape. In other words, the exact hole density can be replaced with
a more straightforward definition that reproduces the angular mean of the original one, rationalizing
the local-density approximation discussed below.

Note that the KS approach is a rigorous formulation since no approximation except for the BO
approximation is applied at the present stage. Therefore, if the exact form of εxc([n], r) is discovered,
the ground-state electron density and energy of the many-body system are obtained by solving the
KS equation. However, since εxc([n], r) is a complicated functional that depends on the KS orbitals
ψi(r), the remaining problem is how to define an approximate form of εxc([n], r). The reliability of
the KS approach depends on the validity of the approximate form of εxc([n], r).

The local density approximation (LDA) [221] is a well-known approximation that the exchange-
correlation energy is replaced with that of the homogeneous electron gas, εLDA

xc (n(r)) = εhomxc (n(r)).
Although LDA provides surprisingly well results, especially for light metals, it is rationalized only
when the electron density is homogeneous. See Appendix A.5 in detail.
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As a next step, LDA was revised by considering the exchange-correlation energy as the functional
of not only n(r) but also the absolute value of its gradient |∇n(r)|, εGGA

xc (n(r), |∇n(r)|), which is
called the generalized gradient approximation (GGA) [222–225]. GGA is one of the most widely
used approximations in various field of science, and there are several definitions of εGGA

xc proposed by
Becke (B88) [226], J. P. Perdew and Y. Wang (PW91) [222,225], J. P. Perdew, Burke and Ernzerhof
(PBE) [186], and so on.

As discussed above, by using approximate expression of the exchange-correlation energy, the KS
equation can be solved numerically. Since the potential (input) in the KS Hamiltonian depends on
the electron density n(r) (output), an iterative procedure is necessary to find the KS orbital and
energy, which is often called a self-consistent field (SCF) calculation as shown in Fig. A.3.

Figure A.3: Workflow of the SCF calculation of the KS equation.
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A.3 Proof of Hohenberg-Kohn Theorem I

Let us assume that two different external potentials V (1)
ext (r) and V (2)

ext (r) give the same ground-state
electron density n0(r) (the ground-state is not degenerate) [220]. V (1)

ext (r) and V (2)
ext (r) give two

different Hamiltonians H(1) and H(2) and two different ground-state wave functions Ψ(1) and Ψ(2).
Then, since Ψ(2) (Ψ(1)) is not the ground-state of H(1) (H(2)), the following inequalities are satisfied
as

E(1) =
〈
Ψ(1)

∣∣∣H(1)
∣∣∣Ψ(1)

〉
<
〈
Ψ(2)

∣∣∣H(1)
∣∣∣Ψ(2)

〉
= E(2) +

∫
dr
[
V (1)
ext (r)− V (2)

ext (r)
]
n0(r) (A.3.1)

E(2) =
〈
Ψ(2)

∣∣∣H(2)
∣∣∣Ψ(2)

〉
<
〈
Ψ(1)

∣∣∣H(2)
∣∣∣Ψ(1)

〉
= E(1) +

∫
dr
[
V (2)
ext (r)− V (1)

ext (r)
]
n0(r) (A.3.2)

By adding the both sides of Eqs. (A.3.1) and (A.3.2), a contradictory inequality is obtained as
E(1) +E(2) < E(1) +E(2). As a consequence, the assumption that V (1)

ext (r) and V (2)
ext (r) give the same

ground-state electron density n0(r) is incorrect. In other words, the external potential Vext(r), which
reproduces the ground-state electron density n0(r), is uniquely determined by n0(r).

A.4 Proof of Hohenberg-Kohn Theorem II

Let us consider the set of wave functions {Ψα(r)} that each Ψα(r) gives the same electron density
n(r) (not ground-state electron density) [227, 228]. The total energy for Ψα(r) is given by

Eα = 〈Ψα |H |Ψα〉 = 〈Ψα |T |Ψα〉+ 〈Ψα |Vint |Ψα〉+
∫

dr Vext(r)n(r) (A.4.1)

Then, by fixing the value of n(r) and determining Ψα(r) that gives minimum of {Eα}, the resultant
total energy becomes the functional of n(r):

E[n] = minα [〈Ψα |T |Ψα〉+ 〈Ψα |Vint |Ψα〉] +
∫

dr Vext(r)n(r) (A.4.2)

= F [n] +

∫
dr Vext(r)n(r) (A.4.3)

F [n] ≡ minα [〈Ψα |T |Ψα〉+ 〈Ψα |Vint |Ψα〉] = T [n] + Eint[n] (A.4.4)

F [n] is determined by n(r) uniquely. Based on the variational principle, the electron density n(r)

that gives the minimum energy is nothing but the ground-state electron density n0(r).

A.5 Various Approximations for Exchange-Correlation En-
ergy

As discussed in Sec. A.2.2, the exchange-correlation energy functional Exc[n] must be approximately
treated in the practical calculation. The representative approximations are the local density approxi-
mation (LDA) and generalized gradient approximation (GGA). Since there are numbers of formulation
of LDA and GGA, some major definitions of functionals and their properties are shown in this section.
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A.5.1 Local Density Approximation
In the KS approach, by explicitly separating the kinetic energy and long-range Hartree energy terms,
it can be justified to approximately treat Exc[n] as a local functional of n(r). As a first step, Exc[n]

is approximately expressed as an exchange-correlation energy of the homogeneous electron gas with
the local electron density n(r):

ELDA
xc [n] =

∫
dr n(r)εhomxc (n(r)) (A.5.1)

This is the local density approximation (LDA) [221]. εhomxc is a per volume exchange-correlation energy
of the homogeneous electron gas that is separated into the exchange and correlation contributions

εhomxc (n(r)) = εhomx (n(r)) + εhomc (n(r)) (A.5.2)

where the former is explicitly given by

εhomx (n(r)) = −3e2

4

(
3

π

)1/3

n(r)1/3 (A.5.3)

Although the exact form of εhomc (n(r)) is unknown, there are some approximate analytical definitions.

1. Perdew-Zunger (PZ-LDA) correlation functional [183]

εPZ−LDA
c (rs) =

{
−0.0480− 0.0116rs + 0.0311 ln(rs) + 0.0020rs ln(rs) (rs < 1)

−0.1423/(1 + 1.0529
√
rs + 0.3334rs) (rs > 1)

(A.5.4)

where rs is the Wigner-Seitz radius given by

4

3
πr3s =

1

n
(A.5.5)

2. Vosko-Wilk-Nusair (VWN-LDA) correlation functional [229]

εVWN−LDA
c (rs) =

A

2

{
ln

[
rs

rs + b
√
rs + c

]
+

2b√
4c− b2

tan−1

(√
4c− b2

2
√
rs + b

)

− bx0
x20 + bx0 + c

[
ln

(
(
√
rs − x0)2

rs + b
√
rs + c

)
+

2(b+ 2x0)√
4c− b2

tan−1

(√
4c− b2

2
√
rs + b

)]}

(A.5.6)

where x0 = −0.10498, b = 3.72744, c = 12.9352, A = 0.0621814.

3. Perdew-Wang (PW-LDA) correlation functional [222,225]

εPW−LDA
c (rs) = −2a

∫
drn(1− αrs) ln



1 + 1

2a
(
β1r

1/2
s + β2rs + β3r

3/2
s + β4r2s

)



 (A.5.7)

where a = 0.031097,α = 0.21370,β1 = 7.5957,β2 = 3.5876,β3 = 1.6382,β4 = 0.49294.

Note that these correlation functionals are obtained recursively by fitting some numerical quantum
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Monte Carlo (QMC) calculation [230] that gives exact results for the homogeneous electron gas [231–
233].

A.5.2 Generalized Gradient Approximation
The next approximation is to treat Exc[n] as the functional of not only n(r) but also the absolute
value of its gradient |∇n(r)|:

EGGA
xc [n] =

∫
dr n(r)εxc(n(r), |∇n(r)|) (A.5.8)

This is so-called the generalized gradient approximation (GGA) [222–225] and εxc(n(r), |∇n(r)|) rep-
resents the per volume exchange-correlation energy that is separated into the exchange and correlation
contributions

εxc(n(r), |∇n(r)|) = εx(n(r), |∇n(r)|) + εc(n(r), |∇n(r)|) (A.5.9)

Although the exact forms of εx(n(r), |∇n(r)|) and εc(n(r), |∇n(r)|) are unknown, there are some
approximate analytical definitions.

• Exchange functional

The exchange functional of GGA has a conventional general form:

EGGA
x = −e2

2

↑,↓∑

σ

∫
dr n4/3

σ (r)K(xσ) (A.5.10)

where nσ is the spin σ =↑, ↓ electron density, and xσ is the dimensionless parameter given by

xσ =
|∇nσ|
n4/3
σ

(A.5.11)

In the case of LDA,

KLDA = 3

(
3

4π

)1/3

(A.5.12)

1. Becke (B88) exchange functional [226]

KB88−GGA(xσ) = KLDA +
2ax2σ

1 + 6axσ sinh
−1(xσ)

(A.5.13)

where a = 0.0042.

2. Perdew-Wang (PW91) exchange functional [222,225]

KPW91−GGA(xσ) =
KLDA

1 + 6axσ sinh
−1(xσ) + 0.004x4σ/(48π

2)4/3

×
{
1 + 6axσ sinh

−1(xσ) +
[
0.2743− 0.1508 exp

(
−100x2σ/(48π

2)2/3
)]

x2σ/(48π
2)2/3

}

(A.5.14)

where a is same as that of B88 exchange functional.
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3. Perdew-Burke-Ernzerhof (PBE) exchange functional [186]

KPBE−GGA(xσ) = KLDA

[
1 + κ− κ

1 + µx2σ/(48π
2)2/3κ

]
(A.5.15)

where µ = 0.21951 and κ = 0.804.

• Correlation functional

1. Perdew-Wang (PW91) correlation functional [222]

εPW91
c [n, s, t] = εPW−LDA

c (rs) +H[n, s, t] (A.5.16)

H[n, s, t] =
β2

2α
ln

(
1 +

2α

β

t2 +At4

1 +At2 +A2t4

)

+ Cc0

(
C1 +

C2 + C3rs + C4r2s
1 + C5rs + C6r2s + C7r3s

− Cc1

)
t2 exp(−100s2) (A.5.17)

A =
2α

β

[
exp

(
−2αεPW−LDA

c (rs)

β2n

)
− 1

]−1

, s =
|∇n|
2kFn

, t =
|∇n|
2ksn

(A.5.18)

where kF = (3π2n)1/3 and ks = (4kF/π)1/2. The explicit values of α,β, Cc0 , Cc1 , Ci (i = 1 ∼ 7)

are given in Refs. [225,234].

2. Perdew-Burke-Ernzerhof (PBE) correlation functional [186]

εPBE−GGA
c [n, ζ, t] = εPW−LDA

c (rs) +H[n, ζ, t] (A.5.19)

H[n, ζ, t] =
e2

aB
γφ3 ln

(
1 +

β

γ
t2

1 +At2

1 +At2 +A2t4

)
(A.5.20)

A =
β

γ

[
exp

(
−ε

PW−LDA
c (rs)

γφ3e2/aB

)
− 1

]−1

(A.5.21)

φ =
(1 + ζ)3/2 + (1− ζ)3/2

2
, t =

|∇n|
2φksn

, ks =

√
4kF
πaB

, aB =
!2

mee2

(A.5.22)

where ζ = (n↑ − n↓)/n is a spin polarization and γ = 0.031091 and β = 0.066725.

In addition to GGA, the meta GGA functionals, which include the second derivative of n(r), has
been proposed [235, 236]. In spite of these improvements, LDA/GGA is still insufficient to estimate
the energy band gap correctly. In particular, LDA/GGA usually underestimates the band gap of
the strongly correlated 3d insulators. To consider the strong Coulomb repulsion between pairs of
electrons, a methodology that accounts for a phenomenological Hubbard U parameter in LDA/GGA
has been proposed (LDA/GGA + U) [237]. There is another approximate approach using the so-
called hybrid functional that is based on the ansatz that the exact exchange functional is defined
between the Hartree-Fock and GGA exchange functionals, such as the B3LYP [238], PBE0 [239], and
HSE [240], and so on.



Appendix B

Atomic Orbitals

We summarize the atomic orbitals used as the initial trial wave function for the Wannier function in
the Wannier90 software package [72–74]. We write the atomic orbitals as

ϕnlm(r) = Rnl(r)glm(r̂) (B.0.1)

where Rnl(r) is a radial part and glm(r̂) is a real representation of angular part (m is a subscript of
the real representation orbitals) wave functions, respectively.

B.1 Radial Part
As for the radial function Rnl(r), the set of solutions to the radial part of the hydrogenic Schrödinger
equation for l = 0 (1s, 2s, 3s orbitals) is available:

R1(r) ≡ 2α3/2 exp(−αr) (B.1.1)

R2(r) ≡
1

2
√
2
α3/2(2− αr) exp(−αr/2) (B.1.2)

R3(r) ≡
√

4

27
α3/2

(
1− 2αr/3 + 2α2r2/27

)
exp(−αr/3) (B.1.3)

where the subscript l = 0 in Rnl is neglected and α = Z/aB (aB is the Bohr radius). The default
value of α is α = 1.0. Rn(r) is orthonormal,

∫
dr r2Rn(r)Rn′(r) = δnn′ (B.1.4)

B.2 Angular Part
As for the angular part of the atomic wave function, the real representation for s, p, d, and f orbitals
are defined by [26]

s(l = 0)

gs =
1√
4π

(B.2.1)

p(l = 1)

gx =

√
3

4π

x

r
, gy =

√
3

4π

y

r
, gz =

√
3

4π

z

r
(B.2.2)
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d(l = 2)

gu =

√
5

4π

1

2

3z2 − r2

r2
, gv =

√
5

4π

√
3

2

x2 − y2

r2
, gyz =

√
5

4π

√
3
yz

r2

gzx =

√
5

4π

√
3
zx

r2
, gxy =

√
5

4π

√
3
xy

r2
(B.2.3)

f(l = 3)

gxyz =

√
7

4π

√
15

xyz

r3

gαx =

√
7

4π

1

2

x
(
5x2 − 3r2

)

r3
, gαy =

√
7

4π

1

2

y
(
5y2 − 3r2

)

r3
, gαz =

√
7

4π

1

2

z
(
5z2 − 3r2

)

r3

gβx =

√
7

4π

√
15

2

x
(
y2 − z2

)

r3
, gβy =

√
7

4π

√
15

2

y
(
z2 − x2

)

r3
, gβz =

√
7

4π

√
15

2

z
(
x2 − y2

)

r3

(B.2.4)

Here, l in glm is neglected and gm is orthonormal,
∫

dr̂ gm(r̂)gm′(r̂) = δmm′ (B.2.5)
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B.3 Slater-Koster Parameters

Table B.1: Slater-Koster parameters [99]. (l,m, n) is the direction cosine of the bond.

Vs,s Vssσ

Vs,x lVspσ

Vx,x l2Vppσ +
(
1− l2

)
Vppπ

Vx,y lm(Vppσ − Vppπ)

Vx,z ln(Vppσ − Vppπ)

Vs,xy

√
3lmVsdσ

Vs,x2−y2
1
2

√
3
(
l2 −m2

)
Vsdσ

Vs,3z2−r2
[
n2 − 1

2

(
l2 +m2

)]
Vsdσ

Vx,xy

√
3l2mVpdσ +m

(
1− 2l2

)
Vpdπ

Vx,yz

√
3lmnVpdσ − 2lmnVpdπ

Vx,zx

√
3l2nVpdσ + n

(
1− 2l2

)
Vpdπ

Vx,x2−y2
1
2

√
3l

(
l2 −m2

)
Vpdσ + l

(
1− l2 +m2

)
Vpdπ

Vy,x2−y2
1
2

√
3m

(
l2 −m2

)
Vpdσ −m

(
1 + l2 −m2

)
Vpdπ

Vz,x2−y2
1
2

√
3n

(
l2 −m2

)
Vpdσ − n

(
l2 −m2

)
Vpdπ

Vx,3z2−r2 l
[
n2 − 1

2

(
l2 +m2

)]
Vpdσ −

√
3ln2Vpdπ

Vy,3z2−r2 m
[
n2 − 1

2

(
l2 +m2

)]
Vpdσ −

√
3mn2Vpdπ

Vz,3z2−r2 n
[
n2 − 1

2

(
l2 +m2

)]
Vpdσ +

√
3n

(
l2 +m2

)
Vpdπ

Vxy,xy 3l2m2Vddσ +
(
l2 +m2 − 4l2m2

)
Vddπ +

(
n2 + l2m2

)
Vddδ

Vxy,yz 3lm2nVddσ + ln
(
1− 4m2

)
Vddπ + ln

(
m2 − 1

)
Vddδ

Vxy,zx 3l2mnVddσ +mn
(
1− 4l2

)
Vddπ +mn

(
l2 − 1

)
Vddδ

Vxy,x2−y2
3
2 lm

(
l2 −m2

)
Vddσ + 2lm

(
m2 − l2

)
Vddπ + 1

2 lm
(
l2 −m2

)
Vddδ

Vyz,x2−y2
3
2mn

(
l2 −m2

)
Vddσ −mn

[
1 + 2

(
l2 −m2

)]
Vddπ +mn

[
1 + 1

2

(
l2 −m2

)]
Vddδ

Vzx,x2−y2
3
2nl

(
l2 −m2

)
Vddσ + nl

[
1− 2

(
l2 −m2

)]
Vddπ − nl

[
1− 1

2

(
l2 −m2

)]
Vddδ

Vxy,3z2−r2
√
3lm

[
n2 − 1

2

(
l2 +m2

)]
Vddσ − 2

√
3lmn2Vddπ + 1

2

√
3lm

(
1 + n2

)
Vddδ

Vyz,3z2−r2
√
3mn

[
n2 − 1

2

(
l2 +m2

)]
Vddσ +

√
3mn

(
l2 +m2 − n2

)
Vddπ − 1

2

√
3mn

(
l2 +m2

)
Vddδ

Vzx,3z2−r2
√
3ln

[
n2 − 1

2

(
l2 +m2

)]
Vddσ +

√
3ln

(
l2 +m2 − n2

)
Vddπ − 1

2

√
3ln

(
l2 +m2

)
Vddδ

Vx2−y2,x2−y2
3
4

(
l2 −m2

)2
Vddσ +

[
l2 +m2 −

(
l2 −m2

)2]
Vddπ +

[
n2 + 1

4

(
l2 −m2

)2]
Vddδ

Vx2−y2,3z2−r2
1
2

√
3
(
l2 −m2

) [
n2 − 1

2

(
l2 +m2

)]
Vddσ +

√
3n2

(
m2 − l2

)
Vddπ + 1

4

√
3
(
1 + n2

) (
l2 −m2

)
Vddδ

V3z2−r2,3z2−r2
[
n2 − 1

2

(
l2 +m2

)]2
Vddσ + 3n2

(
l2 +m2

)
Vddπ + 3

4

(
l2 +m2

)2
Vddδ





Appendix C

Multipole

C.1 Vector Spherical Harmonics
Detailed information about the vector spherical harmonics is summarized in Appendix A in Ref. [110].

The vector spherical harmonics Y l+k
lm is defined by [108,110]

Y l+k
lm (r̂) =

1∑

n=−1

〈l + k,m− n; 1, n|lm〉Yl+k,m−n(r̂)e1n, (k = ±1) (C.1.1)

e10 = ez, e1± = ∓ 1√
2
(ex ± iey) (C.1.2)

Using the spherical harmonics Ylm, the explicit expression of Y l+k
lm is given by

Y l
lm(r̂) =

1√
l(l + 1)

lYlm(r̂), (C.1.3)

Y l−1
lm (r̂) =

1√
l(2l + 1)

[lr̂ − i(r̂ × l)]Ylm(r̂), (C.1.4)

Y l+1
lm (r̂) =

−1√
(l + 1)(2l + 1)

[(l + 1)r̂ + i(r̂ × l)]Ylm(r̂). (C.1.5)

Y l+k
lm (r̂) is an eigenfunction of the orbital angular momentum operator,

l2Y l+k
lm (r̂) = l(l + 1)Y l+k

lm (r̂) (C.1.6)

and satisfies the following relation,
[
Y l+k
lm (r̂)

]∗
= (−1)m+k+1Y l+k

l−m(r̂) (C.1.7)

The vector spherical harmonics satisfy the projective orthogonality relation and completeness
relation:

∫
dr̂ Y l1+k1∗

l1m1
(r̂) · Y l2+k2

l2m2
(r̂) = δl1l2δm1m2δk1k2 (C.1.8)

∞∑

l=0

l∑

m=−l

∑

k=0,±1

Y l+k†
lm (r̂)Y l+k

lm (r̂′) = Îδ(r̂ − r̂′) = Î
1

sin θ
δ(θ − θ′)δ(φ− φ′) (C.1.9)

where Î is a 3× 3 identity matrix.
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C.2 Cubic and Hexagonal Harmonics

Table C.1: The upper and lower parts separated by double line represent the cubic and hexagonal harmonics (E
multipoles in unit of −e) up to rank 4 in the cubic Oh and hexagonal D6h point groups, respectively.
In the irreducible representation (irrep.), the subscript and superscript represent the spatial parity
(even:g, odd:u) and time reversal property (even: +, odd: −).

rank irrep. symbol definition
0 A+

1g Q0 1
1 T+

1u Qx, Qy, Qz x, y, z

2 E+
g Qu, Qv

1
2

(
3z2 − r2

)
,
√
3
2

(
x2 − y2

)

T+
2g Qyz, Qzx, Qxy

√
3yz,

√
3zx,

√
3xy

3 A+
2u Qxyz

√
15xyz

T+
1u Qα

x , Q
α
y , Q

α
z

1
2x
(
5x2 − 3r2

)
, 12y

(
5y2 − 3r2

)
, 12z

(
5z2 − 3r2

)

T+
2u Qβ

x, Q
β
y , Q

β
z

√
15
2 x

(
y2 − z2

)
,
√
15
2 y

(
z2 − x2

)
,
√
15
2 z

(
x2 − y2

)

4 A+
1g Q4

5
√
21

12

(
x4 + y4 + z4 − 3

5r
4
)

E+
g Q4u, Q4v

7
√
15
6

[
z4 − x4+y4

2 − 3
7r

2
(
3z2 − r2

)]
, 7

√
5

4

[
x4 − y4 − 6

7r
2
(
x2 − y2

)]

T+
1g Qα

4x, Q
α
4y, Q

α
4z

√
35yz(y−z)(y+z)

2 ,−
√
35zx(x−z)(x+z)

2 ,
√
35xy(x−y)(x+y)

2

T+
2g Qβ

4x, Q
β
4y, Q

β
4z

√
5
2 yz

(
7x2 − r2

)
,
√
5
2 zx

(
7y2 − r2

)
,
√
5
2 xy

(
7z2 − r2

)

0 A+
1g Q0 1

1 A2u Qz z

E1u Qx, Qy x, y

2 A+
1g Qu

1
2

(
3z2 − r2

)

E+
1g Qzx, Qyz

√
3zx,

√
3yz

E+
2g Qv, Qxy

√
3
2

(
x2 − y2

)
,−

√
3xy

3 A+
2u Qα

z
1
2z
(
5z2 − 3r2

)

B+
1u Q3a

√
10
4 y

(
3x2 − y2

)

B+
2u Q3b

√
10
4 x

(
x2 − 3y2

)

E+
1u Q3u, Q3v

√
6
4 x
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C.3 Projection-Based Clebsch-Gordan Coefficients

C.3.1 Projection Operators
Let us consider two independent complete orthonormal multipole basis sets {Xα} and {Yβ}, where α
and β are the labels specifying the individual basis which are expressed as α = (Xα, lα,Γα,mα, γα):
Xα, lα, Γα, mα and γα are the type Q/M/T/G, rank, irreducible representation, multiplicity, and
component of the multipole basis, respectively. Note that the time reversal and spatial inversion par-
ities (t, p) (p = 0(1) represents polar (axial)) are uniquely determined by specifying Xα. Specifically,
(t, p) of Q, M , T , and G are (1, 0), (−1, 1), (−1, 0), (1, 1), respectively.

Hereafter, we use the braket notation given by Eq. (3.1.1) in the main text. Since the direct
products between Xα and Yβ constitute a complete orthonormal basis set, we can also construct a
combined basis by their linear combination as

|Zj〉 =
∑

αβ

Cj
αβ |Xα ⊗ Yβ〉 (C.3.1)

where j = (Γ,m, γ), and Γ, m, and γ are the irreducible representation of the point group, multiplicity,
and component, respectively. Cj

αβ is the point-group version of the Clebsch-Gordan (CG) coefficient
obtained by using the projection operator as follows.

A basis function |φΓγ〉, which is characterized by the irreducible representation Γ and its compo-
nent γ, is transformed by the symmetry operation G as

G |φΓγ〉 =
∑

γ′

DΓ
γ′γ(G) |φΓγ′〉 (C.3.2)

where G(Γ) is the representation matrix satisfying the great orthogonality theorem:

dΓ
Ng

∑

G
DΓ

ij(G)DΓ′∗
kl (G) = δikδjlδΓΓ′ (C.3.3)

where dΓ and Ng denote the dimension of Γ representation and the number of symmetry operations.
Then, the projection operator is defined by

PΓγ(γ
′) =

dΓ
Ng

∑

G
DΓ∗

γγ′(G)G (C.3.4)

Using Eqs. (C.3.2) and (C.3.3), PΓγ(γ′) acts on arbitrary basis given by the linear combination of
|φΓγ〉, |ψ〉 =

∑
Γγ c(Γγ,ψ) |φΓγ〉 as

PΓγ(γ
′) |ψ〉 = c(Γγ′,ψ) |φΓγ〉 (C.3.5)

Thus, the projection operator PΓγ(γ′) extracts the basis |φΓγ〉 and the coefficient c(Γγ′,ψ) from |ψ〉.
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C.3.2 Clebsch-Gordan Coefficients
Based on the above, let us introduce a projection operator Pj(γ′j) that acts on |Xα ⊗ Yβ〉 and extract
a j basis with its component γ′j , |W

αβ
j (γ′j)〉:

|Wαβ
j (γ′j)〉 = Pj(γ

′
j) |Xα ⊗ Yβ〉 (C.3.6)

Since the time reversal and spatial inversion parities (t, p) of |Wαβ
j (γ′j)〉 and |Xα ⊗ Yβ〉 must be same,

the projection operator can be explicitly defined by

Pj(γ
′
j) = δ(tjtαtβ ,+)∆

pjpαpβ
lj lαlβ

dΓj

Ng

∑

G
D

Γj∗
γjγ′

j
(G)GXGY (C.3.7)

where δ(tjtαtβ ,+) and ∆
pjpαpβ
lj lαlβ

denote the selection rules due to the time reversal and spacial inversion
parities, and they are defined by

δ(tjtαtβ ,+) =

{
1 tjtαtβ = 1

0 tjtαtβ = −1
(C.3.8)

∆
pjpαpβ
lj lαlβ

= (lj + pj + lα + pα + lβ + pβ)mod 2 (C.3.9)

Using Eq. (C.3.7) and α′ = (Xα, lα,Γα,mα, γ′α), β′ = (Xβ , lβ ,Γβ ,mβ , γ′β), Eq. (C.3.6) is reexpressed
as

|Wαβ
j (γ′j)〉 =

∑

γ′
αγ

′
β

p
j(γ′

j)

α′β′ (α,β) |Xα′ ⊗ Yβ′〉

p
j(γ′

j)

α′β′ (α,β) ≡ δ(tjtαtβ ,+)∆
pjpαpβ
lj lαlβ

dΓj

Ng

∑

G
D

Γj∗
γjγ′

j
(G)DΓα

γ′
αγα

(G)DΓβ

γ′
βγβ

(G) (C.3.10)

where p
j(γ′

j)

α′β′ (α,β) is obtained based on the information of the representation matrices D̂Γ(G) for all
irreducible representations and the set of labels (j,α,β).

From the selection rules given by Eqs. (C.3.8) and (C.3.9), the time reversal parities tαtβ and tj
must be same, and when lα+ lβ and lj differ by an even (odd) number, the spatial parities of pα+ pβ
and pj must be equal (different). Due to these facts, given |Xα ⊗ Yβ〉, Q2m (T2m) and G2n+1 (M2n+1)
or Q2m+1 (T2m+1) and G2n (M2n) become indistinguishable when both of them belonging to the
same irreducible representation, In addition, the rank lj obtained by combining Xα and Yβ satisfies
|lα − lβ | ! lj ! lα + lβ , and only its parity (even or odd) is precisely preserved. Then, lj is defined
uniquely by choosing the smallest even or odd number within the scope of it, which is expressed by
following equation,

lj = |lα − lβ |+ (pα + pβ + pj) mod 2 (C.3.11)

Since Ŵαβ
j (γ′j) is not orthogonal, it should be orthogonalized by the Gram-Schmidt orthonor-

malization. Basis having different ranks may be mixed in this procedure, since the Gram-Schmidt
orthogonalization procedure subtracts overlapping of lower rank basis. Nevertheless, the rank before
orthogonalization can be used as it is. In addition, Q and T (p = 0) are generated preferentially
against G and M in the orthogonalization procedure.



Appendix D

Graphene

D.1 Multipole Basis for Graphene

The explicit expressons of Q(ab,n)
0 (k) (n = 3, 4) given Eq. (4.4.23) in the main text are given by

Q(ab,n)
0 (k) =

1√
2
Q(a)

0 ⊗
(
Q(t,2)

0 Q(n)
0 (k) + T (t)

3a T
(n)
3a (k)

)
(D.1.1)

and Q(ab,n)
0 (k) (n = 2, 5, 6) are given by

Q(ab,n)
0 (k) = Q(a)

0 ⊗Q(n)
0 (k) (D.1.2)

where Q(n)
0 (k) and T (n)

3a (k) (n = 2, . . . , 6) are given by

Q(2)
0 (k) =

√
6

3

[
2 cos

(
kx
2

)
cos

(√
3ky
2

)
+ cos (kx)

]
(D.1.3)

Q(3)
0 (k) =

√
6

3

[
−2 sin2

(√
3ky
3

)
+ 2 cos (kx) cos

(√
3ky
3

)
+ 1

]
(D.1.4)

Q(4)
0 (k) =

√
3

3

[
cos

(
kx
2

− 5
√
3ky
6

)
+ cos

(
kx
2

+
5
√
3ky
6

)
+ cos

(
kx −

2
√
3ky
3

)

+cos

(
kx +

2
√
3ky
3

)
+ cos

(
9kx −

√
3ky

6

)
+ cos

(
9kx +

√
3ky

6

)]
(D.1.5)

Q(5)
0 (k) =

√
6

3

[
2 cos

(
3kx
2

)
cos

(√
3ky
2

)
+ cos

(√
3ky
)]

(D.1.6)

Q(6)
0 (k) =

√
6

3

[
−2 sin2 (kx) + 2 cos (kx) cos

(√
3ky
)
+ 1
]

(D.1.7)

T (3)
3a (k) =

2
√
6

3

[
− cos (kx) + cos

(√
3ky
3

)]
sin

(√
3ky
3

)
(D.1.8)

T (4)
3a (k) =

√
3

3

[
− sin

(
kx
2

− 5
√
3ky
6

)
+ sin

(
kx
2

+
5
√
3ky
6

)
+ sin

(
kx −

2
√
3ky
3

)
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− sin

(
kx +

2
√
3ky
3

)
+ sin

(
9kx −

√
3ky

6

)
− sin

(
9kx +

√
3ky

6

)]
(D.1.9)

T (5)
3a (k) =

√
6

3

[
−2 sin

(√
3ky
2

)
cos

(
3kx
2

)
+ sin

(√
3ky
)]

(D.1.10)

D.2 Comparison of Band Dispersion

Figure D.1: The comparisons of the band dispersion between DFT calculation (solid grey lines) and our TB
models (dashed red lines) obtained by the linear regression. (a)-(f) N (b)

max =1-6. The Fermi energy
is taken as the origin.



Appendix E

SrVO3

E.1 Multipole Basis for SrVO3

The explicit expressons of Q(ab,n)
0,m (k) (n = 1 ∼ 6,m = 1, 2) given Eq. (4.4.42) in the main text are

given by

Q(ab,n)
0,1 (k) = Q(a)

0 ⊗Q(n)
0 (k) (E.1.1)

Q(ab)
0,2 (k) =

1√
2

(
Q(a)

u ⊗Q(n)
u (k) +Q(a)

v ⊗Q(n)
v (k)

)
(E.1.2)

On the other hand, the explicit expressions of Q(ab,n)
0,m (k) (m = 3, 4) are given by

Q(ab,n)
0,3 (k)(n = 2, 3, 6) = Q(ab,5)

0,4 (k) =
1√
3

(
Q(a)

yz ⊗Q(n)
yz (k) +Q(a)

zx ⊗Q(n)
zx (k) +Q(a)

xy ⊗Q(n)
xy (k)

)

(E.1.3)

Q(ab,5)
0,3 (k) =

1√
2

(
Q(a)

u ⊗Q(n)
4u (k) +Q(a)

v ⊗Q(n)
4v (k)

)
(E.1.4)

Q(ab,6)
0,4 (k) =

1√
3

(
Q(a)

yz ⊗Q(n)
4x (k) +Q(a)

zx ⊗Q(n)
4y (k) +Q(a)

xy ⊗Q(n)
4z (k)

)
(E.1.5)

Q(n)
0 (k), (Q(n)

u (k), Q(n)
v (k)), (Q(n)

4u (k), Q(n)
4v (k)), (Q(n)

yz (k), Q
(n)
zx (k), Q(n)

xy (k)),
and (Q(n)

4x (k), Q(n)
4y (k), Q(n)

4z (k)) are given by

Q(2)
0 (k) =

2
√
3

3
[cos (kx) cos (ky) + cos (kx) cos (kz) + cos (ky) cos (kz)] (E.1.6)

Q(3)
0 (k) = 2

√
2 cos (kx) cos (ky) cos (kz) (E.1.7)

Q(4)
0 (k) =

√
6

3
[cos (2kx) + cos (2ky) + cos (2kz)] (E.1.8)

Q(5)
0 (k) =

√
6

3
[cos (kx) cos (2ky) + cos (kx) cos (2kz) + cos (2kx) cos (ky)

+ cos (2kx) cos (kz) + cos (ky) cos (2kz) + cos (2ky) cos (kz)] (E.1.9)

Q(6)
0 (k) =

2
√
6

3
[cos (kx) cos (ky) cos (2kz) + cos (kx) cos (2ky) cos (kz) + cos (2kx) cos (ky) cos (kz)]

(E.1.10)
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Q(2)
u (k) =

√
6

3
[2 cos (kx) cos (ky)− cos (kx) cos (kz)− cos (ky) cos (kz)] (E.1.11)

Q(4)
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v (k) =
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Q(4)
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(E.1.17)

Q(6)
v (k) = 2 [− cos (kx) cos (2ky) + cos (2kx) cos (ky)] cos (kz) (E.1.18)
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(E.1.19)

Q(2)
yz (k) = 2 sin (ky) sin (kz) (E.1.20)

Q(2)
zx (k) = 2 sin (kz) sin (kx) (E.1.21)

Q(2)
xy (k) = 2 sin (kx) sin (ky) (E.1.22)
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Q(5)
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2 [cos (kz) + cos (kx)] sin (kz) sin (kx) (E.1.27)

Q(5)
xy (k) = 2

√
2 [cos (kx) + cos (ky)] sin (kx) sin (ky) (E.1.28)
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Q(6)
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[
4 sin2 (kx) + 9 cos (kx) cos (ky) + 9 cos (kz) cos (kx)− 2

]
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Q(6)
zx (k) =

4
√
89

89

[
4 sin2 (ky) + 9 cos (kx) cos (ky) + 9 cos (ky) cos (kz)− 2

]
sin (kz) sin (kx) (E.1.30)

Q(6)
xy (k) =

4
√
89

89

[
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]
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E.2 Comparison of Band Dispersion

Figure E.1: The comparisons of the band dispersion between DFT calculation (solid grey lines) and our TB
models (dashed red lines) obtained by the linear regression. (a)-(f) N (b)

max =1-6. The Fermi energy
is taken as the origin.





Appendix F

MoS2

F.1 Momentum Multipole Basis

F.1.1 Nearest-Neighbor Mo−Mo Bond-Cluster
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(F.1.1)

F.1.2 Nearest-Neighbor S−S Bond-Cluster
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(F.1.2)
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F.1.3 Nearest-Neighbor Mo−S Bond-Cluster
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(F.1.3)
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F.2 Momentum Space Representation of the SAMB

Using the momentum multipoles given in Eqs. (F.1.1)-(F.1.3), the k representation of the SAMB are
given by

Q0[Mo] = Q(a)
0 ⊗Q(t,Mo)

0 , Qu[Mo] = Q(a)
u ⊗Q(t,Mo)

0 , Q40[Mo] = Q(a)
40 ⊗Q(t,Mo)

0 (F.2.1)

Q0[S] = Q(a)
0 ⊗Q(t,S)

0 , Qu[S] = Q(a)
u ⊗Q(t,S)

0 (F.2.2)

Q0(k)[Mo−Mo, 1] = Q(a)
0 ⊗Q(t,Mo)

0 Q(Mo−Mo)
0 (k), Qu(k)[Mo−Mo] = Q(a)

u ⊗Q(t,Mo)
0 Q(Mo−Mo)

0 (k)

Q40(k)[Mo−Mo] = Q(a)
40 ⊗Q(t,Mo)

0 Q(Mo−Mo)
0 (k), Q3a(k)[Mo−Mo, 1] = M (a)

z ⊗Q(t,Mo)
0 T (Mo−Mo)

3b (k)

Q3a(k)[Mo−Mo, 2] = M (a)
zα ⊗Q(t,Mo)

0 T (Mo−Mo)
3b (k)

Q0(k)[Mo−Mo, 2] =
1√
2

(
Q(Mo−Mo)

v (k)Q(a)
v +Q(Mo−Mo)

xy (k)Q(a)
xy

)
⊗Q(t,Mo)

0

Qu(k)[Mo−Mo, 2] =
1√
2

(
Q(Mo−Mo)

v (k)Q(a)
4uβ1 +Q(Mo−Mo)

xy (k)Q(a)
4vβ1

)
⊗Q(t,Mo)

0

Qu(k)[Mo−Mo, 3] =
1√
2

(
Q(Mo−Mo)

v (k)Q(a)
4uβ2 +Q(Mo−Mo)

xy (k)Q(a)
4vβ2

)
⊗Q(t,Mo)

0

Q3a(k)[Mo−Mo, 3] =
1√
2

(
T (Mo−Mo)
x (k)M (a)

zβ + T (Mo−Mo)
y (k)M (a)

xyz

)
⊗Q(t,Mo)

0

(F.2.3)

Q0(k)[S− S, 1] = Q(a)
0 ⊗Q(t,S)

0 Q(S−S)
0 (k), Qu(k)[S− S, 1] = Q(a)

u ⊗Q(t,S)
0 Q(S−S)

0 (k)

Q3a(k)[S− S, 1] = M (a)
z ⊗Q(t,S)

0 T (S−S)
3b (k)

Qu(k)[S− S, 2] =
1√
2

(
T (S−S)
x (k)M (a)

x + T (S−S)
y (k)M (a)

y

)
⊗Q(t,S)

z

Q3(k)[S− S, 2] =
1√
2

(
Q(S−S)

v (k)Q(a)
yz +Q(S−S)

xy (k)Q(a)
zx

)
⊗Q(t,S)

z

Q0(k)[S− S, 2] =
1√
2

(
Q(S−S)

v (k)Q(a)
v +Q(S−S)

xy (k)Q(a)
xy

)
⊗Q(t,S)

0

(F.2.4)

Q0(k)[Mo− S, 1] =

1

2
Q(a)

z ⊗
[
Q(t,Mo−S)

0 Q(Mo−S)
z (k) +Q(t,Mo−S)

z Q(Mo−S)
0 (k)− T (t,Mo−S)

0 T (Mo−S)
z (k)− T (t,Mo−S)

z T (Mo−S)
0 (k)

]

Qu(k)[Mo− S, 1] =

1

2
Q(a)

zα ⊗
[
Q(t,Mo−S)

0 Q(Mo−S)
z (k) +Q(t,Mo−S)

z Q(Mo−S)
0 (k)− T (t,Mo−S)

0 T (Mo−S)
z (k)− T (t,Mo−S)

z T (Mo−S)
0 (k)

]

Q3a(k)[Mo− S, 1] =
√
2

4
Q(a)

x ⊗
[
Q(t,Mo−S)

0 Q(Mo−S)
xy (k) +Q(t,Mo−S)

z Q(Mo−S)
zx (k)− T (t,Mo−S)

0 T (Mo−S)
x (k)− T (t,Mo−S)

z T (Mo−S)
xyz (k)

]

+

√
2

4
Q(a)

y ⊗
[
Q(t,Mo−S)

0 Q(Mo−S)
v (k) +Q(t,Mo−S)

z Q(Mo−S)
yz (k)− T (t,Mo−S)

0 T (Mo−S)
y (k)− T (t,Mo−S)

z T (Mo−S)
zβ (k)

]

Q3a(k)[Mo− S, 2] =
√
2

4
G(a)

yz ⊗
[
Q(t,Mo−S)

0 Q(Mo−S)
xy (k) +Q(t,Mo−S)

z Q(Mo−S)
zx (k)− T (t,Mo−S)

0 T (Mo−S)
x (k)− T (t,Mo−S)

z T (Mo−S)
xyz (k)

]

+

√
2

4
G(a)

zx ⊗
[
Q(t,Mo−S)

0 Q(Mo−S)
v (k) +Q(t,Mo−S)

z Q(Mo−S)
yz (k)− T (t,Mo−S)

0 T (Mo−S)
y (k)− T (t,Mo−S)

z T (Mo−S)
zβ (k)

]
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Qu(k)[Mo− S, 2] =
√
2

4
Q(a)

3u ⊗
[
Q(t,Mo−S)

0 Q(Mo−S)
xy (k) +Q(t,Mo−S)

z Q(Mo−S)
zx (k)− T (t,Mo−S)

0 T (Mo−S)
x (k)− T (t,Mo−S)

z T (Mo−S)
xyz (k)

]

+

√
2

4
Q(a)

3v ⊗
[
Q(t,Mo−S)

0 Q(Mo−S)
v (k) +Q(t,Mo−S)

z Q(Mo−S)
yz (k)− T (t,Mo−S)

0 T (Mo−S)
y (k)− T (t,Mo−S)

z T (Mo−S)
zβ (k)

]

Q3a(k)[Mo− S, 3] =
√
2

4
G(a)

v ⊗
[
Q(t,Mo−S)

0 Q(Mo−S)
zx (k) +Q(t,Mo−S)

z Q(Mo−S)
xy (k)− T (t,Mo−S)

0 T (Mo−S)
xyz (k)− T (t,Mo−S)

z T (Mo−S)
x (k)

]

+

√
2

4
G(a)

xy ⊗
[
Q(t,Mo−S)

0 Q(Mo−S)
yz (k) +Q(t,Mo−S)

z Q(Mo−S)
v (k)− T (t,Mo−S)

0 T (Mo−S)
zβ (k)− T (t,Mo−S)

z T (Mo−S)
y (k)

]

Q3a(k)[Mo− S, 4] =
√
2

4
Q(a)

zβ ⊗
[
Q(t,Mo−S)

0 Q(Mo−S)
zx (k) +Q(t,Mo−S)

z Q(Mo−S)
xy (k)− T (t,Mo−S)

0 T (Mo−S)
xyz (k)− T (t,Mo−S)

z T (Mo−S)
x (k)

]

+

√
2

4
Q(a)

xyz ⊗
[
Q(t,Mo−S)

0 Q(Mo−S)
yz (k) +Q(t,Mo−S)

z Q(Mo−S)
v (k)− T (t,Mo−S)

0 T (Mo−S)
zβ (k)− T (t,Mo−S)

z T (Mo−S)
y (k)

]

Q3a(k)[Mo− S, 5] =

1

2
Q(a)

3a ⊗
[
Q(t,Mo−S)

0 Q(Mo−S)
0 (k) +Q(t,Mo−S)

z Q(Mo−S)
z (k)− T (t,Mo−S)

0 T (Mo−S)
0 (k)− T (t,Mo−S)

z T (Mo−S)
z (k)

]

(F.2.5)
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