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compactification 227
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
11.2 The model as a test case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

11.2.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
11.2.2 Known results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
11.2.3 The case R0 = 1: Application of the center manifold theory . . . . . 230
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Preface

The main objective of this thesis is to investigate the properties of special solutions of
various partial differential equations based on dynamical systems theory and geometric
approaches. In particular, we use a unified method of clarifying the dynamics of sys-
tems of ordinary differential equations satisfied by special solutions of partial differential
equations, including those at infinity, by means of Poincaré-type compactification. The
result is a qualitative structure of solutions to partial differential equations with different
backgrounds, which has not been revealed before.

According to [45], originally, the term “dynamical system” meant only mechanical sys-
tems whose motion is described by differential equations derived from classical mechanics.
Basic results on such dynamical systems were obtained by Lyapunov and Poincaré at the
end of the nineteenth century. Later on, it became clear that a dynamical systems theory
is useful for the analysis of various evolutionary processes studied in different branches of
science and described by ordinary differential equations (for short, ODEs), partial differ-
ential equations (for short, PDEs), or explicitly defined iterated maps. Today, there are
many studies on dynamical systems theory and its related topics.

The PDEs treated in this thesis are developed as the model of chemical reactions,
competition for survival among species, solar flares and other astrophysical phenomena,
and the motion of elastic membranes in the micro-electro mechanical systems. These
phenomena have been formulated by extracting the essence from the complexity, and the
universality of the numerical formula has led to a new understanding of the phenomena,
predictions, hypotheses, and derived mathematical problems, and has also given rise to
new research. However, in general, it is not expected that exact solutions of nonlinear
PDEs can be obtained.

Then, for instance, studying the following problems is important;

(i) well-posedness, solvability, and regularity (including local existence of solutions).

(ii) the existence of special solutions (stationary solutions, traveling wave solutions, self-
similar solutions, etc.) and their profiles.

(iii) to develop the numerical schemes to visualize the solutions (including computer-
assisted proof for (i) and (ii) and so on).

There are many problems such as the following, and various studies have been conducted
so far. All of them are complementary and important problems. However, most of them
are derived from the characteristics of individual equations, and it is difficult to clarify
their structures and develop analytical methods from a unified viewpoint. To understand
the mechanism of phenomena, results for (ii) and (iii) could be required. Now analytical
methods and results that lead to the existence of special solutions and various properties,
which are the first step to understanding the phenomena from the mathematical point
of view have been presented in various models. However, we have not yet developed a
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method that can be applied to different equations or classification of special solutions
(i.e., a list of all those that exist), and the development of analytical methods to solve
these problems is an important and promising development. Therefore, the author aims to
obtain rich results by a unified method by first focusing on special solutions. Then, they
aim to provide new perspectives for extensions to the general theory, pure mathematical
research, and applications to phenomena.

According to [50], compactification is an embedding of the original phase space (Rn

in the present argument) into a compact manifold or its tangent space such that the
infinity corresponds to a point or the boundary of the manifold. In particular, the in-
finity is mapped to additional points or the boundary of compactified manifolds. The
most familiar ones are Bendixson’s compactification (embedding of Rn into the unit n-
sphere Sn ⊂ Rn+1) and Poincaré’s one (embedding of Rn into the unit upper hemisphere
{(x1, . . . , xn+1) | xn+1 > 0,

∑n+1
i=1 x2i = 1}). Compactifications play key roles in un-

derstanding various natures of objects involving infinity. Nevertheless, compactification
should be chosen so that it is compactible with the scale invariance of vector fields and that
the scaling information of dynamical systems is kept through associated transformation.
Quasi-homogeneous type compactifications are therefore applied to studying the structure
of dynamics from the viewpoint of dynamical systems at infinity (e.g., [13]).

In this thesis, the aim is to propose the methods and applications of the Poincaré type
compactification and blow-up technique that is based on [49, 50] and revealed the exis-
tence, profile, and asymptotic behavior of the characteristic solutions for PDEs such as
a MEMS type reaction-diffusion equation, 1D degenerate nonlinear parabolic equations,
and certain chemotaxis systems. Here, the Poincaré type compactification includes the
Poincaré compactification in the case that the vector field is homogeneous and the Direc-
tional compactification (especially Poincaré-Lyapunov compactification) in the case that
the vector field is quasi-homogeneous. Furthermore, the results obtained in this paper
give us an abundance of information on typical solutions with detailed asymptotic behav-
ior by using the technique of compactifications which maps infinity to bounded regions
and time-scale desingularization. To the author’s knowledge, there have been no studies
of these equations with the dynamical system approach, therefore, our results will give
the first step for the studies of these from the viewpoint of the geometric (dynamical sys-
tem) approach. Moreover, we believe that our works contribute to new insights into these
equations.

The contents of this paper are summarized as follows. In Chapter 1, the author
explains the Poincaré type compactification and blow-up technique. They play important
roles in this paper, based on [1, 8, 14, 49, 50]. This chapter cites [1, 8, 14, 31, 32,
33, 34, 49, 50] and summarizes the necessary parts of this study to understand it. In
particular, the author introduces the explanation of the Poincaré compactification, the
definition of an asymptotic quasi-homogeneous vector field at infinity for the Poincaré-
Lyapunov compactification, and the explanation of the quasi-homogeneous type blow-up
that includes polar it and directional it, based on a method of the Newton diagram (Section
1.2).

The following chapters describe the results of applying the above methods to under-
stand the structure of special solutions to various partial differential equations. Chapters
2, 4, 7, and 8 are duplicates of the authors’ master’s thesis [40]. Chapter 5 is also described
in [40], but was added and revised after the writing of [40].

Chapter 2 is devoted to studying the quasi traveling waves with quenching of a reaction-
diffusion equation in the presence of negative powers nonlinearity. This chapter is based

10



on the published paper [31]. Namely, we consider the following equation:

ut = uxx +
1

(1− u)α
, t > 0, x ∈ R, α ∈ N. (A)

It is revealed that its equation possesses a family of “quasi traveling waves with quenching
on a finite interval”. We also give quenching rates and their profile. Note that the proof of
its existence is considering the restricted case of α ∈ 2N. In the case that α ∈ N, Matsue
[50] gave the proof by assuming the existence of the traveling wave solution and showing
the same quenching rates as our works.

Chapter 3 consider the traveling waves with singularities in a damped hyperbolic
MEMS type equation in the presence of negative powers nonlinearity. This equation
arises in the study of the Micro-Electro Mechanical System (MEMS) devices. We in-
vestigate how the behavior (shapes and asymptotic behavior) of traveling waves change
depending on whether an inertial term ε2utt is present or absent in the left-hand side of
[31] (see Chapter 2). In this chapter, we classify all traveling waves in this equation and
report their shapes and asymptotic behavior. These are studied by applying the Poincaré
compactification and basic theory of dynamical systems. In author knowledge, there has
been no studies of this equation with dynamical system approach, therefore, out results
will give first step for the studies of it from the viewpoint of geometric (dynamical system)
approach. This chapter is based on the published paper [37].

In Chapter 4, we consider the radial symmetric stationary solutions of the following
equation:

ut = ∆u− |x|qu−p, t > 0, x ∈ Rn, (B)

with 3 ≤ n ∈ N, p ∈ N and q ∈ R. This equation arises in the study of the dynamic de-
flection of an elastic membrane inside a micro-electro mechanical system (MEMS). Above
equation (A) is a special case of (B). This chapter is devoted to studying the radial sym-
metric stationary solution of (B). That is, we study the following equation (the radial
symmetric stationary problem):

u′′ +
n− 1

r
u′ − rqu−p = 0, ′ =

d

dr
, (C)

where r = |x| > 0.
We first give a result on the existence of the negative value functions that satisfy the

radial symmetric stationary problem on a finite interval for p ∈ 2N, q ∈ R. Moreover, we
give the asymptotic behavior of u(r) and u′(r) at both ends of the finite interval. Second,
we obtain the existence of the positive radial symmetric stationary solutions with the
singularity at r = 0 for p ∈ N and q ≥ −2. In fact, the behavior of solutions for q > −2
and q = −2 are different. In each case of q = −2 and q > −2, we derive the asymptotic
behavior for r → 0 and r → ∞. This chapter is based on the published paper [33].

In Chapter 5, we consider the singular stationary solutions of following spatial one-
dimensional partial differential equation

ut = uxx + µ
1 + δuβx
(1− u)α

, t > 0, x ∈ R (D)

with α ∈ 2N, 4 < β ∈ 2N, µ > 0, and δ ≥ 0. This chapter is based on the published paper
[35]. This equation arises in the study of the Micro-Electro Mechanical System (MEMS)
devices. In (A), this corresponds to the case where µ = 1 and δ = 0. One of the main
purposes of this chapter is to prove the existence of (singular) stationary solutions of (D)
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and to give the asymptotic behavior. Here, the stationary solution with singularity here
means a solution that allows infinity or a solution with an infinite differential coefficient.
In this chapter, we obtain a whole phase portrait on R2 with including infinity about a
two-dimensional ordinary differential equation that introduced the change of coordinates:
1 − u(x) = φ(ξ)，ξ = x. In addition, we focus on the connecting orbits on it and give a
result on the existence of the singular stationary solutions and detailed information about
the asymptotic behavior. However, there are some problems that could not be completely
solved.

Chapter 6 is based on the published paper [36]. This chapter is devoted to the study
of the following problem:

U ′′ +
N − 1

r
U ′ +

µ+ δ(U ′)2

1− U
= 0,

(
′ =

d

dr
and ′′ =

d2

dr2

)
(E)

with U = U(r), r = |x| > 0, 3 ≤ N ∈ N, µ > 0 and δ > 0. (E) corresponds to a radial
symmetric stationary problem with the following equation:

Ut = ∆U +
µ+ δ|∇U |2

1− U
, t > 0, x ∈ RN , U = U(t, x) (F)

(F) is derived from the study of the Micro-Electro Mechanical System (for short, MEMS).
Motivated by the previous study [21], this manuscript considers the question of how far
we can investigate the structure of solutions in a unified way by applying the framework
framework that combines Poincaré type compactification, classical dynamical systems the-
ory, and geometric methods for desingularization of vector fields (blow-up technique).
Then, our framework allowed us to obtain results that were not obtained in this previous
work that is information about the shape and the asymptotic behavior and results that
were partially included in the results it. It is expected that these will lead to a deeper
understanding of the behavior of typical solutions to the MEMS equations. In authors
knowledge, there is no study that clarifies the structure of the typical and characteristic
solutions of (E) by the dynamical systems approach.

In Chapter 7, we consider the traveling wave solutions of the following degenerate
nonlinear parabolic equation:

ut = up(uxx + u), (G)

where p is a positive integer. This equation is derived from a model that reproduces a
number of phenomena. We also deal with the equation

vτ = vp(vxx + v − v−p+1) (H)

related to it. We first give a result on the whole dynamics on the phase space R2 with
including infinity about a two-dimensional ordinary differential equation that introduced
the traveling wave coordinates: ξ = x− ct. Second, we focus on the connecting orbits on
it and give a result on the existence of the weak traveling wave solutions with quenching
for c > 0 and p ∈ 2N. Moreover, we give the detailed information about the asymptotic
behavior of u(ξ), u′(ξ), v(ξ) and v′(ξ) for p ∈ 2N. In the case that p ∈ 2N + 1, some
singularities appear. However, we classify the connecting orbits and corresponding trav-
eling wave solutions and obtain their asymptotic behavior. This chapter is based on the
published paper [32].

In Chapter 8, we consider the asymptotic behavior of traveling wave solutions of the
following degenerate nonlinear parabolic equation:

ut = up(uxx + u)− δu, (δ = 0 or 1) (I)
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for ξ ≡ x−ct → −∞ with c > 0. We give a refined one of them, which was not obtained in
the previous chapter 7 (preceding work [32]), by an appropriate asymptotic study. During
our proof of the main theorem, we see that the Lambert W function plays a key role
in describing the asymptotic behavior. Evaluation of integrals including the Lambert W
function is necessary to obtain the asymptotic behavior in the present form. Our argument
here is based on an asymptotic study of solutions in a different form from that provided in
e.g. [32, 50], which can be applied to asymptotic analysis towards further applications in
various phenomena including their numerical calculations. We expect that our approach
can be applied to the asymptotic behavior of typical solutions as well as that of singular
solutions. This chapter is based on the published paper [30].

Chapter 9 discusses a classification (existence of (including a weak sense of meaning)
solutions, information about the shape, and asymptotic behavior) of nonnegative traveling
wave solutions of the space one-dimensional degenerate parabolic equations that derive
from many phenomena. This chapter is based on the published paper [38]. In this chapter,
the equations (G) and (H) treated in Chapter 7 and 8 (corresponding papers [32, 30]) are
summarized and generalized to the following equation:

Ut = Up(Uxx + µU)− δU, t > 0, x ∈ R, (δ = 0 or 1) (J)

with µ > 0. In chapter 7 and 8 above, the use of blow-up technique forced us to restrict
the parameter p in the equation to a natural number greater than 1. Therefore, in this
chapter we consider the following equation obtained by transformation u = Up for (J):

ut = uuxx − γ(ux)
2 + ku2 − δpu, t > 0, x ∈ R. (K)

Since the equation obtained by this transformation can be discussed without using the
blow-up technique, it can be discussed in the same way as in the above chapter 7 and
8 without the assumption of natural numbers in the previous studies. In other words,
in (K), we can obtain the classification of nonnegative traveling wave solutions for a real
numberp greater than 1. Then, by reflecting these results in the original problem with the
transformation U = u1/p, we obtained results that generalize the result of the above two
chapters ([32, 30]), which is a major achievement.

Chapter 10 considers the radially symmetric stationary solutions of the following sys-
tems: {

ut = ∆u−∇ · (u∇v), x ∈ RN , t > 0,

0 = ∆v + u, x ∈ RN , t > 0

and 




ut = ∆u− α∇ · (u∇p) + β∇ · (u∇q), x ∈ RN , t > 0,

0 = ∆p+ u, x ∈ RN , t > 0,

0 = ∆q + u, x ∈ RN , t > 0,

where α and β are positive constants. In addition, let N be N ≥ 3. Assume that α < β
below. This chapter is based on the published paper [39].

The purpose of this chapter is to focus on the radially symmetric stationary solutions
of the above systems and to investigate what kind of the radially symmetric stationary
solutions exist, information about their shapes, and their asymptotic behavior. In par-
ticular, the construction of functions satisfying equations that diverge at the endpoints
of finite intervals is an interesting result. The key to the discussion is to derive a scalar
equation by using a transformation on the averaged mass for the equation satisfied by the
radially symmetric stationary solution and to investigate the infinity dynamics as geomet-
ric information for the two-dimensional ordinary differential equations derived from it. To
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achieve this, we use a method that combines classical results from the continuous dynam-
ical systems theory and Poincaré-Lyapunov compactification. In addition, the results for
singular solutions are discussed in light of the results of previous studies.

It is important to study the global behavior of solutions to systems of ordinary differ-
ential equations describing the transmission dynamics of infectious diseases. In chapter
11, we present a different approach from the Lyapunov function used in most of the study.
This approach is based on the Poincaré compactification. We then apply the method
to an SIR endemic model as a test case and discuss its effectiveness and the potential
applications of this approach. In addition, we refine the discussion of dynamics near the
equilibrium, derive the asymptotic behavior, and mention its relation to the basic re-
production number. This chapter follows the same method used to investigate various
properties of special solutions of partial differential equations. However, it also reveals the
global behavior of solutions to ordinary differential equations, providing a new perspective
on the analysis of mathematical models of infectious diseases. This result demonstrates
the broader potential of the author’s research. This chapter is based on the published
paper [34].
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Chapter 1

Preliminaries

Abstract

In this chapter, we briefly introduce the Poincaré type compactification (Poincaré compact-
ification and Poincaré-Lyapunov compactification), asymptotically quasi-homogeneous vec-
tor fields at infinity, and blow-up technique in order to use our works. This chapeter cites
[1, 8, 14, 31, 32, 33, 34, 49, 50] and summarizes the necessary parts of this study to under-
stand it. It should be noted that we refer [14] for more details of Poincaré compactification
and Newton diagram that find the coefficient (α,β) to use in a quasi-homogineous blow-
up, [8] for the definition of quasi-homogeneous vector field of type (α1,α2, . . .αn) and
degree k and the Newton polyhedron method, [49] [50] for the definition of asymptotically
quasi-homogeneous vector fields and the Poincaré-Lyapunov compactification (directional
compactification). Further, we refer [1] for more details of blow-up technique.

1.1 Poincaré type compactification

In order to study the behavior of the trajectories of a planar differential system near in-
finity it is possible to use a compactifiction. One of the possible constructions relies on
stereographic projection of the sphere onto the plane, in which case a single “point at in-
finity” is adjoined to the plane. It is called the Bendixson compactification (i.e., one-point
compactification, see [14] and references therein). A better approach for studying the
behavior of trajectories near infinity is to use the so called Poincaré sphere, introduced by
Poincaré [60]. It has the advantage that the singular points at infinity are spread out along
the equator of the sphere and are therefore of a simpler nature than the singular points of
the Bendixson sphere. We call the compactification derived from this idea the Poincaré
type compactification. The Poincaré type compactification is one of the compactifications
of the original phase space (the embedding of Rn into the unit upper hemisphere of Rn+1).
In the following, the Poincaré type compactification includes both the Poincaré compact-
ification and the Poincaré-Lyapunov compactification. The difference between the two is
that the vector field is either homogeneous or quasi-homogeneous, respectively. In this
section, we briefly introduce the Poincaré compactification and the Poincaré-Lyapunov
compactification (especially the directional compactification).

First, we present an overview of the Poincaré compactification applied to homogeneous
vector fields. It should be noted that we refer [14, 31, 32, 33, 60] for more details.

Let

X = P (a, b)
∂

∂a
+Q(a, b)

∂

∂b
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S1
H

−

H+

R2

(a, b)

f+(a, b)

f−(a, b)

Figure 1.1.1: Position of the points (a, b) ∈ R2 and f±(a, b) on the Poincaré sphere S2.

be a polynomial vector field on R2, or in other words
{

ȧ = P (a, b),
ḃ = Q(a, b),

where ˙ denotes d/dt, and P , Q are polynomials of arbitrary degree in the variables a and
b.

First, we consider R2 as the plane in R3 defined by

(y1, y2, y3) = (a, b, 1).

We consider the sphere
S2 = {y ∈ R3 | y21 + y22 + y23 = 1}

which we call the Poincaré sphere. We divide the sphere into

H+ = {y ∈ S2 | y3 > 0},
H− = {y ∈ S2 | y3 < 0}

and
S1 = {y ∈ S2 | y3 = 0}.

Let us consider the embedding of vector field X from R2 to S2 given by

f+ : R2 → S2 and f− : R2 → S2,

where

f±(a, b) := ±
(

a

∆(a, b)
,

b

∆(a, b)
,

1

∆(a, b)

)

with ∆(a, b) =
√
a2 + b2 + 1. This implies that f+(a, b) (resp. f−(a, b)) is the intersection

of the straight line passing through the point y and the origin with the northern (resp.
southern) hemisphere of S2 (see also Figure 1.1.1).

Then, we consider six local charts on S2 given by

Uk = {y ∈ S2 | yk > 0} and Vk = {y ∈ S2 | yk < 0}

for k = 1, 2, 3. Consider the local projection

g+k : Uk → R2 and g−k : Vk → R2
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1.1 Poincaré type compactification

S!

S1
x

λ

H
−

H+

y1

y2

y3

U2

a

b

Figure 1.1.2: Locations of the Poincaré sphere and chart U2.

defined as

g+k (y1, y2, y3) = −g−k (y1, y2, y3) =

(
ym
yk

,
yn
yk

)

for m < n and m,n += k. The projected vector fields are obtained as the vector fields on
the planes

Uk = {y ∈ R3 | yk = 1}

and
V k = {y ∈ R3 | yk = −1}

for each local chart Uk and Vk. We denote by (x,λ) the value of g±k (y) for any k.
For instance, it follows that

(g+2 ◦ f+)(a, b) =

(
a

b
,
1

b

)
= (x,λ),

therefore, we can obtain the dynamics on the local chart U2 by the change of variables
a = x/λ and b = 1/λ. The locations of the Poincaré sphere, (a, b)-plane, and U2 are
expressed as Figure 1.1.2.

Throughout this master thesis, we follow the notations used here for the Poincaré
compactification. It is sufficient to consider the dynamics on H+ ∪ S1, which is called
Poincaré disk, to obtain our main results.

Second, we consider the case that a vector field is quasi-homogeneous. In this case,
it should be noted that we choose appropriate compactifications to consider the informa-
tion about dynamics at infinity. That is, when the vector field is quasi-homogeneous, the
information at infinity may not be reflected correctly in the Poincaré compactification.
Then, we introduce the Poincaré-Lyapunov compactification (the directional compactifi-
cation) that is based on asymptotically quasi-homogeneous vector fields. Then we define
a class of vector fields that are quasi-homogeneous near infinity, which is determined by
types and orders. In the following, we reproduce the definitions given in [49] as an aid to
understanding the methods used in this thesis. See [49, 50] for details.

Definition 1.1.1 ([49], Definition 2.1)
Let f : Rn → R be a smooth function. Let α1,α2, . . . ,αn ≥ 0 with (α1,α2, . . .αn) +=
(0, 0, . . . , 0) be integers and k ≥ 1. We say that f is a quasi-homogeneous function of type
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Chapter 1 Preliminaries

(α1,α2, . . . ,αn) and order k if

f(Rα1x1, R
α2x2, . . . , R

αnxn) = Rkf(x1, x2, . . . , xn), ∀x ∈ Rn, R ∈ R.

Next, let

X =
n∑

j=1

fj(x)
∂

∂xj
⇐⇒ X :





f1(x1, x2, . . . , xn)
f2(x1, x2, . . . , xn)

...
fn(x1, x2, . . . , xn)





be a smooth vector field. We say that X, or f = (f1, f2, . . . , fn) is a quasi-homogeneous
vector field of type (α1,α2, . . . ,αn) and order k + 1 if each component fj is a quasi-
homogeneous function of type (α1,α2, . . . ,αn) and order k + αj .

For applications to general vector fields, we define the following notion.

Definition 1.1.2 ([49], Definition 2.2)
Let α = (α1,α2, . . . ,αn) be a set of nonnegative integers. Let the index set Iα as

Iα := {i ∈ {1, 2, . . . , n} | αi > 0},

which we shall call the set of homogeneity indices associated with α = (α1,α2, . . . ,αn).
Let U ⊂ Rn. We say the domain U ⊂ Rn is admissible with respect to the sequence α if

U := {x = (x1, x2, . . . , xn) ∈ Rn | xi ∈ R, if i ∈ Iα, (xj1 , xj2 , . . . , xjn−l) ∈ Ũ},

where {j1, j2, . . . , jn−l} = {1, 2, . . . , n}\Iα and Ũ is an (n− l)-dimensional open set.

Assumptions in Definition 1.1.1 indicate Iα += ∅. The notion of asymptotic quasi-
homogeneity defined below provides a systematic validity of scalings at infinity in many
practical applications.

Definition 1.1.3 ([49], Definition 2.3)
Let f = (f1, f2, . . . , fn) : U → Rn be a smooth function with an admissible domain U ⊂ Rn

with respect to α such that f is uniformly bounded for each xi with i ∈ Iα, where Iα is
the set of homogeneity indices associated with α. We say that

X =
n∑

j=1

fj(x)
∂

∂xj
⇐⇒ X :





f1(x1, x2, . . . , xn)
f2(x1, x2, . . . , xn)

...
fn(x1, x2, . . . , xn)





or simply f is an asymptotically quasi-homogeneous vector field of type (α1,α2, . . . ,αn)
and order k + 1 at infinity if

lim
R→+∞

R−(k+αj)
{
fj(R

α1x1, R
α2x2, . . . , R

αnxn)−Rk+αj (fα,k)j(x1, x2, . . . xn)
}
= 0

holds for any (x1, x2, . . . , xn) ∈ U1, where fα,k = ((fα,k)1, (fα,k)2, . . . , (fα,k)n) : U → Rn is
a quasi-homogeneous vector field of type (α1,α2, . . . ,αn) and order k + 1, and

U1 := {x = (x1, x2, . . . , xn) ∈ Rn | (xi1 , xi2 , . . . , xil) ∈ Sl−1, (xj1 , xj2 , . . . , xjn−l) ∈ Ũ},

where {i1, i2, . . . , il} = Iα.

The geometric image of the locational relationship between the Poincaré-Lyapunov
sphere corresponding to the Poincaré sphere and the local coordinate U2 is the same as in
Figure 1.1.2. Using the type defined in Definition 1.1.3 in the case that n = 2, we consider
the dynamics on the local chart U2 by the change of variables φ = x/λα1 , ψ = 1/λα2 .
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1.2 Blow-up technique

Figure 1.2.1: Schematic picture of the succession of blow-up (see [14] Fig. 3.3.).

1.2 Blow-up technique

In this chapter, we introduce the basic tool for studying nonelementary singularities of a
differential system in the plane. This tool is based on changes of variables called blow-ups.
We use this technique for classifying the singularities having both eigenvalues zero but
whose linear part is not identically zero. We refer the reader to [1], [8], [14] for more
detailed information.

According to [1], roughly speaking the idea behind the blow-up technique is to explode,
through a change of variables that is not a diffeomorphism, the singularity to a line or
circle. Then, for studying the original singular point one studies the new singular points
that appear on this line or circle and that will be, probably, simpler. If some of these
new singular points are degenerate the process is repeated. The succession of blow-up is
schematized in Figure 1.2.1 by [14].

Let

X = P (a, b)
∂

∂a
+Q(a, b)

∂

∂b
(1.2.1)

be a polynomial vector field on R2, or in other words
{

ȧ = P (a, b),
ḃ = Q(a, b),

where ˙ denotes d/dt, and P , Q are polynomials of arbitrary degree in the variables a
and b again. We consider the case where the vector field is quasi-homogeneous vector
field of type (α1,α2, . . . ,αn) and degree k (see Definition 1.1.1). Here, note that type
(α1,α2, . . . ,αn) is restricted to (α1,α2, . . . ,αn) ∈ Nn

+ (see [8]). Of course, we remark that
the homogeneous vector fields are included the quasi-homogeneous vector field.

The quasi-homogeneous polar blow-up (or the (α,β)-polar blow-up) is the mapping
(r, θ) 2→ (rα cos θ, rβ sin θ) = (a, b) with r ∈ R and θ ∈ [0, 2π), for some convenient
α,β ∈ N. The case α = β = 1 is called the homogeneous polar blow-up. On the other hand,
the quasi-homogeneous directional blow-up in the positive (resp. negative) a direction is
the mapping (r, x̄) 2→ (rα, rβ b̄) = (a, b) (resp. (r, b̄) 2→ (−rα, rβ b̄) = (a, b)), where r, b̄ are
new variables. The quasi-homogeneous directional blow-up in the positive (resp. negative)
b direction is the mapping (r, ā) 2→ (rαā, rβ) = (a, b) (resp. (r, ā) 2→ (−rαā, rβ) = (a, b)),
where r, ā are new variables. The parameters α,β ∈ N are chosen conveniently. If
α = β = 1, then we recover the (homogeneous) directional blow-up.

A question one might ask is how to effectively find the coefficient (α,β) to use in a
quasi-homogenous blow-up. Of course we can use Definition 1.1.1 to determine (α,β),
but we will show how to find it more easily. This can be obtained by using the so called
Newton diagram. We first define the Newton diagram (see [1], [14] and references therein).
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Chapter 1 Preliminaries

This method is effective only for polynomial vector field on R2. Otherwise, Definition 1.1.1
will be used.

Let (1.2.1) be a polynomial vector field with an isolated singularity at the origin.
Let

P (a, b) =
∑

i+j≥1

pija
ibj , Q(a, b) =

∑

i+j≥1

qija
ibj .

The support of X is defined to be

S = {(i− 1, j) | pij += 0} ∪ {(i, j − 1) | qij += 0} ⊂ R2,

and the Newton polygon of X is the convex hull Γ of the set

P =
⋃

(r,s)∈S

{(r′, s′) | r′ ≥ r, s′ ≥ s}.

The Newton diagram of X is the union γ of the compact faces γk of the Newton polygon Γ,
which we enumerate from the left to the right. If there exists a face γk which lies completely
on the half-plane {r ≤ 0}, then we start the enumeration with k = 0, otherwise we start
with k = 1. Since the origin is an isolated singularity we have that at least one of the
points (−1, s) or (0, s) is an element of S for some s, and also at least one of the points
(r, 0) or (r,−1) is an element of S for some r. Hence there always exists a face γ1 in the
Newton diagram.

Suppose that γ1 has equation αr + βs = d, with gcd(α,β) = 1. As a first step in the
desingularization process we use a quasi-homogeneous blow-up of degree (α,β).

Example 1.2.1 ([14], Example 3.2)
As an example we calculate the Newton diagram of the following vector field:

b
∂

∂a
+ (a2 + ab)

∂

∂b
+O(‖(a, b)‖3), (1.2.2)

providing the best choice of coefficients (α,β).
The support of (1.2.2) surely contains (−1, 1), (2,−1), and (1, 0) coming, respectively,

from b
∂

∂a
, a2

∂

∂b
, and ab

∂

∂b
. Besides these three points it can contain many other points,

which are in fact not essential since they all lie in the convex hull Q of Q1 ∪Q2 ∪Q3 with
Q1 = {(r, s) | r ≥ −1, s ≥ 1}, Q2 = {(r, s) | r ≥ 2, s ≥ −1}, and Q3 = {(r, s) | r ≥ 1, s ≥
0}. In Figure1.2.2 we represent Qi for i = 1, 2, 3 in (a) as well as P = Q in (b).

Q1

Q2

Q3

s

r

(a)

s

r

p

q

(b)

Figure 1.2.2: Calculating the Newton polygon (see [14] Fig. 3.12.).
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1.2 Blow-up technique

We see that the Newton diagram consists of one compact face, that we denote by γ1
and which is the line segment joining the points p = (−1, 1) to q = (2,−1). The line
segment lies on the line of equation 2r + 3s = 1 including the choice (α,β) = (2, 3).
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Chapter 2

Quasi traveling waves with
quenching in a reaction-diffusion
equation in the presence of
negative powers nonlinearity

Abstract

The quasi traveling waves with quenching of ut = uxx + (1− u)−α for α ∈ 2N are consid-
ered. The existence of quasi traveling waves with quenching and their quenching rates are
studied by applying the Poincaré compactification. This chapter is based on the following
published paper ([31]):

Ichida, Y., Sakamoto, T.O.: Quasi traveling waves with quenching in a reaction-
diffusion equation in the presence of negative powers nonlinearity, Proc. Japan
Acad. Ser. A Math Sci. 96, 1–6 (2020).

2.1 Introduction

In this chapter, we consider the quasi traveling waves with quenching (see Definition 2.1.3)
of the following equation

ut = uxx +
1

(1− u)α
, t > 0, x ∈ R, α ∈ N. (2.1.1)

First, we state the definition of “quenching” for the solution of (2.1.1).

Definition 2.1.1 ([50], Definition 4.19)
We say that a solution u(t, x) of (2.1.1) quenches at point (T, x0) if

lim
t↑T

u(t, x0) = 1, lim
t↑T

∣∣∣∣
∂u

∂t
(t, x0)

∣∣∣∣ = ∞.

In order to consider the traveling waves of (2.1.1), we introduce the following change
of variables:

φ(ξ) = 1− u(t, x), ξ = x− ct, c > 0.
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presence of negative powers nonlinearity

We then seek the solution φ(ξ) of the following equation:

cφ′ = −φ′′ + φ−α, ξ ∈ R, ′ =
d

dξ
, (2.1.2)

or {
φ′ = ψ,
ψ′ = −cψ + φ−α.

(2.1.3)

Second, we state the definition of quasi traveling waves and quasi traveling waves with
quenching as follows.

Definition 2.1.2
We say that a function u(t, x) ≡ 1−φ(ξ) is a quasi traveling wave of (2.1.1) if the function
φ(ξ) is a solution of (2.1.2) on a finite interval or semi-infinite interval.

Definition 2.1.3
We say that a function u(t, x) ≡ 1 − φ(ξ) is a quasi traveling wave with quenching of
(2.1.1) if the function u(t, x) is a quasi traveling wave of (2.1.1) on a finite interval (resp.
semi-infinite interval) such that |φ′| becomes infinite (namely, φ reaches 0) at both ends of
the interval (resp. finite end point of the semi-infinite interval). More precisely, we have
the following three cases:

(I) the function φ(ξ) is a solution of (2.1.2) on a semi-infinite interval (−∞, ξ∗) (φ(ξ) ∈
C2(−∞, ξ∗) ∩ C0(−∞, ξ∗], |ξ∗| < ∞), and satisfies

lim
ξ→ξ∗−0

φ(ξ) = 0 and lim
ξ→ξ∗−0

|ψ(ξ)| = ∞.

(II) the function φ(ξ) is a solution of (2.1.2) on a semi-infinite interval (ξ∗,+∞) (φ(ξ) ∈
C2(ξ∗,+∞) ∩ C0[ξ∗,+∞), |ξ∗| < ∞), and satisfies

lim
ξ→ξ∗+0

φ(ξ) = 0 and lim
ξ→ξ∗+0

|ψ(ξ)| = ∞.

(III) the function φ(ξ) is a solution of (2.1.2) on a finite interval (ξ−, ξ+) (φ(ξ) ∈ C2(ξ−, ξ+)∩
C0[ξ−, ξ+], −∞ < ξ− < ξ+ < +∞), and satisfies the followings

lim
ξ→ξ+−0

φ(ξ) = 0, lim
ξ→ξ−+0

φ(ξ) = 0,

lim
ξ→ξ+−0

|ψ(ξ)| = ∞, lim
ξ→ξ−+0

|ψ(ξ)| = ∞.

Remark 2.1.1
The definition of quasi traveling wave (with quenching) implies that it satisfies (2.1.1) only
on semi-infinite interval or finite interval. In this chapter, we do not discuss the behavior
of the solutions of (2.1.3) after ψ becomes infinity. It is necessary that more detailed (and
hard) analysis in order to study the solutions after quenching (outside of the interval on
that φ(ξ) satisfies (2.1.2)), and so we leave it open here.

In this setting, Matsue [50] proved the following theorem.

Theorem 2.1.1 ([50], Theorem 4.21)
Assume that α > 1 with α ∈ N. Then, the quasi traveling waves with quenching for (2.1.1)
are, if exist, characterized by trajectories whose initial data are on the stable manifold of
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2.1 Introduction

an equilibrium at infinity (φ,ψ) = (0,+∞) of (2.1.3). The quenching rates, namely, the
extinction rate of φ and blow-up rate of ψ, are

{
φ(ξ) ∼ C(ξ∗ − ξ)

2α
2α2−α+1

ψ(ξ) ∼ C(ξ∗ − ξ)
1−α

2α2−α+1

as ξ → ξ∗

with |ξ∗| < ∞ and C += 0.

The proof is given in [50].

Remark 2.1.2
We can obtain the equilibria at infinity (of (2.1.3)) not only (φ,ψ) = (0,+∞) but also
other equilibria by applying the Poincaré compactification (see [50] and Sec. 2.2 for the
details).

We note that the existence of the quasi traveling waves has not been proved yet. In
this chapter, we give the proof of the existence of them by considering the restricted case
of α ∈ 2N. The proof is based on Poincaré compactification (that is also used to prove
Theorem 2.1.1 in [50]) and basic theory of dynamical systems. We then state the main
theorem of this chapter (see also Figure 2.1.1).

Theorem 2.1.2
Assume that α ∈ 2N. Then, the equation (2.1.1) possesses a family of “quasi traveling
waves with quenching on a finite interval”. Moreover, each quasi traveling wave with
quenching u(t, x) = 1 − φ(ξ) (which satisfies (2.1.2) on a finite interval (ξ−, ξ+)) satisfies
the followings:

•






lim
ξ→ξ+−0

φ(ξ) = 0, lim
ξ→ξ−+0

φ(ξ) = 0,

lim
ξ→ξ+−0

ψ(ξ) = ∞, lim
ξ→ξ−+0

ψ(ξ) = −∞.

• φ(ξ) < 0 holds for ξ ∈ (ξ−, ξ+).

• There exists a constant ξ∗ ∈ (ξ−, ξ+) such that the following holds: ψ(ξ) < 0 for
ξ ∈ (ξ−, ξ∗), ψ(ξ∗) = 0 and ψ(ξ) > 0 for ξ ∈ (ξ∗, ξ+).

In addition, quenching rates are

{
φ(ξ) ∼ −C(ξ+ − ξ)

2
α+1

ψ(ξ) ∼ C (ξ+ − ξ)−
α−1
α+1

as ξ → ξ+ − 0

and {
φ(ξ) ∼ −C(ξ − ξ−)

2
α+1

ψ(ξ) ∼ −C (ξ − ξ−)
−α−1

α+1
as ξ → ξ− + 0 (2.1.4)

with C > 0.

In order to prove Theorem 2.1.2, it is necessary to seek a family of orbits that connect
(φ,ψ) = (0,−∞) and (0,+∞) of (2.1.3) (see Sec. 2.3 for the details). As shown in [14],
[50], the Poincaré compactification is useful, and applicable for this problem. Asymptotic
behaviors for both φ(ξ) and ψ(ξ) that are more accurate than in [31] were obtained after
publication of the paper. Note that this was obtained by refining the asymptotic form, as
will be discussed later in the proof.
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u

1

ξξ
−

ξ+

u(t, x) = 1− φ(ξ)

Figure 2.1.1: Schematic picture of the quasi traveling wave with quenching on ξ ∈ [ξ−, ξ+]
obtained in Theorem 2.1.2.

2.2 Dynamics on the Poincaré disk of (2.1.3)

In order to study the dynamics of (2.1.3) on the Poincaré disk, we desingularize it by the
time-scale desingularization

ds/dξ = {φ(ξ)}−α for α ∈ 2N. (2.2.1)

Since we assume that α is even, the direction of the time does not change via this desin-
gularization. Then we have

{
φ̇ = φαψ,
ψ̇ = −cφαψ + 1.

(
˙ =

d

ds

)
. (2.2.2)

It should be noted that the time scale desingularization (2.2.1) is simply multiplying
the vector field by φα. Then, with excepting the singularity {φ = 0}, the solution curves
of the system (vector field) remain the same but are parameterized differently. Still,
we refer to Section 7.7 of [44] and references therein for the analytical treatments of
desingularization with the time rescaling. In what follows, we use the similar time rescaling
(re-parameterization of the solution curves) repeatedly to desingularize the vector fields.

Now we can consider the dynamics of (2.2.2) on the charts U j and V j .

2.2.1 Dynamics on the chart U2

To obtain the dynamics on the chart U2, we introduce coordinates (λ, x) by the formulas

φ(s) = x(s)/λ(s), ψ(s) = 1/λ(s).

Then we have {
λ̇ = cxαλ1−α − λ2,
ẋ = x(cxαλ−α − λ) + xαλ−α.

Time-scale desingularization dτ/ds = λ(s)−α yields

{
λτ = cxαλ− λ2+α,
xτ = cxα+1 − λ1+αx+ xα,

(2.2.3)
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2.2 Dynamics on the Poincaré disk of (2.1.3)

where λτ = dλ/dτ and xτ = dx/dτ . The system (2.2.3) has the equilibria

p+0 : (λ, x) = (0, 0) and pc : (λ, x) = (0,−1/c).

The Jacobian matrices at these equilibria are

p+0 :

(
0 0
0 0

)
and pc :

(
c1−α 0
0 c1−α

)
.

Therefore, pc is a source, and p+0 is not hyperbolic. In order to determine the dynamics
near p+0 , we desingularize p+0 by introducing the following blow-up coordinates:

λ = rα−1λ̄, x = rα+1x̄

(see Section 1.2 of this thesis and Section 3 of [14] for the desingularizations of vector
fields by the blow-up). Since we are interested in the dynamics on the Poincaré disk, we
consider the dynamics of blow-up vector fields on the charts {λ̄ = 1} and {x̄ = ±1}.

Dynamics on the chart {λ̄ = 1}

By the change of coordinates λ = rα−1, x = rα+1x̄, we have






rτ =
r

α− 1

(
cx̄αrα(α+1) − rα

2−1
)
,

x̄τ =
2

α− 1

(
x̄rα

2−1 − cx̄α+1rα(α+1)
)
+ x̄αrα

2−1.

The time-rescaling dη/dτ = r(τ)α
2−1 yields

{
rη = (α− 1)−1

(
−r + cx̄αr2+α

)
,

x̄η = 2(α− 1)−1
(
x̄− cx̄α+1rα+1

)
+ x̄α.

(2.2.4)

The equilibria of (2.2.4) on {r = 0} are

p̄+0 : (r, x̄) = (0, 0), p̄+α : (r, x̄) =

(
0,

(
−2

α− 1

) 1
α−1

)
.

The Jacobian matrices at these equilibria are

p̄+0 :




− 1

α− 1
0

0
2

α− 1



 and p̄+α :



 − 1

α− 1
0

0 −2



 .

Moreover, since |1/(α− 1)| < 2 holds, trajectories near p̄+α are tangent to {x̄ = [−2/(α−
1)]

1
α−1 , r ≥ 0} as η → +∞. The solutions are approximated as

{
r(η) ∼ C1e

− 1
α−1η(1 + o(1)),

x(η)−A ∼ C2e−2η(1 + o(1)),
A :=

(
− 2

α− 1

) 1
α−1

.
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Figure 2.2.1: Schematic pictures of the dynamics of the blow-up vector fields and U2.

Dynamics on the chart {x̄ = −1}

By the change of coordinates λ = rα−1λ̄, x = −rα+1, and time-rescaling dη/dτ = r(τ)α
2−1,

we have {
rη = (α+ 1)−1

(
crα+2 − rλ̄1+α − r

)
,

λ̄η = −(α+ 1)−1
(
2λ̄2+α − (α− 1)λ̄− 2crα+1λ̄

)
.

The equilibria on {r = 0} are

(r, λ̄) = (0, 0), (r, λ̄) =
(
0, [(α− 1)/2]

1
α+1

)
.

By the further computations, we can see that (0, 0) is a saddle, and (0, [(α− 1)/2]
1

α+1 ) is
a sink.

Dynamics on the chart {x̄ = 1}

The change of coordinates λ = rα−1λ̄, x = rα+1, and time-rescaling dη/dτ = r(τ)α
2−1

yield {
rη = (α+ 1)−1

(
crα+2 − rλ̄1+α + r

)
,

λ̄η = −(α+ 1)−1
(
2λ̄2+α + (α− 1)λ̄− 2crα+1λ̄

)
.

The equilibrium on {r = 0, λ̄ ≥ 0} is (0, 0). The linearized eigenvalues are (α + 1)−1 and
−(α−1)/(α+1) with corresponding eigenvectors (1, 0) and (0, 1), respectively. Therefore,
(r, λ̄) = (0, 0) on the chart {x̄ = 1} is a saddle.

Combining the dynamics on the charts {λ̄ = 1} and {x̄ = ±1}, we obtain the dynamics
on U2 (see Figure 2.2.1).

Still, we continue to study the dynamics on other charts in order to obtain the whole
dynamics on the Poincaré disk.
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2.2 Dynamics on the Poincaré disk of (2.1.3)

2.2.2 Dynamics on the chart V 2

The change of coordinates

φ(s) = −x(s)/λ(s), ψ(s) = −1/λ(s)

give the projected dynamics of (2.1.3) on the chart V 2:
{
λτ = cxαλ+ λ2+α,
xτ = xα + cxα+1 + λ1+αx,

(2.2.5)

where τ is the new time introduced by dτ/ds = λ(s)−α. The system (2.2.5) can be
transformed into (2.2.3) by the change of coordinates (λ, x) 2→ (−λ, x). Therefore, it is
sufficient to consider the blow-up of singularity p−0 : (λ, x) = (0, 0) by the formulas

λ = rα−1λ̄, x = rα+1x̄ with λ̄ = 1.

Then we have {
rη = (α− 1)−1

(
r + cx̄αrα+2

)
,

x̄η = x̄α − 2(α− 1)−1
(
x̄+ cx̄α+1rα+1

)
,

(2.2.6)

where η satisfies dη/dτ = {r(τ)}α2−1. The equilibria of (2.2.6) on {r = 0} are

p̄−0 : (r, x̄) = (0, 0), p̄−α : (r, x̄) =

(
0,

(
2

α− 1

) 1
α−1

)
.

The equilibrium p̄−0 is a saddle with the eigenvalues (α − 1)−1 and −2(α − 1)−1 whose
corresponding eigenvectors are (1, 0) and (0, 1), respectively. Further, p̄−α is a source with
the eigenvalues (α − 1)−1 and 2 whose corresponding eigenvectors are (1, 0) and (0, 1),
respectively.

2.2.3 Dynamics on the chart U1

Let us study the dynamics on the chart U1. The transformations

φ(s) = 1/λ(s), ψ(s) = x(s)/λ(s)

yield {
λτ = −xλ,
xτ = −cx+ λ1+α − x2

(2.2.7)

via time-rescaling dτ/ds = {λ(s)}−α. The equilibria of (2.2.7) are (0, 0) and (0,−c) whose
Jacobian matrices are (

0 0
0 −c

)
and

(
c 0
0 c

)
,

respectively. Then the center manifold theory is applicable to study the dynamics near
(0, 0) (for instance, see [9]). It implies that there exists a function h(λ) satisfying

h(0) =
dh

dλ
(0) = 0

such that the center manifold of (2.2.7) is represented as {(λ, x) |x = h(λ)} near (0, 0).
Differentiating it with respect to τ , we have

−λh(λ)dh
dλ

(λ) = −ch(λ) + λ1+α − {h(λ)}2 .
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Then we can obtain the approximation of the (graph of) center manifold as follows:

{
(λ, x) |x = λα+1/c+O

(
λ2α+2

)}
.

Therefore, the dynamics of (2.2.7) near (0, 0) is topologically equivalent to the dynamics
of the following equation:

λτ = −λα+2/c+O(λ2α+3).

These results give us the dynamics on the chart U1.

2.2.4 Dynamics on the chart V 1

The transformations

φ(s) = −1/λ(s), ψ(s) = −x(s)/λ(s)

yield {
λτ = −xλ,
xτ = −cx− λ1+α − x2

(2.2.8)

via time-rescaling dτ/ds = {λ(s)}−α. We can see that the system (2.2.8) can be trans-
formed into the system (2.2.7) by the change of variables: (λ, x) 2→ (−λ, x). Therefore, the
dynamics of (2.2.8) is equivalent to the reflected one of (2.2.7) with respect to {λ = 0}.

2.3 Proof of Theorem 2.1.2

Since the point (y1, y2, y3) = (0, 1, 0) on the Poincaré disk corresponds to p+0 , we denote
it by p+0 as well. Similarly, we denote by p−0 the point (y1, y2, y3) = (0,−1, 0). In order
to prove Theorem 2.1.2, it is necessary to find the orbits that connect p−0 and p+0 on the
Poincaré disk. The phase portrait on the Poincaré disk of (2.1.3) is shown in Figure 2.3.1
for the convenience of readers.

Proof. (I) : For a given compact subset W ⊂ H+, there are no equilibria or closed orbits
in W . Therefore, by the Poincaré-Bendixson theorem, any trajectories starting from the
points in W can not stay in W with increasing s. This implies that the trajectories in H+

go to S1, which corresponds to {‖(φ,ψ)‖ = ∞}.
(II): The line {φ = 0} is invariant under the flow of (2.2.2). Therefore, any trajectories
start from the points in {y ∈ H+ | y1 < 0} can not go to {y ∈ H+ | y1 > 0}.
(III): Let Ws

p̄+α be a stable manifold of p̄+α (which is the equilibrium of the system (2.2.4)).

We denote byWs(p̄+α ) the stable set, which corresponds to Ws
p̄+α on the blow-up vector filed

(2.2.4), of the equilibrium p+0 of (2.2.3). Similarly, we denote by Wu(p̄−α ) the unstable set
of p−0 , corresponding to the unstable manifold of p̄−α on the blow-up vector field (2.2.6).
Consider the trajectories start from the points on Wu(p̄−α ) ⊂ {y ∈ H+ | y1 < 0}. The
trajectories can not stay in any compact subset onH+, and can not go to {y ∈ H+ | y1 > 0},
therefore, they go to p+0 with lying on Ws(p̄+α ). This implies that the system (2.2.2)
possesses the orbits that connect p−0 and p+0 on the Poincaré disk. It is easy to see that
dφ/dψ takes the same values on the vector fields defined by (2.2.2) and (2.1.3) by excepting
the singularity {φ = 0}. Thus, there are orbits connecting (φ,ψ) = (0,−∞) and (0,+∞)
on the original vector field (2.1.3).
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(IV): As shown in [50], we can obtain the quenching rates of φ(ξ) and ψ(ξ). Indeed,

dη

dξ
=

ds

dξ
· dτ
ds

· dη
dτ

= φ−α · λ−α · rα2−1

= r−α−1 · x̄−α

∼
{
C1e

− 1
α−1η(1 + o(1))

}−α−1
·
{
C2e

−2η(1 + o(1)) +A
}−α

∼ C3e
α+1
α−1η ·

{
C2e

−2η(1 + o(1)) +A
}−α

= C3e
α+1
α−1η · 1

{C2e−2η(1 + o(1)) +A}α

= C3e
α+1
α−1η · 1

{C2e−2η(1 + o(1))}α + α {C2e−2η(1 + o(1))}α−1 ·A+ · · ·+Aα

∼ Ce
α+1
α−1η as η → +∞

holds with constants C and Cj . Note that this argument is a refinement of [31]. Here, “
f(x) ∼ g(x) as x → a” means that f(x)− g(x) = o(g(x)) as x → a, equivalently,

lim
x→a

∣∣∣∣
f(x)

g(x)

∣∣∣∣ = 1.

This yields

ξ(η) = Ce−
α+1
α−1η + C̃, (C̃ ∈ R).

Set ξ+ = lim
η→+∞

ξ(η), then we have

ξ+ = C

∫ +∞

0
e−

α+1
α−1η dη < ∞.

Therefore,

ξ+ − ξ ∼ C e−
α+1
α−1η

holds. Finally, we obtain

φ(ξ) =
x

λ
=

rα+1

rα−1
x = r2x

∼
{
C1e

− 1
α−1η(1 + o(1))

}2
·
{
C2e

−2η(1 + o(1)) +A
}

∼ C4e
− 2

α−1η ·
{
C2e

−2η(1 + o(1)) +A
}

= C5e
− 2

α−1ηe−2η + C4 ·A · e−
2

α−1η

= C5e
− 2α

α−1η + C4 ·A · e−
2

α−1η

∼ −Ce−
2

α−1η.

Here, in last relation, since e−
2α
α−1η < e−

2
α−1η (η > 0) is satisfied by −2α/(α − 1) <

−2/(α− 1), we choose the term with the greater influence when η → +∞. Therefore, we
have

φ(ξ) ∼ −Ce−
2

α−1η ∼ −C(ξ+ − ξ)
2

α+1 (ξ → ξ+ − 0).

Since the trajectories are lying on {a < 0}, it holds that C > 0. Similarly, we can obtain
the quenching rates for ψ(ξ) as ξ → ξ+ and (2.1.4).

This completes the proof. !
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p
+
0

p
−

0

y1

y2

Figure 2.3.1: Compactification of the system (2.1.3).

2.4 Conclusions and Remarks

In this chapter, we studied whole dynamics of (2.1.3) on the phase space R2 ∪ {(φ,ψ) |
‖(φ,ψ)‖ = +∞}, the existence of quasi traveling waves with quenching, and their quench-
ing rates on a finite interval (ξ−, ξ+) (−∞ < ξ− < ξ+ < +∞) of (2.1.1) by applying the
Poincaré compactification and dynamical system approach.

From the viewpoint of theory of partial differential equations, it should be considered
that how can we formulate the solutions of (2.1.1) obtained in Theorem 2.1.2. Namely, it
is necessary to construct the entire solution. As discussed previously, we do not discuss
the behavior of the solutions of (2.1.3) after ψ becomes infinity since our interest in this
chapter is to study the solutions of (2.1.1) from the dynamical system view point. It
is necessary that more detailed (and hard) analysis in order to study the solutions after
quenching (outside of the interval on that φ(ξ) satisfies (2.1.2)), and so we leave it open
here. Further, It should be noted that the mathematical formulation of the solution (in
weak sense) could be obtained by considering a suitable function space as shown in [51]
(it will be addressed in future works as well).

In addition, since the theory of blow-up (desingularization of the vector field) is not
applicable for the non-polynomial vector fields, we cannot deal with the general case that
α ∈ R. Hence, we leave it open here.
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Chapter 3

Traveling waves with singularities
in a damped hyperbolic MEMS
type equation in the presence of
negative powers nonlinearity

Abstract

Traveling waves with singularities in a damped hyperbolic MEMS type equation in the
presence of negative powers nonlinearity are considered. The purpose of this chapter is to
investigate how the existence of the traveling waves, their shapes, and asymptotic behavior
change with the presence or absence of an inertial term. These are studied by applying the
framework that combines Poincaré compactification, classical dynamical systems theory,
and geometric methods for the desingularization of vector fields. These allow us to classify
all traveling waves and their properties since we know all the solution trajectories of the
equations they satisfy, including those to infinity. We report that the presence of this term
causes the shapes to change significantly for sufficiently large wave speeds. This chapter
is based on the following published paper ([37]):

Ichida, Y.: Traveling waves with singularities in a damped hyperbolic MEMS
type equation in the presence of negative powers nonlinearity, Electron. J.
Differ. Equ., 2023, 1–20 (2023).

3.1 Introduction

In this chapter, we consider the following damped hyperbolic MEMS type equation with
negative powers nonlinearity

ε2utt + ut = uxx + (1− u)−α, t > 0, x ∈ R, (3.1.1)

where α ∈ 2N and ε > 0. Here, ε is a small constant and the ratio of the interaction due
to the inertial and damped terms (see [15, 23, 24, 25] and references therein).

The equation (3.1.1) is based on the equation

ut = uxx + (1− u)−α, t > 0, x ∈ R, α ∈ N (3.1.2)

treated in [31, 50], with the term ε2utt added to the left-hand side. (3.1.1) is a type of
partial differential equation commonly referred to as a damped hyperbolic equation. Since
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(3.1.1) has aspects of both parabolic and hyperbolic types, it has recently attracted at-
tention from the viewpoint of partial differential equation theory (see [23, 18]). Guo [23]
considers both parabolic and hyperbolic type problem about MEMS, and provides some
quenching criteria. For MEMS, see below. In addition, it discusses the global existence
of solutions. The previous work [18] is concerned with the behavior of the solutions to
the nonlinear damped hyperbolic Allen-Cahn equation with appropriate boundary condi-
tions and initial data in a bounded domain. They argue that reaction-diffusion equations
have the lack of inertial and others. There are many ways to overcome these unphysical
properties; one of them is to consider hyperbolic reaction-diffusion equations.

Furthermore, (3.1.1) and (3.1.2) are special cases of the generalized MEMS type par-
tial differential equation (see [15, 24, 35] and references therein). The MEMS model
is the Micro-Electro Mechanical System devices and used in many machines around us
(for instance, see [68]). In general, the MEMS model is known to induce the touchdown
phenomenon (mathematically, quenching). Clarification of the structure of singularity for-
mation, such as quench, is one of the most important issues in MEMS type equations, and
there have been a lot of studies recently. However, since the nonlinear terms of MEMS
equations are not simple, then they have both hyperbolic and parabolic aspects, it is not
fully understood what kind of typical solutions exist.

In this chapter, we investigate how the behavior (shapes and asymptotic behavior)
of traveling waves change depending on whether the ε2utt term is present or absent in
the left-hand side of [31]. More precisely, in the traveling wave framework, we compare
the family of functions satisfying (3.1.1) with the family of functions satisfying (3.1.2)
revealed in [31] in terms of the asymptotic behavior and shapes. The reason why we refer
to the traveling waves as families of functions satisfying the equations is that they cause
singularities at the endpoints of finite intervals despite the equations being defined over
the whole domain, which makes subsequent analysis difficult (see [31]). In addition, we
are interested in whether the asymptotic behavior obtained from (3.1.1) and that from
(3.1.2) coincide as ε → 0. Although it appears to be nothing more than adding ε2utt
to the left-hand side of (3.1.2), this extension allows us to obtain conclusions from the
perspective of traveling waves that cannot be obtained in [31]. To the best of the author’s
knowledge, there has been no analysis of the existence, shapes and asymptotic behavior
of traveling waves in such a type of equation with both hyperbolic and parabolic forms.
We believe that this chapter will provide this abundant information through a dynamical
systems approach and give a new perspective on these types of equations.

In order to consider the traveling waves of (3.1.1), we introduce the following change
of variables:

φ(ξ) = 1− u(t, x), ξ = x− ct, 0 < c ∈ R.
The equation of φ(ξ) solving (3.1.1) is then reduced to

(1− ε2c2)φ′′ = −cφ′ + φ−α,

(
′ =

d

dξ

)
. (3.1.3)

The equation with ε = 0 in (3.1.3) is discussed in [31]. In (3.1.3), there is a case classifi-
cation for 1− ε2c2 that did not appear in [31].

When 1 − ε2c2 = 0, i.e., c = 1/ε, the following differential equation is obtained from
(3.1.3):

0 = −cφ′ + φ−α.

This can be solved as follows:

φ(ξ) =

(
α+ 1

c
ξ +B

) 1
α+1

(3.1.4)
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with a constant B ∈ R. In other words, we can express φ(ξ) explicitly in this case. For a
discussion of this case, see Remark 3.2.4.

Hereinafter referred to as 1− ε2c2 += 0. Then, (3.1.3) is equivalent to

{
φ′ = ψ,

ψ′ = (1− ε2c2)−1(−cψ + φ−α).
(3.1.5)

In (3.1.5), the dynamics to infinity in the equation with ε = 0 has been studied in [31, 33].
In [33], although the partial differential equations are different, the ordinary differential
equations (ODEs for short) derived from them include the ODEs of [31]. As can be
seen from these previous studies, (3.1.5) is not easy to analyze. However, as shown in
[31, 33, 49, 50], it is possible to study the dynamics of this ODE to infinity in the framework
that combines Poincaré compactification (for instance, see Section 1.1 in this thesis and
[14, 49, 50] for the details of it), classical dynamical systems theory, and geometric methods
for desingularization of vector fields (see Section 1.2 in this thesis and Section 3 of [14] and
references therein). By using these methods, the whole dynamics on the phase space R2

including infinity (denoted by Poincaré disk) generated by the two-dimensional differential
equation (3.1.5) is obtained. In other words, from these dynamics, we expect to categorize
all traveling waves as in these previous studies. Furthermore, the strength of the analysis
in this framework is that the existence of connecting orbits in dynamical systems including
infinity not only proves the existence of these traveling waves, provides information about
their shapes but allows us to study their asymptotic behavior.

This chapter is organized as follows. In the next section, we reproduce the terminology
defined in [31] and the main results obtained, and state the main results of this chapter.
In Section 3.3, we obtain the dynamics of (3.1.5) on the Poincaré disk via Poincaré com-
pactification and basic theory of the dynamical systems. The proof of Theorems will be
completed in Section 3.4. Section 3.5 is devoted to the concluding remarks.

3.2 Known and Main results

Before we state the main results of this chapter, we reproduce the following definitions
of quasi traveling waves and quasi traveling waves with quenching. The reason for this is
that the main result in this chapter will be compared later with that in [31] (see Propo-
sition 3.2.1 and Theorem 3.2.1). Here, quenching in ODE (3.1.5) roughly means that the
following holds

φ(ξ) → 0, |φ′(ξ)| → +∞, as ξ → |ξ∗|

with |ξ∗| < +∞.

Definition 3.2.1 (Definition 2.1.2 (Definition 2, [31]))
We say that a function u(t, x) ≡ 1−φ(ξ) is a quasi traveling wave of (3.1.2) if the function
φ(ξ) is a solution of (3.1.3) with ε = 0 on a finite interval or semi-infinite interval.

Definition 3.2.2 (Definition 2.1.3 (Definition 3, [31]))
We say that a function u(t, x) ≡ 1 − φ(ξ) is a quasi traveling wave with quenching of
(3.1.2) if the function u(t, x) is a quasi traveling wave of (3.1.2) on a finite interval (resp.
semi-infinite interval) such that φ reaches 0 and |φ′| becomes infinite at both ends of the
interval (resp. finite end point of the semi-infinite interval). More precisely, we have the
following three cases:
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(I) The function φ(ξ) is a solution of (3.1.3) with ε = 0 on a semi-infinite interval
(−∞, ξ∗) (φ(ξ) ∈ C2(−∞, ξ∗) ∩ C0(−∞, ξ∗], |ξ∗| < ∞), and satisfies

lim
ξ→ξ∗−0

φ(ξ) = 0 and lim
ξ→ξ∗−0

|ψ(ξ)| = ∞.

(II) The function φ(ξ) is a solution of (3.1.3) with ε = 0 on a semi-infinite interval
(ξ∗,+∞) (φ(ξ) ∈ C2(ξ∗,+∞) ∩ C0[ξ∗,+∞), |ξ∗| < ∞), and satisfies

lim
ξ→ξ∗+0

φ(ξ) = 0 and lim
ξ→ξ∗+0

|ψ(ξ)| = ∞.

(III) The function φ(ξ) is a solution of (3.1.3) with ε = 0 on a finite interval (ξ−, ξ+)
(φ(ξ) ∈ C2(ξ−, ξ+) ∩C0[ξ−, ξ+], −∞ < ξ− < ξ+ < +∞), and satisfies the followings

lim
ξ→ξ+−0

φ(ξ) = 0, lim
ξ→ξ−+0

φ(ξ) = 0,

lim
ξ→ξ+−0

|ψ(ξ)| = ∞, lim
ξ→ξ−+0

|ψ(ξ)| = ∞.

With these definitions, we review the results obtained in [31]. Hereinafter, note that
the meaning of the symbol F (η) ∼ G(η) as η → +∞ is as follows:

lim
η→+∞

∣∣∣∣
F (η)

G(η)

∣∣∣∣ = 1.

Proposition 3.2.1 (Theorem 2.1.2 (Theorem 2, [31]))
Assume that α ∈ 2N. Then, the equation (3.1.2) possesses a family of quasi traveling waves
with quenching on a finite interval. Moreover, each quasi traveling wave with quenching
u(t, x) = 1− φ(ξ) satisfies the followings:

•






lim
ξ→ξ+−0

φ(ξ) = 0, lim
ξ→ξ−+0

φ(ξ) = 0,

lim
ξ→ξ+−0

ψ(ξ) = ∞, lim
ξ→ξ−+0

ψ(ξ) = −∞.

• φ(ξ) < 0 holds for ξ ∈ (ξ−, ξ+).

• There exists a constant ξ∗ ∈ (ξ−, ξ+) such that the following holds: ψ(ξ) < 0 for
ξ ∈ (ξ−, ξ∗), ψ(ξ∗) = 0 and ψ(ξ) > 0 for ξ ∈ (ξ∗, ξ+).

In addition, the quenching rates are
{
φ(ξ) ∼ −C(ξ+ − ξ)

2
α+1

ψ(ξ) ∼ C (ξ+ − ξ)−
α−1
α+1

as ξ → ξ+ − 0 (3.2.1)

and {
φ(ξ) ∼ −C(ξ − ξ−)

2
α+1

ψ(ξ) ∼ −C (ξ − ξ−)
−α−1

α+1
as ξ → ξ− + 0 (3.2.2)

with C > 0.

Remark 3.2.1
Note that the asymptotic behavior for (3.2.1) and (3.2.2) in Proposition 3.2.1 differs in
the exponential part from the asymptotic behavior obtained in Theorem 2 of [31] and
Proposition 1 of [33]. The reason for this is that, after the publication of [31, 33], we chose
more appropriate principal terms in the computational process of deriving the asymptotic

40



3.2 Known and Main results

behavior, which resulted in higher accuracy. This improvement is described in detail in
Subsection 3.4.1. Furthermore, this improvement has already been introduced into [35],
and the asymptotic behavior, which was previously difficult to derive, has been obtained.
However, the underlying idea is similar to the previous ones.

Next, the main results of this chapter are described. Figure 3.2.1, Figure 3.2.2, and
Figure 3.2.3 show the schematic pictures of traveling waves obtained by each theorem.

Theorem 3.2.1
Assume that α ∈ 2N, ε > 0, and 1 − ε2c2 > 0. Then, for a given positive constant
0 < c < 1/ε, there exists a family of the functions (which corresponds to a family of the
orbits of (3.1.5)) defined on the finite intervals such that each function u(t, x) satisfies
equation (3.1.1) on a finite interval (ξ−, ξ+) (−∞ < ξ− < ξ+ < +∞). Moreover, each
function u(t, x) ≡ 1− φ(ξ) satisfies the following:

•






lim
ξ→ξ+−0

φ(ξ) = 0, lim
ξ→ξ−+0

φ(ξ) = 0,

lim
ξ→ξ+−0

ψ(ξ) = ∞, lim
ξ→ξ−+0

ψ(ξ) = −∞.

• φ(ξ) < 0 holds for ξ ∈ (ξ−, ξ+).

• There exists a constant ξ∗ ∈ (ξ−, ξ+) such that the following holds: ψ(ξ) < 0 for
ξ ∈ (ξ−, ξ∗), ψ(ξ∗) = 0 and ψ(ξ) > 0 for ξ ∈ (ξ∗, ξ+).

In addition, the asymptotic behavior for ξ → ξ+ − 0 and ξ → ξ− + 0 are same as (3.2.1)
and (3.2.2).

On the other hand, assume that 1 − ε2c2 < 0. Then, for a given positive constant
c > 1/ε, there exists a family of the functions (which corresponds to a family of the orbits
of (3.1.5)) defined on the finite intervals such that each function u(t, x) satisfies equation
(3.1.1) on a finite interval (ξ−, ξ+) (−∞ < ξ− < ξ+ < +∞). Moreover, each function
u(t, x) ≡ 1− φ(ξ) satisfies the following:

•






lim
ξ→ξ+−0

φ(ξ) = 0, lim
ξ→ξ−+0

φ(ξ) = 0,

lim
ξ→ξ+−0

ψ(ξ) = −∞, lim
ξ→ξ−+0

ψ(ξ) = +∞.

• φ(ξ) > 0 holds for ξ ∈ (ξ−, ξ+).

• There exists a constant ξ∗ ∈ (ξ−, ξ+) such that the following holds: ψ(ξ) > 0 for
ξ ∈ (ξ−, ξ∗), ψ(ξ∗) = 0 and ψ(ξ) < 0 for ξ ∈ (ξ∗, ξ+).

In addition, the asymptotic behavior for ξ → ξ+ − 0 and ξ → ξ− + 0 are

{
φ(ξ) ∼ C(ξ+ − ξ)

2
α+1

ψ(ξ) ∼ −C (ξ+ − ξ)−
α−1
α+1

as ξ → ξ+ − 0 (3.2.3)

and {
φ(ξ) ∼ C(ξ − ξ−)

2
α+1

ψ(ξ) ∼ C (ξ − ξ−)
−α−1

α+1
as ξ → ξ− + 0 (3.2.4)

with C > 0.
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ξ

u = 1− φ

ξ+ξ
−

u = 1

0

ξ

u = 1− φ

ξ+ξ
−

u = 1

0

Figure 3.2.1: Schematic picture of the functions defined on the finite interval such that
each function u(t, x) ≡ 1 − φ(ξ) satisfies equation (3.1.1) on a finite interval (ξ−, ξ+)
in Theorem 3.2.1. Here it should be noted that the position of the singular points ξ−
and ξ+ are not determined in our studies, however, they are shown in this figure for the
convenience. [Left: In the case that 1− ε2c2 > 0.] [Right: In the case that 1− ε2c2 < 0.]
Note that in the figure on the right, the trajectory in which the minimum of u is below the
ξ-axis is chosen from among the infinitely many trajectories that correspond to Theorem
3.2.1.

Remark 3.2.2
In Theorem 3.2.1, the result for the case 1− ε2c2 > 0 is almost the same as in Proposition
3.2.1. However, since (3.1.1) is a hyperbolic equation and there is room for consideration
in adopting Definition 3.2.2 as a rigorous discussion of the mathematical formulation of
the solution, Theorem 3.2.1 is phrased as the existence of a family of functions satisfying
the equation. Notable points in Theorem 3.2.1 are as follows:

(i) In addition, the asymptotic behavior obtained in the above theorem is the same as
Proposition 3.2.1, except for the difference in the sign of the coefficients. This means
that the behavior of these as ε → 0 does not change. This may be due to the fact
that the principal part of the derived vector field (3.3.2) does not change.

(ii) The most important point to be emphasized in this result is that a condition on the
wave speed that is not obtained in [31] appears, and when the wave speed exceeds
c = 1/ε, that is, when the wave speed is sufficiently large, traveling waves that are
not seen in [31] are observed (see Figure 3.2.1 and Figure 1 of [31]).

Theorem 3.2.2
Assume that α ∈ 2N, ε > 0, and 1 − ε2c2 > 0. Then, for a given positive constant 0 <
c < 1/ε, there exists a family of the functions (which corresponds to a family of the orbits
of (3.1.5)) defined on the semi-infinite intervals such that each function u(t, x) satisfies
equation (3.1.1) on a semi-infinite interval (−∞, ξ+) (−∞ < ξ+ < +∞). Moreover, each
function u(t, x) ≡ 1− φ(ξ) satisfies the following:

• lim
ξ→ξ+−0

φ(ξ) = 0, lim
ξ→−∞

φ(ξ) = −∞, lim
ξ→ξ+−0

ψ(ξ) = ∞.

• φ(ξ) < 0 holds for ξ ∈ (−∞, ξ+).

In addition, the asymptotic behavior for ξ → ξ+ − 0 and ξ → −∞ are (3.2.1) and

φ(ξ) ∼ −Ce
− c

1−ε2c2
ξ

as ξ → −∞ (3.2.5)
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with C > 0.
On the other hand, assume that 1 − ε2c2 < 0. Then, for a given positive constant

c > 1/ε, there exists a family of the functions (which corresponds to a family of the orbits
of (3.1.5)) defined on the semi-infinite intervals such that each function u(t, x) satisfies
equation (3.1.1) on a semi-infinite interval (ξ−,+∞) (−∞ < ξ− < +∞). Moreover, each
function u(t, x) ≡ 1− φ(ξ) satisfies the following:

• lim
ξ→ξ−+0

φ(ξ) = 0, lim
ξ→∞

φ(ξ) = +∞, lim
ξ→ξ−+0

ψ(ξ) = +∞.

• φ(ξ) > 0 holds for ξ ∈ (ξ−,+∞).

In addition, the asymptotic behavior for ξ → ξ− + 0 and ξ → +∞ are (3.2.4) and

φ(ξ) ∼ Ce
− c

1−ε2c2
ξ

as ξ → +∞ (3.2.6)

with C > 0.

Theorem 3.2.3
Assume that α ∈ 2N, ε > 0, and 1 − ε2c2 > 0. Then, for a given positive constant 0 <
c < 1/ε, there exists a family of the functions (which corresponds to a family of the orbits
of (3.1.5)) defined on the semi-infinite intervals such that each function u(t, x) satisfies
equation (3.1.1) on a semi-infinite interval (−∞, ξ+) (−∞ < ξ+ < +∞). Moreover, each
function u(t, x) ≡ 1− φ(ξ) satisfies the following:

• lim
ξ→ξ+−0

φ(ξ) = 0, lim
ξ→−∞

φ(ξ) = −∞, lim
ξ→ξ+−0

ψ(ξ) = ∞.

• φ(ξ) < 0 holds for ξ ∈ (−∞, ξ+).

In addition, the asymptotic behavior for ξ → ξ+ − 0 and ξ → −∞ are (3.2.1) and

{
φ(ξ) ∼ O(ξ

1
α+1 ),

ψ(ξ) ∼ O((−ξ)−
α

α+1 ),
as ξ → −∞. (3.2.7)

On the other hand, assume that 1 − ε2c2 < 0. Then, for a given positive constant
c > 1/ε, there exists a family of the functions (which corresponds to a family of the orbits
of (3.1.5)) defined on the semi-infinite intervals such that each function u(t, x) satisfies
equation (3.1.1) on a semi-infinite interval (ξ−,+∞) (−∞ < ξ− < +∞). Moreover, each
function u(t, x) ≡ 1− φ(ξ) satisfies the following:

• lim
ξ→ξ−+0

φ(ξ) = 0, lim
ξ→+∞

φ(ξ) = +∞, lim
ξ→ξ−+0

ψ(ξ) = +∞.

• φ(ξ) > 0 holds for ξ ∈ (ξ−,+∞).

In addition, the asymptotic behavior for ξ → ξ− + 0 and ξ → +∞ are (3.2.4) and

{
φ(ξ) ∼ O(ξ

1
α+1 ),

ψ(ξ) ∼ O((−ξ)−
α

α+1 ),
as ξ → +∞. (3.2.8)

Remark 3.2.3
Note that the families of functions satisfying the equations obtained in Theorem 3.2.2
and Theorem 3.2.3 are lumped together in a rough form in Figure 3.2.2, although their
asymptotic behavior is strictly different.
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ξ

u = 1− φ

ξ+

u = 1

0

ξ

u = 1− φ

u = 1

0 ξ
−

Figure 3.2.2: Schematic pictures of the functions defined on the semi-infinite interval such
that each function u(t, x) ≡ 1 − φ(ξ) satisfies equation (3.1.1) on a semi-infinite interval
in Theorem 3.2.2 and Theorem 3.2.3. Here it should be noted that the position of the
singular point ξ+ (or ξ−) are not determined in our studies, however, they are shown in
these figures for the convenience. [Left: In the case that 1− ε2c2 > 0.] [Right: In the case
that 1− ε2c2 < 0.]

Theorem 3.2.4
Assume that α ∈ 2N, ε > 0, and 1 − ε2c2 > 0. Then, for a given positive constant
0 < c < 1/ε, the equation (3.1.1) has a family of the traveling wave solutions (which
corresponds to a family of the orbits of (3.1.5)) with singularities at ξ → −∞ and ξ → +∞.
Moreover, its each function u(t, x) ≡ 1− φ(ξ) satisfies the following:

• lim
ξ→+∞

φ(ξ) = +∞, lim
ξ→−∞

φ(ξ) = +∞.

• φ(ξ) > 0 holds for ξ ∈ R.

• There exists a constant ξ∗ ∈ R such that the following holds: ψ(ξ) < 0 for ξ ∈
(−∞, ξ∗), ψ(ξ∗) = 0 and ψ(ξ) > 0 for ξ ∈ (ξ∗,+∞).

In addition, the asymptotic behavior for ξ → +∞ and ξ → −∞ are
{
φ(ξ) ∼ O(ξ

1
α+1 ),

ψ(ξ) ∼ O((−ξ)−
α

α+1 ),
as ξ → +∞ (3.2.9)

and
φ(ξ) ∼ Ce

− c
1−ε2c2

ξ
as ξ → −∞ (3.2.10)

with C > 0.
On the other hand, assume that 1− ε2c2 < 0. Then, for a given positive constant c >

1/ε, the equation (3.1.1) has a family of the traveling wave solutions (which corresponds
to a family of the orbits of (3.1.5)) with singularities at ξ → −∞ and ξ → +∞. Moreover,
its each function u(t, x) ≡ 1− φ(ξ) satisfies the following:

• lim
ξ→+∞

φ(ξ) = −∞, lim
ξ→−∞

φ(ξ) = −∞.

• φ(ξ) < 0 holds for ξ ∈ R.

• There exists a constant ξ∗ ∈ R such that the following holds: ψ(ξ) > 0 for ξ ∈
(−∞, ξ∗), ψ(ξ∗) = 0 and ψ(ξ) < 0 for ξ ∈ (ξ∗,+∞).

44



3.3 Dynamics on the Poincaré disk of (3.1.5)

ξ

u = 1− φ

u = 1

0

ξ

u = 1− φ

u = 1

0

Figure 3.2.3: Schematic picture of the each traveling wave solutions with the singularities
at ξ → −∞ and ξ → +∞ in obtained Theorem 3.2.4. [Left: In the case that 1−ε2c2 > 0.]
[Right: In the case that 1− ε2c2 < 0.] Note that in the figure on the right, the trajectory
in which the maximum of u is above the ξ-axis is chosen from among the infinitely many
trajectories that correspond to Theorem 3.2.4.

In addition, the asymptotic behavior for ξ → +∞ and ξ → −∞ are

φ(ξ) ∼ −Ce
− c

1−ε2c2
ξ

as ξ → +∞ (3.2.11)

with C > 0, and {
φ(ξ) ∼ O(ξ

1
α+1 ),

ψ(ξ) ∼ O((−ξ)−
α

α+1 ),
as ξ → −∞. (3.2.12)

Remark 3.2.4
We mentioned that when 1 − ε2c2 = 0, φ(ξ) can be expressed explicitly as in (3.1.4).
This is the same as the number of order of φ(ξ) in (3.2.7), (3.2.8), (3.2.9), and (3.2.12).
However, the detailed relationships and mathematical meanings of these are not known
yet, and will be the subject of future work.

Remark 3.2.5
Some functions obtained in the above Theorems satisfy the equation only on finite interval
or semi-infinite interval. In this chapter, we do not discuss the behavior of the solutions of
(3.1.5) after ψ(ξ) becomes infinity (outside of the interval on that φ(ξ) satisfies (3.1.3)).
It is necessary that more detailed (and hard) analysis in order to study the solutions
after ψ(ξ) reaches the singularity. So we leave it open here. It should be noted that
equation (3.1.1) is invariant under translation for spatial coordinates, so many of the same
waves connected together should also satisfy the equation, except at the points where the
derivatives diverge. However, since our interest in this chapter is to study the traveling
waves of (3.1.5) from the viewpoint of dynamical systems, we do not discuss this chapter.

3.3 Dynamics on the Poincaré disk of (3.1.5)

In this section, we study R2∪{(φ,ψ) | ‖(φ,ψ)‖ = +∞}, i.e., the dynamics on the Poincaré
disk, by the Poincaré compactification. In order to study the dynamics of (3.1.5) on the
Poincaré disk, we desingularize it by the time-scale desingularization

ds/dξ = φ−α for α ∈ 2N. (3.3.1)
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Since that α is even, the direction of the time does not change via this desingularization.
Then, we have {

φ′ = φαψ,

ψ′ = (1− ε2c2)−1(−cφαψ + 1),

(
′ =

d

ds

)
(3.3.2)

with 1− ε2c2 += 0. This system (3.3.2) does not have equilibria.
It should be noted that the time scale desingularization (3.3.1) is simply multiplying

the vector field by φα. Then, except the singularity {φ = 0}, the solution curves of the
system (vector field) remain the same but are parameterized differently. Still, we refer to
Section 7.7 of [44] and references therein for the analytical treatments of desingularization
with the time rescaling. In what follows, we use similar time rescaling (re-parameterization
of the solution curves) repeatedly to desingularize the vector fields.

Now we can consider the dynamics of (3.3.2) on the charts U j and V j (j = 1, 2).
See [14, 31, 33] and their references for definitions of these local coordinates. Note that
these results described below are consistent with the process shown in Theorem 2 of [31]
and Proposition 1 of [33], assuming ε = 0. For the reader’s convenience, the calculation
process is described here considering the case where ε > 0.

3.3.1 Dynamics on the chart U2

To obtain the dynamics on the chart U2, we introduce coordinates (λ, x) by the formulas

φ = x/λ, ψ = 1/λ.

In this chart, it corresponds to φ→ 0 and ψ → +∞ and the direction in which x is positive
corresponds to the direction in which φ is positive. See Figure 2 in [31] for a geometric
image. Then, these transformations yield

{
λ′ = (1− ε2c2)−1(cλ−α+1xα − λ2),

x′ = λ−αxα + (1− ε2c2)−1(cλ−αxα+1 − λx),

(
′ =

d

ds

)
.

By using the time-scale desingularization dτ/ds = λ−α, we have
{
λτ = (1− ε2c2)−1(cλxα − λα+2),

xτ = xα + (1− ε2c2)−1(cxα+1 − λα+1x),
(3.3.3)

where λτ = dλ/dτ and xτ = dx/dτ . The system (3.3.3) has the equilibria

E+
0 : (λ, x) = (0, 0), Ec : (λ, x) = (0,M1), M1 = −(1− ε2c2)c−1.

The Jacobian matrices of the vector field (3.3.3) at these equilibria are

E+
0 :

(
0 0
0 0

)
, Ec :

(
M2 0
0 M2

)
, M2 =

(1− ε2c2)α−1

cα−1
.

Therefore, Ec is a source when 1−ε2c2 > 0, and a sink when 1−ε2c2 < 0. The equilibrium
E+

0 is not hyperbolic. Thus, to determine the dynamics near E+
0 , we desingularize it by

introducing the following blow-up coordinates:

λ = rα−1λ̄, x = rα+1x̄

(see [14]). Since we are interested in the dynamics on the Poincaré disk, we consider the
dynamics of blow-up vector fields on the charts {λ̄ = 1} and {x̄ = ±1} (see also [31, 33]).
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Dynamics on the chart {λ̄ = 1}

By the change of coordinates λ = rα−1, x = rα+1x̄, we have
{
rτ = r(α− 1)−1(1− ε2c2)−1(crα(α+1)x̄α − rα

2−1),

x̄τ = 2(α− 1)−1(1− ε2c2)−1(rα
2−1x̄− crα(α+1)x̄α+1) + rα

2−1x̄α.

The time-rescaling dη/dτ = rα
2−1 yields

{
rη = (α− 1)−1(1− ε2c2)−1(crα+2x̄α − r),

x̄η = 2(α− 1)−1(1− ε2c2)−1(x̄− crα+1x̄α+1) + x̄α,
(3.3.4)

where rη = dr/dη and x̄η = dx̄/dη. The equilibria of (3.3.4) on {r = 0} are

E
+
0 : (r, x̄) = (0, 0), E

+
α : (r, x̄) = (0,M3), M3 = [−2(α− 1)−1(1− ε2c2)−1]

1
α−1 .

Note that M3 < 0 when 1 − ε2c2 > 0 and M3 > 0 when 1 − ε2c2 < 0. The Jacobian
matrices of the vector field (3.3.4) at these equilibria are

E
+
0 :

(
− 1

(α−1)(1−ε2c2) 0

0 2
(α−1)(1−ε2c2)

)
, E

+
α :

(
− 1

(α−1)(1−ε2c2) 0

0 − 2
1−ε2c2

)
.

Therefore, E
+
0 is a saddle, and E

+
α is a sink in the case that 1− ε2c2 > 0. In addition, E

+
0

is a saddle, and E
+
α is a source in the case that 1− ε2c2 < 0.

Furthermore, since | − (α − 1)−1(1 − ε2c2)−1| < | − 2(1 − ε2c2)−1| holds, trajectories
near E

+
α are tangent to {x̄ = M3, r ≥ 0} as η → +∞. The solutions around E

+
α are

approximated as




r(η) = C1e

− 1
(α−1)(1−ε2c2)

η
(1 + o(1)),

x̄(η) = C2e
− 2

1−ε2c2
η
+M3(1 + o(1)),

as η → +∞ (3.3.5)

with constants C1 and C2.

Dynamics on the chart {x̄ = 1}

By the change of coordinates λ = rα−1λ̄, x = rα+1, and time-rescaling dη/dτ = rα
2−1, we

have
{
rη = (α+ 1)−1r + (α+ 1)−1(1− ε2c2)−1(crα+2 − rλ̄α+1),

λ̄η = −(α− 1)(α+ 1)−1λ̄+ (α+ 1)−1(1− ε2c2)−1(2crα+1λ̄− 2λ̄α+2).
(3.3.6)

If 1 − ε2c2 > 0, then the equilibrium on {r = 0, λ̄ ≥ 0} is (r, λ̄) = (0, 0). The Jacobian
matrix of the vector field (3.3.6) at this equilibrium is

(0, 0) :





1

α+ 1
0

0 −α− 1

α+ 1



 .

Therefore, the equilibrium (0, 0) is a saddle.
If 1− ε2c2 < 0, the system (3.3.6) has the equilibria on {r = 0, λ̄ ≥ 0}

(r, λ̄) = (0, 0), (r, λ̄) = (0,M4), M4 = [−2−1(α− 1)(1− ε2c2)]
1

α+1 > 0.
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The Jacobian matrices of the vector field (3.3.6) at these equilibria are

(0, 0) :





1

α+ 1
0

0 −α− 1

α+ 1



 , (0,M4) :

( 1

2
0

0 α− 1

)
.

Therefore, the equilibrium (0, 0) is a saddle, and (0,M4) is a source.

Dynamics on the chart {x̄ = −1}

The change of coordinates λ = rα−1λ̄, x = −rα+1, and time-rescaling dη/dτ = rα
2−1 yield

{
rη = −(α+ 1)−1r + (α+ 1)−1(1− ε2c2)−1(crα+2 − rλ̄α+1),

λ̄η = (α− 1)(α+ 1)−1λ̄+ (α+ 1)−1(1− ε2c2)−1(2crα+1λ̄− 2λ̄α+2).
(3.3.7)

If 1− ε2c2 > 0, the system (3.3.7) has the equilibria on {r = 0, λ̄ ≥ 0}

(r, λ̄) = (0, 0), (r, λ̄) = (0,M5), M5 = [2−1(α− 1)(1− ε2c2)]
1

α+1 > 0.

The Jacobian matrices of the vector field (3.3.7) at these equilibria are

(0, 0) :




− 1

α+ 1
0

0
α− 1

α+ 1



 , (0,M5) :

(
−1

2
0

0 −α− 1

)
.

Therefore, the equilibrium (0, 0) is a saddle, and (0,M5) is a sink.
If 1− ε2c2 < 0, then the equilibrium on {r = 0, λ̄ ≥ 0} is (r, λ̄) = (0, 0). Eigenvalues of

the linearized matrix are −(α+1)−1 and (α−1)(α+1)−1 with corresponding eigenvectors
(1, 0) and (0, 1), respectively. Therefore, the equilibrium (0, 0) is a saddle.

Combining the dynamics on the charts {λ̄ = 1} and {x̄ = ±1}, we can obtain the
dynamics on U2 (see Figure 3.3.1). The figure for the case 1 − ε2c2 < 0 can be drawn in
the same way as for the case 1− ε2c2 > 0.

3.3.2 Dynamics on the chart V 2

In this chart, it corresponds to φ → 0 and ψ → −∞ and the direction in which x is
negative corresponds to the direction in which φ is positive. The change of coordinates

φ = −x/λ, ψ = −1/λ

give the projected dynamics of (3.3.2) on the chart V 2:

{
λτ = (1− ε2c2)−1(cλxα + λ2+α),

xτ = xα + (1− ε2c2)−1(cxα+1 + λα+1x),
(3.3.8)

where τ is the new variable introduced by dτ/ds = λ(s)−α. The system (3.3.8) has the
equilibria

E−
0 : (λ, x) = (0, 0), Ec′ : (λ, x) = (0,M1), M1 = −(1− ε2c2)c−1.

The Jacobian matrices of the vector field (3.3.8) at these equilibria are the same as that
of U2.
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{λ̄ = 1}

{x̄ = 1}

{x̄ = −1}

λ

x

λ

λ

x

x

λ

λ

x

x

E
+
0

U2

E
+
0

Figure 3.3.1: Schematic pictures of the dynamics of the blow-up vector fields and U2 in
the case that 1− ε2c2 > 0.

The system (3.3.8) can be transformed into (3.3.3) by the change of coordinates
(λ, x) 2→ (−λ, x). Therefore, it is sufficient to consider the blow-up of singularity E−

0 :
(λ, x) = (0, 0) by the formulas

λ = rα−1, x = rα+1x̄ with λ̄ = 1.

Then, we have
{
rη = (α− 1)−1(1− ε2c2)−1(crα+2x̄α + r),

x̄η = 2(α− 1)−1(1− ε2c2)−1(−x̄− crα+1x̄α+1) + x̄α,
(3.3.9)

where η satisfies dη/dτ = rα
2−1. The equilibria of (3.3.9) on {r = 0} are

E
−
0 : (r, x̄) = (0, 0), E

−
α : (r, x̄) = (0,M6), M6 = [2(α− 1)−1(1− ε2c2)−1]

1
α−1 .

Note that M6 > 0 when 1 − ε2c2 > 0 and M6 < 0 when 1 − ε2c2 < 0. The equilibrium
E

−
0 is a saddle with the eigenvalues (α − 1)−1(1 − ε2c2)−1 and −2(α − 1)−1(1 − ε2c2)−1

whose corresponding eigenvectors are (1, 0) and (0, 1), respectively for both 1 − ε2c2 > 0
and 1− ε2c2 < 0.

When 1 − ε2c2 > 0 holds, E
−
α is a source with the eigenvalues (α − 1)−1(1 − ε2c2)−1

and 2(1 − ε2c2)−1 whose corresponding eigenvectors are (1, 0) and (0, 1), respectively.

Furthermore, E
−
α is a sink in the case that 1− ε2c2 < 0.

The solutions around E
−
α are approximated as





r(η) = C1e

1
(α−1)(1−ε2c2)

η
(1 + o(1)),

x̄(η) = C2e
2

1−ε2c2
η
+M6(1 + o(1)),

as η → −∞
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with constants C1 and C2. This equation will be used later in Subsection 3.4.1 to derive
the asymptotic behavior for ξ → ξ− + 0.

3.3.3 Dynamics on the chart U1

Let us study the dynamics on the chart U1. In this chart, it corresponds to φ→ +∞ and
ψ → 0. The transformations

φ = 1/λ, ψ = x/λ

yield {
λτ = −λx,
xτ = (1− ε2c2)−1(−cx+ λα+1)− x2,

(3.3.10)

via time-rescaling dτ/ds = λ−α. This system has the equilibria

e+0 : (λ, x) = (0, 0), ec : (λ, x) = (0,M7), M7 = −c(1− ε2c2)−1.

Note that M7 > 0 when 1 − ε2c2 < 0 and M7 < 0 when 1 − ε2c2 > 0. The Jacobian
matrices of the vector field (3.3.10) at these equilibria are

e+0 :

(
0 0
0 M7

)
, ec :

(
−M7 0
0 −M7

)
.

Therefore, ec is a source when 1− ε2c2 > 0, and should matches Ec′ . When 1− ε2c2 < 0,
ec is sink and should matches Ec.

In a similar way to [31, 33], the dynamics near e+0 can be determined by the center
manifold theorem (for instance, see [9] for the details of it). The approximation of the
(graph of) center manifold can be obtained as follows:

{(λ, x) | x = λα+1/c+O(λ2α+2)}.

Further, we can see that the dynamics of (3.3.10) near (0, 0) is topologically equivalent to
the dynamics of the following equation:

λτ = −λα+2/c+O(λ2α+3).

These results were also obtained in [31, 33]. However, we reproduce them since they will
be used in the proof of Theorem 3.2.4 later.

3.3.4 Dynamics on the chart V 1

In this chart, it corresponds to φ→ −∞ and ψ → 0. The transformations

φ = −1/λ, ψ = −x/λ

yield {
λτ = −λx,
xτ = (1− ε2c2)−1(−cx− λα+1)− x2

(3.3.11)

via time-rescaling dτ/ds = λ−α. We can see that the system (3.3.11) can be transformed
into the system (3.3.10) by the change of variables: (λ, x) 2→ (−λ, x). Thus, with the
exception of {λ = 0}, the dynamics of (3.3.11) is immediately obvious from the dynamics
of (3.3.10), however, we summarize the results for the derivation of the asymptotic behavior
(as it is necessary for the proof of Theorem 3.2.3).
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φ

ψE+
0

E−

0

e−0
e+0

Ec

Ec
′

φ

ψE+
0

E−

0

e−0
e+0

Ec

Ec
′

Figure 3.3.2: Schematic pictures of the dynamics on the Poincaré disk for (3.1.5) in the
case that α ∈ 2N and ε > 0. [Left: Case 1 − ε2c2 > 0.] [Right: Case 1 − ε2c2 < 0.] See
also Fig. 3.3.1 for the dynamics around E+

0 for 1− ε2c2 > 0.

This system has the equilibria

e−0 : (λ, x) = (0, 0), ec′ : (λ, x) = (0,M7), M7 = −c(1− ε2c2)−1.

The Jacobian matrices of the vector field (3.3.11) at these equilibria are

e−0 :

(
0 0
0 M7

)
, ec′ :

(
−M7 0
0 −M7

)
.

Therefore, ec′ is a source when 1− ε2c2 > 0, and should matches Ec. When 1− ε2c2 < 0,
ec′ is sink and should matches Ec′ . The dynamics near e−0 can be determined by the center
manifold theorem. In the same way as above, the approximation of the (graph of) center
manifold can be obtained as follows:

{(λ, x) | x = −λα+1/c+O(λ2α+2)}. (3.3.12)

Further, we can see that the dynamics of (3.3.11) near (0, 0) is topologically equivalent to
the dynamics of the following equation:

λτ = λα+2/c+O(λ2α+3). (3.3.13)

3.3.5 Dynamics and connecting orbits on the Poincaré disk

Combining the dynamics on the charts U j and V j (j = 1, 2), we obtain the dynamics on
the Poincaré disk that is equivalent to the dynamics of (3.1.5) (or (3.3.2)) in the case that
α is even as the following Proposition (see also Figure 3.3.2). We set the phase space Φ
as follows:

Φ = {(φ,ψ) | (φ,ψ) ∈ R2 ∪ {‖(φ,ψ)‖ = +∞}}.

Note that in Figure 3.3.2, the circumference corresponds to {‖(φ,ψ)‖ = +∞}.

Proposition 3.3.1
Assume that α ∈ 2N and ε > 0. Then, the dynamics on the Poincaré disk of the system
(3.1.5) is expressed as Figure 3.3.2 in both cases 1− ε2c2 > 0 and 1− ε2c2 < 0.
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Proof. First, the dynamics on the Poincaré disk for the case 1− ε2c2 > 0 is immediately
shown by the results of [31, 33]. In exactly the same way as [31, 33], it is proved that there
exists connecting orbits between E−

0 and E+
0 . Therefore, we can conclude the existence of

orbits that connect e−0 and E+
0 , Ec and E+

0 , and Ec′ and e+0 .
Next, we prove it for the case where 1 − ε2c2 < 0. In (3.1.5), the transformation of

reversing the positive and negative values of 1−ε2c2 is equivalent to applying the following
transformation:

φ 2→ −φ, ψ 2→ ψ, ξ 2→ −ξ. (3.3.14)

In fact, (3.1.5) becomes

{
φ′ = ψ,

ψ′ = −(1− ε2c2)−1(−cψ + φ−α)

by the transformation in (3.3.14). This equation corresponds to the reversal of the sign of
1−ε2c2 in (3.1.5). Thus, the dynamics on the Poincaré disk for 1−ε2c2 < 0 is a symmetry
transformation of (3.3.14) over that for 1− ε2c2 > 0. This completes the proof. !

3.4 Proof of Theorems

In this section, we prove the main theorems. If the initial data are located on Φ\{φ = 0},
the existence of the solutions follows from the standard theory for the ordinary differential
equations. Therefore, we consider the existence of the trajectories that connect equilibria
and the detailed dynamics near the equilibria on the Poincaré disk and their asymptotic
behavior. The table 3.1 shows the correspondence between each connecting orbit obtained
by the proposition and the traveling wave described in the theorem proved below.

Table 3.1: The correspondence between each connecting orbit obtained by the proposition
and the traveling wave described in the theorem proved below.

Theorem Connecting orbits
Theorem 3.2.1 between E−

0 and E+
0

Theorem 3.2.2 between Ec and E+
0

Theorem 3.2.3 between e−0 and E+
0 for 1− ε2c2 > 0

between E+
0 and e+0 for 1− ε2c2 < 0.

Theorem 3.2.4 between E
′
c and e+0 for 1− ε2c2 > 0

between e−0 and E
′
c for 1− ε2c2 < 0.

3.4.1 Proof of Theorem 3.2.1

The proof of existence of the connecting orbits between E−
0 and E+

0 in both cases 1−ε2c2 >
0 and 1− ε2c2 < 0 is obtained in [31], [33], and Proposition 3.3.1. Therefore, there exists
a family of the functions which corresponds to a family of the orbits of (3.1.5).

Next, we prove the existence of a constant ξ∗ ∈ (ξ−, ξ+). It is sufficient to show the
connecting orbits pass through the line {ψ = 0}. This is evident from the existence of
connecting orbits in both cases 1 − ε2c2 > 0 and 1 − ε2c2 < 0. Furthermore, this means
that we are giving information about the increase or decrease of ψ.

Finally, we compute the asymptotic behavior of the trajectories near the equilibria E−
0

and E+
0 as follows. This derivation is a refinement of the discussion in [31, 33]. Note that
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3.4 Proof of Theorems

the basic idea is the same as the previous ones. However, the detailed principal part is
chosen as carefully as in [35] (see Remark 3.2.1).

Assume that 1− ε2c2 > 0. Using (3.3.5), we then have

dη

dξ
=

ds

dξ
· dτ
ds

· dη
dτ

= φ−α · λ−α · rα2−1

= r−α−1 · x̄−α

=

{
C1e

− 1
(α−1)(1−ε2c2)

η
(1 + o(1))

}−α−1

·
{
C2e

− 2
1−ε2c2

η
(1 + o(1)) +M3

}−α

∼ C3e
α+1

(α−1)(1−ε2c2)
η ·
{
C2e

− 2
1−ε2c2

η
(1 + o(1)) +M3

}−α
as η → +∞

=
C3e

α+1
(α−1)(1−ε2c2)

η

{
C2e

− 2
1−ε2c2

η
(1 + o(1))

}α
+ α

{
C2e

− 2
1−ε2c2

η
(1 + o(1))

}α−1
·M3 + · · ·+ (M3)α

∼ C4e
α+1

(α−1)(1−ε2c2)
η

as η → +∞

with constants Cj . As a note, we emphasize that the last part “∼” corresponds to an
improvement from [31, 33] (see Remark 3.2.1).

From this result, we can obtain

dξ

dη
= C5e

− α+1
(α−1)(1−ε2c2)

η
(1 + o(1)) as η → +∞.

This yields

ξ(η) ∼ C6e
− α+1

(α−1)(1−ε2c2)
η
+ C7, C7 ∈ R.

Set
ξ+ := lim

η→+∞
ξ(η),

then we have

ξ+ =

∫ +∞

0

dξ

dη
dη = C5

∫ +∞

0
e
− α+1

(α−1)(1−ε2c2)
η
dη < +∞.

Therefore,

ξ+ − ξ ∼ Ce
− α+1

(α−1)(1−ε2c2)
η

as η → +∞

holds. Finally, we obtain

φ(ξ) =
x

λ
=

rα+1x̄

rα−1
= r2x

=

{
C1e

− 1
(α−1)(1−ε2c2)

η
(1 + o(1))

}2

·
{
C2e

− 2
1−ε2c2

η
(1 + o(1)) +M3

}

∼ C8e
− 2

(α−1)(1−ε2c2)
η ·
{
C2e

− 2
1−ε2c2

η
(1 + o(1)) +M3

}
as η → +∞

= C9e
− 2α

(α−1)(1−ε2c2)
η
+ C8 ·M3 · e

− 2
(α−1)(1−ε2c2)

η

∼ −Ce
− 2

(α−1)(1−ε2c2)
η

as η → +∞.

Note that the process here is also different from the process in [31, 33], as we have chosen
a more appropriate principal term. Here, in the last relation, since

e
− 2α

(α−1)(1−ε2c2)
η
< e

− 2
(α−1)(1−ε2c2)

η
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is satisfied by η > 0, we choose the term e
− 2

(α−1)(1−ε2c2)
η
as η → +∞.

From the above results, we obtain

φ(ξ) ∼ −Ce
− 2

(α−1)(1−ε2c2)
η ∼ −C(ξ+ − ξ)

2
α+1 as ξ → ξ+ − 0.

Since the trajectories are lying on {φ < 0}, it holds that C > 0. Similarly, the asymptotic
behavior of ψ(ξ) as ξ → ξ+ − 0 for 1− ε2c2 > 0 is also derived. Therefore, we can derive
(3.2.1) and (3.2.2). Furthermore, (3.2.3) and (3.2.4) for 1−ε2c2 < 0 are derived in exactly
the same way. This completes the proof. !

Remark 3.4.1
Rewriting the process of deriving the asymptotic behavior in the proof above, we can see
that

φ′(ξ) ∼ ψ(ξ) as ξ → ξ+ − 0

holds. This implies that the first equation in (3.1.5) also holds in the sense of asymptotic
behavior. Since this relation does not hold in the results for Theorem 2 of [31] and
Proposition 1 of [33], we believe that this improvement may have improved the accuracy
of the asymptotic behavior.

3.4.2 Proof of Theorem 3.2.2

The proof of existence of the connecting orbits between Ec and E+
0 in both cases 1−ε2c2 >

0 and 1 − ε2c2 < 0 is obtained in Proposition 3.3.1. That is, in the same way as in the
proof of Theorem 3.2.1, a family of the functions which corresponds to a family of the
orbits of (3.1.5) is shown.

Assume that 1 − ε2c2 > 0. In this case, all that remains to be shown is to derive
(3.2.5). The solutions at the around ec′ on the chart V 1 (matches Ec) have the form

{
λτ ∼ C1e−M7τ (1 + o(1)),

xτ ∼ C2e−M7τ (1 + o(1)) +M7,
M7 = − c

1− ε2c2
,

where C1 and C2 are constants. Then,

dτ

dξ
=

dτ

ds

ds

dξ
= λ−αφ−α = 1

holds. This yields
ξ(τ) = τ + C3, (C3 ∈ R).

We can see ξ → −∞ as τ → −∞. This relationship shows that

τ(ξ) = ξ + C4, (C3 ∈ R)

holds. Therefore, we have

φ(ξ) = − 1

λ

∼ −
{
C1e

c
1−ε2c2

τ
(1 + o(1))

}−1

∼ −C5e
− c

1−ε2c2
τ

= −Ce
− c

1−ε2c2
ξ

as ξ → −∞

with constants C5 > 0 and C > 0. The reason why C > 0 (C5 > 0) is the trajectories are
lying on {φ < 0}. Therefore, (3.2.5) can be derived.

Furthermore, (3.2.6) for 1 − ε2c2 < 0 are derived in exactly the same way. This
completes the proof. !
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3.4.3 Proof of Theorem 3.2.3

Assume that 1 − ε2c2 > 0. The existence of the orbits connecting e−0 and E+
0 is as

described in Proposition 3.3.1 above. Note that the same is true for 1 − ε2c2 < 0. That
is, the existence of the orbits connecting E+

0 and e+0 is as described in Proposition 3.3.1
above. As in the previous proofs of the Theorems, this implies the existence of a family
of the functions which corresponds to a family of the orbits of (3.1.5).

In this case, all that remains to be shown is to derive (3.2.7). The proof is almost
identical to the proof of Theorem 3 in [33]. However, there are some symbols and parts
that are different. We briefly reproduce the proof and describe it below for the reader’s
convenience.

If the initial value is on the center manifold, the solution at around e−0 on the chart
V 1 has the form






λ(τ) = α+1

√√√√
1

−α+ 1

c
τ − (α+ 1) ·A0

= O(τ−
1

α+1 ),

x(τ) =
1

(α+ 1)τ + c(α+ 1)A0
+O(λ2α+2) = O(τ−1)

as τ → −∞

with a constant A0. These results are derived (3.3.12) and (3.3.13). We then have

dτ

dξ
=

dτ

ds

ds

dξ
= λ−αφ−α = 1.

This yields τ(ξ) = ξ + C̃ with a constant C̃.
If φ̃(ξ) is a solution of (3.1.3) (or (3.1.5)), then φ̃(ξ + θ) is also solution for any θ ∈ R.

Therefore, there exists a solution φ(ξ) such that the following holds:

φ(ξ) = −λ−1 ∼ O(τ
1

α+1 ) ∼ O(ξ
1

α+1 ) as ξ → −∞.

In addition, we can obtain

ψ(ξ) = −xλ−1 ∼ −O(ξ
1

α+1 ) ·O(ξ−1) = O(ξ−
α

α+1 ) as ξ → −∞.

Therefore, (3.2.7) can be derived.
Furthermore, (3.2.8) for 1 − ε2c2 < 0 are derived in exactly the same way. This

completes the proof. !

3.4.4 Proof of Theorem 3.2.4

The existence of the orbits connecting Ec′ and e+0 (resp. e−0 ) in the case that 1− ε2c2 > 0
(resp. 1−ε2c2 < 0) is as described in Proposition 3.3.1 above. By focusing on Ec′ , (3.2.10)
and (3.2.11) can be proved in the same way as Theorem 3.2.2. Furthermore, we assume
that 1− ε2c2 > 0. By focusing on e+0 , (3.2.9) can be proved in the same way as Theorem
3.2.3. Similarly, by focusing on e−0 when 1− ε2c2 < 0, we obtain (3.2.12). This completes
the proof. !

3.5 Concluding remarks

The general MEMS type equation is a combination of hyperbolic and parabolic equa-
tions as shown in (3.1.1). In addition, the reaction-diffusion equation with ε = 0 is often

55



Chapter 3 Traveling waves with singularities in a damped hyperbolic MEMS type
equation in the presence of negative powers nonlinearity

considered for convenience of analysis and comparison. In this chapter, we studied the
existence, information about the shapes, and the asymptotic behavior of traveling waves
with the singularity of equation (3.1.1) by adding ε2utt to the left-hand side of the equa-
tion treated in [31]. Furthermore, by reviewing the process of deriving the asymptotic
behavior obtained in Theorem 2 of [31] and Proposition 1 of [33], and by carefully select-
ing the principal terms, we were able to obtain a better asymptotic behavior than these
results (see Remark 3.4.1). Even if we add ε2utt, the asymptotic behavior obtained by
improving the derivation process does not change, and the condition for the wave speed
with respect to the shape, which did not appear in [31], is obtained. In other words,
the existence of this term and its coefficients have a significant effect on the wave speed
and the shapes of the traveling waves. These are studied by applying the framework that
combines Poincaré compactification, classical dynamical systems theory, and geometric
methods for the desingularization of vector fields.

Since the addition of this term changes the type of the equation from parabolic to
hyperbolic, a rigorous discussion of the mathematical formulation of the solution is nec-
essary. As previously mentioned, since the emphasis of this chapter is on discussing how
the behavior of traveling waves changes from the viewpoint of dynamical systems, we do
not discuss it here and leave it for future work.
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Chapter 4

Radial symmetric stationary
solutions for a MEMS type
reaction-diffusion equation with
spatially dependent nonlinearity

Abstract

We consider the radial symmetric stationary solutions of ut = ∆u− |x|qu−p. We first give
a result on the existence of the negative value functions that satisfy the radial symmetric
stationary problem on a finite interval for p ∈ 2N, q ∈ R. Moreover, we give the asymptotic
behavior of u(r) and u′(r) at both ends of the finite interval. Second, we obtain the
existence of the positive radial symmetric stationary solutions with the singularity at
r = 0 for p ∈ N and q ≥ −2. In fact, the behavior of solutions for q > −2 and q = −2
are different. In each case of q = −2 and q > −2, we derive the asymptotic behavior for
r → 0 and r → ∞. These facts are studied by applying the Poincaré compactification
and basic theory of dynamical systems. This chapter is based on the following published
paper ([33]):

Ichida, Y., Sakamoto, T.O.: Radial symmetric stationary solutions for a MEMS
type reaction-diffusion equation with spatially dependent nonlinearity, Jpn. J.
Ind. Appl. Math. 38, no. 1, 297–322 (2021).

4.1 Introduction

In this chapter, we consider the following MEMS type reaction-diffusion equation

ut = ∆u− |x|qu−p, t > 0, x ∈ Rn, (4.1.1)

with 3 ≤ n ∈ N, p ∈ N and q ∈ R. This equation arises in the study of the dynamic
deflection of an elastic membrane inside a micro-electro mechanical system (MEMS).

In the case of one-dimensional space, the function u represents the distance between
the membrane and the fixed bottom plate. The function |x|q is a particular choice of
the permittivity profile (the dielectric property of the membrane) (for instance see [27]
and references therein). Guo-Morita-Yotsutani [27] studied the self-similar solutions for
one-dimensional case of (4.1.1). It was proved the existence of backward solutions and
given a detailed analysis of the behavior of global solutions at the origin.
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There have been a lot of research in the MEMS equation recently, especially, touchdown
(quenching) phenomena (see [15, 16] and references therein). Further, we refer the readers
to works [17, 59] and references therein for more details on the background and derivation
of the MEMS model.

We study the stationary solutions of (4.1.1), namely we consider the following equation:

∆u− |x|qu−p = 0, x ∈ Rn.

This chapter is devoted to the study of the radial symmetric stationary solution of (4.1.1).
That is, we study the following equation (the radial symmetric stationary problem):

u′′ +
n− 1

r
u′ − rqu−p = 0, ′ =

d

dr
, (4.1.2)

where r = |x| > 0.
From the results in [41], asymptotic behavior of the radial solutions and uniqueness of

singular ground states for a reaction-diffusion equation with spatially dependent nonlin-
earity are proved by applying the invariant manifold theory of dynamical systems. More
precisely, it was devoted to the study of positive solutions of semilinear elliptic equation

∆u+K(|x|)u' = 0, x ∈ Rn (4.1.3)

for
n+ 2

n− 2
< / ∈ R, n ≥ 3, where K(|x|) satisfies some conditions. They studied the

existence of the radial symmetric stationary solutions of (4.1.3) and detailed information
about the asymptotic behavior of them. Further, we note that our problem corresponds
to (4.1.3) in the case that K(|x|) = −|x|q and 0 > / (= −p) ∈ Z.

As in [41], we introduce the following change of variables:

t = log r, a(t) = r−αu(r), α := (q + 2)/(p+ 1). (4.1.4)

Then, (4.1.2) is transformed into the following:

ä+ (2α+ n− 2)ȧ+ α(α+ n− 2)a− a−p = 0,

(
˙ =

d

dt
and ¨ =

d2

dt2

)
. (4.1.5)

Since r → ∞ as t = log r → ∞, to discuss the asymptotic behavior of the solutions
for (4.1.2) as r → ∞, we study that of the solutions for (4.1.5) as t → ∞. Similarly, to
discuss the asymptotic behavior for r → 0, we consider the following change of variables:

t = − log r, a(t) = r−αu(r), α := (q + 2)/(p+ 1). (4.1.6)

Then, we have
ä− (2α+ n− 2)ȧ+ α(α+ n− 2)a− a−p = 0. (4.1.7)

In order to study the solutions for (4.1.5) and (4.1.7), we consider the dynamics of the
following ordinary differential equation

ä+Aȧ+Ba− a−p = 0

or equivalently, {
ȧ = b,
ḃ = −Ab−Ba+ a−p,

(4.1.8)

where
A = δ(2α+ n− 2), B = α(α+ n− 2) and δ = ±1.
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We set

p∗ := −2− (n− 2)(p+ 1) and p∗ := −2− 1

2
(n− 2)(p+ 1).

Then, the sign of the constants A and B depend on the parameters q and δ as shown in
Table 4.1.

δ A or B q < p∗ q = p∗ p∗ < q < p∗ p∗ < q < −2 q = −2 q > −2

1 A − − − + + +
1 B + 0 − − 0 +

−1 A + + + − − −
−1 B + 0 − − 0 +

Table 4.1: The sign of A and B.

We can see that there are the ranges of parameter q such that A and B attain the
same sign on both of them. For instance, sign(A,B) = (+,+) holds for q > −2, δ = 1 and
q < p∗, δ = −1.

The dynamical system approach works well to the equation (4.1.3) as shown in [41].
Similarly, we expect that it works well for our problem (4.1.8). However, the negative
powers nonlinear term a−p could induce the singularity in finite time (see [49, 50]). There-
fore, we apply the Poincaré compactification (see Section 1.1) to the dynamical system of
(4.1.8) to obtain the detailed information of the solutions for (4.1.2). Then, the following
three theorems are main results of this chapter:

Theorem 4.1.1
Assume that n ≥ 3, p ∈ 2N and q ∈ R. Then, there exists a family of the functions (which
corresponds to a family of the orbits of (4.1.8)) defined on the finite intervals such that each
function u(r) satisfies equation (4.1.2) on a finite interval (r−, r+) (0 < r− < r+ < +∞).
Moreover, for each function u(r), the followings hold:

•






lim
r→r+−0

u(r) = 0, lim
r→r−+0

u(r) = 0,

lim
r→r+−0

u′(r) = ∞, lim
r→r−+0

u′(r) = −∞.

• u(r) < 0 holds for r ∈ (r−, r+).

• There exists a constant r∗ ∈ (r−, r+) such that the following holds: u′(r) < 0 for
r ∈ (r−, r∗), u′(r∗) = 0 and u′(r) > 0 for r ∈ (r∗, r+).

In addition, asymptotic behavior for r → r− + 0 and r → r+ − 0 are

{
u(r) ∼ −Crα(log r+ − log r)

2
p+1 ,

u′(r) ∼ −Cαrα−1(log r+ − log r)
2

p+1 + Crα (log r+ − log r)−
p−1
p+1 ,

as r → r+ − 0

(4.1.9)
and
{

u(r) ∼ −Crα(− log r− + log r)
2

p+1 ,

u′(r) ∼ −Cαrα−1(− log r− + log r)
2

p+1 − Crα (− log r− + log r)−
p−1
p+1 ,

as r → r− + 0

(4.1.10)
with C > 0.
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Remark 4.1.1
In Theorem 4.1.1, each function u(r) satisfies (4.1.2) only on the finite interval. In this
chapter, we do not discuss the behavior of the functions of (4.1.2) after u′(r) becomes
infinity. It is necessary that more detailed (and hard) analysis in order to study the
functions after u′(r) blows up, and so we leave it open here. Asymptotic behaviors for
both u(r) and u′(r) that are more accurate than in [33] were obtained after publication
of the paper. Note that this was obtained by refining the asymptotic form, as will be
discussed later in the proof.

Theorem 4.1.2
Assume that n ≥ 3, p ∈ N and q > −2. Then the equation (4.1.2) has a family of positive
radial symmetric stationary solutions (which corresponds to a family of the orbits of
(4.1.8)) with the singularity at r = 0. Moreover, each solution u(r) satisfies the followings:

• lim
r→0

u(r) = +∞, lim
r→+∞

u(r) = +∞.

• u(r) > 0 holds for r ∈ (0,+∞).

In addition, asymptotic behavior of u(r) are

u(r) ∼ Cr2−n as r → 0

with C > 0 and for r → +∞, the following holds:

u(r) ∼






C1rα+σ1 + C2rα+σ2 + rαB
−1
p+1 , (F > 0),

C1rα+σ log r + (C2 + C3)rα+σ + rαB
−1
p+1 , (F = 0),

rαB
−1
p+1 + r

2−n
2

(
C4 · [sin

√
|D|
2 log r] + C5 · [cos

√
|D|
2 log r]

)
, (F < 0),

where Cj are constants, and

σ1 =
−A+

√
D

2
, σ2 =

−A−
√
D

2
, σ = −A

2
, D =

F

(p+ 1)2
,

with
F = (n− 2)2(p+ 1)2 + 4p(q + 2){−q − 2− (n− 2)(p+ 1)}.

Here it should be noted that for F < 0, we can observe that u(r) go to infinity with
damping oscillatory terms.

Theorem 4.1.3
Assume that n ≥ 3, p ∈ N and q = −2. Then the equation (4.1.2) has a family of positive
radial symmetric stationary solutions (which corresponds to a family of the orbits of
(4.1.8)) with the singularity at r = 0. Moreover, each solution u(r) satisfies the followings:

• lim
r→0

u(r) = +∞, lim
r→+∞

u(r) = +∞.

• u(r) > 0 holds for r ∈ (0,+∞).

In addition, asymptotic behavior for r → +∞ and r → 0 are

u(r) ∼ O({log r}
1

p+1 ) as r → +∞,

u(r) ∼ Cr2−n as r → 0

with C > 0.
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For the case that q = −2, we refer to [31] for the proof of Theorem 4.1.1 except the
asymptotic behavior (they will be discussed in Section5).

We note that the equation dealt with in the chapter [31] is actually a special case of
the MEMS type equation (4.1.1). More precisely, we studied the following equation:

ut = uxx + (1− u)−p, t > 0, x ∈ R, p ∈ N. (4.1.11)

Here we see the relationship between (4.1.8) and (4.1.11) as follows. Substituting v(t, x) =
1− u(t, x) into (4.1.11), we have

vt = vxx − v−p

and it gives (4.1.1) with n = 1 and q = 0. We then consider the quasi traveling waves with
quenching (see [31] for the definition) of the above equation by introducing the following
change of variables:

a(ξ) = v(t, x), ξ = x− ct, c > 0.

The function a(ξ) satisfies the following equation:

a′′ + ca′ − a−p = 0, ξ ∈ R, ′ =
d

dξ
,

or {
a′ = b,
b′ = −cb+ a−p.

(4.1.12)

This equation agrees with (4.1.8) (A = c and B = 0). We then note that results in [31]
are included in Theorem 4.1.1.

Further, let us consider the radial symmetric problem of the multi-dimensional version
of (4.1.11) with spatially dependent nonlinearity:

wt = ∆w +
|x|q

(1− w)p
, t > 0, x ∈ Rn, (4.1.13)

that is,

w′′ +
n− 1

r
w′ +

rq

(1− w)p
= 0, r > 0. (4.1.14)

In the case that q = 0 of (4.1.13) is strictly corresponding to the multi-dimensional version
of (4.1.11). Then, we can see that the equation (4.1.14) is equivalent to (4.1.2) with
u(r) = 1− w(r). Therefore, the function u(r) obtained in Theorem 4.1.1 gives a positive
function w(r) = 1− u(r) ≥ 1 that satisfies (4.1.14) on a finite interval and |w′(r)| goes to
infinity at both ends of the interval.

It should be noted again that (4.1.12) has a singularity in finite time, that is, a′(ξ)
blows up in finite time. From the viewpoint of the dynamical system approach, as shown
in [31], such solution corresponds to an orbit which goes to (±∞, 0) on R2 6 (a, b) in
finite time. In this chapter, we show that the similar approach works well and give the
information for the radial symmetric stationary solutions of (4.1.1) as stated in main
Theorems.

Indeed, we obtain whole phase portrait of (4.1.8) on R2 ∪ {‖(a, b)‖ = ∞} in the
latter section. Then each orbit should correspond to a function satisfying (4.1.2) on an
interval (r ∈)I ⊆ [0,∞). Therefore, if it is possible to classify all orbits and compute the
asymptotic behavior for each class of orbits, we can classify all solutions for (4.1.2).

As we will note in Section 4.6, there are orbits for that we cannot obtain the asymptotic
behavior in this chapter. However, in authors knowledge, there has been no studies of
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(4.1.2) with dynamical system approach, therefore, our results will give first step for the
studies of (4.1.2) from the viewpoint of geometric (dynamical system) approach.

This chapter is organized as follows. In the next section, we study the dynamics
near the finite equilibria of (4.1.8). In Section 4.3, we obtain the dynamics of (4.1.8)
with p ∈ 2N on the Poincaré disk via Poincaré compactification and basic theory of the
dynamical systems. Section 4.4 is devoted to showing the phase portraits of (4.1.8) on
the Poincaré disk in the case that p is odd. In Section 4.5, the asymptotic behavior of
the trajectories that corresponding to the function satisfying (4.1.2) on the finite interval
or (0,∞) and the proofs of Theorems will be completed. Section 4.6 is devoted to the
conclusions and remarks.

4.2 Dynamics near finite equilibria of (4.1.8)

Before starting the detailed analysis, we study the dynamics near finite equilibrium of
(4.1.8). This gives a demonstration to see the relationship between the dynamics of (4.1.8)
and asymptotic behavior of the solutions for (4.1.2). If B += 0 and p is even (resp. p is

odd), then (4.1.8) has an equilibrium EB : (a, b) = (B
−1
p+1 , 0) (resp. have the equilibria

±EB : (a, b) = (±B
−1
p+1 , 0) ).

Let J be the Jacobian matrix of the vector field (4.1.8) at EB. Then, the behavior of
the solution around EB is different by the sign of F (which is defined in Theorem 4.1.2).
For instance, the matrix J has the real distinct eigenvalues if F > 0 and other cases can
be concluded similarly. In addition, if n ≥ 3, q > −2 and δ = 1, then the real part
of all eigenvalues of J are negative. Even in cases other than q > −2, we can similarly
determine the stability of the equilibrium EB. Then, the stabilities of the equilibrium EB

are obtained as in Table 4.2.

EB q < p∗ q = p∗ p∗ < q < −2 q = −2 q > −2

δ = 1 source − saddle − sink
δ = −1 sink − saddle − source

Table 4.2: The stabilities of the equilibrium EB.

Remark 4.2.1
The equilibrium EB does not exist in the case that q = −2 and q = p∗.

Therefore, we can obtain the asymptotic behavior of u(r) for r → +∞ in Theorem
4.1.2 by considering the asymptotic dynamics near EB via (4.1.4) or (4.1.6) (see Section
4.5 for more details).

4.3 Dynamics on the Poincaré disk of (4.1.8) : p is even

In order to study the dynamics of (4.1.8) on the Poincaré disk, we desingularize it by the
time-scale desingularization

ds/dt = {a(t)}−p for p ∈ 2N. (4.3.1)

Since we assume that p is even, the direction of the time does not change via this desin-
gularization. Then, we have

{
a′ = apb,
b′ = −Aapb−Bap+1 + 1,

(
′ =

d

ds

)
. (4.3.2)
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4.3 Dynamics on the Poincaré disk of (4.1.8) : p is even

In this section, we only discuss the case that p is even. The odd case is discussed in the
next section.

It should be noted that the time scale desingularization (4.3.1) is simply multiplying the
vector field by ap. Then, except the singularity {a = 0}, the solution curves of the system
(vector field) remain the same but are parameterized differently. Still, we refer to Section
7.7 of [44] and references therein for the analytical treatments of desingularization with
the time rescaling. In what follows, we use the similar time rescaling (re-parameterization
of the solution curves) repeatedly to desingularize the vector fields.

Now we can consider the dynamics of (4.3.2) on the charts U j and V j .

4.3.1 Dynamics on the chart U2

To obtain the dynamics on the chart U2, we introduce coordinates (λ, x) by the formulas

a(s) = x(s)/λ(s), b(s) = 1/λ(s).

Then, we have {
λ′ = Axpλ1−p +Bxp+1λ1−p − λ2,
x′ = xpλ−p +Axp+1λ−p +Bxp+2λ−p − xλ.

Time-scale desingularization dτ/ds = λ(s)−p yields

{
λτ = Axpλ+Bxp+1λ− λp+2,
xτ = xp +Axp+1 +Bxp+2 − xλp+1,

(4.3.3)

where λτ = dλ/dτ and xτ = dx/dτ . When the parameter q is other than q = p∗, q = −2,
the system (4.3.3) has the equilibria

E+
0 : (λ, x) = (0, 0),

E1 : (λ, x) =

(
0,

−A− (n− 2)

2B

)
and E2 : (λ, x) =

(
0,

−A+ (n− 2)

2B

)
.

The Jacobian matrices of the vector field (4.3.3) at these equilibria are

E+
0 :

(
0 0
0 0

)
, E1 :





(
−A−(n−2)

2B

)p A−(n−2)
2 0

0
(
−A−(n−2)

2B

)p−1 (n−2)(n−2+A)
2B



 ,

E2 :





(
−A+(n−2)

2B

)p A+(n−2)
2 0

0
(
−A+(n−2)

2B

)p−1 (n−2)(n−2−A)
2B



 .

Therefore, the stabilities of the equilibria E1 and E2 are determined as shown in Table
4.3.

E1 q < p∗ p∗ < q < −2 q > −2

δ = 1 sink sink saddle
δ = −1 saddle sink sink

E2 q < p∗ p∗ < q < −2 q > −2

δ = 1 saddle source source
δ = −1 source source saddle

Table 4.3: The stabilities of the equilibria E1 and E2.
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If q = p∗ and q = −2, then the system (4.3.3) has the equilibria

E+
0 : (λ, x) = (0, 0) and Ec : (λ, x) = (0,−[1/δ(n− 2)]).

The Jacobian matrices of the vector field (4.3.3) at these equilibria are

E+
0 :

(
0 0
0 0

)
and Ec :

(
δ(n− 2)1−p 0

0 δ(n− 2)1−p

)
.

In the case that q = −2, if δ = 1 (resp. δ = −1), then Ec is a source (resp. sink). We
note that A < 0 and B = 0 hold in both cases of q = −2 and q = p∗ (see Table 4.1).

The equilibrium E+
0 is not hyperbolic for q ∈ R. Therefore, to determine the dynamics

near E+
0 , we desingularize E+

0 by introducing the following blow-up coordinates:

λ = εp−1λ̄, x = εp+1x̄

(see Section 1.2 of this thesis and Section 3 of [14] for the desingularizations of vector
fields by the blow-up). Since we are interested in the dynamics on the Poincaré disk, we
consider the dynamics of blow-up vector fields on the charts {λ̄ = 1} and {x̄ = ±1}. We
note that they are independent of q ∈ R.

Dynamics on the chart {λ̄ = 1}

By the change of coordinates λ = εp−1, x = εp+1x̄, we have
{
ετ = (p− 1)−1(Aεp

2+p+1x̄p +Bεp
2+2p+2x̄p+1 − εp

2
),

xτ = 2(p− 1)−1(−Aεp
2+px̄p+1 −Bεp

2+2p+1x̄p+2 + εp
2−1x̄) + εp

2−1x̄p.

The time-rescaling dη/dτ = ε(τ)p
2−1 yields

{
εη = (p− 1)−1(Aεp+2x̄p +Bε2p+3x̄p+1 − ε),
xη = 2(p− 1)−1(−Aεp+1x̄p+1 −Bε2p+2x̄p+2 + x̄) + x̄p.

(4.3.4)

The equilibria of (4.3.4) on {ε = 0} are

E
+
0 : (ε, x̄) = (0, 0), E

+
p : (ε, x̄) =

(
0, [−2/(p− 1)]

1
p−1

)
.

Here it should be noted that since x(η) is real valued, [−2/(p − 1)]
1

p−1 denotes the real
solution of the equation: 2(p−1)−1+xp−1 = 0. The Jacobian matrices of the vector fields
(4.3.4) at these equilibria are

E
+
0 :




− 1

p− 1
0

0
2

p− 1



 and E
+
p :



 − 1

p− 1
0

0 −2



 .

Therefore, E
+
0 is a saddle, and E

+
p is a sink.

Moreover, since |1/(p − 1)| < 2 holds, trajectories near E
+
p are tangent to {x̄ =

[−2/(p− 1)]
1

p−1 , ε ≥ 0} as η → +∞. The solutions are approximated as

ε(η) ∼ C1e
− 1

p−1η(1 + o(1)), (4.3.5)

x̄(η) ∼ C2e
−2η(1 + o(1)) +A, A =

(
− 2

p− 1

) 1
p−1

. (4.3.6)
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Dynamics on the chart {x̄ = −1}

By the change of coordinates λ = εp−1λ̄, x = −εp+1, and time-rescaling dη/dτ = ε(τ)p
2−1,

we have
{
εη = −(p+ 1)−1(ε−Aεp+2 +Bε2p+3 + ελ̄p+1),
λη = (p− 1)(p+ 1)−1λ̄+ 2(p+ 1)−1(Aεp+1λ̄−Bε2p+2λ̄− λ̄p+2).

The equilibria on {ε = 0} are

(ε, λ̄) = (0, 0), (ε, λ̄) =
(
0, [(p− 1)/2]

1
p+1

)
.

By the further computations, we can see that (0, 0) is a saddle, and (0, [(p − 1)/2]
1

p+1 ) is
a sink.

Dynamics on the chart {x̄ = 1}

The change of coordinates λ = εp−1λ̄, x = εp+1, and time-rescaling dη/dτ = ε(τ)p
2−1

yield {
εη = (p+ 1)−1(ε+Aεp+2 +Bε2p+3 − ελ̄p+1),
λη = −(p− 1)(p+ 1)−1λ̄+ 2(p+ 1)−1(Aεp+1λ̄+Bε2p+2λ̄− λ̄p+2).

The equilibrium on {ε = 0, λ̄ ≥ 0} is (0, 0). Eigenvalues of the linearized matrix are
(p+1)−1 and −(p−1)/(p+1) with corresponding eigenvectors (1, 0) and (0, 1), respectively.
Therefore, (ε, λ̄) = (0, 0) on the chart {x̄ = 1} is a saddle.

Combining the dynamics on the charts {λ̄ = 1} and {x̄ = ±1}, we obtain the dynamics
on U2 (see Figure 4.3.1).

Figure 4.3.1: Schematic pictures of the dynamics of the blow-up vector fields and U2 in
the case that n ≥ 3, p ∈ 2N, q = −2 and δ = 1.
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4.3.2 Dynamics on the chart V 2

The change of coordinates

a(s) = −x(s)/λ(s), b(s) = −1/λ(s)

give the projected dynamics of (4.3.2) on the chart V 2:

{
λτ = Axpλ+Bxp+1λ+ λp+2,
xτ = xp +Axp+1 +Bxp+2 + xλp+1,

(4.3.7)

where τ is the new time introduced by dτ/ds = λ(s)−p. The system (4.3.7) can be
transformed into (4.3.3) by the change of coordinates (λ, x) 2→ (−λ, x). Therefore, it is
sufficient to consider the blow-up of singularity E−

0 : (λ, x) = (0, 0) by the formulas

λ = εp−1λ̄, x = εp+1x̄ with λ̄ = 1.

Then, we have

{
εη = (p− 1)−1(Aεp+2x̄p +Bε2p+3x̄p+1 + ε),
xη = 2(p− 1)−1(−Aεp+1x̄p+1 −Bε2p+2x̄p+2 − x̄) + x̄p.

(4.3.8)

where η satisfies dη/dτ = {ε(τ)}p2−1. The equilibria of (4.3.8) on {ε = 0} are

E
−
0 : (ε, x̄) = (0, 0), E

−
p : (ε, x̄) =

(
0, [2/(p− 1)]

1
p−1

)
.

The equilibrium E
−
0 is a saddle with the eigenvalues (p − 1)−1 and −2(p − 1)−1 whose

corresponding eigenvectors are (1, 0) and (0, 1), respectively. Further, E
−
p is a source with

the eigenvalues (p − 1)−1 and 2 whose corresponding eigenvectors are (1, 0) and (0, 1),
respectively.

4.3.3 Dynamics on the chart U1

Let us study the dynamics on the chart U1. The transformations

a(s) = 1/λ(s), b(s) = x(s)/λ(s)

yield {
λτ = −xλ,
xτ = −Ax−B + λp+1 − x2,

(4.3.9)

via time-rescaling dτ/ds = {λ(s)}−p. If q < p∗ and q > −2 hold, then the system (4.3.9)
has the equilibria

EB : (λ, x) = (B
−1
p+1 , 0),

E3 : (λ, x) =

(
0,

−A− (n− 2)

2

)
and E4 : (λ, x) =

(
0,

−A+ (n− 2)

2

)
.

The stabilities of the equilibrium EB are same as Table 4.2. If p∗ < q < −2, then the
system (4.3.9) has only the equilibria E3 and E4.

The Jacobian matrices of the vector field (4.3.9) at these equilibria are

E3 :

( A+(n−2)
2 0
0 n− 2

)
, and E4 :

( A−(n−2)
2 0
0 −(n− 2)

)
.
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Therefore, the stabilities of the equilibria E3 and E4 are determined as shown in Table 4.4
with corresponding the equilibria E2 and E1, respectively.

E3 q < p∗ p∗ < q < −2 q > −2

δ = 1 saddle source source
δ = −1 source source saddle

E4 q < p∗ p∗ < q < −2 q > −2

δ = 1 sink sink saddle
δ = −1 saddle sink sink

Table 4.4: The stabilities of the equilibrium E3 and E4.

The solutions at E4 are approximated as




λ(τ) ∼ Ce

A−(n−2)
2 τ (1 + o(1)),

x(τ) ∼ Ce−(n−2)τ (1 + o(1)) +
−A+ (n− 2)

2
.

These results will be used to prove Theorem 4.1.2.
If q = p∗ or q = −2, then the system (4.3.9) has the equilibria

E0 : (λ, x) = (0, 0) and Ec : (λ, x) = (0,−δ(n− 2)) .

The Jacobian matrices of the vector field (4.3.9) at these equilibria are

E0 :

(
0 0
0 −δ(n− 2)

)
, Ec :

(
δ(n− 2) 0

0 δ(n− 2)

)
.

In the case that q = −2, if δ = 1 (resp. δ = −1), then Ec is a source (resp. sink). Note
that if q = −2 (resp. q = p∗), then sign(A,B) = (±, 0) holds for δ = ±1 (resp. δ = ∓1)
(see Table 4.1).

The solutions at Ec are approximated as
{
λ(τ) ∼ Ce(2−n)τ (1 + o(1)),
x(τ) ∼ Ce(2−n)τ (1 + o(1)) + (n− 2).

These results will be used to prove Theorem 4.1.3.
Then, the center manifold theory is applicable to study the dynamics near (0, 0) (for

instance, see [9]). It implies that there exists a function h(λ) satisfying

h(0) =
dh

dλ
(0) = 0

such that the center manifold of (4.3.9) is represented as {(λ, x) |x = h(λ)} near (0, 0).
We shall recall B = 0 holds in both cases of q = −2 and q = p∗. Differentiating it with
respect to τ , we have

−λh(λ)dh
dλ

(λ) = −δ(n− 2)h(λ) + λ1+p − {h(λ)}2 .

Then, we can obtain the approximation of the (graph of) center manifold as follows:
{
(λ, x) |x = λp+1/[δ(n− 2)] +O

(
λ2p+2

)}
. (4.3.10)

Therefore, the dynamics of (4.3.9) near (0, 0) is topologically equivalent to the dynamics
of the following equation:

λτ = −λp+2/[δ(n− 2)] +O(λ2p+3). (4.3.11)

These results give us the dynamics on the chart U1.
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4.3.4 Dynamics on the chart V 1

The transformations
a(s) = −1/λ(s), b(s) = −x(s)/λ(s)

yield {
λτ = −xλ,
xτ = −Ax−B − λp+1 − x2,

(4.3.12)

via time-rescaling dτ/ds = {λ(s)}−p. We can see that the system (4.3.12) can be trans-
formed into the system (4.3.9) by the change of variables: (λ, x) 2→ (−λ, x). Therefore, the
dynamics of (4.3.12) is equivalent to the reflected one of (4.3.9) with respect to {λ = 0}.

4.3.5 Dynamics and connecting orbits on the Poincaré disk

Combining the dynamics on the chart U j and V j , we obtain the dynamics on the Poincaré
disk in the case that p is even (see Figure 4.3.2). If EB is asymptotically stable, then EB

is stable node for F ≥ 0 and is a stable focus (spiral sink) for F < 0.

E−

0

E+
0

Figure 4.3.2: Schematic pictures of the dynamics on the Poincaré disk in the case that p
is even and F > 0.

We note that t → ∞ of δ = 1 is corresponding to t → −∞ of δ = −1.
If there exist the connecting orbits between the equilibria at infinity, then they corre-

spond to the functions that satisfy (4.1.2) on a finite interval or (0,∞). In particular, if
q = −2, then there exits a family of the connecting orbits corresponding to a family of the
functions such that each function a(t) satisfies (4.1.8) on a finite interval and ȧ(t) go to
infinity in finite time (see [31]). Indeed, these connecting orbits can be parameterized by
position of the intersection of the each connecting orbit and a-axis i.e., let (a∗, 0) be an
intersection of the each connecting orbit and a-axis, then the connecting orbits between
E−

0 and E+
0 are parameterized by a∗ < 0. Figure 4.3.3 (which is similar one shown in [31])

shows a family of the connecting orbits in the case that q = −2.
Similarly, for q ∈ R, there exists a family of functions that corresponds to a family of

connecting orbits from (a, b) = (0,−∞) to (0,+∞). More precisely, we have the following
Proposition.
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a

bE+
0

E−

0

Figure 4.3.3: Schematic picture of the dynamics on the Poincaré disk in the case that
p is even and q = −2. The orbits drawn in the black curves correspond to a family of
connecting orbits between E+

0 and E−
0 . The other orbits and equilibria are drawn in

grayscale.

Proposition 4.3.1
Assume that n ≥ 3, p ∈ 2N and q ∈ R. Then, there exists a family of the functions such
that the each function a(t) satisfies the followings:

(I) a(t) is a continuous function on a finite interval [t−, t+] and it satisfies the equation
(4.1.8) on (t−, t+) (a(t) ∈ C2(t−, t+) ∩ C0[t−, t+], −∞ < t− < t+ < +∞).

(II) a(t) has a(t) < 0 (t− < t < t+) and satisfies the following:

lim
t→t+−0

a(t) = 0, lim
t→t+−0

ȧ(t) = +∞,

lim
t→t−+0

a(t) = 0, lim
t→t−+0

ȧ(t) = −∞.

(III) a(t) satisfies the following with constant C > 0:

{
a(t) ∼ −C(t+ − t)

2
p+1

ȧ(t) ∼ C (t+ − t)−
p−1
p+1

as t → t+ − 0,

{
a(t) ∼ −C(t− t−)

2
p+1

ȧ(t) ∼ −C (t− t−)
− p−1

p+1
as t → t− + 0.

Proof. Since the point (y1, y2, y3) = (0, 1, 0) on the Poincaré disk corresponds to E+
0 , we

denote it by E+
0 as well. Similarly, we denote by E−

0 the point (y1, y2, y3) = (0,−1, 0) (see
also Figure 4.3.2). In order to prove Proposition 4.3.1, it is necessary to find the orbits
that connect E−

0 and E+
0 on the Poincaré disks (see Figure 4.3.2). Moreover, they are

symmetric in δ = 1 and δ = −1. For instance, the one in δ = 1 and q < −2− (n−2)(p+1)
and the one in δ = −1 and q > −2 are the same. Therefore, we need to prove the case of
the four disk in δ = 1.
(I) Except for −2− (n− 2)(p+ 1) < q < −2, the proof of the existence of the connecting
orbits is given in [31]. In the case that −2 − (n − 2)(p + 1) < q < −2, the flow on
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{(a, b) ∈ H+ ∪ S2 | a > 0} and {(a, b) ∈ H+ ∪ S2 | a < 0} are separated by the line {a = 0}
that is invariant under the flow of (4.3.2), and da/db takes the same values except {a = 0}
(see [31]).

Let Ws(EB) and Wu(EB) be the stable and unstable manifolds of EB, respectively.
Then, there exists a connecting orbit from E−

0 to the stable manifold of EB (EB is a
saddle). Similarly, there exists an orbit that connects Wu(EB) and E+

0 . In the region
surrounded by these orbits and the line {a = 0}, there are trajectories connecting E−

0 and
E+

0 .

(II) As shown in [31], we can obtain the asymptotic behavior of a(t) at E
+
p and E−

0 as
follows. We have

dη

dt
=

ds

dt
· dτ
ds

· dη
dτ

= a−p · λ−p · εp2−1 = εp
2−1 · λ−p ·

(x
λ

)−p

= εp
2−1 · x−p = εp

2−1 · (rp+1x̄)−p

= ε−p−1 · x̄−p

∼
{
C1e

− 1
p−1η(1 + o(1))

}−p−1
·
{
C2e

−2η(1 + o(1)) +A
}−p

∼ C3e
p+1
p−1η ·

{
C2e

−2η(1 + o(1)) +A
}−p

as η → +∞

= C3e
p+1
p−1η · 1

{C2e−2η(1 + o(1)) +A}p

= C3e
p+1
p−1η · 1

{C2e−2η(1 + o(1))}p + p {C2e−2η(1 + o(1))}p−1 ·A+ · · ·+Ap

∼ Ce
p+1
p−1η as η → +∞

holds with constants C and Cj . Note that this argument is a refinement of [33]. Here, “
f(x) ∼ g(x) as x → a” means that f(x)− g(x) = o(g(x)) as x → a, equivalently,

lim
x→a

∣∣∣∣
f(x)

g(x)

∣∣∣∣ = 1.

This yields

t(η) = Ce−
p+1
p−1η + C̃ (C̃ ∈ R).

Set t+ = lim
η→+∞

t(η), then we have

t+ =

∫ +∞

0

dt

dη
dη = C

∫ +∞

0
e−

p+1
p−1ηdη < +∞.

Therefore,

t+ − t ∼ Ce−
p+1
p−1η (η → +∞)

holds. Finally, we obtain

a(t) =
x

λ
=
εp+1

εp−1
x = ε2x

∼
{
C1e

− 1
p−1η(1 + o(1))

}2
·
{
C2e

−2η(1 + o(1)) +A
}

∼ C4e
− 2

p−1η ·
{
C2e

−2η(1 + o(1)) +A
}

= C5e
− 2

p−1ηe−2η + C4 ·A · e−
2

p−1η

= C5e
− 2p

p−1η + C4 ·A · e−
2

p−1η

∼ −Ce−
2

p−1η.
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4.4 Dynamics on the Poincaré disk of (4.1.8) : p is odd

Figure 4.4.1: Schematic pictures of the dynamics on the Poincaré disk when the parameter
p is odd and F > 0.

Here, in last relation, since e−
2p
p−1η < e−

2
p−1η (η > 0) is satisfied by −2p/(p − 1) <

−2/(p− 1), we choose the term with the greater influence when η → +∞. Therefore, we
have

a(t) ∼ −Ce−
2

p−1η ∼ −C(t+ − t)
2

p+1 (t → t+ − 0).

Since the trajectories are lying on {a < 0}, it holds that C > 0. Similarly, we can obtain
the rates for a(t) as t → t− and ȧ(t) = b(t) as t → t±. This completes the proof of
Proposition 4.3.1. !

4.4 Dynamics on the Poincaré disk of (4.1.8) : p is odd

In this section, we consider the dynamics (4.1.8) on the Poincaré disk in the case that p
is odd. We desingularize it by the time-scale desingularization

ds/dt = {a(t)}−p−1.

Then, we have {
a′ = ap+1b,
b′ = −Aap+1b−Bap+2 + a,

(
′ =

d

ds

)
. (4.4.1)

As in the previous section, we can consider the dynamics of (4.4.1) on the charts U j and
V j . Since the direction of the time does not change via (4.3.1) on H(+,a>0) := {(a, b) ∈
H+∪S1 | a > 0} for both even and odd cases, the flow of (4.4.1) on H(+,a>0) for p ∈ 2N−1
is similar to that of (4.3.2) on H(+,a>0) for p ∈ 2N. Moreover, (4.4.1) is invariant under
the mapping:(a, b) 2→ −(a, b). Therefore, we can draw the phase portraits on the Poincaré
disk of (4.1.8) when p is odd as shown in Figure 4.4.1 (cf. the flow on {a > 0} of Figure
4.3.2).

The trajectories that connect equilibria on the Poincaré disk correspond to the solutions
(which includes the functions satisfying the equation on the finite intervals) to (4.1.2).
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Hence, it is possible to compute the asymptotic behavior of them as in the even case. The
detailed dynamics of (4.1.8) around the equilibria, which gives asymptotic behavior, on
the Poincaré disk is discussed in the next section.

4.5 Proof of the Theorems

In this section, we prove our main results. If the initial data are located on H+ \ {a = 0},
the existence of the solutions follows from the standard theory of ordinary differential
equations. Therefore, we only consider the existence of the trajectories that connect
equilibria and the detailed dynamics near the equilibria on the Poincaré disk.

4.5.1 Proof of Theorem 4.1.1

We first give the proof of Theorem 4.1.1 as follows.
Proof. The results are immediately follows by Proposition 4.3.1 and [31]. Still, we note
that

u′(r) =
d

dr
{rαa(δ log r)} = rα−1(αa± b) for δ = ±1

holds and the computations of asymptotic behavior for r → r− + 0 and r → r+ − 0 as
follows. Using u(r) = rαa(t), t = ± log r, we have

u(r) ∼ −Crα(log r+ − log r)
2

p+1 as r → r+ − 0

and
u(r) ∼ −Crα(− log r− + log r)

2
p+1 as r → r− + 0.

Similarly, we can obtain the rates for b(t) as t → t+ and asymptotic behavior (4.1.9)
and (4.1.10). This completes the proof. !

4.5.2 Proof of Theorem 4.1.2

Next, we give the proof of Theorem 4.1.2 as follows.
Proof. Suppose that q > −2 and p ∈ N. First, we note that the flow on {(a, b) ∈
H+ ∪ S2 | a > 0} and {(a, b) ∈ H+ ∪ S2 | a < 0} are separated by the line {a = 0}. In
other words, any trajectories start from the point on the unstable manifold Wu(E4) of
E4 cannot go to {(a, b) ∈ H+ ∪ S2 | a < 0} in the case that δ = 1 (see Figures 4.3.2,
4.4.1). We can observe that any trajectories that start from the point on Wu(E4) must go
to the equilibrium EB by considering the dimension numbers of the stable and unstable
manifolds. Then it holds that there exist the connecting orbits from E4 to EB.

Similarly, we obtain the connecting orbits from EB to E4 in the case that δ = −1.
Therefore, we conclude the existence of the positive radial symmetric stationary solutions.

Second, we derive the asymptotic behavior for r → ∞. We focus our attention on the
dynamics around EB. It is divided into three cases by the value of F . We define

ã := a−B− 1
p+1 and b̃ := b.

Then, there are three cases to consider:

(I) Let us consider the case that F > 0, namely, the matrix J has the real distinct
eigenvalues

σ1 =
−A+

√
D

2
, σ2 =

−A−
√
D

2
.
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4.5 Proof of the Theorems

The eigenvectors corresponding to each eigenvalue are

v1 =

(
1
σ1

)
, v2 =

(
1
σ2

)
.

We then obtain the following asymptotic behavior:

(
ã(t)
b̃(t)

)
= C1

(
1
σ1

)
eσ1t + C2

(
1
σ2

)
eσ2t

with any constants C1 and C2. Therefore, the solution around the equilibrium EB

is {
a(t) ∼ C1eσ1t + C2eσ2t +B

−1
p+1 ,

b(t) ∼ C1σ1eσ1t + C2σ2eσ2t.

Using (4.1.4), we can derive the following:

u(r) ∼ C1r
αeσ1t + C2r

αeσ2t + rαB
−1
p+1

∼ C1r
α+σ1 + C2r

α+σ2 + rαB
−1
p+1 as r → ∞.

Since q > −2, it hold that

α+ σ1 < 0, and α+ σ2 =
2− n−

√
D

2
< 0.

(II) Consider the case that F = 0, namely, the matrix J has a multiple real eigenvalue σ =

−A

2
. The eigenvector and generalized eigenvector corresponding to the eigenvalue

are

v1 =

(
1

−A

2

)
, v2 =

(
c

1− A

2
c

)
,

with c is arbitrary constant. Therefore, the solution around the equilibrium EB is





a(t) ∼ (C1t+ C2 + cC1)eσt +B

−1
p+1 ,

b(t) ∼ −A

2
(C1t+ C2)eσt + C1

(
1− A

2

)
eσt.

Then, we can derive the following:

u(r) ∼ C1t · rαeσt + (C2 + cC1)r
αeσt + rαB

−1
p+1

= C1 · rα+σ log r + (C2 + cC1)r
α+σ + rαB

−1
p+1 as r → ∞.

Note that we can determine α+ σ =
2− n

2
< 0 and

lim
r→∞

(rα+σ log r) = lim
r→∞

log r

r−α−σ
= 0

by the L’Hôpital’s Rule.
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(III) Consider the case that F < 0, namely, the matrix J has the complex eigenvalues

σ = µ± iν =
−A

2
± i

1

2

√
|D|. The eigenvectors corresponding to each eigenvalue are

v =

(
1

−A

2

)
± i

(
0

1

2

√
|D|

)
.

The function ã(t) and b̃(t) are expressed as following:

(
ã(t)
b̃(t)

)
= z(t)

(
0

1

2

√
|D|

)
+ w(t)

(
1

−A

2

)
,

where (
z(t)
w(t)

)
:= eµt

(
cos νt − sin νt
sin νt cos νt

)(
z(0)
w(0)

)
.

Therefore, the solution a(t) around the equilibrium EB is

a(t) = e−
A
2 t

(
z(0) sin

√
|D|
2

t+ w(0) cos

√
|D|
2

t

)
+B

−1
p+1 .

Using (4.1.4), we can derive the following:

u(r) = rαe−
A
2 t

(
z(0) · sin

√
|D|
2

t+ w(0) · cos
√

|D|
2

t

)
+ rαB

−1
p+1

= r
2−n
2

(
z(0) · [sin

√
|D|
2

log r] + w(0) · [cos
√
|D|
2

log r]

)

+ rαB
−1
p+1 as r → ∞.

Last, we can derive the asymptotic behavior for r → 0. Indeed,

dτ

dt
=

dτ

ds

ds

dt
= λ−pa−p = λ−pλp = 1.

This yields τ = t + C with a constant C. Therefore, using the approximation of the
solution at E4, we have

a(t) =
1

λ
∼ Ce

−A+(n−2)
2 τ = Ce(α+n−2)τ

= Ce(α+n−2)(t+C) = Ce(α+n−2)t.

Since the trajectories are lying on {a > 0}, it follows that C > 0. Using (4.1.6), we can
obtain as following :

u(r) ∼ rα · Ce(α+n−2)t = Cr2−n as r → 0.

This completes the proof of Theorem 4.1.2. !

Remark 4.5.1
It is possible to take the parameters n, p and q so that F = 0 holds. For instance, F = 0

holds if n = 3, p = 2 and q = (3
√
6 − 14)/4. Similarly, there are sets of the parameters

such that F < 0 and F > 0 holds, respectively.
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4.5.3 Proof of Theorem 4.1.3

Last, we give the proof of Theorem 4.1.3 as follows.
Proof. Suppose that q = −2 and p ∈ N. The proof of existence of the connecting orbits
between Ec and E0 at chart U1 is obtained in [31] with using the Poincaré-Bendixson
theorem. Therefore, we conclude the existence of the singular positive radial symmetric
stationary solutions.

To do this, we compute the asymptotic behavior for r → ∞ and r → 0 as follows.

(i) If the initial value is on the center manifold, the solution at the around E0 on chart
U1 has the form






λ(τ) =
p+1

√√√√
1

p+ 1

n− 2
τ − (p+ 1) ·M1

= (M2 +M3τ)
− 1

p+1 ,

x(τ) =
1

n− 2
λp+1 +O(λ2p+2)

for δ = 1. These results are derived (4.3.10) and (4.3.11). We then obtain the
following:

x(τ) =
1

(n− 2)M2 + (n− 2)M3τ
+O(τ−2) ∼ (M4 +M5τ)

−1

with the constants Mj (1 ≤ j ≤ 5). We then have

dτ

dt
=

dτ

ds

ds

dt
= λ−pa−p = λ−p

(
1

λ

)−p

= 1.

This yields τ(t) = t+ C with a constant C.

If a(t) is a solution of (4.1.8), then a(t+ θ) is also solution for any θ ∈ R. Therefore,
there exists a solution a(t) such that the following holds

a(t) = λ−1 ∼ O(t
1

p+1 ) as t → ∞.

Since it hold that t = log r and u(r) = a(t) for q = −2, we have

u(r) = a(t) ∼ O(t
1

p+1 ) = O({log r}
1

p+1 ) as r → ∞.

This completes the derivation of rate for r → ∞.

(ii) It follows that
dτ

dt
=

dτ

ds

ds

dt
= λ−pa−p = λ−p

(
1

λ

)−p

= 1.

This yields τ(t) = t+ C̃ with a constant C̃. Therefore, we use the approximation of
the solution at Ec,

a(t) =
1

λ
∼ Ce(n−2)τ = Ce(n−2)(t+C̃) = C ′e(n−2)t.

with C ′ > 0. The sign of the constant C ′ can be determined by considering the
geometric situations on the Poincaré disk (the orbits starting from the point on
{a > 0} cannot go to the set {a < 0}). We then have

u(r) = a(t) ∼ Ce(n−2)t = Cr2−n as r → 0.

We obtain the derivation of rate for r → 0.

Finally, we can complete the proof of Theorem 4.1.3. !
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4.6 Conclusions and Remarks

In this chapter, we studied whole dynamics of (4.1.8) on the phase space R2∪{(a, b) ; ‖(a, b)‖ =
+∞} and asymptotic behavior of the solutions on an interval I ⊆ (0,∞) of (4.1.2) by ap-
plying the Poincaré compactification and dynamical system approach. However, there are
connecting orbits whose asymptotic behavior are not discussed (for instance, the orbits on
{(a, b) | a > 0} for q < −2 are not discussed). The reason for that is more detailed analysis
is necessary to obtain the asymptotic behavior, therefore, they will be addressed in future
works.

From the viewpoint of theory of partial differential equations, it should be considered
that how can we formulate the solutions of (4.1.2) on r ∈ [0,∞) (or (0,∞)) with the
functions u(r) obtained in Theorem 4.1.1. However, since our interest in this chapter is to
study the solutions of (4.1.2) from the dynamical system view point, we did not discuss
it. It should be noted that the mathematical formulation of the solution (in weak sense)
could be obtained by considering a suitable function space as shown in [51] (it will be
addressed in future works as well).

In addition, since the theory of blow-up (desingularization of the vector fields) is not
applicable for the non-polynomial vector fields, we cannot deal with the general case that
p ∈ R. Hence, we leave it open here.
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Chapter 5

Stationary solutions for a 1D pde
problem with gradient term and
negative powers nonlinearity

Abstract

Stationary solutions for the one-dimensional partial differential equation with gradient
term and negative powers nonlinearity are considered. This equation is a kind of MEMS
equation that has the phenomena of MEMS (Micro-Electro Mechanical System) devices
as its background. However, it is not easy to understand the behavior of the solution from
the effect of the nonlinear term. Therefore, the purpose of this chapter is to investigate the
properties of a stationary solution that is a typical solution. That is, we prove the existence
of stationary solutions including singularities, and give information about their shapes
and the asymptotic behavior. Here, the stationary solution with singularity here means a
solution that allows infinity or a solution with an infinite differential coefficient. These are
studied by applying the framework that combines the Poincaré-Lyapunov compactification
and classical dynamical systems theory. The key to use these methods is to reveal the
dynamics including infinity of an ordinary differential equation satisfied by stationary
solutions. This chapter is based on the following published paper ([35]):

Ichida Y., Sakamoto, T.O.: Stationary solutions for a 1D pde problem with
gradient term and negative powers nonlinearity, J . Elliptic Parabol. Equ, 8
(2022) , 885–918.

5.1 Introduction

In this chapter, we consider the following spatial one-dimensional partial differential equa-
tion:

ut = uxx + µ
1 + δuβx
(1− u)α

, t > 0, x ∈ R, (5.1.1)

where α ∈ 2N, 4 < β ∈ 2N, µ > 0, and δ ≥ 0. The equation (5.1.1) arises from the work of
the Micro-Electro Mechanical System (for short, MEMS) model, which has been studied
extensively in recent years, but we generalize the nonlinear terms for mathematical interest
(see [17, 19, 26, 54, 69, 68] and references therein). From the viewpoint of the phenomena
in MEMS devices, the Dirichlet boundary condition is imposed. In general, the MEMS
model is known to induce a touchdown phenomenon (mathematically, quenching). Thus,
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clarifying the structure of singularity formation is one of the key problems in this type of
equation. However, the equation (5.1.1) is not easy to analyze since it has gradient term
and negative powers nonlinearity. Since it is not fully understood what kind of solutions
the equation has in the first place, it is also important to clarify this point.

The authors have used a kind of compactification of phase space called the Poincaré
type compactification to investigate the structure of characteristic solutions (e.g. the sta-
tionary solution, the traveling wave solution) of partial differential equations with negative
powers nonlinearity and degenerate parabolic equation ([31, 32, 33]). The Poincaré type
compactification is one of the compactifications of the original phase space (the embed-
ding of Rn into the unit upper hemisphere of Rn+1). See [14, 31, 32, 33, 49, 50] and its
references for details. A brief overview is given in Section 1.1 in this thesis. As noted in
[49, 50], via these compactifications, the infinity for the original phase space corresponds to
the boundary of compact manifolds. For the ordinary differential equations derived from
these partial differential equations, the most important feature of this method is that it
can reveal the dynamics including infinity. Here, we split the boundary and project each
of them to some local charts, and study the dynamics. By combining this information
from some local charts, we can obtain the dynamics including infinity. In the following,
the Poincaré type compactification includes both the Poincaré compactification and the
Poincaré-Lyapunov compactification. The difference between the two is that the vector
field is either homogeneous or quasi-homogeneous, respectively. For the quasi-homogeneity
of a vector field, see Section 1.1 and [49, 50]. In addition, the dynamics including infinity,
obtained by Poincaré-Lyapunov’s one is hereafter referred to as Poincaré-Lyapunov disk.
Here, the Poincaré-Lyapunov compactification is also employed in [13], and corresponds
to the directional compactification in [49, 50].

We note that the equation dealt with in [31] is actually a special case of this equation
(5.1.1). In (5.1.1), this corresponds to the case where µ = 1 and δ = 0. In [31], we
study the quasi traveling waves with quenching of a reaction-diffusion equation in the
presence of negative powers nonlinearity. These are studied by applying the Poincaré
compactification. From the viewpoint of the dynamical system approach, as shown in
[31], such a solution corresponds to an orbit which goes to (0,±∞) on R2 in finite time.
This approach should also be applicable to (5.1.1).

A stationary solution is a typical and characteristic solution in dynamical systems
theory. However, there are limited results on the structure of such solutions for this type
of equation. For instance, in [26], they studied the structure of stationary solutions of
(5.1.1) with zero Dirichlet boundary condition in the case that β = 2. It was discussed the
existence of exactly two solutions and the stability of the smaller stationary solutions for
µ ∈ (0, µ∗), where µ∗ is a positive finite critical value. In [26], the equation is transformed
using the key transformation proposed in [69] and they have investigated mainly using the
comparison principle.

In this chapter, the purpose is to prove the existence of stationary solutions of (5.1.1)
and to give information about their shapes and the asymptotic behavior. Note that the
stationary solutions include those with singularity. Here, the stationary solution with sin-
gularity here means a solution that allows infinity or a solution with an infinite differential
coefficient. Although this chapter is an extension of [26] in terms of the equation, the em-
phasis is on investigating the shape and asymptotic behavior of stationary solutions from
the viewpoint of dynamical systems theory. Furthermore, by using the Poincaré-Lyapunov
compactification, if it is possible to list the connecting orbits on the Poincaré-Lyapunov
disk corresponding to all the stationary solutions, it will lead to a deeper understanding
of the structure of the stationary solutions. As we will see later (see Subsection 5.3.5,
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Remark 5.3.2, Section 5.5), we did not reach a complete classification of the connecting
orbits, but it is true that they provide many suggestions. With this motivation, we first
consider the problem without any additional boundary conditions. It should be noted that
this method is not used in [26] and is essentially a different approach from it.

We study the stationary solutions of (5.1.1), namely we consider the following equation:

0 = uxx + µ
1 + δuβx
(1− u)α

, x ∈ R. (5.1.2)

Further, we introduce the following change of variables:

φ(ξ) = 1− u(x), ξ = x.

We then seek the solution φ(ξ) of the following equation:

φ′′ = µ{1 + δ(φ′)β} · φ−α, ξ ∈ R, ′ =
d

dξ
, (5.1.3)

equivalently {
φ′ = ψ,
ψ′ = µ(1 + δψβ)φ−α.

(5.1.4)

Note that for any φ(ξ) except φ = 0, ψ′(ξ) satisfies the following:

ψ′ > 0. (5.1.5)

The equation (5.1.4) is not easy to analyze since it contains the negative powers nonlinear
term φ−α that yields singularity at φ = 0. However, as shown in [31, 33, 32, 49, 50], it is
possible to study the dynamics of (5.1.4) including infinity in a framework that combines
the Poincaré-Lyapunov compactification (see Section 1.1), classical dynamical systems
theory, and geometric methods for desingularization of vector fields (blow-up technique,
see Section 1.2 in this thesis and [14] and references therein).

This chapter is organized as follows. In the next section, we state the main results
of this chapter. In Section 5.3, we obtain the dynamics of (5.1.4) with α ∈ 2N on the
Poincaré-Lyapunov disk via Poincaré-Lyapunov compactification and basic theory of the
dynamical systems. The proof of Theorems will be completed in Section 5.4. Section 5.5
is devoted to the conclusions and remarks.

5.2 Main results

Before explaining the main results, we first give some remarks on the whole. The main
key to obtaining the main results is the availability of a phase portrait corresponding to
the Poincaré-Lyapunov disk in (5.1.4), which will be explained in detail in a later section
(see Section 5.3). Then each orbit should correspond to a solution of (5.1.2). This allows
us to obtain the existence of stationary solutions, their shapes, and asymptotic behavior.
However, some solutions obtained in the following theorems satisfy the equation only on
the finite interval (ξ−, ξ+) (−∞ < ξ− < ξ+ < +∞) or semi-infinite interval. That is, even
though we are considering the equation in the whole domain, we are constructing solutions
that cause singularity at the endpoints of a finite (or semi-infinite) interval. This has also
been reported in [31]. In this chapter, we do not discuss the behavior of the solutions of
(5.1.4) after ψ(ξ) becomes infinity (outside of the interval on which φ(ξ) satisfies (5.1.3)).
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ξ

φ = 1− u

ξ
−

ξ+

0

Figure 5.2.1: Schematic picture of the functions defined on the finite interval such that
each function u(x) satisfies equation (5.1.2) on a finite interval (ξ−, ξ+) in Theorem 5.2.1.

It is necessary that a more detailed (and hard) analysis in order to study the solutions
after ψ(ξ) reaches singularity, and so we leave it open here.

From the above discussion, the following theorems were obtained. Hereinafter, note
that the meaning of the symbol f(ξ) ∼ g(ξ) as ξ → a is as follows:

lim
ξ→a

∣∣∣∣
f(ξ)

g(ξ)

∣∣∣∣ = 1.

Theorem 5.2.1
Assume that α ∈ 2N and 4 < β ∈ 2N. Then, there exists a family of the functions (which
corresponds to a family of the orbits of (5.1.4)) defined on the finite interval such that each
function u(x) satisfies equation (5.1.2) on a finite interval (ξ−, ξ+) (−∞ < ξ− < ξ+ < +∞).
Moreover, for each function u(x) = 1− φ(ξ), the following holds:

•






lim
ξ→ξ+−0

φ(ξ) = 0, lim
ξ→ξ−+0

φ(ξ) = 0,

lim
ξ→ξ+−0

φ′(ξ) = +∞, lim
ξ→ξ−+0

φ′(ξ) = −∞.

• φ(ξ) < 0 holds for ξ ∈ (ξ−, ξ+).

• There exists a constant ξ∗ ∈ (ξ−, ξ+) such that the following holds: φ′(ξ) < 0 for
ξ ∈ (ξ−, ξ∗), φ′(ξ∗) = 0 and φ′(ξ) > 0 for ξ ∈ (ξ∗, ξ+).

In addition, asymptotic behaviors for ξ → ξ+ − 0 and ξ → ξ− + 0 are

{
φ(ξ) ∼ −A1(ξ+ − ξ)

β−2
β−1

φ′(ξ) ∼ A2(ξ+ − ξ)−
1

β−1
as ξ → ξ+ − 0 (5.2.1)

and {
φ(ξ) ∼ −A3(ξ − ξ−)

β−2
β−1

φ′(ξ) ∼ −A4(ξ − ξ−)
− 1

β−1
as ξ → ξ− + 0, (5.2.2)

where Aj > 0 (1 ≤ j ≤ 4) is a constant.

Remark 5.2.1
Some notes on Theorem 5.2.1 are given. We impose α ∈ 2N and 4 < β ∈ 2N for the conve-
nience of the analysis described below. The schematic picture of the function constructed
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ξ

φ = 1− u

ξ
−

0

Figure 5.2.2: Schematic pictures of the functions defined on the semi-infinite interval such
that each function u(x) satisfies equation (5.1.2) on a semi-infinite interval (ξ−,+∞) in
Theorem 5.2.2.

in Theorem 5.2.1 is shown in Figure 5.2.1. No specific evaluation has been obtained for
the endpoints ξ− and ξ+ of this finite interval. However, they are shown in this figure for
convenience.

Theorem 5.2.2
Assume that α ∈ 2N and 4 < β ∈ 2N. Then, there exists a family of the functions (which
corresponds to a family of the orbits of (5.1.4)) defined on the semi-infinite intervals
such that each function u(x) satisfies equation (5.1.2) on a semi-infinite interval (ξ−,+∞)
(−∞ < ξ− < +∞). Moreover, for each function u(x) = 1− φ(ξ), the following holds:

•






lim
ξ→+∞

φ(ξ) = −∞, lim
ξ→ξ−+0

φ(ξ) = 0,

lim
ξ→ξ−+0

φ′(ξ) = −∞.

• φ(ξ) < 0 holds for ξ ∈ (ξ−,+∞).

In addition, asymptotic behaviors are (5.2.2) and

φ(ξ) ∼ −A3

(
ξ −A2

A1

) 2
α+1

as ξ → +∞, (5.2.3)

in the case that trajectory whose initial data are on a stable manifold of equilibrium at
infinity (φ,ψ) = (−∞, 0) of (5.1.4), and

φ(ξ) ∼ −A6

(
ξ −A5

A4

)
as ξ → +∞, (5.2.4)

in the case that initial data are not on a stable manifold of equilibrium at infinity (φ,ψ) =
(−∞, 0) of (5.1.4) and the trajectories enter (φ,ψ) = (−∞, 0). Here, Aj ∈ R are constants
and A1, A3, A4, A6 > 0.

The schematic picture of the function constructed in Theorem 5.2.2 is shown in Figure
5.2.2. Here it should be noted that the position of the singular point ξ− is not determined
in our studies, however, it is shown in these figures for convenience.
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ξ

φ = 1− u

ξ+0

Figure 5.2.3: Schematic pictures of the functions defined on the semi-infinite interval such
that each function u(x) satisfies equation (5.1.2) on a semi-infinite interval (−∞, ξ+) in
Theorem 5.2.3.

Theorem 5.2.3
Assume that α ∈ 2N and 4 < β ∈ 2N. Then, there exists a family of the functions (which
corresponds to a family of the orbits of (5.1.4)) defined on the semi-infinite intervals
such that each function u(x) satisfies equation (5.1.2) on a semi-infinite interval (−∞, ξ+)
(−∞ < ξ+ < +∞). Moreover, for each function u(x) = 1− φ(ξ), the following holds:

•






lim
ξ→ξ+−0

φ(ξ) = 0, lim
ξ→−∞

φ(ξ) = −∞,

lim
ξ→ξ+−0

φ′(ξ) = +∞.

• φ(ξ) < 0 holds for ξ ∈ (−∞, ξ+).

In addition, asymptotic behaviors are (5.2.1) and

φ(ξ) ∼ −A3

(
−ξ −A2

A1

) 2
α+1

as ξ → −∞, (5.2.5)

in the case that trajectory whose initial data are on an unstable manifold of equilibrium
at infinity (φ,ψ) = (−∞, 0) of (5.1.4), and

φ(ξ) ∼ −A6

(
−ξ −A5

A4

)
as ξ → −∞, (5.2.6)

in the case that initial data are not on an unstable manifold of equilibrium at infinity
(φ,ψ) = (−∞, 0) of (5.1.4) and the trajectories exit (φ,ψ) = (−∞, 0). Here, Aj ∈ R are
constants and A1, A3, A4, A6 > 0.

The schematic picture of the function constructed in Theorem 5.2.3 is shown in Figure
5.2.3. Here it should be noted that the position of the singular point ξ+ is not determined
in our studies, however, it is shown in these figures for convenience.

Theorem 5.2.4
Assume that α ∈ 2N and 4 < β ∈ 2N. In the case that α > β−1, there exists the function
(which corresponds to the orbit of (5.1.4)) defined on the finite interval such that each
function u(x) satisfies equation (5.1.2) on a finite interval (ξ−, ξ+) (−∞ < ξ− < ξ+ < +∞).
Moreover, for each function u(x) = 1− φ(ξ), the following holds:

82



5.2 Main results

• lim
ξ→ξ+−0

φ(ξ) = +∞, lim
ξ→ξ−+0

φ(ξ) = +∞.

• φ(ξ) > 0 holds for ξ ∈ (ξ−, ξ+).

• There exists a constant ξ∗ ∈ (ξ−, ξ+) such that the following holds: φ′(ξ) < 0 for
ξ ∈ (ξ−, ξ∗), φ′(ξ∗) = 0 and φ′(ξ) > 0 for ξ ∈ (ξ∗, ξ+).

In addition, asymptotic behaviors for ξ → ξ+ − 0 and ξ → ξ− + 0 are

φ(ξ) ∼ A1(ξ+ − ξ)−
β−2

α−β+1 as ξ → ξ+ − 0 (5.2.7)

and
φ(ξ) ∼ A2(ξ − ξ−)

− β−2
α−β+1 as ξ → ξ− + 0 (5.2.8)

with a constant Aj > 0.
On the other hand, in the case that α < β − 1, the equation (5.1.1) has a stationary

solution (which corresponds to the orbit of (5.1.4)) with the singularities at ξ → −∞ and
ξ → +∞. Moreover, its solution u(x) = 1− φ(ξ), the following holds:

• lim
ξ→+∞

φ(ξ) = +∞, lim
ξ→−∞

φ(ξ) = +∞.

• φ(ξ) > 0 holds for ξ ∈ R.

• There exists a constant ξ∗ ∈ R such that the following holds: φ′(ξ) < 0 for ξ ∈
(−∞, ξ∗), φ′(ξ∗) = 0 and φ′(ξ) > 0 for ξ ∈ (ξ∗,+∞).

In addition, asymptotic behaviors for ξ → +∞ and ξ → −∞ are

φ(ξ) ∼ C

(
ξ −A

B

)M3

as ξ → +∞ (5.2.9)

and

φ(ξ) ∼ C

(
−ξ −A

B

)M3

as ξ → −∞ (5.2.10)

with A ∈ R, B > 0, C > 0, M3 > 0, and we set

M3 =
M1

M2
= − β − 2

α− β + 1
, M2 = −α− β + 1

β − 2
M1, M1 =

(
α− 1

(β − 2)µδ

) 1
β−2

.

The schematic picture of the function constructed in Theorem 5.2.4 is shown in Figure
5.2.4. Here it should be noted that the positions of the singular points ξ− and ξ+ are not
determined in our studies, however, they are shown in these figures for convenience.

Corollary 5.2.1
The asymptotic behaviors of φ′(ξ) = ψ(ξ) obtained in Theorem 5.2.4 are

ψ(ξ) ∼ A3(ξ+ − ξ)−
α−1

α−β+1 as ξ → ξ+ − 0,

and
ψ(ξ) ∼ −A4(ξ − ξ−)

− α−1
α−β+1 as ξ → ξ− − 0, (5.2.11)

with Aj > 0 and α > β − 1.
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ξ

φ = 1− u

ξ
−

ξ+0 ξ

φ = 1− u

0

Figure 5.2.4: Schematic pictures of the functions defined on the finite interval (resp.
infinite interval) such that each function u(x) satisfies equation (5.1.2) on a finite (resp.
infinite) interval (ξ−, ξ+) (resp. (−∞,+∞)) in Theorem 5.2.4. [Left: In the case that
α > β − 1.] [Right: In the case that α < β − 1.]

On the other hand,

ψ(ξ) ∼ C

(
ξ −A

B

)M4

as ξ → +∞,

and

ψ(ξ) ∼ −C

(
−ξ −A

B

)M4

as ξ → −∞, (5.2.12)

with A ∈ R, B > 0, C > 0, α < β − 1, and M4 =
α− 1

β − 2
M3 = − α− 1

α− β + 1
.

In addition, let Ws
(e+2 ) be a stable manifold of e+2 (which is the equilibrium of the

system (5.3.11)). We denote by Ws(e+2 ) the stable set, which corresponds to Ws
(e+2 ) on

the blow-up vector field (5.3.11), of the equilibrium e+0 of (5.3.7). Similarly, we denote
by Wu(e+1 ) the unstable set of e+1 , corresponding to the unstable manifold of e+1 on the
blow-up vector field (5.3.10), of the equilibrium e+0 of (5.3.7).

Theorem 5.2.5
Assume that α ∈ 2N and 4 < β ∈ 2N. If there exists a connecting orbit that connects
Wu(e+1 ) and Ws(e+2 ), then the equation (5.1.1) has a stationary solution (which corre-
sponds to the orbit of (5.1.4)) with the singularities at ξ → −∞ and ξ → +∞. Moreover,
its solution u(x) = 1− φ(ξ), the following holds:

• lim
ξ→+∞

φ(ξ) = +∞, lim
ξ→−∞

φ(ξ) = +∞.

• φ(ξ) > 0 holds for ξ ∈ R.

• There exists a constant ξ∗ ∈ R such that the following holds: φ′(ξ) < 0 for ξ ∈
(−∞, ξ∗), φ′(ξ∗) = 0 and φ′(ξ) > 0 for ξ ∈ (ξ∗,+∞).

In addition, asymptotic behaviors for ξ → +∞ and ξ → −∞ are

φ(ξ) ∼ C

(
ξ −A

B

)
as ξ → +∞, (5.2.13)

φ(ξ) ∼ C

(
−ξ −A

B

)
as ξ → −∞, (5.2.14)
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ξ

φ = 1− u

0

Figure 5.2.5: Schematic picture of the stationary solution with the singularities at ξ → −∞
and ξ → +∞ in obtained Theorem 5.2.5.

where A ∈ R, B > 0, and C > 0 are constants.

The schematic picture of the stationary solution with the singularities at ξ → −∞ and
ξ → +∞ in obtained Theorem 5.2.5 is shown in Figure 5.2.5. Here it should be noted that
the positions of the singular points ξ− and ξ+ are not determined in our studies, however,
they are shown in these figures for convenience.

5.3 Dynamics on the Poincaré-Lyapunov disk (5.1.4)

In order to study the dynamics of (5.1.4) on the Poincaré-Lyapunov disk, we desingularize
it by the time-scale desingularization

ds/dξ = {φ(ξ)}−α for α ∈ 2N. (5.3.1)

Since we assume that α is even, the direction of the time does not change via this desin-
gularization. As we will discuss in Section 5.5, we do not discuss the case of α ∈ 2N + 1
in this chapter, since it is difficult to capture the dynamics near the singularity. Then we
have {

φ′(s) = φαψ,
ψ′(s) = µ+ µδψβ ,

(
′ =

d

ds

)
. (5.3.2)

It should be noted that the time scale desingularization (5.3.1) is simply multiplying
the vector field by φα. Then, except for the singularity {φ = 0}, the solution curves
of the system (vector field) remain the same but are parameterized differently. Still,
we refer to Section 7.7 of [44] and references therein for the analytical treatments of
desingularization with the time rescaling. In what follows, we use a similar time rescaling
(re-parameterization of the solution curves) repeatedly to desingularize the vector fields.
Also, we note that the system (5.3.2) has no equilibrium.

Before we consider the dynamics of (5.3.2) on the charts U j and V j , we state the type
and order of this vector field (5.3.2). See Appendix for the definition of local charts. Let
f(φ,ψ) = (f1(φ,ψ), f2(φ,ψ)) be f1(φ,ψ) = φαψ and f2(φ,ψ) = µ+ µδψβ . Then we have
the following observation (see Section 1.2 and [49, 50] for more details).

Lemma 5.3.1
The vector field f is asymptotically quasi-homogeneous of type (β − 2,α − 1) and order
(β − 1)(α − 1) + 1 at infinity. See Definition 1.1.3 in Section 1.2 for a definition of this
term.
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Proof. Let a type be (α1,α2), R ∈ R and an order be k+1 with k ≥ 1. For all (φ,ψ) ∈ R2,
the following holds:

f1(R
α1φ, Rα2ψ) = Rk+α1f1(φ,ψ),

f2(R
α1φ, Rα2ψ) = Rk+α2f2(φ,ψ).

The left hand side above is calculated as:

f1(R
α1φ, Rα2ψ) = Rαα1+α2φαψ,

f2(R
α1φ, Rα2ψ) = µ+ µδRβα2ψβ .

By comparing the order parts, we get





αα1 + α2 = k + α1,
0 = k + α2,
βα2 = k + α2.

Therefore, we can see that α1 = β−2, α2 = α−1, and k = (β−1)(α−1) hold by ignoring
the second equation. The reason for ignoring the second equation is that it is smaller than
the third equation. Furthermore, they satisfy the following:

lim
R→+∞

R−(k+α1)
{
f1(R

α1φ, Rα2ψ)−Rk+α1(fα,k)1(φ,ψ)
}
≡ 0,

lim
R→+∞

R−(k+α2)
{
f2(R

α1y1, R
α2y2)−Rk+α2(fα,k)2(y1, y2)

}
= 0,

where (fα,k)1 and (fα,k)2 are (fα,k)1 := φαψ and (fα,k)2 = µδψβ . From the above results,
we can see that the vector field f is asymptotically quasi-homogeneous of type (β−2,α−1)
and order (β − 1)(α− 1) + 1 at infinity. !

Therefore, we should consider the Poincaré-Lyapunov compactification (the directional
compactification) rather than Poincaré compactification that corresponds to homogeneous
vector fields. Furthermore, from Lemma 5.3.1, we can see that we need to exclude β = 2
in this case. Since the solution structure for the case β = 2 has been studied in [26], we
only need to study the case 4 < β ∈ 2N in this chapter. The reasons for not considering
β = 4 are discussed later in Remark 5.3.1.

Now, we can consider the dynamics of (5.3.2) on the charts U j and V j .

5.3.1 Dynamics on the chart U2

To obtain the dynamics on the chart U2, we introduce coordinates (λ, x) by the formulas

φ(s) = x(s)/{λ(s)}β−2, ψ(s) = 1/{λ(s)}α−1.

Here, note that the exponents of λ are derived from the type found in Lemma 5.3.1. The
image of the geometric position of these local coordinates is almost the same as in Figure
1.1.2. Then we have

{
λ′ = −µ(α− 1)−1(λα + δλ−αβ+α+β),
x′ = λ−αβ+α+β−1xα − µ(β − 2)(α− 1)−1(λα−1x+ δλ−αβ+α+β−1x).

Note that −αβ + α + β − 1 = −(α − 1)(β − 1) < 0 holds. Time-scale desingularization
dτ/ds = λ−αβ+α+β−1 yields

{
λτ = −µ(α− 1)−1(λαβ−β+1 + δλ),
xτ = xα − µ(β − 2)(α− 1)−1(λαβ−βx+ δx),

(5.3.3)
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where λτ = dλ/dτ and xτ = dx/dτ . Here, we can solve for λ. λ satisfies

λ(τ) =

(
C1e

µδβτ − 1

δ

)− 1
αβ−β

(5.3.4)

Since we are considering λ(τ) ≥ 0, C1 is a sufficiently large positive constant.
Further, the system (5.3.3) has the equilibria

E+
0 : (λ, x) = (0, 0), E+

α : (λ, x) = (0, [(β − 2)µδ/(α− 1)]
1

α−1 ).

The Jacobian matrices of the vector field (5.3.3) at these equilibria are

E+
0 :




− µδ

α− 1
0

0 −β − 2

α− 1
µδ



 , E+
α :



 − µδ

α− 1
0

0 µδ(β − 2)



 .

Therefore, E+
0 is a sink and E+

α is a saddle. Moreover, since | − (α − 1)−1µδ| < | − (β −
2)(α− 1)−1µδ| holds, trajectories near E+

0 are tangent to {x = 0,λ ≥ 0} as τ → +∞.
The solution for x near E+

0 is approximated as

x(τ) = C2e
− β−2

α−1µδτ (1 + o(1)) as τ → +∞ (5.3.5)

with a constant C2.

5.3.2 Dynamics on the chart V 2

The change of coordinates

φ(s) = −x(s)/{λ(s)}β−2, ψ(s) = −1/{λ(s)}α−1

give the projected dynamics of (5.3.2) on the chart V 2:

{
λτ = µ(α− 1)−1(λαβ−β+1 + δλ),
xτ = xα + µ(β − 2)(α− 1)−1(λαβ−βx+ δx),

(5.3.6)

where τ is the new time introduced by dτ/ds = λ−αβ+α+β−1. Here, we can solve for λ. λ
satisfies

λ(τ) =

(
C1e

−µδβτ − 1

δ

)− 1
αβ−β

with a sufficiently large positive constant C1.
Further, the system (5.3.6) has the equilibria

E−
0 : (λ, x) = (0, 0), E−

α : (λ, x) = (0, [−(β − 2)µδ/(α− 1)]
1

α−1 ).

The Jacobian matrices of the vector field (5.3.6) at these equilibria are

E−
0 :





µδ

α− 1
0

0
β − 2

α− 1
µδ



 , E−
α :




µδ

α− 1
0

0 −µδ(β − 2)



 .

Therefore, E−
0 is a source and E−

α is a saddle.

87



Chapter 5 Stationary solutions for a 1D pde problem with gradient term and negative
powers nonlinearity

5.3.3 Dynamics on the chart U1

Let us study the dynamics on the chart U1. The transformations

φ(s) = 1/{λ(s)}β−2, ψ(s) = x(s)/{λ(s)}α−1

yield {
λτ = −(β − 2)−1λx,
xτ = µλαβ−β + µδxβ − (α− 1)(β − 2)−1x2,

(5.3.7)

via time-rescaling dτ/ds = λ−αβ+α+β−1. The system (5.3.7) has the equilibria

e+0 : (λ, x) = (0, 0), Eα
± : (λ, x) = (0,±M1), M1 := [(α− 1)/{(β − 2)µδ}]

1
β−2 .

The Jacobian matrices of the vector field (5.3.7) at these equilibria are

e+0 :

(
0 0
0 0

)
, Eα

± :



 ∓ 1

β − 2
M1 0

0 ±(α− 1)M1



 .

Therefore, Eα
± is a saddle and e+0 is not hyperbolic. The solutions near Eα

+ are approxi-
mated as {

λ(τ) = C1e
− 1

β−2M1τ (1 + o(1)),
x(τ)−M1 = C2e(α−1)M1τ (1 + o(1)),

as τ → +∞ (5.3.8)

with constants C1 > 0 and C2.
In order to determine the dynamics near e+0 , we desingularize it by introducing the

following blow-up coordinates:

λ = rλ, x = r(αβ−β)/2x

(see Section 1.2 in this thesis and Section 3 of [14] for the desingularizations of vector fields
by the blow-up). Since we are interested in the dynamics on the Poincaré-Lyapunov disk,
we consider the dynamics of blow-up vector fields on the charts {λ̄ = 1} and {x̄ = ±1}.

Dynamics on the chart {λ = 1}

By the change of coordinates λ = r, x = r(αβ−β)/2x, and time-rescaling dη/dτ = r(αβ−β)/2,
we have {

rη = −(β − 2)−1rx,
xη = 2−1(α− 1)x2 + µ+ µδrβ(α−1)(β−2)/2xβ .

(5.3.9)

The system (5.3.9) has not the equilibrium.

Dynamics on the chart {x = −1}

By the change of coordinates λ = rλ, x = −r(αβ−β)/2, and time-rescaling dη/dτ =
r(αβ−β)/2, we have

{
rη = −2µβ−1(α− 1)−1r(λ

αβ−β
+ δrβ(α−1)(β−2)/2) + 2β−1(β − 2)−1r,

λη = 2µβ−1(α− 1)−1(λ
αβ−β+1

+ δrβ(α−1)(β−2)/2λ) + β−1λ.
(5.3.10)

The equilibrium on {r = 0} is
e+1 : (r,λ) = (0, 0).
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The Jacobian matrix of the vector field (5.3.10) at its equilibrium is

e+1 :





2

β(β − 2)
0

0
1

β



 .

Therefore, we can see that e+1 is a source.

Dynamics on the chart {x = 1}

The change of coordinates λ = rλ, x = r(αβ−β)/2, and time-rescaling dη/dτ = r(αβ−β)/2

yield

{
rη = 2µβ−1(α− 1)−1r(λ

αβ−β
+ δrβ(α−1)(β−2)/2)− 2β−1(β − 2)−1r,

λη = −2µβ−1(α− 1)−1(λ
αβ−β+1

+ δrβ(α−1)(β−2)/2λ)− β−1λ.
(5.3.11)

The equilibrium on {r = 0} is
e+2 : (r,λ) = (0, 0).

The Jacobian matrix of the vector field (5.3.11) at its equilibrium is

e+2 :




− 2

β(β − 2)
0

0 − 1

β



 .

Therefore, e+2 is a sink. Moreover, since |− β−1| > |− 2β−1(β − 2)−1| holds, trajectories
near e+2 are tangent to {λ = 0} as η → +∞. The solutions near e+2 are approximated as

{
r(η) = Ce

− 2
β(β−2)η(1 + o(1)),

λ(η) = Ce−
1
β η(1 + o(1)),

as η → +∞ (5.3.12)

with constants Cj > 0.
Combining the dynamics on the charts {λ = 1} and {x = ±1}, we obtain the dynamics

on U1 (see Figure 5.3.1).

Remark 5.3.1
Considering β = 4, |−β−1| = |−2β−1(β−2)−1| holds. Therefore, we assume 4 < β ∈ 2N.

5.3.4 Dynamics on the chart V 1

The transformations

φ(s) = −1/{λ(s)}β−2, ψ(s) = −x(s)/{λ(s)}α−1

yield {
λτ = −(β − 2)−1λx,
xτ = −µλαβ−β − µδxβ − (α− 1)(β − 2)−1x2,

(5.3.13)

via time-rescaling dτ/ds = λ−αβ+α+β−1. The system (5.3.13) has the equilibrium

e−0 : (λ, x) = (0, 0),
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e+0

e+0e+1

e+2

Figure 5.3.1: Schematic pictures of the dynamics of the blow-up vector fields and U1.

where we note that 4 < β ∈ 2N. The Jacobian matrix of the vector field (5.3.13) at its
equilibrium is

e−0 :

(
0 0
0 0

)
.

Therefore, e−0 is not hyperbolic. Similarly as U1, in order to determine the dynamics near
e−0 , we desingularize it by introducing the following blow-up coordinates:

λ = rλ, x = r(αβ−β)/2x.

Since we are interested in the dynamics on the Poincaré-Lyapunov disk, we consider the
dynamics of blow-up vector fields on the charts {λ̄ = 1} and {x̄ = ±1}.

Dynamics on the chart {λ = 1}

By the change of coordinates λ = r, x = r(αβ−β)/2x, and time-rescaling dη/dτ = r(αβ−β)/2,
we have {

rη = −(β − 2)−1rx,
xη = 2−1(α− 1)x2 − µ− µδrβ(α−1)(β−2)/2xβ .

(5.3.14)

The equilibria of (5.3.14) on {r = 0} are

e−1 : (r, x) = (0,−K), e−2 : (r, x) = (0,K), K := [(2µ)/(α− 1)]
1
2 .

The Jacobian matrices of the vector fields (5.3.14) at these equilibria are

e−1 :




1

β − 2
K 0

0 −(α− 1)K



 , e−2 :



 − 1

β − 2
K 0

0 (α− 1)K



 .

Therefore, both e−1 and e−2 are saddles. The solutions near e−2 are approximated as
{

r(η) = C1e
− 1

β−2Kη(1 + o(1)),

x(η)−K = C2e(α−1)Kη(1 + o(1))
as η → +∞ (5.3.15)

90



5.3 Dynamics on the Poincaré-Lyapunov disk (5.1.4)

with constants C1 > 0 and C2.

Dynamics on the chart {x = −1}

By the change of coordinates λ = rλ, x = −r(αβ−β)/2, and time-rescaling dη/dτ =
r(αβ−β)/2, we have

{
rη = 2µβ−1(α− 1)−1r(λ

αβ−β
+ δrβ(α−1)(β−2)/2) + 2β−1(β − 2)−1r,

λη = −2µβ−1(α− 1)−1(λ
αβ−β+1

+ δrβ(α−1)(β−2)/2λ) + β−1λ.
(5.3.16)

The equilibria of (5.3.16) on {r = 0} are

e−3 : (r,λ) = (0, 0), e−4 : (r,λ) = (0, [(α− 1)/(2µ)]
1

αβ−β ).

The Jacobian matrices of the vector fields (5.3.16) at these equilibria are

e−3 :





2

β(β − 2)
0

0
1

β



 , e−4 :




1

β − 2
0

0 −(α− 1)



 .

Therefore, e−3 is a source and e−4 is a saddle.

Dynamics on the chart {x = 1}

By the change of coordinates λ = rλ, x = r(αβ−β)/2, and time-rescaling dη/dτ = r(αβ−β)/2,
we have

{
rη = −2µβ−1(α− 1)−1r(λ

αβ−β
+ δrβ(α−1)(β−2)/2)− 2β−1(β − 2)−1r,

λη = 2µβ−1(α− 1)−1(λ
αβ−β+1

+ δrβ(α−1)(β−2)/2λ)− β−1λ.
(5.3.17)

The equilibria of (5.3.17) on {r = 0} are

e−5 : (r,λ) = (0, 0), e−6 (r,λ) = (0, [(α− 1)/(2µ)]
1

αβ−β ).

The Jacobian matrices of the vector fields (5.3.17) at these equilibria are

e−5 :




− 2

β(β − 2)
0

0 − 1

β



 , e−6 :



 − 1

β − 2
0

0 α− 1



 .

Therefore, e−5 is a sink and e−6 is a saddle. Moreover, since | − 2/β(β − 2)| < | − 1/β|
holds, trajectories near e−5 are tangent to {λ = 0, r ≥ 0} as η → +∞. Considering β = 4,
|− 2/β(β − 2)| = |− 1/β| holds. The solutions near e−5 are approximated as

{
r(η) = C1e

− 2
β(β−2)η(1 + o(1)),

λ(η) = C2e
− 1

β η(1 + o(1))
as η → +∞ (5.3.18)

with positive constants Cj .
Combining the dynamics on the charts {λ = 1} and {x = ±1}, we obtain the dynamics

on V 1 (see Figure 5.3.2).
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e−0

V 1

e−0

e−1 e−2

e−3

e−4

e−5

e−6

Figure 5.3.2: Schematic pictures of the dynamics of the blow-up vector fields and V 1.

5.3.5 Dynamics on the Poincaré-Lyapunov disk

Combining dynamics on the charts U j and V j , we obtain the dynamics on the Poincaré-
Lyapunov disk of the system (5.1.4) in the case that α is even (see Figure 5.3.3).

We explain why the connecting orbits can be represented as shown in Figure 5.3.3.
(I): We set Φ as follows:

Φ = {(φ,ψ) | (φ,ψ) ∈ R2 ∪ {‖(φ,ψ)‖ = ∞}}.

For a given compact subsetW ⊂ Φ, there is no equilibrium or closed orbit inW . Therefore,
by the Poincaré-Bendixson theorem, any trajectories starting from the points in W cannot
stay in W with increasing s. This implies that the trajectories in Φ go to S1, which
corresponds to {‖(φ,ψ)‖ = ∞}. Since the line {φ = 0} is invariant under the flow of
(5.3.2), therefore, any trajectories start from the points in {(φ,ψ) ∈ Φ | φ < 0} cannot go
to {(φ,ψ) ∈ Φ | φ > 0}. Namely, we conclude that the flow on {(φ,ψ) ∈ Φ | φ < 0} and
{(φ,ψ) ∈ Φ | φ > 0} are separated by the line {φ = 0}.
(II): It is easy to see that dφ/dψ takes the same values on the vector fields defined by
(5.3.2) and (5.1.4) by excepting the singularity {φ = 0}. Therefore, note that the solution
curves in the variable s (vector field (5.3.2)) draw the same solution curves in the original
vector field (5.1.4), the variable ξ.
(III): We determine the dynamics on {(φ,ψ) ∈ Φ | φ < 0}. Note that we have the
following:

φ′ = 0 on ψ = 0,

ψ′ > 0 on ψ = 0, φ < 0.

Let Ws(E+
0 ) be a stable manifold of E+

0 (which is the equilibrium of the system
(5.3.3)). Similarly, let Wu(E−

0 ) be an unstable manifold of E−
0 (which is the equilibrium

of the system (5.3.6)).
In addition, let Ws

(e−2 ), W
s
(e−5 ), and Ws

(e−6 ) be stable manifolds of e−2 (which is the
equilibrium of the system (5.3.14)), e−5 and e−6 (which are the equilibria of the system
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φ

ψ

Figure 5.3.3: Schematic pictures of the dynamics on the Poincaré-Lyapunov disk in the
case that α is even.

(5.3.17)), respectively. We denote by Ws(e−2 ), Ws(e−5 ), and Ws(e−6 ) the stable sets, which
correspond to Ws

(e−2 ), W
s
(e−5 ), and Ws

(e−6 ) on the blow-up vector fields (5.3.14) and
(5.3.17), of the equilibrium e−0 of (5.3.13). Similarly, we denote by Wu(e−1 ), Wu(e−3 ), and
Wu(e−4 ) the unstable sets of e−1 , e

−
3 , and e−4 , corresponding to the unstable manifolds of

e−1 , e
−
3 , and e−4 on the blow-up vector fields (5.3.14) and (5.3.16), of the equilibrium e−0 of

(5.3.13).
Consider the trajectories start from the points on Wu(e−1 ), Wu(e−3 ) or Wu(e−4 ). These

trajectories cannot stay in any compact subset on Φ, and cannot go to {(φ,ψ) ∈ Φ | φ > 0}
from the discussion in (I) and (II). Furthermore, since these orbits cannot cross the ψ
axis, they must go to the points on Ws(E+

0 ).
Next, we consider the trajectories start from the points on Wu(E−

0 ) ⊂ {(φ,ψ) ∈ Φ |
φ < 0}. Since the equilibrium E−

0 is source, these trajectories must go to the points
on Ws(e−2 ), Ws(e−5 ) or Ws(e−6 ) and the points on Ws(E+

0 ) ⊂ {(φ,ψ) ∈ Φ | φ < 0} by
considering the dimension numbers of the stable and unstable manifolds, the discussion in
(I) and (II).

From the discussion so far, we can fully determine the dynamics on {(φ,ψ) ∈ Φ | φ <
0}.
(IV): We determine the dynamics on {(φ,ψ) ∈ Φ | φ > 0}. Note that (5.1.4) is invariant
under the mapping: ψ 2→ −ψ, ξ 2→ −ξ and we remember (5.1.5).

LetWs(Eα
+) be a stable manifold of Eα

+ (which is the equilibrium of the system (5.3.7)).
Similarly, let Wu(Eα

−) be an unstable manifold of Eα
− (which is the equilibrium of the

system (5.3.7)).
Consider the trajectory start from the points on Wu(Eα

−). Since we have the discussion
in (I)(II) and the invariant under ψ 2→ −ψ, ξ 2→ −ξ, and (5.1.5), this orbit must go to
the points on Ws(Eα

+). This implies that system (5.1.4) possesses the orbits that connect
Eα

− and Eα
+ on the Poincaré-Lyapunov disk.

Remark 5.3.2
Any trajectories that start from the point on Wu(e+1 ) go to the region {(φ,ψ) | φ > 0,ψ <
0}, that is, ψ should decrease. On the other hand, since (5.1.5) holds, any trajectories
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that start from the point on {(φ,ψ) | φ > 0,ψ < 0} should satisfy that ψ increases.
Additionally, we can see a similar situation onWs(e+2 ). Therefore, the dynamics around e+0
(which corresponds to (φ,ψ) = (+∞, 0)) cannot be determined. Similarly, any trajectories
that start from the point on {(φ,ψ) | φ > 0,ψ > 0} should satisfy that φ increase, but,
this does not match the dynamics near E+

0 (which corresponds to (φ,ψ) = (0,+∞)) on
the chart U2. Also, the dynamics near (φ,ψ) = (0,−∞) cannot be determined. This is
the reason why we only show the direction of the vector fields (arrows) in Figure 5.3.3
near (φ,ψ) = (0,±∞) and (+∞, 0).

5.4 Proof of the Theorems

In this section, we prove our main results. If the initial data are located on Φ \ {φ = 0},
the existence of the solutions follows from the standard theory for the ordinary differential
equations. Therefore, we consider the existence of the trajectories that connect equilibria
and the detailed dynamics near the equilibria on the Poincaré-Lyapunov disk and their
asymptotic behavior.

5.4.1 Proof of Theorem 5.2.1

We first give the proof of Theorem 5.2.1 as follows.

Proof. The proof of the existence of the connecting orbits between E−
0 and E+

0 for
{(φ,ψ) ∈ Φ | φ < 0} is obtained in Subsection 5.3.5. Therefore, there exists a family of
the functions which corresponds to a family of the orbits of (5.1.4).

Next, we prove the existence of a constant ξ∗ ∈ (ξ−, ξ+). It is sufficient to show the
connecting orbits pass through the line {ψ = 0}. Considering (5.1.4),

φ′ = 0 on ψ = 0, ψ′ = µφ−α > 0 on ψ = 0.

Therefore, when the orbits that connect E−
0 and E+

0 passes through the φ axis, ξ is
ξ∗. From the above discussion, we conclude that we prove the existence of a constant
ξ∗ ∈ (ξ−, ξ+).

Finally, we compute the asymptotic behavior of the trajectories near the equilibria E−
0

and E+
0 as follows. The solution around the E+

0 on chart U2 has the form




λ(τ) =

(
C1eµδβτ −

1

δ

)− 1
αβ−β

,

x(τ) = C2e
− β−2

α−1µδτ (1 + o(1)) as τ → +∞,

where C1 > 0 and C2 are constants. These results are derived from (5.3.4) and (5.3.5).
Then,

dτ

dξ
=

dτ

ds
· ds
dξ

= λ−αβ+α+β−1 · φ−α = λ−α+β−1 · x−α

=

(
C1e

µδβτ − 1

δ

)−−α+β−1
β(α−1)

·
(
C2e

− β−2
α−1µδτ (1 + o(1))

)−α
as τ → +∞

∼
(
C1e

µδβτ − 1

δ

)α−β+1
β(α−1)

· C3e
α(β−2)
α−1 µδτ as τ → +∞

= C4e
α(β−2)
α−1 µδτe

α−β+1
α−1 µδτ

{
1 +

(
− 1

C1δ
e−µδβτ

)}α−β+1
β(α−1)
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holds. Since we are focusing on τ → +∞, using the generalized binomial theorem under
[1/C1δ]e−µδβτ < 1,

dτ

dξ
∼ C4e

α(β−2)
α−1 µδτe

α−β+1
α−1 µδτ

{
1 +

∞∑

k=1

(α−β+1
β(α−1)

k

)(
− 1

C1δ
e−µδβτ

)k
}

∼ C4e
α(β−2)
α−1 µδτe

α−β+1
α−1 µδτ as τ → +∞

= C4e
(β−1)µδτ

holds. Note that C4 is positive constant. Here, we have
(
α

k

)
:=

α(α− 1)(α− 2) · · · (α− k + 1)

k!
, α ∈ R.

Integrating dξ/dτ ∼ C−1
4 e−(β−1)µδτ on [0,+∞], we have

ξ+ − ξ(0) =

∫ +∞

0
C−1
4 e−(β−1)µδτ (1 + o(1)) dτ,

where ξ+ = lim
τ→+∞

ξ(τ). Without loss of generality, we may set ξ(0) = 0. This yields

ξ+ = C5

∫ ∞

0
e−(β−1)µδτ (1 + o(1)) dτ < ∞

with C5 > 0. Therefore,

ξ+ − ξ ∼ C6e
−(β−1)µδτ as τ → +∞

holds with positive constant C6. Finally, we obtain

φ′(ξ) = ψ(ξ) =
1

λα−1
= λ−α+1

=

{(
C1e

µδβτ − 1

δ

)− 1
αβ−β

}−α+1

=

(
C1e

µδβτ − 1

δ

) 1
β

= C7e
µδτ

{
1 +

(
− 1

C1δ
e−µδβτ

)} 1
β

= C7e
µδτ

{
1 +

∞∑

k=1

( 1
β

k

)(
− 1

C1δ
e−µδβτ

)k
}

∼ C7e
µδτ as τ → +∞

∼ A2(ξ+ − ξ)−
1

β−1 as ξ → ξ+ − 0.

Since the trajectories are lying on {ψ > 0}, it holds that A2 > 0. In addition, using
φ′(ξ) ∼ ψ(ξ), we can obtain

φ(ξ) ∼ −A1(ξ+ − ξ)
β−2
β−1 as ξ → ξ+ − 0.

Since the trajectories are lying on {φ < 0}, it holds that A1 > 0.
Similarly, we can obtain (5.2.2). This completes the proof of Theorem 5.2.1. !

Remark 5.4.1
We note how to derive the asymptotic behavior of φ(ξ). In the above proof of Theorem
5.2.1, the asymptotic behavior of φ(ξ) was found by integrating the asymptotic behavior
of ψ(ξ) using the fact that φ′(ξ) ∼ ψ(ξ) is satisfied. In order to derive the asymptotic
behavior of φ(ξ) directly, we need information on the higher-order terms of x(τ) in the
solution around E+

0 .
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5.4.2 Proof of Theorem 5.2.2

Next, we give the proof of Theorem 5.2.2 as follows.

Proof. The proof of the existence of the connecting orbits between E−
0 and e−0 for {(φ,ψ) ∈

Φ | φ < 0} is obtained in Subsection 5.3.5. Therefore, there exists a family of the functions
which corresponds to a family of the orbits of (5.1.4) and it is sufficient for us to prove
(5.2.3) and (5.2.4).

Next, we derive (5.2.3). Note that we consider the case that trajectory whose initial
data are on a stable manifold of equilibrium at infinity (φ,ψ) = (−∞, 0) of (5.1.4). Using
(5.3.15), we then have

dη

dξ
=

dη

dτ
· dτ
ds

· ds
dξ

= r
αβ−β

2 · λ−αβ+α+β−1 · φ−α

= r
(α+1)(β−2)

2

=
{
C1e

− 1
β−2Kη(1 + o(1))

} (α+1)(β−2)
2

as η → +∞

∼ Ce−
α+1
2 Kη as η → +∞

with constant C > 0. This yields

ξ(η) ∼ A1e
α+1
2 Kη +A2, (K > 0, A1 > 0, A2 ∈ R) as η → +∞

We can see ξ(η) → +∞ as η → ∞ since we focus on the points on Ws(e−2 ). This
relationship shows that

η(ξ) ∼ 2

(α+ 1)K
log

(
ξ −A2

A1

)
as ξ → +∞

holds. Therefore, we have

φ(ξ) = −λ−β+2 = −r−(β−2)

= −
{
C1e

− 1
β−2Kη(1 + o(1))

}−(β−2)
as η → +∞

∼ −A3e
Kη as η → +∞

∼ −A3 exp

{
K

2

(α+ 1)K
log

(
ξ −A2

A1

)}

= −A3

(
ξ −A2

A1

) 2
α+1

as ξ → +∞

with constants A1 > 0, A2, and A3 > 0. The reason why A3 > 0 is the trajectories are
lying on {φ < 0}.

Finally, we derive (5.2.4). Note that we consider the case that trajectory whose initial
data are not on a stable manifold of equilibrium at infinity (φ,ψ) = (−∞, 0) of (5.1.4).
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Using (5.3.18), we then have

dη

dξ
=

dη

dτ
· dτ
ds

· ds
dξ

= r
αβ−β

2 · λ−αβ+α+β−1 · φ−α

= r
(α+1)(β−2)

2 λ
−α+β−1

=
{
C1e

− 2
β(β−2)η(1 + o(1))

} (α+1)(β−2)
2 ·

{
C2e

− 1
β η(1 + o(1))

}−α+β−1

∼ C3e
−α+1

β η · e−
−α+β−1

β η as η → +∞
= C3e

−η

with constant C3 > 0. This yields

ξ(η) ∼ A4e
η +A5 as η → +∞, (A4 > 0, A5 ∈ R).

We can see ξ(η) → +∞ as η → ∞ since we focus on the points on Ws(e−5 ). This
relationship shows that

η(ξ) ∼ log

(
ξ −A5

A4

)
as η → +∞

holds. Therefore, we have

φ(ξ) = −λ−β+2 = −r−(β−2)λ̄−(β−2)

= −
{
C1e

− 2
β(β−2)η(1 + o(1))

}−(β−2) {
C2e

− 1
β η(1 + o(1))

}−(β−2)
as η → +∞

∼ −A6e
η

∼ −A6

(
ξ −A5

A4

)
as ξ → +∞

with constants A4 > 0, A5, and A6 > 0. The reason why A6 > 0 is the trajectories are
lying on {φ < 0}.

Therefore, we can complete the proof of Theorem 5.2.2. !

5.4.3 Proof of Theorem 5.2.3

Next, we give the proof of Theorem 5.2.3 as follows.

Proof. The proof of existence of the connecting orbits between e−0 and E+
0 for {(φ,ψ) ∈

Φ | φ < 0} is obtained in Subsection 5.3.5. Furthermore, the asymptotic behavior (5.2.5)
and (5.2.6) can be obtained by similar computations in the proof of Theorem 5.2.3. !

5.4.4 Proof of Theorem 5.2.4

Next, we give the proof of Theorem 5.2.4 as follows.

Proof. The proof of the existence of the connecting orbit between Eα
− and Eα

+ for {(φ,ψ) ∈
Φ | φ > 0} is obtained in Subsection 5.3.5. In addition, this orbit passes through the line
{ψ = 0}. Thus, there exists a function (which corresponds to the orbit of (5.1.4)) such
that (5.1.2) is satisfied in a finite interval (or ξ ∈ R) and we prove the existence of a
constant ξ∗, and it is sufficient for us to prove (5.2.7), (5.2.8), (5.2.9), and (5.2.10).
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Using (5.3.8), we then have

dτ

dξ
=

dτ

ds
· ds
dξ

= λ−αβ+α+β−1 · φ−α = λ−α+β−1

=
{
C1e

− 1
β−2M1τ (1 + o(1))

}−α+β−1

∼ B1e
α−β+1
β−2 M1τ as τ → +∞,

where B1 and M1 are positive constants. This yields

ξ(τ) ∼ B2e
−α−β+1

β−2 M1τ +A as τ → +∞, (B2 > 0, A ∈ R).

Since the sign of α − β + 1 cannot be determined, we consider the following cases. Here,
α and β are even, so they can never be α = β − 1.

(i) Let us consider the case that α > β − 1. We can see ξ(τ) → A as τ → +∞. Then,
setting ξ+ = lim

τ→+∞
ξ(τ), we have

ξ+ = B3

∫ +∞

0
e−

α−β+1
β−2 M1τ (1 + o(1)) dτ < ∞

(see also Subsection 5.4.1). Therefore,

ξ+ − ξ ∼ B4e
−α−β+1

β−2 M1τ as τ → +∞

holds. Finally, we have

φ(ξ) = λ−β+2 ∼ CeM1τ ∼ A1(ξ+ − ξ)−
β−2

α−β+1 as ξ → ξ+ − 0

with a constant A1. Since the trajectories are lying on {φ > 0}, it holds that A1 > 0.

(ii) Consider the case that α < β − 1. We can see ξ(τ) → +∞ as τ → +∞ since we
focus on the points on Ws(Eα

+). This relationship shows that

τ(ξ) ∼ 1

M2
log

ξ −A

B
as ξ → +∞

holds. Here, we set

M2 = −α− β + 1

β − 2
M1 > 0.

Therefore, we have

φ(ξ) = λ−β+2 ∼ CeM1τ ∼ C exp

(
M1

M2
log

ξ −A

B

)
= C

(
ξ −A

B

)M3

,

where C is a constant and

M3 =
M1

M2
= − β − 2

α− β + 1
.

Since the trajectories are lying on {φ > 0}, it holds that C > 0. Similarly, we can obtain
(5.2.8) and (5.2.10). This completes the proof of Theorem 5.2.4. !

Remark 5.4.2
E+
α and Eα

+ are equilibria of different charts, U2 and U1 respectively, but they overlap on
the Poincaré-Lyapunov disk. Similarly, E−

α and Eα
− are the same point on this disk. In

other words, the calculation of asymptotic behavior can also be done by focusing on the
connecting orbits between E+

α and E−
α . However, we adopt Eα

+ and Eα
− since it provides

better information, including the relationship between E+
α and E−

α .
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5.4.5 Proof of Corollary 5.2.1

Next, we give the proof of Corollary 5.2.1 as follows.

Proof. We recall from (5.3.8) that the solutions near a saddle point Eα
+ are approximated

as {
λ(τ) = C1e

− 1
β−2M1τ (1 + o(1)),

x(τ)−M1 = C2e(α−1)M1τ (1 + o(1)),
as τ → +∞,

where M1 = [(α − 1)/{(β − 2)µδ}]1/(β−2). Note that we focus on the direction of stable
manifold Ws(Eα

+). We choose C1e−(β−2)−1M1τ as “principal term”.

From the results of Subsection 5.4.4, we consider the following cases.

(i) Let us consider the case that α > β − 1. We have

ξ+ − ξ ∼ Be−
α−β+1
β−2 M1τ as τ → +∞.

The asymptotic behavior of ψ(ξ) can be calculated as follows:

ψ(ξ) = λ−α+1x

=
{
C1e

− 1
β−2M1τ (1 + o(1))

}−α+1 {
C2e

(α−1)M1τ (1 + o(1)) +M1

}

∼ C3e
α−1
β−2M1τ

{
C2e

(α−1)M1τ (1 + o(1)) +M1

}

∼ Ce
α−1
β−2M1τ as τ → +∞.

Note that the last “∼” ignores the x term in order to extract the components in the
stable manifold direction, as described above. Therefore, we obtain

ψ(ξ) ∼ Ce
α−1
β−2M1τ

= C
(
e−

α−β+1
β−2 M1τ

)− α−1
α−β+1

∼ A3(ξ+ − ξ)−
α−1

α−β+1 as ξ → ξ+ − 0

with a constant A3. Since the trajectories are lying on {ψ > 0}, it holds that
A3 > 0. Furthermore, together with (5.2.7), we find that φ′(ξ) ∼ ψ(ξ) as ξ → ξ+− 0
is satisfied.

Similarly, we can obtain (5.2.11).

(ii) Consider the case that α < β − 1. We have

τ(ξ) ∼ 1

M2
log

ξ −A

B
(ξ → +∞)

with A ∈ R, B > 0, and M2 = −[(α − β + 1)/(β − 2)]M1 > 0. Using the same
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concept as in (i), the asymptotic behavior of ψ(ξ) can be calculated as follows:

ψ(ξ) = λ−α+1x

=
{
C1e

− 1
β−2M1τ (1 + o(1))

}−α+1 {
C2e

(α−1)M1τ (1 + o(1)) +M1

}

∼ Ce
α−1
β−2M1τ as τ → +∞

= Ce
α−1
β−2M1· 1

M2
·log( ξ−A

B )

= Celog(
ξ−A
B )

M4

= C

(
ξ −A

B

)M4

as ξ → +∞

with a constant C and M4 := [(α− 1)M1/(β− 2)M2] > 0. Since the trajectories are
lying on {ψ > 0}, it holds that C > 0. Furthermore, together with (5.2.9), we find
that φ′(ξ) ∼ ψ(ξ) as ξ → ∞ is satisfied.

Similarly, we can obtain (5.2.12).

This completes the proof of Corollary 5.2.1. !

5.4.6 Proof of Theorem 5.2.5

Finally, we give the proof of Theorem 5.2.5 as follows.

Proof. We assume that there exists a connecting orbit that connect e+0 and e+0 for
{(φ,ψ) ∈ Φ | φ > 0}. This orbit passes through the line {ψ = 0}. Thus, there exists
a stationary solution (which corresponds to the orbit of (5.1.4)) with the singularities at
ξ → −∞ and ξ → +∞ and we prove the existence of a constant ξ∗, and it is sufficient for
us to prove (5.2.13) and (5.2.14).

Using (5.3.12), we then have

dη

dξ
=

dη

dτ
· dτ
ds

· ds
dξ

= r
αβ−β

2 · λ−αβ+α+β−1 · φ−α

= r
(α+1)(β−2)

2 λ
−α+β−1

=
{
C1e

− 2
β(β−2)η(1 + o(1))

} (α+1)(β−2)
2 ·

{
C2e

− 1
β η(1 + o(1))

}−α+β−1

∼ B1e
−α+1

β η · e−
−α+β−1

β η = B1e
−η as η → +∞

with a constant B1 > 0. This yields

ξ(η) ∼ B2e
η +A as η → +∞, (B2 > 0, A ∈ R).

We can see ξ(η) → +∞ as η → +∞ since we focus on the points on Ws(e+2 ). This
relationship shows that

η(ξ) ∼ log
ξ −A

B
as ξ → +∞

holds. Therefore, we have

φ(ξ) = λ−β+2 = r−(β−2)λ̄−(β−2) ∼ Ceη ∼ C

(
ξ −A

B

)

with a constant C. Since the trajectories are lying on {φ > 0}, it holds that C > 0.
Similarly, we can obtain (5.2.14). !
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5.5 Conclusions and Remarks

In this chapter, we studied the stationary problem (5.1.2) on the bases of the theory
of dynamical systems. The Poincaré-Lyapunov compactification gives the information
on the dynamics around the equilibria at infinity, and then we obtain the existence and
asymptotic behavior of the stationary solutions of (5.1.1).

From the viewpoint of the theory of partial differential equations, it should be con-
sidered how we can formulate the solutions of (5.1.2) on a finite-interval or semi-infinite
interval or R with the functions obtained in Theorems. However, since our interest in
this chapter is to study the solutions of (5.1.2) from the dynamical system viewpoint, we
did not discuss it. It should be noted that the mathematical formulation of the solution
(in a weak sense) could be obtained by considering a suitable function space as shown in
[32] (it will be addressed in future works as well). Furthermore, in the MEMS equation,
the solution u is meaningful in the range 0 ≤ u < 1, and the behavior at u = 1 is of
interest. However, our results constitute solutions outside of this range. This chapter does
not approach the aspect of singularity formation at u = 1 in (5.1.1) from the viewpoint of
stationary problems. These suggest that further analysis is needed to clarify the behavior
of (5.1.1) at u = 1.

In addition, since the theory of blow-up (desingularization of the vector fields) is not
applicable for the non-polynomial vector fields, we cannot deal with the general case that
α ∈ R. Furthermore, in the case that α, β ∈ 2N+1, it is too complicated to determine the
dynamics near the singularities on the Poincaré-Lyapunov disk. Hence, we leave it open
here.

Furthermore, we discuss a property of (5.1.4) as follows. The function

H(φ,ψ) = − 1

α− 1
φ−α+1 −

∫
ψ

µ(1 + δψβ)
dψ

is a conserved quantity of (5.1.4). In fact,

dφ

dψ
=

dφ/dξ

dψ/dξ
=

ψ

µ(1 + δψβ)
φα

holds. However, the integral part of this conserved quantity cannot be represented explic-
itly. The derivation of the conserved quantity for the general case is going to be a future
work.

As mentioned in Remark 5.3.2, we only show the direction of vector fields (arrows) in
Figure 5.3.3 and have not been able to give a mathematically rigorous explanation for the
closed orbits from e+0 to e+0 . We leave it open here as well.

We could raise the question of whether the results of classical dynamical systems hold
in dynamical systems at infinity (we can see a similar situation in equation (5.13) of [14]).
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Chapter 6

Radially symmetric stationary
solutions for a MEMS type
reaction-diffusion equation with
fringing field

Abstract

Radially symmetric stationary solutions for a MEMS type reaction-diffusion equation with
fringing field are considered. This equation arises in the study of the Micro-Electro-
Mechanical System (MEMS) devices. This chapter is devoted to the study of the existence
of these solutions, information about their shape, and their asymptotic behavior. These
are studied by applying the framework that combines Poincaré type compactification,
classical dynamical systems theory, and geometric methods for desingularization of vector
fields called the blow-up technique. This chapter is based on the following published paper
([36]):

Ichida, Y., Sakamoto, T.O.: Radially symmetric stationary solutions for a
MEMS type reaction-diffusion equation with fringing field, Nonlinearity, 36,
71–109 (2023).

6.1 Introduction

6.1.1 Known results and motivation

In this chapter, we consider the following MEMS type reaction-diffusion equation

Ut = ∆U +
µ+ δ|∇U |2

1− U
, t > 0, x ∈ RN , U = U(t, x) (6.1.1)

with 3 ≤ N ∈ N, µ > 0, and δ > 0. In addition, δ is not a continuous value, however,
a discrete value that satisfies certain conditions for analytical convenience, as described
later. (6.1.1) is derived from the study of the Micro-Electro-Mechanical System (for short,
MEMS). Here, µ represents the applied voltage, and the nonlinear and gradient term
δ|∇U |2 is due to an effect called the fringing field. There has been a lot of research on the
MEMS equation. We refer the readers to works [17, 59] and references therein for more
details on the background and derivation of the MEMS model. For instance, we also refer
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[19, 21, 26, 35, 54, 68, 69] and references therein for a detailed description of the fringing
field and equations of this type.

The spatial one-dimensional version of (6.1.1):

ut = uxx + µ
1 + δuβx
(1− u)α

, t > 0, x ∈ R, (6.1.2)

is studied in Chapter 5 ([35]). Here, α ∈ 2N, 2 += β ∈ 2N, µ > 0, and δ ≥ 0. In Chapter 5
([35]), the existence, profiles, and asymptotic behavior of the stationary solutions of (6.1.2)
are studied by applying Poincaré-Lyapunov compactification and dynamical systems the-
ory. Additionally, we note that the results follow from the analysis of the dynamics at
infinity.

Not only these results but also studies in [21] have motivated us to study the mul-
tidimensional version of (6.1.2). Indeed, Ghergu-Miyamoto [21] considered the following
problem 




−∆U =

λ+ δ|∇U |2

1− U
, U > 0 in B,

U = 0 on ∂B,
(6.1.3)

where B ⊂ RN (N ≥ 2) denotes the open ball and λ, δ > 0 are real numbers. This
equation is an elliptic equation representing the steady-state of (6.1.1). The singularity
at the origin and the bifurcation structure of the radial regular / rupture solution were
discussed. According to [21], regular solution is to satisfy 0 < U < 1 in B and rupture
solution is to satisfy U(0) = 1. They showed a clear difference from the result in [69],
considered the case separation by the value taken by δ (0 < δ < 1, δ = 1, and δ > 1),
discussed the solution structure. Also, Joseph-Lundgren [42] studied a related ODE:

(rn−1u′)′ + λrn−1F(u) = 0, (6.1.4)

where
F(u) = (1 + αu)β , αβ > 0 (6.1.5)

or
F(u) = eu. (6.1.6)

with the boundary conditions u(1) = u′(0) = 0. They discuss the uniqueness properties
of the positive solutions for (6.1.4) (cf. [21]). The relation between (6.1.4) and (6.1.3) is
shown in the next subsection.

In this chapter, we study the radially symmetric solutions for (6.1.1) using Poincaré
type compactification and dynamical systems theory. Here, we refer to [31, 33, 32] for the
details of the Poincaré type compactification.

Here we note that for the 1-dimensional case (6.1.2), the results stated in Chapter 5
([35]) can not be obtained by applying the computations shown in the later sections of
this chapter straightforwardly (see Chapter 5 ([35]) for the details). Moreover, for N = 2,
the dynamics associated with the radially symmetric stationary problem of (6.1.1) is not
topologically equivalent to the case with N ≥ 3. For instance, in Subsection 6.3.1, the
equilibria E2 and E1 are the same for N = 2, and the center manifolds may exist near
the equilibrium. Then a more careful analysis is necessary for N = 2, therefore, it will be
addressed in future work.

The next subsection presents the mathematical settings to consider the dynamical
systems associated with the radially symmetric stationary problem of (6.1.1). The main
results of this chapter are shown in Section 6.2. The relations between our results and
that of [21] are discussed in Section 6.7 as well as Remarks in Section 6.2.
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6.1.2 Preliminaries

The stationary problem of (6.1.1) is

−∆U =
µ+ δ|∇U |2

1− U
, x ∈ RN , U = U(x). (6.1.7)

This chapter is devoted to the study of the radially symmetric solutions of (6.1.7):

U ′′ +
N − 1

r
U ′ +

µ+ δ(U ′)2

1− U
= 0,

(
′ =

d

dr
and ′′ =

d2

dr2

)
(6.1.8)

with U = U(r) and r = |x| > 0. In elliptic equations, it is important to consider radially
symmetric solutions when we investigate the structure of these solutions. By considering
radially symmetric stationary solutions, we are led to the problem of considering ODEs.
However, problems such as the existence of solutions are not easy to solve. Following [21],
we divide the cases by the value of δ as follows:

(I) Case 1: 0 < δ < 1. Let u(r) = 1− (1− U(r))1−δ and µ̃ = (1− δ)µ > 0. Then, u(r)
satisfies

u′′ +
N − 1

r
u′ + µ̃(1− u)−p = 0, p =

1 + δ

1− δ
> 1. (6.1.9)

Note that since U < 1 from this transformation, u < 1.

(II) Case 2: δ = 1. Let u(r) = −2 log(1− U(r)) and µ̃ = 2µ > 0. Then, (6.1.8) becomes
the following:

u′′ +
N − 1

r
u′ + µ̃eu = 0. (6.1.10)

From the antilogarithm condition, U < 1 must be satisfied.

(III) Case 3: δ > 1. Let u(r) = (1− U(r))−(δ−1) − 1 and µ̃ = (δ − 1)µ > 0. From (6.1.8),

u′′ +
N − 1

r
u′ + µ̃(u+ 1)p = 0, p =

δ + 1

δ − 1
> 1 (6.1.11)

holds. Note that since U < 1 from this transformation, u > −1.

Here we note that (6.1.9) and (6.1.11) correspond to (6.1.4)-(6.1.5) in the case that
(α,β) = (−1,−p) and (1, p), respectively. Additionally, (6.1.10) corresponds to (6.1.4)-
(6.1.6). Still, the difference between them and our problem is the range of radius r, that
is, we consider the solutions on 0 ≤ r < ∞.

(6.1.9), (6.1.10), and (6.1.11) are non-autonomous systems, especially, r = 0 is a
singular point. In order to study their solutions with the dynamical systems approach, we
consider the following transformations that transform (6.1.9), (6.1.10), and (6.1.11) into
the autonomous systems on R2 and remove the singularity r = 0 for each case.

(I) Case 1: 0 < δ < 1. As in [33, 41], we introduce the following change of variables:

t = κ log r, a(t) = r−α(1− u), α = 1− δ > 0, κ = ±1. (6.1.12)

Then, (6.1.9) is transformed into the following:

ä+Aȧ+Ba− µ̃a−p = 0,

(
˙=

d

dt
and ¨=

d2

dt2

)
, (6.1.13)
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equivalently {
ȧ = b,

ḃ = −Ab−Ba+ µ̃a−p,

(
˙=

d

dt

)
, (6.1.14)

where we set

A = κ(2α+N − 2) = κ(N − 2δ), κ = ±1,

B = α(α+N − 2) = (1− δ)(N − δ − 1) > 0.

Note that A > 0 holds when κ = 1, and A < 0 holds when κ = −1. If κ = 1, then
r → ∞ as t = log r → ∞ holds. Therefore, to discuss the behavior of the solution to
(6.1.9) as r → ∞, it is necessary to study the asymptotic behavior of the solutions
of (6.1.13) as t → ∞. Similarly, r → 0 as t → ∞ in the case that κ = −1.

(II) Case 2: δ = 1. Consider the following change of variables:

t = κ log r, a(t) = r2eu, κ = ±1. (6.1.15)

Note that since a(t) = r2eu > 0, we only need to consider a(t) > 0. If we consider
r → 0, then a → 0. Then we have





ȧ = b,

ḃ =
1

a
b2 −Ab− µ̃a2 + 2(N − 2)a,

(
˙=

d

dt

)
, (6.1.16)

where
A = κ(N − 2), κ = ±1.

Note that A > 0 in the case that κ = 1, and A < 0 in the case that κ = −1.

(III) Case 3: δ > 1. We make the following change of variables:

t = κ log r, a(t) = r−α(1 + u), α = 1− δ < 0, κ = ±1, (6.1.17)

then (6.1.11) is transformed to the following ODE:
{
ȧ = b,

ḃ = −Ab−Ba− µ̃ap,

(
˙=

d

dt

)
, (6.1.18)

where

A = κ(2α+N − 2) = κ(N − 2δ), κ = ±1,

B = α(α+N − 2) = (1− δ)(N − δ − 1).

Here, the sign of the constants A and B depends on the parameters δ and κ as shown
in Table 6.1.

Then, by introducing transformations (6.1.12), (6.1.15), and (6.1.17) that remove
the singularity of r = 0, we are led to the problem of studying the behavior of the
two-dimensional ODE systems (6.1.14), (6.1.16), and (6.1.18). Further, as shown in
[31, 33, 32, ?, 49, 50], it is expected that there are solutions (a(t), b(t)) of (6.1.14)),
(6.1.16) and (6.1.18) that blow up, i.e., ‖(a(t), b(t))‖ → ∞ as t → ∞. To study the
behavior of them, it is necessary to study the dynamics of (6.1.14), (6.1.16) and (6.1.18)
on R2 ∪ {‖(a(t), b(t))‖ = ∞}. Then, we can apply the Poincaré type compactification
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κ A or B 1 < δ <
N

2
δ =

N

2

N

2
< δ < N − 1 δ = N − 1 δ > N − 1

1 A + 0 − − −
1 B − − − 0 +

−1 A − 0 + + +
−1 B − − − 0 +

Table 6.1: The sign of A and B.

(Poincaré compactification, Poincaré-Lyapunov compactification) and geometric methods
for desingularization of vector fields (blow-up technique) for (6.1.14), (6.1.16), and (6.1.18).
Here we refer to [14, 31, 33, 32, 49] for the Poincaré type compactification, and [1, 14] for
the blow-up technique. In other words, we expect that all solutions of (6.1.8) are classified
in a similar way as in these previous studies. Furthermore, it is expected that the existence
of connecting orbits in the dynamical systems including infinity not only proves the exis-
tence of the solutions of (6.1.8) corresponding to the connecting orbits but also provides
its profiles. Additionally, the asymptotic behavior of the solutions of (6.1.8) as r → ∞
and r → 0 can be studied. As in [31, 49, 50], the dynamics obtained by the Poincaré
compactification, which includes the dynamics at infinity, is represented by the dynamics
on the Poincaré disk. Similarly, the corresponding one obtained by Poincaré-Lyapunov
compactification is represented by the dynamics on the Poincaré-Lyapunov disk.

However, the classical results on the blow-up technique in this framework require us
to impose the restriction p ∈ N (see [1, 8, 14] and references therein). Then, as shown
in Case1 and Case 3, we consider (6.1.1) with the restriction that δ takes discrete values.
More precisely, we consider (6.1.1) with the following situations.

• Case 1; Since p = (1 + δ)/(1 − δ) as defined in (6.1.9), δ takes a discrete value so
that p ∈ N and δ = (p− 1)/(p+1) are satisfied. For instance, if p = 2, 3, 4, · · · , then
δ = 1/3, 1/2, 3/5, · · · .

• Case 3; If p ∈ N, p = (δ + 1)/(δ − 1), then δ is a discrete value satisfying δ =
(p+ 1)/(p− 1). For instance, if p = 2, 3, 4, · · · , then δ = 3, 2, 5/3, · · · . Moreover, for
each δ range, a restriction on N (and p) is added as follows (see also Table 6.1).

(i) If 1 < δ < N/2 holds, then one needs to impose that for p = 2, 3, 4, · · · ,
N ≥ 7, N ≥ 5, N ≥ 4, · · · , respectively.

(ii) If δ = N/2 holds, then (p,N) = (2, 6), (3, 4), (5, 3), and there is no N ≥ 3 that
satisfies δ = N/2.

(iii) If N/2 < δ < N − 1, we only need to consider the case that p = 2, 4, and for
N ≥ 3, N/2 < δ < N − 1 holds if and only if N = 5 or 3.

(iv) δ = N − 1 holds if and only if (p,N) = (2, 4), (3, 3).

(v) If δ > N − 1, we can only consider the case that (p,N) = (2, 3).

Under these restrictions, the objective is to classify all solutions of (6.1.8). In particu-
lar, we use a different Poincaré type compactification than in [21] to reveal the shapes and
asymptotic behavior of the solutions. And this problem is a multi-dimensional version of
Chapter 5 ([35]). It is expected that this will lead to a deeper understanding of the be-
havior of typical solutions to the MEMS equations. In addition, the authors have clarified
the behavior and properties of (typical) solutions of various equations in the framework
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described above (see [31, 33, 32, 35]). In this chapter, we are also investigating the ques-
tion of how far we can investigate the structure of solutions in a unified way using this
framework.

This chapter is organized as follows. In the next section, we state the main results
of this chapter. In Section 6.3, we obtain the dynamics of (6.1.14) on the Poincaré disk
via Poincaré compactification and blow-up technique. The dynamics on the Poincaré-
Lyapunov disk in (6.1.16) corresponding to Case 2 are discussed in Section 6.4. Similarly,
those discussions for Case 3 are in Section 6.5. The proof of Theorems will be completed
in Section 6.6. Section 6.7 is devoted to the concluding remarks.

6.2 Main results

In this section, the main results of this chapter are described. Hereinafter, note that the
meaning of the symbol F (η) ∼ G(η) as η → +∞ is as follows:

lim
η→+∞

∣∣∣∣
F (η)

G(η)

∣∣∣∣ = 1.

First, the following two results are obtained for Case 1 with 0 < δ < 1.

Theorem 6.2.1
Assume that 3 ≤ N ∈ N, µ > 0, p ∈ N, and 0 < δ < 1 with δ = (p − 1)/(p + 1).
Then (6.1.8) has a radially symmetric stationary solution (which corresponds to an orbit
of (6.1.14)) with the singularity at r → +∞. Moreover, this solution U(r) satisfies the
following:

• lim
r→0

U(r) = 1− C (C > 0), lim
r→0

U ′(r) = 0 lim
r→+∞

U(r) = −∞.

• U(r) < 1 and U ′(r) < 0 hold for r ∈ (0,+∞).

In addition, the asymptotic behavior for r → +∞ is

U(r) ∼





1− {K1rα+σ1 +K2rα+σ2 +M1rα}

1
1−δ , (D > 0),

1−
{
r

2−N
2 K(r) +M1rα

} 1
1−δ

, (D < 0).
(6.2.1)

Here, α = 1− δ > 0, µ̃ = (1− δ)µ > 0, and the following hold:

σ1 =
−A+

√
D

2
, σ2 =

−A−
√
D

2
,

M1 = (µ̃/B)
1

p+1 > 0, D = (N − 2)2 − 4(δ + 1)(N − 2) + 4(δ + 1)(δ − 1),

K(r) = K3 sin[

√
|D|
2

log r] +K4 cos[

√
|D|
2

log r],

where Kj (1 ≤ j ≤ 4) are constants.

Remark 6.2.1
In this Theorem 6.2.1, no specific evaluation of the position of 1 − C has been obtained.
We also do not have an evaluation of r0 ∈ (0,+∞), where U(r0) = 0. Note that the
asymptotic behavior of U(r) and U ′(r) in r → 0 cannot be shown explicitly. This requires
information up to the higher-order terms of the ODE, which is difficult to analyze, so this
is an open problem. Also note that there is no N and δ such that D = 0, as described
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later in Remark 6.3.1. This result should be related to the result on regular solutions in
[21]. However, since the constants mentioned above have not been evaluated, we cannot
conclude the relations precisely. We leave it open here.

Theorem 6.2.2
Assume that 3 ≤ N ∈ N, µ > 0, p ∈ N, and 0 < δ < 1 with δ = (p − 1)/(p + 1). Then
(6.1.8) has a family of radially symmetric stationary solutions (which corresponds to a
family of the orbits of (6.1.14)) with the singularities at r = 0 and r → +∞. Moreover,
each solution U(r) satisfies the following:

• lim
r→0

U(r) = −∞, lim
r→0

U ′(r) = +∞ lim
r→+∞

U(r) = −∞.

• U(r) < 1 holds for r ∈ (0,+∞).

• There exists a constant r∗ ∈ (0,+∞) such that the following holds: U ′(r) > 0 for
r ∈ (0, r∗), U ′(r∗) = 0 and U ′(r) < 0 for r ∈ (r∗,+∞).

In addition, the asymptotic behavior of U(r) and U ′(r) for r → 0 are

{
U(r) ∼ 1−A1r

−N−2
1−δ

U ′(r) ∼ A2r
−N−1−δ

1−δ
as r → 0 (6.2.2)

with positive constants A1 and A2, and the asymptotic behavior for r → +∞ is (6.2.1).

Remark 6.2.2
In Theorem 6.2.2, there is no specific evaluation of the position of r∗ and U(r∗). We also
know that there exists r± ∈ (0,+∞) such that U(r±) = 0, however, we do not have a
specific evaluation for this either. A note on the shape of U is in order. We only know that
the value U(r∗) at the extreme point r∗ is less than 1. However, since we are considering
a family of trajectories connecting the equilibria of the source point and sink point, we
should be able to choose a trajectory that realizes 0 < U(r∗) < 1. It should be noted that
this is a new result not mentioned in [21].

Second, the following result is obtained for Case 2 with δ = 1.

Theorem 6.2.3
Assume that 3 ≤ N ∈ N, µ > 0, and δ = 1. Then (6.1.8) has a radially symmetric
stationary solution (which corresponds to the orbit of (6.1.16)) with the singularity at
r → +∞. Moreover, its solution U(r) satisfies the following:

• lim
r→0

U(r) = 1− C, lim
r→0

U ′(r) = 0, lim
r→+∞

U(r) = −∞, with C > 0.

• U(r) < 1 holds for r ∈ (0,+∞).

In addition, the asymptotic behavior for r → +∞ is

U(r) ∼






1− exp

(
log r − 1

2
log(K1rσ1 +K2rσ2 +M4)

)
, (N ≥ 11)

1− exp

(
log r − 1

2
log{K3rσ log r +K4rσ +M4}

)
, (N = 10)

1− exp

[
log r − 1

2
log
{
r−

A
2 K(r) +M4

}]
. (N ≤ 9)

(6.2.3)
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Here, µ̃ = 2µ > 0, and the following hold:

σ1 =
−A+

√
P

2
, σ2 =

−A−
√
P

2
, σ = −A

2
,

M4 = 2µ̃−1(N − 2) > 0, P = (N − 2)(N − 10).

K(r) = K5 sin[

√
|P |
2

log r] +K6 cos[

√
|P |
2

log r],

where Kj (1 ≤ j ≤ 6) are constants.

We can impose the same remarks on this theorem as on Remark 6.2.1. Next, we state
the following result was obtained in Case 3, i.e., when 1 < δ < N/2.

Theorem 6.2.4
Assume that 3 ≤ N ∈ N, µ > 0, p ∈ N, and 1 < δ < N/2 with δ = (p + 1)/(p − 1).
Then (6.1.8) has a radially symmetric stationary solution (which corresponds to the orbit
of (6.1.18)) with the singularity at r → +∞. Moreover, its solution U(r) satisfies the
following:

• lim
r→0

U(r) = 1− C, lim
r→0

U ′(r) = 0, lim
r→+∞

U(r) = −∞, with C > 0.

• U(r) < 1 holds for r ∈ (0,+∞).

In addition, the asymptotic behavior for r → +∞ is

U(r) ∼





1− {K1rα+σ1 +K2rα+σ2 + L1rα}−

1
δ−1 , (D > 0)

1−
{
r

2−N
2 K(r) + L1rα

}− 1
δ−1

. (D < 0)
(6.2.4)

Here, α = 1− δ < 0, µ̃ = (δ − 1)µ > 0, and the following hold:

σ1 =
−A+

√
D

2
, σ2 =

−A−
√
D

2
, L1 =

(
−B

µ̃

) 1
p−1

> 0

D = D(N, δ) = (N − 2)2 − 4(δ + 1)(N − 2) + 4(δ + 1)(δ − 1),

K(r) = K3 sin[

√
|D|
2

log r] +K4 cos[

√
|D|
2

log r],

where Kj (1 ≤ j ≤ 4) are constants.

We can impose the same remarks on this theorem as on Remark 6.2.1. Next, we state
the theorem obtained for the case δ = N/2. For this case, the following result is shown in
[21].

Theorem 6.2.5 ([21], Theorem 1.2 (iii))
Let N ≥ 2. Assume δ = N/2. Then all the radial regular solutions of (6.1.3) can be
described as

(µ,U(r)) = (2Nα(1− α),α(1− r2)), 0 < α < 1.

Further, for δ = N/2, we obtain the behavior of the radially symmetric solutions of (6.1.8)
in the case that

µ += 2Nα(1− α)

as follows.
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Theorem 6.2.6
Assume that 3 ≤ N ∈ N, µ > 0, p ∈ N, and δ = N/2 with δ = (p + 1)/(p − 1). As
mentioned earlier, in this case, we only need to consider p = 2, 3, 5, and correspondingly
N = 6, 4, 3. Then (6.1.8) has a radially symmetric stationary solution (which corresponds
to the orbit of (6.1.18)) with the singularity at r → +∞. Moreover, its solution U(r)
satisfies the following:

• lim
r→0

U(r) = 1−C, lim
r→0

U ′(r) = 0, lim
r→+∞

U(r) = lim
r→+∞

U ′(r) = −∞ with C > 0.

• U(r) < 1 holds for r ∈ (0,+∞).

In addition, the asymptotic behavior of U(r) and U ′(r) for r → ∞ are
{
U(r) ∼ 1−K1r2,

U ′(r) ∼ −K2r,
as r → ∞, (6.2.5)

with positive constants Kj (j = 1, 2).

Note that no specific evaluation of the position of 1 − C has been obtained. We also
do not have an evaluation of r0 ∈ (0,+∞), where U(r0) = 0. It can be seen that the
behavior of the solution as r → 0 is qualitatively the same for Theorem 6.2.1, Theorem
6.2.3, Theorem 6.2.4, and Theorem 6.2.6. It should be noted that the asymptotic behavior
of U(r) as r → 0 has the same form as the exact solution at µ = 2Nα(1− α) in [21].

Finally, we state the theorem obtained for the case N/2 < δ < N−1. The claim of this
theorem gives not only (6.2.7), such that the asymptotic behavior as r → 0 is completely
consistent with that of [21], but also (6.2.8), which is more detailed.

Theorem 6.2.7
Assume that 3 ≤ N ∈ N, µ > 0, p ∈ N, and N/2 < δ < N − 1 with δ = (p + 1)/(p − 1).
As mentioned earlier, in this case, we only need to consider p = 2, 4 and correspondingly
N = 5, 3. Then (6.1.8) has a radially symmetric stationary solution (which corresponds to
the orbit of (6.1.18)) with the singularity at r → 0 and r → +∞. Moreover, its solution
U(r) satisfies the following:

• lim
r→0

U(r) = lim
r→0

(
1−

√
µ

N − 1− δ
r

)
= 1, lim

r→0
U ′(r) = −

√
µ

N − 1− δ
.

• lim
r→+∞

U(r) = lim
r→+∞

U ′(r) = −∞

• U(r) < 1 holds for r ∈ (0,+∞).

In addition, the asymptotic behavior of U(r) and U ′(r) for r → ∞ are
{
U(r) ∼ 1−A1r

N−2
δ−1 ,

U ′(r) ∼ −A2r
N−δ−1

δ−1 ,
as r → ∞ (6.2.6)

with positive constants Aj (j = 1, 2). Furthermore, the asymptotic behavior U(r) for
r → 0 are

U(r) ∼ 1−
√

µ

N − 1− δ
r as r → 0 (6.2.7)

∼





1− {K1rα−σ1 +K2rα−σ2 + L1rα}−

1
δ−1 , (D > 0)

1−
{
r

2−N
2 K(r) + L1rα

}− 1
δ−1

, (D < 0)
(6.2.8)
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Here, α = 1− δ < 0, µ̃ = (δ − 1)µ > 0, and the following hold:

σ1 =
−A+

√
D

2
, σ2 =

−A−
√
D

2
, L1 =

(
−B

µ̃

) 1
p−1

> 0

D = D(N, δ) = (N − 2)2 − 4(δ + 1)(N − 2) + 4(δ + 1)(δ − 1),

K(r) = K3 sin[

√
|D|
2

log r] +K4 cos[

√
|D|
2

log r],

where Kj (1 ≤ j ≤ 4) are constants.

Remark 6.2.3
In Theorem 6.2.7, note that there is no N and δ such that D = 0, as described later in
Subsection 6.5.4. By deriving the asymptotic behavior in a similar way as [33, 32] in the
derivation process, we obtain (6.2.8). As can be seen from the proof of this theorem, which
is omitted in the statement of the theorem, the asymptotic behavior of U ′(r) in r → 0 can
be displayed explicitly. Furthermore, by selecting the principal terms in the derivation
process, we can obtain (6.2.7).

Remark 6.2.4
In Theorem 6.2.7, the asymptotic behavior (6.2.7) is in perfect agreement with the results
obtained in (1.10) of [21], indicating that we have followed up the results of previous studies
with an approach based on different ideas. Here, [21] investigates the global behavior by
considering Lyapunov functions for ODE systems derived with different transformations
than (6.1.17) (in Section 6.1 of this chapter), while this chapter uses Poincaré-Lyapunov
compactification to investigate the dynamics of (6.1.18) to infinity.

As described in Section 6.7, we did not obtain a clear result in δ ≥ N − 1. The reason
for this is that there is a restriction on the range of existence of the transformations U
and u, and u and a.

6.3 Dynamics of (6.1.14) to infinity

In this section, all the dynamics of (6.1.14) on R2 ∪ {‖(a, b)‖ = +∞} will be obtained
by using Poincaré compactification. n other words, we can enumerate all the solutions to
(6.1.8) that satisfy 0 < δ < 1 by revealing all the trajectories, including those to infinity.
In fact, for the case of µ̃ = 1 in (6.1.14), the objective has already been achieved by
Ichida-Sakamoto [33] (see Chapter 4). However, for the sake of clarity in the description
of the proof of the theorem that follows, and for the convenience of the reader, we give
brief details as a general µ̃ > 0.

Before starting the detailed analysis, we study the dynamics near finite equilibrium of
(6.1.14). If p is even (resp. p is odd), then (6.1.14) has an equilibrium EA : (a, b) = (M1, 0)

(resp. have the equilibria ±EA : (a, b) = (±M1, 0)) with M1 = (µ̃/B)
1

p+1 .
Let JA be the Jacobian matrix of the vector field (6.1.14) at EA. JA is

JA =

(
0 1

−B(1 + p) −A

)
.

Then, the behavior of the solution around EA is different by the sign of D (which is defined
in Theorem 6.2.1). For instance, the matrix JA has the real distinct eigenvalues if D > 0,
and other cases can be concluded similarly. In addition, if κ = 1, then the real parts of all
eigenvalues of JA are negative. Therefore, we conclude that EA is a sink in the case that
κ = 1. Similarly, we can determine that EA is a source in the case that κ = −1.
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Remark 6.3.1
As defined in Theorem 6.2.1, D is

D = (N − 2)2 − 4(1 + δ)(N − δ − 1) = (N − 2)2 − 4(δ + 1)(N − 2) + 4(δ + 1)(δ − 1).

By setting Q = N − 2 > 0, we get

D(Q) = Q2 − 4(δ + 1)Q+ 4(δ + 1)(δ − 1).

By examining the solution of this quadratic equation, we know that D(Q) < 0 and D(Q) >
0 hold. However, since Q and δ are discrete values, we need to verify that D(Q) = 0. Since

Q = 2(δ + 1) + 2
√
2(δ + 1) =

4p

p+ 1
+ 4

√
p

p+ 1
,

(
δ =

p− 1

p+ 1

)

holds, it is not possible to go from 1 < p ∈ N to Q ∈ N. In other words, D(Q) = D(N, δ) =
0 is never true. Correspondingly, the case of D = 0 is eliminated in Theorem 6.2.1. Note
that the equation of Q obtained here agrees with the one obtained in [42].

In order to study the dynamics of (6.1.14) on the Poincaré disk, we desingularize it by
the time-scale desingularization

ds/dt = a−p for p ∈ 2N. (6.3.1)

Since we assume that p is even, the direction of the time does not change via this desin-
gularization. Then, we have

{
a′ = apb,

b′ = −Aapb−Bap+1 + µ̃,

(
′ =

d

ds

)
. (6.3.2)

First, we only discuss the case that p is even. The odd case is discussed in the later
subsection (see Subsection 6.3.6).

Remark 6.3.2
It should be noted that the time scale desingularization (6.3.1) is simply multiplying
the vector field by ap. Then, except for the singularity {a = 0}, the solution curves
of the system (vector field) remain the same but are parameterized differently. Still,
we refer to Section 7.7 of [44] and references therein for the analytical treatments of
desingularization with the time rescaling. In what follows, we use the similar time rescaling
(re-parameterization of the solution curves) repeatedly to desingularize the vector fields.

Now we can consider the dynamics of (6.3.2) on the charts U j and V j .

6.3.1 Dynamics on the chart U2

To obtain the dynamics on the chart U2, we introduce coordinates (λ, x) by the formulas

a(s) = x(s)/λ(s), b(s) = 1/λ(s).

In this chart, it corresponds to a → 0 and b → +∞, and the direction in which x is positive
corresponds to the direction in which a is positive. For a geometric image, see Section 1.1
in this thesis and the figure in Section 2 of [31, 33, 32]. Then,

{
λ′ = Aλ−p+1xp +Bλ−p+1xp+1 − µ̃λ2,

x′ = λ−pxp +Aλ−pxp+1 +Bλ−pxp+2 − µ̃λx,

(
′ =

d

ds

)
(6.3.3)
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holds. Time-scale desingularization dτ/ds = λ−p yields
{
λτ = Aλxp +Bλxp+1 − µ̃λp+2,

xτ = xp +Axp+1 +Bxp+2 − µ̃λp+1x,
(6.3.4)

where λτ = dλ/dτ and xτ = dx/dτ . The system (6.3.4) has the equilibria

E+
0 : (λ, x) = (0, 0),

E1 : (λ, x) =

(
0,

−A− (N − 2)

2B

)
, E2 : (λ, x) =

(
0,

−A+ (N − 2)

2B

)
.

The Jacobian matrices of the vector field (6.3.4) at these equilibria are

E+
0 :

(
0 0
0 0

)
, E1 :





(
−A−(N−2)

2B

)p A−(N−2)
2 0

0
(
−A−(N−2)

2B

)p−1 (N−2)(N−2+A)
2B



 ,

E2 :





(
−A+(N−2)

2B

)p A+(N−2)
2 0

0
(
−A+(N−2)

2B

)p−1 (N−2)(N−2−A)
2B



 .

Therefore, if κ = 1, then E1 is a saddle and E2 is a source. Similarly, if κ = −1, then
E1 is a sink and E2 is a saddle. However, the equilibrium E+

0 is not hyperbolic. The
desingularization of vector fields by the blow-up technique is an effective method to study
the behavior near its equilibrium (see Section 1.2 in this thesis and Section 3 of [14] and
references therein). That is, we desingularize E+

0 by introducing the following blow-up
coordinates:

λ = εp−1λ̄, x = εp+1x̄.

Since we are interested in the dynamics on the Poincaré disk, we consider the dynamics
of blow-up vector fields on the chart {λ̄ = 1} and {x̄ = ±1}.

Dynamics on the chart {λ̄ = 1}

By the change of coordinates λ = εp−1, x = εp+1x̄,
{
ετ = (p− 1)−1(Aεp

2+p+1x̄p +Bεp
2+2p+2x̄p+1 − µ̃εp

2
),

x̄τ = εp
2−1x̄p + 2(p− 1)−1(−Aεp

2+px̄p+1 −Bεp
2+2p+1x̄p+2 + µ̃εp

2−1x̄)
(6.3.5)

holds. The time-rescaling dη/dτ = εp
2−1 yields

{
εη = (p− 1)−1(Aεp+2x̄p +Bε2p+3x̄p+1 − µ̃ε),

x̄η = x̄p + 2(p− 1)−1(−Aεp+1x̄p+1 −Bε2p+2x̄p+2 + µ̃x̄),
(6.3.6)

where εη = dε/dη and x̄η = dx̄/dη. The equilibria of (6.3.6) on {ε = 0} are

E
+
0 : (ε, x̄) = (0, 0), E

+
p : (ε, x̄) = (0,M2) , M2 = −|− 2µ̃/(p− 1)|

1
p−1 < 0.

The Jacobian matrices of the vector fields (6.3.6) at these equilibria are

E
+
0 :




− µ̃

p− 1
0

0
2µ̃

p− 1



 , E
+
p :



 − µ̃

p− 1
0

0 −2µ̃



 .

Therefore, the equilibrium E
+
0 is a saddle, and E

+
p is a sink.
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{λ̄ = 1}

{x̄ = 1}

{x̄ = −1}

λ

x

λ

λ

x

x

λ

λ

x

x

E
+
0

U2

E
+
0

Figure 6.3.1: Schematic pictures of the dynamics of the blow-up vector fields and U2.

Dynamics on the chart {x̄ = 1}

The change of coordinates λ = εp−1λ̄, x = εp+1, and time-rescaling dη/dτ = εp
2−1 yields

{
εη = (p+ 1)−1(ε+Aεp+2 +Bε2p+3 − µ̃ελ̄p+1),

λ̄η = (p+ 1)−1(−(p− 1)λ̄+ 2Aεp+1λ̄+ 2Bε2p+2λ̄− 2µ̃λ̄p+2).
(6.3.7)

The equilibrium on {ε = 0, λ̄ ≥ 0} is (ε, λ̄) = (0, 0). Eigenvalues of the Jacobian matrix
are (p + 1)−1 and −(p − 1)/(p + 1) with corresponding eigenvectors (1, 0)T and (0, 1)T ,
respectively. Therefore, the equilibrium (0, 0) is a saddle.

Dynamics on the chart {x̄ = −1}

The change of coordinates λ = εp−1λ̄, x = −εp+1, and time-rescaling dη/dτ = εp
2−1 yields

{
ετ = −(p+ 1)−1(ε−Aεp+2 +Bε2p+3 + µ̃ελ̄p+1),

λ̄τ = (p+ 1)−1((p− 1)λ̄+ 2Aεp+1λ̄− 2Bε2p+2λ̄− 2µ̃λ̄p+2).
(6.3.8)

The equilibria on {ε = 0, λ̄ ≥ 0} are

(ε, λ̄) = (0, 0), (ε, λ̄) =
(
0, [(p− 1)/2µ̃]

1
p+1

)
.

By the further computations, the equilibrium (0, 0) is a saddle, and
(
0, [(p− 1)/2µ̃]

1
p+1

)

is a sink.
Combining the dynamics on the charts {λ̄ = 1} and {x̄ = ±1}, the dynamics on the

chart U2 can be obtained (see Figure 6.3.1).
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6.3.2 Dynamics on the chart V 2

In this chart, it corresponds to a → 0 and b → −∞ and the direction in which x is negative
corresponds to the direction in which a is positive. The change of coordinates

a(s) = −x(s)/λ(s), b(s) = −1/λ(s)

give the projected dynamics of (6.3.2) on the chart V 2:

{
λτ = Aλxp +Bλxp+1 + µ̃λp+2,

xτ = xp +Axp+1 +Bxp+2 + µ̃λp+1x,
(6.3.9)

where τ is the new time introduced by dτ/ds = λ−p. The system (6.3.9) can be trans-
formed into (6.3.4) by the change of coordinates Therefore, it is sufficient to consider the
blow-up singularity E−

0 : (λ, x) = (0, 0) by the formulas

λ = εp−1, x = εp+1x̄ with λ̄ = 1.

Then, {
εη = (p− 1)−1(Aεp+2x̄p +Bε2p+3x̄p+1 + µ̃ε),

x̄η = x̄p + 2(p− 1)−1(−Aεp+1x̄p+1 −Bε2p+2x̄p+2 − µ̃x̄)
(6.3.10)

holds. Here, note that η satisfies dη/dτ = εp
2−1. The equilibria of (6.3.10) on {ε = 0} are

E
−
0 : (ε, x̄) = (0, 0), E

−
p : (ε, x̄) = (0, [2µ̃/(p− 1)]1/(p−1)).

The equilibrium E
−
0 is a saddle with the eigenvalues µ̃(p− 1)−1 and −2µ̃(p− 1)−1 whose

corresponding eigenvectors are (1, 0)T and (0, 1)T , respectively. Further, the equilibrium

E
−
p is a source with the eigenvalues µ̃(p− 1)−1 and 2µ̃ whose corresponding eigenvectors

are (1, 0)T and (0, 1)T , respectively.

6.3.3 Dynamics on the chart U1

Let us study the dynamics on the chart U1. In this chart, it corresponds to a → +∞ and
b → 0. The transformations

a(s) = 1/λ(s), b(s) = x(s)/λ(s)

yield {
λτ = −λx,
xτ = −Ax−B + µ̃λp+1 − x2,

(6.3.11)

via time-rescaling dτ/ds = λ−p. The system (6.3.11) has the equilibria

E3 : (λ, x) =
(
0, 2−1[−A− (N − 2)]

)
, E4 : (λ, x) =

(
0, 2−1[−A+ (N − 2)]

)
.

If κ is κ = 1, then the Jacobian matrices of the vector field (6.3.11) at these equilibria are

E3 :

(
α+N − 2 0

0 N − 2

)
, E4 :

(
α 0
0 −(N − 2)

)
.

Therefore, E3 is a source, and E4 is a saddle.
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Similarly, if κ = −1, then

E3 :

(
−α 0
0 N − 2

)
, E4 :

(
−(α+N − 2) 0

0 −(N − 2)

)

holds. Therefore, E3 is a saddle, and E4 is a sink. Here, the solutions near E3 are
approximated as

{
λ(τ) = C1e−ατ (1 + o(1)),

x(τ)− α = C2e(N−2)τ (1 + o(1)),
as τ → +∞. (6.3.12)

If κ = −1, then 2−1[−A − (N − 2)] = α holds. Further, the solutions near E4 are
approximated as

{
λ(τ) = C1e−(α+N−2)τ (1 + o(1)),

x(τ)−M3 = C2e−(N−2)τ (1 + o(1)),
as τ → +∞ (6.3.13)

with M3 = (−A+ (N − 2))/2.

6.3.4 Dynamics on the chart V 1

In this chart, it corresponds to a → −∞ and b → 0. The transformations

a(s) = −1/λ(s), b(s) = −x(s)/λ(s)

yield {
λτ = −λx,
xτ = −Ax−B − µ̃λp+1 − x2,

(6.3.14)

via time-rescaling dτ/ds = λ−p. We can see that the system (6.3.14) can be transformed
into the system (6.3.11) by the change of coordinates:

(λ, x) 2→ (−λ, x).

Therefore, the dynamics (6.3.14) is equivalent to the reflected one of (6.3.11) with respect
to {λ = 0}.

6.3.5 Dynamics and connecting orbits on the Poincaré disk

Combining the dynamics on the charts U j and V j (j = 1, 2), we obtain the dynamics on
the Poincaré disk that is equivalent to the dynamics of (6.1.14) on R2 ∪ {‖(a, b)‖ = +∞}
in the case that p is even as following Proposition (see Figure 6.3.2). Note that in Figure
6.3.2, the circumference corresponds to {‖(a, b)‖ = +∞}. We set Φ1 as follows:

Φ1 = {(a, b) ∈ R2 ∪ {‖(a, b)‖ = +∞}}.

Proposition 6.3.1
Assume that 3 ≤ N ∈ N, µ > 0, p ∈ N, and 0 < δ < 1 with δ = (p− 1)/(p+1). Then, the
dynamics on the Poincaré disk of the system (6.1.14) is expressed as Figure 6.3.2.

Proof. The proof of the connected orbit is exactly similar to that in [31, 33]. !

The proof is based on the Poincaré-Bendixson theorem. There are two notes on con-
necting orbits.
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a

bE+
0

E−

0

EA

E1(E4)

E2(E3)

a

bE+
0

EA

E−

0

E2(E3)

E1(E4)

Figure 6.3.2: Schematic pictures of the dynamics on the Poincaré disk in the case that
0 < δ < 1, p ∈ 2N, D > 0. In other words, these pictures are the dynamics of (6.1.14) on
R2 ∪ {‖(a, b)‖ = +∞}. [Left: Case κ = 1.] [Right: Case κ = −1.]

Remark 6.3.3
The key to the proof of this proposition is that da/db takes the same value except for
{a = 0}, as mentioned in [31, 33]. That is, the flow on {(a, b) ∈ Φ1 | a > 0} and
{(a, b) ∈ Φ1 | a < 0} are separated by the line {a = 0}.

Remark 6.3.4
Note that t → ∞ of the picture in the case that κ = 1 is corresponding to t → −∞ of
it in the case that κ = −1. The reverse is also true. As mentioned in [33], the existence
of connecting orbits in Figure 6.3.2 corresponds to the existence of a function satisfying
(6.1.8) on a finite interval or (0,+∞) with parameter r. Furthermore, since all connecting
orbits are known, all candidate solutions are enumerated such that (6.1.8) is satisfied.
With this information, the asymptotic behavior corresponding to each connecting orbit
can be studied.

6.3.6 Dynamics on the Poincaré disk in the case that p is odd

In this subsection, we consider the dynamics (6.1.14) on the Poincaré disk in the case that
p is odd. We desingularize it by the time-scale desingularization

ds/dt = a−p−1.

Then, {
a′ = ap+1b,

b′ = −Aap+1b−Bap+2 + µ̃a,

(
′ =

d

ds

)
(6.3.15)

holds. In a similar argument as [33], since the direction of the time does not change via
(6.3.1) on Φa>0 = {(a, b) ∈ Φ1 | a > 0} for both even and odd cases, the flow of (6.3.15) on
Φa>0 for p ∈ 2N− 1 is similar to that of (6.3.2) on Φa>0 for p ∈ 2N. Moreover, (6.3.15) is
invariant under the mapping (a, b) 2→ −(a, b). Therefore, we can draw the phase portraits
on the Poincaré disk of (6.1.14) (or (6.3.15)) when p is odd as shown in Figure 6.3.3 (cf.
the flow on {a > 0} of Figure 6.3.2).
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a

b

EA

EA

a

b

EA

EA

Figure 6.3.3: Schematic pictures of the dynamics on the Poincaré disk in the case that
0 < δ < 1, D > 0, and p is odd. [Left: Case κ = 1.] [Right: Case κ = −1.]

Remark 6.3.5
In this section, we have obtained all the dynamics on the Poincare disk of (6.1.14) with
p ∈ N. As mentioned in Remark 6.3.4, now that we understand the dynamics including
infinity, we can discuss the existence of functions that satisfy (6.1.8) corresponding to each
orbit and the asymptotic behavior of their solutions. However, in the present problem, U
and u are not defined in the entire domain, and a restriction is imposed on the range in
which each exists. Therefore, even if we know the behavior of a(t) or b(t), when we restore
it to u or U , it may not be suitable for the range of its existence. This is also true for the
other cases, Case 2 and Case 3.

Remark 6.3.6
In this Case 1, we consider the dynamics of the system obtained by introducing a transfor-
mation such as (6.1.12). Based on the transformation given in [41], we can also introduce
the following transformation:

t = κ log r, a(t) = r−α(1− u), b(t) = r−(α−1)ur, α = 1− δ > 0, κ = ±1.

In other words, from the above transformation, we can also consider the following system:

{
ȧ = −καa− κb,

ḃ = −κMb− κµ̃a−p,
M = α+N − 2.

Note that this system gives the same results as Theorem 6.2.1 and Theorem 6.2.2, although
a different transformation is applied.

6.4 Dynamics of (6.1.16) to infinity

In this section, the dynamics of (6.1.16) on R2 ∪ {‖(a, b)‖ = +∞}\{a < 0} are studied
in a similar way as in Section 6.3. The reason for excluding a < 0 is that it is necessary
to consider a region where the transformation (6.1.15), which will be introduced later,
does not change the direction of time. However, we will use “the Poincaré-Lyapunov
compactification” (the directional compactification) instead of “the Poincaré compactifi-
cation” in order to consider the quasi-homogeneity of the vector field. Considering the
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quasi-homogeneity, we need to retain the original vector field information. In order to cor-
rectly extract the structure at infinity, we use the Poincaré-Lyapunov compactification,
which is an extension of the Poincaré compactification idea (see [35, 49, 50]). Note that
the geometric image can be regarded as similar to Poincaré compactification (for instance,
Figure 2 of [31]), namely, the Poncaré disk is called the Poincaré-Lyapunov one.

Before starting the detailed analysis, (6.1.16) has a finite equilibrium EB : (a, b) =
(M4, 0) with M4 = 2µ̃−1(N − 2). Let JB be the Jacobian matrix of the vector field
(6.1.16) at EB. JB is the following:

JB =

(
0 1

−2(N − 2) −A

)
.

The eigenvalues are 2−1(−A ±
√
(N − 2)(N − 10)). Then, the behavior of the solution

around EB is different by the sign of N − 10. In other words, the behavior of the solution
changes depending on the number of dimensions N . For instance, the matrix JB has the
real distinct eigenvalues if N − 10 > 0, i.e., 3 ≤ N ≤ 9, and other cases can be concluded
similarly. This classification by the number of dimensions, such as 3 ≤ N ≤ 9 and N = 10,
and N ≥ 11, is consistent with that of bifurcation carves in [21]. In addition, if κ = 1,
then the real parts of all eigenvalues of JB are negative. Therefore, we conclude that EB

is a sink in the case that κ = 1. Similarly, we can determine that EB is a source in the
case that κ = −1.

In order to study the dynamics of (6.1.16) on the Poincaré-Lyapunov disk, we desin-
gularize it by the time-scale desingularization

ds/dt = a−1. (6.4.1)

Note that since we are considering a ≥ 0, this transformation does not change the direction
of time. By the same argument as in Remark 6.3.3, we note that this dynamics is closed
in the region {a ≥ 0}. Then,

{
a′ = ab,

b′ = b2 −Aab− µ̃a3 + 2(N − 2)a2,

(
′ =

d

ds

)
(6.4.2)

holds. The system (6.4.2) has the equilibrium EO : (a, b) = (0, 0). The Jacobian matrix
of the vector field (6.4.2) at EO is

EO :

(
0 0
0 0

)
.

The equilibrium EO is not hyperbolic.

6.4.1 Dynamics of (6.4.2) near (0, 0)

As before, in order to determine the dynamics near EO, we desingularize it by introducing
the following blow-up coordinates:

a = εā, b = εb̄.

Since we are interested in the dynamics near EO, we consider the dynamics of blow-up
vector fields on the charts {ā = 1} and {b̄ = ±1}. The reason we do not consider the case
{ā = −1} is that we are considering a ≥ 0.
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Dynamics on the chart {ā = 1}

By the change of coordinates a = ε, b = εb̄ and time-rescaling dσ/ds = ε, we have

{
εσ = εb̄,

b̄σ = −Ab̄− µ̃ε+ 2(N − 2),
(6.4.3)

where εσ and b̄σ are εσ = dε/dσ, b̄σ = db̄/dσ, respectively. The equilibria can be classified
according to the value of κ = ±1 as follows:

• When κ = 1, this system has the equilibrium E
1
O : (ε, b̄) = (0, 2).

• When κ = −1, it is E
2
O : (ε, b̄) = (0,−2).

The Jacobian matrices of the vector field (6.4.3) at these equilibria are

E
1
O :

(
2 0
−µ̃ −(N − 2)

)
, E

2
O :

(
−2 0
−µ̃ N − 2

)
.

Therefore, E
1
O and E

2
O are saddles.

We now derive the solution around E
2
O (κ = −1) for later use. Let z(σ) := ε(σ) − 0

and w(σ) := b̄(σ) + 2. Then, they satisfy the following:

d

dσ

(
z(σ)
w(σ)

)
=

(
−2 0
−µ̃ N − 2

)(
z(σ)
w(σ)

)
.

By solving these differential equations, we obtain

z(σ) = C1e
−2σ,

w(σ) =
µ̃

N
C3e

−2σ + C2e
(N−2)σ ∼ C2e

(N−2)σ, as σ → +∞,

where Cj are constants. Therefore, the solution at E
2
O are approximated as

{
ε(σ) = C1e−2σ(1 + o(1)),

b̄(σ) + 2 = C2e(N−2)σ(1 + o(1)),
as σ → +∞. (6.4.4)

Dynamics on the chart {b̄ = 1}

By the change of coordinates a = εā，b = ε and time-rescaling dσ/ds = ε, we have

{
εσ = ε−Aεā− µ̃ε2ā3 + 2(N − 2)εā2,

āσ = ā2(A+ µ̃εā2 − 2(N − 2)ā)
(6.4.5)

The equilibria can be classified according to the value of κ = ±1 as follows:

• When κ = 1, this system has the equilibria E
3
O : (ε, ā) = (0, 0) and E

4
O : (ε, ā) =(

0, 2−1
)
.

• When κ = −1, the equilibrium on {ε = 0, ā ≥ 0} is E
3
O : (ε, ā) = (0, 0).
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The Jacobian matrices of the vector field (6.4.5) at these equilibria are

E
3
O :

(
1 0
0 0

)
, E

4
O :

(
1 0
µ̃

16
−1

2
(N − 2)

)

Therefore, E
4
O is a saddle, and the center manifold theory is applicable to study the dynam-

ics near E
3
O (for instance, see [9]). However, it is not possible to obtain the approximation

of the (graph of) center manifold explicitly. This is due to the fact that ā = 0 is invariant,
so the center manifold is not unique. From

āσ|ε=0,κ=1 = 2(N − 2)ā2
(
1

2
− ā

)
> 0,

āσ|ε=0,κ=−1 = −2(N − 2)ā2
(
1

2
+ ā

)
< 0

hold with 0 < ā < 1/2, the dynamics near E
3
O restricted on ε = 0 (i.e. the line of {b̄ = 1})

can be determined (see Figure 6.4.1 and Figure 6.4.2).

Dynamics on the chart {b̄ = −1}

By the change of coordinates a = εā，b = −ε and time-rescaling dσ/ds = ε, we have

{
εσ = −ε−Aεā+ µ̃ε2ā3 − 2(N − 2)εā2,

āσ = Aā2 − µ̃εā4 + 2(N − 2)ā3.
(6.4.6)

The equilibria can be classified according to the value of κ = ±1 as follows:

• When κ = 1, the equilibrium on {ε = 0, ā ≥ 0} is E
5
O : (ε, ā) = (0, 0).

• When κ = −1, this system has the equilibria E
5
O : (ε, ā) = (0, 0) and E

6
O : (ε, ā) =(

0, 2−1
)
.

The Jacobian matrices of the vector field (6.4.6) at these equilibria are

E
5
O :

(
−1 0
0 0

)
, E

6
O :

(
−1 0

− µ̃

16

1

2
(N − 2)

)
.

Therefore, E
6
O is a saddle. As with E

3
O above, the center manifold theory is applicable

to study the dynamics near E
5
O. Although the approximation of the (graph of) center

manifold is not obtained, the dynamics near E
3
O restricted on ε = 0 (i.e. the line of

{b̄ = 1}) can be determined from the following calculations:

āσ|ε=0,κ=1 = 2(N − 2)ā2
(
1

2
+ ā

)
> 0

āσ|ε=0,κ=−1 = −2(N − 2)ā2
(
1

2
− ā

)
< 0

with 0 < ā < 1/2 (see Figure 6.4.1 and Figure 6.4.2).
Combining the dynamics on the charts {ā = 1} and {b̄ = ±1}, we can obtain the

dynamics near EO (see Figure 6.4.1 and Figure 6.4.2).
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{ā = 1}
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κ = 1

{b̄ = 1}

{b̄ = −1}

E
1

O

E
3

O
E

4

O

E
5

O

Figure 6.4.1: Schematic picture of the dynamics near EO in the case that κ = 1.

6.4.2 Asymptotically quasi-homogeneous vector field

Before we consider the dynamics of (6.4.2) on the charts U j and V j , we state the type
and order of this vector field (6.4.2). Let f = (f1(a, b), f2(a, b)) be f1(a, b) = ab and
f2(a, b) = b2 − Aab − µ̃a3 + 2(N − 2)a2. Then, we have the following observation (see
[35, 49, 50] for more details).

Lemma 6.4.1
The vector field f is asymptotically quasi-homogeneous of type (2, 3) and order 4 at infinity.

Proof. Let a type be (α1,α2), R ∈ R and an order be k+1 with k ≥ 1. For all (a, b) ∈ R2,
the following holds:

f1(R
α1a,Rα2b) = Rk+α1f1(a, b),

f2(R
α1a,Rα2b) = Rk+α2f2(a, b).

Using (6.4.2), the left-hand sides above are calculated as:

f1(R
α1a,Rα2b) = Rα1+α2ab,

f2(R
α1a,Rα2b) = R2α2b2 −ARα1+α2ab− µ̃R3α1a3 + 2(N − 2)R2α1a2.

By comparing the order parts, we get






α1 + α2 = k + α1,
2α2 = k + α2,
α1 + α2 = k + α2,
3α1 = k + α2,
2α1 = k + α2.

(6.4.7)
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Figure 6.4.2: Schematic picture of the dynamics near EO in the case that κ = −1.

Here, since the first and fourth equations in (6.4.7) correspond to the maximum order in
(6.4.2), (α1,α2) = (2, 3) and k = 3 are obtained from them. These then satisfy the second
equation in (6.4.7). Furthermore, they satisfy as follows:

lim
R→+∞

R−(k+α1)
{
f1(R

α1a,Rα2b)−Rk+α1(fα,k)1(a, b)
}
≡ 0,

lim
R→+∞

R−(k+α2)
{
f2(R

α1a,Rα2b)−Rk+α2(fα,k)2(a, b)
}
= 0,

where (fα,k)1 and (fα,k)2 are (fα,k)1 = ab and (fα,k)2 = b2 − µ̃a3, respectively. From the
above results, we can see that the vector field f is asymptotically quasi-homogeneous of
type (2, 3) and order 4 at infinity. !

Note that if we follow a similar procedure in (6.3.2), the type becomes (1, 1). Now
we can consider the dynamics of (6.4.2) on the charts U j (j = 1, 2) and V 2 since we are
considering a ≥ 0.

6.4.3 Dynamics on the chart U2

To obtain the dynamics on the chart U2, we introduce coordinates (λ, x) by the formulas

a(s) = x(s)/{λ(s)}2, b(s) = 1/{λ(s)}3.

Here, note that the exponents of λ are derived from the type found in Lemma 6.4.1. The
discussion on the directionality of the a and x-axis of the local coordinates is the same as
in Subsection 6.3.1. Then, these transformations yield

{
λτ = 3−1(−λ+Aλ2x+ µ̃λx3 − 2(N − 2)λ3x2),

xτ = 3−1(x+ 2Aλx2 + 2µ̃x4 − 4(N − 2)λ2x3),
(6.4.8)
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6.4 Dynamics of (6.1.16) to infinity

via time-rescaling dτ/ds = λ−3. This system has the equilibrium

E5 : (λ, x) = (0, 0)

on {x ≥ 0}. The Jacobian matrix of the vector field (6.4.8) at E5 is

E5 :

(
−3−1 0
0 3−1

)
.

Therefore, E5 is a saddle.

6.4.4 Dynamics on the chart V 2

The change of coordinates

a(s) = −x(s)/{λ(s)}2, b(s) = −1/{λ(s)}3

give the projected dynamics of (6.4.2) on the chart V 2:

{
λτ = 3−1(λ−Aλ2x+ µ̃λx3 + 2(N − 2)λ3x2),

xτ = 3−1(−x− 2Aλx2 + 2µ̃x4 + 4(N − 2)λ2x3),
(6.4.9)

where τ is the new time introduced by dτ/ds = λ−3. This system has the equilibrium

E6 : (λ, x) = (0, 0)

on {x ≤ 0}. The Jacobian matrix of the vector field (6.4.9) at E6 is

E6 :

(
3−1 0
0 −3−1

)
.

Therefore, E6 is a saddle.

6.4.5 Dynamics on the chart U1

Let us study the dynamics on the chart U1. The transformations

a(s) = 1/{λ(s)}2, b(s) = x(s)/{λ(s)}3

yield
{
λτ = −2−1λx,

xτ = −2−1x2 −Aλx− µ̃+ 2(N − 2)λ2,
(6.4.10)

via time-rescaling dτ/ds = λ−3. This system has no equilibria. It is important to note
that the following holds:

xτ
∣∣
λ=0

= −1

2
x2 − µ̃ < 0.
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Figure 6.4.3: Roughly sketch of the dynamics on the Poincaré-Lyapunov disk in the Case
2 for the convenience. [Left: Case κ = 1.] [Right: Case κ = −1.]

6.4.6 Dynamics and connecting orbits on the Poincaré-Lyapunov disk

Combining the dynamics on the chart U j (j = 1, 2) and V 2, we obtain the Poincaré-
Lyapunov disk that is equivalent to the dynamics of (6.1.16) on R2∪{‖(a, b)‖ = +∞}\{a <
0} as following Proposition.

Let us prepare the symbols used in this subsection as follows:

• We set Φ2 and Φ3 as follows:

Φ2 = {(a, b) ∈ R2 ∪ {‖(a, b)‖ = +∞}}

and
Φ3 = {(a, b) ∈ Φ2 | a ≥ 0}.

• Ws(EB) denotes the stable manifold of EB in the dynamical system (6.1.16) in the
case that κ = 1.

• Wu(EB) denotes the unstable manifold of EB in the dynamical system (6.1.16) in
the case that κ = −1.

• Wu
(E

1
O) denotes the unstable manifold of E

1
O in the dynamical system (6.4.3).

• Ws
(E

2
O) denotes the stable manifold of E

2
O in the dynamical system (6.4.3).

• We denote by Wu(E
1
O) the unstable set, which corresponds to Wu

(E
1
O) on the blow-

up vector field (6.4.3) of the equilibrium EO of (6.4.2) (see Figure 6.4.1).

• We denote by Ws(E
2
O) the stable set, which corresponds to Ws

(E
2
O) on the blow-up

vector field (6.4.3) of the equilibrium EO of (6.4.2) (see Figure 6.4.2).

Proposition 6.4.1
Assume that N ≥ 3, δ = 1, and µ̃ > 0. Then, there exists a connecting orbit between

the points of Wu(EB) (resp. Ws(EB)) and the points of Ws(E
2
O) (resp. Wu(E

1
O)) on the

Poincaré-Lyapunov disk in the case that κ = −1 (resp. κ = 1) (see Figure 6.4.3).
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Proof. (I) Since the line {a = 0} is invariant under the flow of (6.4.2), any trajectories
start from the points in {(a, b) ∈ Φ2 | a > 0} cannot go to {(a, b) ∈ Φ2 | a < 0}.
Similarly, any trajectories start from the points in {(a, b) ∈ Φ2 | a < 0} cannot go to
{(a, b) ∈ Φ2 | a > 0}. In other words, in (6.4.2) only a ≥ 0 completes the behavior.
(II) When we consider the parameter s on the disk, the point EO is the equilibrium of
(6.4.2). However, EO is a point on the line {a = 0} with singularity about the parameter
t. We can see that da/db takes the same values on the vector fields defined by (6.1.16) and
(6.4.2) by excepting the singularity {a = 0}. If the trajectories start from (resp. come in)
the equilibrium EO about the parameter s, then they start from (resp. come in) it about
t.
(III) What we show here is the existence of a connecting orbit between the points of

Wu(EB) and the points of Ws(E
2
O) in the case that κ = −1. Assume that κ = −1. If

0 < a < M4, then we obtain

ḃ|b=0,0<a<M4 = −µ̃a2 + 2(N − 2)a > 0.

The only unstable point in the region a ≥ 0 is EB. Then the trajectory starting from the
point on Wu(EB) can only go to EO on the b < 0 sides from the above (II) argument and
the nullcline. Therefore, among the trajectories that depart from a point onWu(EB), there

must be a trajectory that goes to a point on Ws(E
2
O). All other trajectories eventually

reach the region bounded by the stable manifold and the b < 0 sides of the b-axis and go
to the origin along the b-axis. Thus, there exists a connecting orbit between the points of

Wu(EB) and the points of Ws(E
2
O) in the case that κ = −1. This stable manifold plays

the role of a boundary at b < 0 near the origin.
(IV) What remains to be shown is the existence of a trajectory connecting the points on

Wu(E
1
O) and the points on Ws(EB) for κ = 1. In (6.1.16), switching κ = ±1 is equivalent

to introducing the following transformation:

b 2→ −b, t 2→ −t.

In fact, the change from κ = −1 to κ = 1 in (6.1.16) causes only the sign of A to switch.
On the other hand, even if we introduce the above transformation, it only changes the
sign of A in (6.1.16). Thus, we conclude that the connecting orbits at κ = −1 obtained
in (III) also exist at κ = 1 due to the symmetry of the transformation b 2→ −b, t 2→ −t.
Therefore, there exists a connecting orbit between EO and EB on the Poincaré-Lyapunov
disk for both κ = 1 and κ = −1. This completes the proof of Proposition 6.4.1. !

6.5 Dynamics of (6.1.18) to infinity

In this section, we study the dynamics of (6.1.18) on R2∪{‖(a, b)‖ = +∞} (i.e., Poincaré-
Lyapunov disk) using the Poincaré-Lyapunov compactification as in Section 6.4. In the
following, let set Φ4 be as follows:

Φ4 = {(a, b) ∈ R2 ∪ {‖(a, b)‖ = +∞}}.

Note that (6.1.18) is invariant under the following transformation if and only if p is odd.

(a, b) 2→ −(a, b).

Furthermore, there is a clear difference between the detailed analysis in (6.1.18) and that
in Section 6.4. This difference is that this equation does not have a singularity, so there
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is no need to apply time-scale desingularization. That is, unlike Proposition 6.3.1 in
Section 6.3 and Proposition 6.4.1 in Section 6.4, a trajectory starting from a point on
{(a, b) ∈ Φ4 | a < 0} may pass through the line {a = 0} and reach {(a, b) ∈ Φ4 | a > 0}.
This implies that there may be a sign-changing solution for a as the corresponding solution.

However, due to the relationship between U and u transformations in Case 3, the
constraint u > −1 is imposed in this problem. Accordingly, from the relationship between
u and a, we obtain

u > −1 ⇐⇒ 1 + u > 0 ⇐⇒ a = r−α(1 + u) > 0.

From this argument, we can study all dynamics on Φ4 by Poincaré-Lyapunov compactifi-
cation, however, we can only focus on the trajectories that are attracted to the equilibrium
on Φ4\{a < 0} in deriving the asymptotic behavior of U(r) for the solution corresponding
to each connecting orbit. In order to find possible trajectories to study, we first consider
the dynamics of (6.1.18) on the local coordinates U j (j = 1, 2) and V 2 using that. Re-
versing the order of discussion in Section 6.4, the discussion on finite equilibria in this
equation will be presented later.

Before performing the Poincaré-Lyapunov compactification, we study the type and
order of the vector field (6.1.18) similarly to Lemma 6.4.1 in Subsection 6.4.2. Let f =
(f1(a, b), f2(a, b)) be f1(a, b) = b and f2(a, b) = −Ab−Ba− µ̃ap.

Lemma 6.5.1
The vector field f is asymptotically quasi-homogeneous of type (2, p + 1) and order p at
infinity.

Proof. It is shown similarly to Lemma 6.4.1. !

6.5.1 Dynamics on the chart U2

The transformations

a(t) = x(t)/{λ(t)}2, b(t) = 1/{λ(t)}p+1

yield {
λτ = (p+ 1)−1(Aλp +Bλ2p−1x+ µ̃λxp),

xτ = 1 + 2(p+ 1)−1(Aλp−1x+Bλ2p−2x2 + µ̃xp+1),
(6.5.1)

via time-scaling dτ/dt = λ−p+1. The equilibria of this system can be classified according
to whether p is even or odd as follows:

• When p is even, the equilibrium is E7 : (λ, x) = (0, L2) with L2 = −| − (p +
1)/(2µ̃)|1/(p+1) < 0.

• If p is an odd greater than or equal to 3, then this system has no equilibria.

Through further computations, we determine that the equilibrium E7 is a source. However,
this equilibrium is infinitely far in the region Φ4\{a > 0}, which is not consistent with the
objective stated at the beginning of Section 6.5.
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6.5.2 Dynamics on the chart V 2

By the transformations

a(t) = −x(t)/{λ(t)}2, b(t) = −1/{λ(t)}p+1,

and time-scaling dτ/dt = λ−p+1, we have
{
λτ = (p+ 1)−1(Aλp +Bλ2p−1x− (−1)pµ̃λxp),

xτ = 1 + 2(p+ 1)−1(Aλp−1x+Bλ2p−2x2 − (−1)pµ̃xp+1).
(6.5.2)

The equilibria of this system can be classified according to whether p is even or odd as
follows:

• When p is even, the equilibrium isE8 : (λ, x) = (0, L3) with L3 = {(p+1)/(2µ̃)}1/(p+1) >
0.

• If p is an odd greater than or equal to 3, this system has no equilibria.

By a similar calculation as before, we find that the equilibrium E8 is a sink. Note, however,
that E8 is not our objective equilibrium, since it also exists in the region where Φ4\{a > 0},
as in Subsection 6.5.1.

6.5.3 Dynamics on the chart U1

The transformations

a(t) = 1/{λ(t)}2, b(t) = x(t)/{λ(t)}p+1

yield {
λτ = −2−1λx,

xτ = −Aλp−1x−Bλ2p−2 − µ̃− 2−1(p+ 1)x2,
(6.5.3)

via time-scaling dτ/dt = λ−p+1. This system has no equilibria. It is important to note
that the following holds:

xτ
∣∣
λ=0

= −µ̃− 2−1(p+ 1)x2 < 0.

Combining the dynamics on the chart U j (j = 1, 2) and V 2, it is clear that there are
no infinitely far equilibrium on Φ4\{a < 0} when p is both even and odd.

6.5.4 Dynamics near finite equilibria

Based on the conclusions given at the end of Subsections 6.5.1, 6.5.2, and 6.5.3, we now
investigate the finite equilibria in (6.1.18). In the Poincaré-Lyapunov compactification,
we did not need to consider the case of the range of δ, as shown in Table 6.1. However,
when discussing finite equilibria, it is necessary to consider this.

The case 1 < δ < N/2

For 1 < δ < N/2, (6.1.18) has the following finite equilibria, depending on whether p is
even or odd:

• When p is even, the equilibria are EO′ : (a, b) = (0, 0), EC : (a, b) = (L1, 0) with
L1 = (−B/µ̃)1/(p−1) > 0.
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• If p is an odd greater than or equal to 3, the equilibria are EO′ : (a, b) = (0, 0),
EC : (a, b) = (±L1, 0).

The Jacobian matrices of the vector field (6.1.18) at these equilibria are

EO′ :

(
0 1

−B −A

)
= J1, ±EC :

(
0 1

(p− 1)B −A

)
= J2.

First, the eigenvalues of the matrix J1 are −α > 0 and −α−N + 2 < 0 when κ = 1, and
the corresponding eigenvectors are (1,−α) and (1,−α −N + 2), respectively. Therefore,
when κ = 1, the equilibrium EO′ is a saddle. On the other hand, when κ = −1, we
determine that this equilibrium is a saddle similarly.

Then, the behavior of the solution around EC depends on the sign of D from the
calculation of the eigenvalues of the matrix J2 (D is defined in Theorem 6.2.4). In addition,
if κ = 1, then the real parts of all eigenvalues of J2 are negative. Therefore, we can conclude
that EC is asymptotically stable when κ = 1. Similarly, we can determine that EC can
be unstable when κ = −1.

Since equilibria at infinity do not exist on Φ4\{a < 0}, the existence of a connecting
orbit connecting EO′ and EC in this region is expected in order to satisfy the restriction
on the range of existence of the solution U(r) described at the beginning of this section,
whether p is even or odd. The existence of connecting orbits will be proved in Subsection
6.5.5 (see Proposition 6.5.1).

Remark 6.5.1
As defined in Theorem 6.2.4, D is

D = D(N, δ) = (N − 2)2 − 4(δ + 1)(N − 2) + 4(δ + 1)(δ − 1).

By setting Q = N − 2 > 0 in a similar way as in Remark 6.3.1, we obtain

D(Q) = Q2 − 4(δ + 1)Q+ 4(δ + 1)(δ − 1).

From a similar argument as in Remark 6.3.1, it is not possible to haveD(Q) = D(N, δ) = 0.
Correspondingly, the case of D = 0 is eliminated in Theorem 6.2.4.

The case δ = N/2

For δ = N/2, (6.1.18) has the following finite equilibrium, depending on whether p is even
or odd:

• When p is even, the equilibria are EO′ : (a, b) = (0, 0), EC : (a, b) = (L1, 0) with
L1 = (−B/µ̃)1/(p−1) > 0.

• If p is an odd greater than or equal to 3, the equilibria are EO′ : (a, b) = (0, 0),
EC : (a, b) = (±L1, 0).

By a similar argument as in Subsection 6.5.4, the existence of a connecting orbit connecting
EO′ and EC in this region is expected in order to satisfy the restriction on the range of
existence of the solution U(r) described at the beginning of this section, whether p is
even or odd. The existence of connecting orbits will be proved in Subsection 6.5.5 (see
Proposition 6.5.2). The Jacobian matrices of the vector field (6.1.18) at these equilibria
are

EO′ :

(
0 1

−B 0

)
= J3, ±EC :

(
0 1

(p− 1)B 0

)
= J4.
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The eigenvalues of the matrix J3 are 2−1(N − 2) > 0 and −2−1(N − 2) < 0 from
B = −4−1(N − 2)2 < 0, and the corresponding eigenvectors are (1, 2−1(N − 2)) and
(1,−2−1(N − 2)), respectively. Therefore, the equilibrium EO′ is a saddle. On the other
hand, the eigenvalues of the matrix J4 are ±

√
−(p− 1)Bi. Hence, it is generally difficult

to determine the dynamics around the equilibrium EC at δ = N/2 since the eigenvalues
are purely imaginary numbers.

However, in this δ = N/2 case, (6.1.18) turns out to be a Hamiltonian system, and
we can understand the dynamics around this equilibrium. In fact, let H = H(a, b) be the
constant C as follows:

H(a, b) =
1

2
Ba2 +

µ̃

p+ 1
ap+1 +

1

2
b2 + C.

Then,






∂H

∂b
= b,

∂H

∂a
= Ba+ µ̃ap

holds. Therefore, H is a conserved quantity of this equation. From these, we can conclude
that the dynamics around EC .

Remark 6.5.2
In Section 5 of [21], the existence of periodic orbits is claimed by presenting conserved
quantity for equations derived by a different transformation from ours in the case that
δ = N/2. Note that the existence of the periodic orbits agrees with the result of [21].

The case N/2 < δ < N − 1

As mentioned in Section 6.1, for N/2 < δ < N − 1, we can only consider the cases p = 2
and p = 4. The system (6.1.18) has the equilibria

EO′ : (a, b) = (0, 0), EC : (a, b) = (L1, 0).

The Jacobian matrices of this vector field at these equilibria are

EO′ :

(
0 1

−B −A

)
, ±EC :

(
0 1

(p− 1)B −A

)
.

Compared to the case of 1 < δ < N/2, the sign reversal of A and the switch of κ =
±1 correspond (see Table 6.1). A similar calculation as in Subsection 6.5.4 shows that
the equilibrium EO′ is a saddle. In addition, EC is unstable when κ = 1, and EC is
asymptotically stable when κ = −1. Thus, as in the above subsection, p ∈ N, and in the
region where Φ4∪{a > 0}, we are interested in the existence of a connecting orbit between
EO′ and EC and the asymptotic behavior of the corresponding solution derived from it.
The existence of connecting orbits will be proved in Subsection 6.5.5 (see Proposition
6.5.3).

From a similar argument as in Remark 6.5.1, note that it is not possible to have
D(Q) = D(N, δ) = 0. Correspondingly, note that the case of D = 0 is eliminated in
Theorem 6.2.7.
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The case δ = N − 1

For δ = N − 1, (6.1.18) has only finite equilibrium (a, b) = (0, 0). Therefore, there are no
trajectories connecting equilibria in Φ4\{a < 0} including equilibria at infinity. Although
each orbit in this region may imply the existence of solutions to (6.1.8), this analysis
method does not investigate detailed information on the shape and asymptotic behavior
of the solutions. We leave it open here.

The case δ > N − 1

As mentioned in Section 6.1, for this case, we can only consider the case p = 2. The
system (6.1.18) has the equilibria

(a, b) = (0, 0), (a, b) = (L4, 0), L4 = −|−Bµ̃−1|1/(p−1) < 0.

Therefore, there are no trajectories connecting equilibria in Φ4\{a < 0} including equi-
libria at infinity. Therefore, there are no trajectories connecting equilibria in Φ4\{a < 0}
including equilibria at infinity.

6.5.5 Dynamics and connecting orbits on the Poincaré-Lyapunov disk

By combining the previous arguments in local coordinates and finite equilibria, we obtain
the following propositions.

Proposition 6.5.1
Assume that 3 ≤ N ∈ N, µ̃ > 0, p ∈ N and 1 < δ < N/2 with δ = (p + 1)/(p − 1).
Then, there exists a connecting orbit between the points of Wu(EO′) (resp. Ws(EO′)) on
the region of Φ4\{a < 0}, and the points of Ws(EC) (resp. Wu(EC)) on the Poincaré-
Lyapunov disk in the case that κ = 1 (resp. κ = −1).

Proof. (I) First, assume that p ∈ 2N and κ = 1. This is shown by the proof by
contradiction. We assume that the trajectory starting from a point on Wu(EO′) in the
region Φ4\{a < 0} never reaches a point on Ws(EC). Then, since it is a two-dimensional
system, the trajectory starting from a point on it can only go to a point on Ws(E8).
However, the trajectory to reach a point on Ws(EC) will intersect this trajectory, which
is a contradiction. Therefore, a trajectory starting from a point on Wu(EO′) in the region
Φ4\{a < 0} must reach a point on Ws(EC).
(II) Next, assume that p ∈ 2N and κ = −1. As in Proposition 6.4.1, switching κ = ±1 is
equivalent to performing the following transformation:

b 2→ −b, t 2→ −t.

Thus, the existence of a connecting orbit between the equilibrium EC and EO′ is proved
even in the case of κ = −1.
(III) Finally, this is proved for the case where p is odd in a similar way as the argument
for the even case. !

Furthermore, in the cases that δ = N/2 and N/2 < δ < N − 1, we can prove the
existence of connecting orbits between equilibrium at Φ4\{a < 0} in a similar way as for
Proposition 6.4.1 and Proposition 6.5.1.
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Proposition 6.5.2
Assume that 3 ≤ N ∈ N, µ̃ > 0, p ∈ N and δ = N/2 with δ = (p + 1)/(p − 1). As
mentioned earlier, in this case, we only need to consider p = 2, 3, 5, and correspondingly
N = 6, 4, 3. Then, there exists a connecting orbit between the points of Wu(EO′) in the
region of Φ4\{a < 0}, and the points of Ws(EO′) in this region.

Proposition 6.5.3
Assume that 3 ≤ N ∈ N, µ̃ > 0, p ∈ N and N/2 < δ < N − 1 with δ = (p + 1)/(p − 1).
As mentioned earlier, in this case, we only need to consider p = 2, 4 and correspondingly
N = 5, 3. Then, there exists a connecting orbit between the points of Wu(EO′) (resp.
Ws(EO′)) on the region of Φ4\{a < 0}, and the points of Ws(EC) (resp. Wu(EC)) on the
Poincaré-Lyapunov disk in the case that κ = −1 (resp. κ = 1).

6.6 Proof of Theorem

In this section, the proofs of our main results are given. If the initial data are located on
R2\{a = 0}, the existence of the solutions follows from the standard theory of ordinary
differential equations. Therefore, we only consider the existence of the trajectories that
connect equilibria and the detailed dynamics near the equilibria on Φ1 (see Subsection
6.3.5).

6.6.1 Proof of Theorem 6.2.1

Proof. The proof of the existence of the connecting orbits between EA and E4 (resp.
E3) on the chart U1 for p ∈ 2N, p ∈ 2N + 1, and κ = 1 (resp. κ = −1) is obtained in
Proposition 6.3.1 and Subsection 6.3.6. That is, equation (6.1.8) has a family of radially
symmetric stationary solutions which corresponds to a family of the orbits of (6.1.14).
Furthermore, since these trajectories exist for {(a, b) ∈ Φ1 | a > 0}, the expression for the
transformation in Case 1 shows that U(r) < 1 (r ∈ (0,+∞)).

Therefore, it is sufficient to show that (6.2.1) and

lim
r→0

U(r) = 1− C (C > 0), lim
r→0

U ′(r) = 0.

Note that if we can derive (6.2.1), then the following is also proved.

lim
r→+∞

U(r) = −∞.

Next, the asymptotic behavior for r → 0 is derived as follows. We recall from (6.3.12)
that the solutions near a saddle point E3 are approximated

{
λ(τ) = C1e−ατ (1 + o(1)),

x(τ)− α = C2e(N−2)τ (1 + o(1)),
as τ → +∞,

where α = (−A−(N−2))/2, C1 and C2 are constants. Note that we focus on the direction
of stable manifold Ws(E3). We choose C1e−ατ as “the principal term”. Using (6.3.12),
we then have

dτ

dt
=

dτ

ds

ds

dt
= λ−p · a−p = 1.

This yields t(τ) = τ + C3 (C3 ∈ R). We can see t(τ) → +∞ as τ → +∞ since we focus
on the points on Ws(E3), and we get

τ(t) = t+ C4, (C4 ∈ R).
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Therefore, we obtain

a(t) =
1

λ
= λ−1 ∼

{
C1e

−ατ (1 + o(1))
}−1

∼ C5e
ατ = C5e

α(t+C4) = C6e
αt as t → +∞,

where Cj are constants. Since, the trajectories are lying on {a > 0}, it follows that C6 > 0.
On the other hand, we obtain

b(t) = λ−1x

∼ {C1e
−ατ (1 + o(1))}−1 · {C2e

(N−2)τ (1 + o(1)) + α}
∼ C7e

ατ .

Note that the last “∼” ignore the x term in order to extract the components in the stable
manifold direction, as described above. This idea has already been adopted in [35] and is
effective for obtaining more accurate asymptotic behavior. Thus,

b(t) ∼ C8e
αt as t → +∞.

Since, the trajectories are lying on {b > 0}, it follows that C8 > 0. From these arguments,
the following follows

ȧ ∼ b as t → +∞

and C8 = αC6.
From these results, we can obtain

lim
r→0

u(r) = lim
r→0

(1− rαa) = lim
r→0

(1− rαC6e
αt) = 1− C6

and

lim
r→0

u′(r) = lim
r→0

{rα−1(−αa+ b)} = lim
r→0

{rα−1(−αC6 + C8)r
−α} = 0

with C9 > 0. Therefore, we derive the following from the relationship between u and U
transformations in Case 1.

lim
r→0

U(r) = 1− C (C > 0), lim
r→0

U ′(r) = 0.

Finally, we derive the asymptotic behavior for r → +∞. The idea of this proof has
already been used in [33, 32], see also. We focus our attention on the dynamics around EA.
It is divided into two cases by the value of D = D(N, δ). Then, we derive the asymptotic
behavior for the two cases D > 0 and D < 0, respectively. Note that Remark 6.3.1 states
that the case D = 0 cannot occur. We define

ã = a−M1, b̃ = b− 0.

(i) Let us consider the case that D > 0, namely, the matrix JA has the real distinct
eigenvalues

σ1 =
−A+

√
D

2
, σ2 =

−A−
√
D

2
.

The eigenvectors corresponding to each eigenvalues are

v1 =

(
1
σ1

)
, v2 =

(
1
σ2

)
.
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We then obtain the following asymptotic behavior:

(
ã(t)
b̃(t)

)
= K1

(
1
σ1

)
eσ1t +K2

(
1
σ2

)
eσ2t

with any constants K1 and K2. Therefore, the solution around the equilibrium EA

is {
a(t) ∼ K1eσ1t +K2eσ2t +M1,
b(t) ∼ K1σ1eσ1t +K2σ2eσ2t,

M1 =

(
µ̃

B

) 1
p+1

.

Moreover, by using κ = 1 in (6.1.12), we have

u(r) = 1− rαa

∼ 1− rα(K1e
σ1t +K2e

σ2t +M1)

= 1−K1r
αeσ1 log r −K2r

αeσ2 log r −M1r
α

= 1−K1r
α+σ1 −K2r

α+σ2 −M1r
α as r → +∞.

Since 0 < δ < 1, it holds that

α+ σ1 < 0, α+ σ2 < 0.

Hence, from the relationship between u and U transformations in Case1, we obtain
as follows:

U(r) = 1− (1− u)
1

1−δ

∼ 1−
{
K1r

α+σ1 +K2r
α+σ2 +M1r

α
} 1

1−δ as r → +∞

where K1 and K2 are constants.

(ii) Consider the case that D < 0, namely, the matrix JA has the complex eigenvalues

σ = µ± iν =
−A

2
± i

1

2

√
|D|.

The eigenvectors corresponding to each eigenvalue are

v = p± iq =

(
1

−A

2

)
± i

(
0

1

2

√
|D|

)
.

The function ã(t) and b̃(t) are expressed as follows:

(
ã(t)
b̃(t)

)
= z(t)q+ w(t)p = z(t)

(
0

1

2

√
|D|

)
+ w(t)

(
1

−A

2

)
,

where (
z(t)
w(t)

)
:= eµt

(
cos νt − sin νt
sin νt cos νt

)(
z(0)
w(0)

)
.

Therefore, the solution a(t) around the equilibrium EA is

a(t) = e−
A
2 t

(
z(0) sin

√
|D|
2

t+ w(0) cos

√
|D|
2

t

)
+M1.
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Using κ = 1 in (6.1.12), we can derive the following:

u(r) = 1− rαa

= 1− r
2−N

2

(
K3 sin[

√
|D|
2

log r] +K4 cos[

√
|D|
2

log r]

)
−M1r

α as r → ∞

with K3 = z(0) and K4 = w(0). Hence, from the relationship between u and U
transformations in Case 1, the asymptotic behavior for r → +∞ is

U(r) ∼ 1−
{
r

2−N
2

(
K3 sin[

√
|D|
2

log r] +K4 cos[

√
|D|
2

log r]

)
+M1r

α

} 1
1−δ

.

Therefore, we obtain (6.2.1). This completes the proof of Theorem 6.2.1. !

Remark 6.6.1
The existence of a trajectory such that it passes through the line b = −αa on the disk
corresponds to the existence of r = r∗ such that U ′(r∗) = 0. In fact, the equation of this
line can be derived as follows:

U ′ = 0 ⇐⇒ u′ = 0 ⇐⇒ rα−1(−αa− b) = 0 ⇐⇒ b = −αa.

From the conclusion of Theorem 6.2.1, this line is the line passing through the origin and
E3 on this disk. And we know that E3 for κ = −1 is the point at infinity on this line (see
Figure 6.3.2 and Figure 6.3.3).

6.6.2 Proof of Theorem 6.2.2

As in the proof of Theorem 6.2.1, the proof of the existence of the connecting orbits
between EA and E3 (resp. E4) on the chart U1 for p ∈ 2N, p ∈ 2N + 1, and κ = 1
(resp. κ = −1) is obtained. Therefore, these trajectories correspond to the radially
symmetric stationary solution in (6.1.8). Moreover, these trajectories exist in {a > 0}, so
U(r) < 1 (r ∈ (0,+∞)) from the transformation in Case 1. The existence of a constant
r∗ ∈ (0,+∞) such that U ′(r∗) is shown from Remark 6.6.1. This is because the connecting
orbits between EA and E4 pass through a straight line that passes through the origin and
E3 for κ = −1 (see Figure 6.3.2).

Therefore, it is sufficient to show that (6.2.2). If these are proved, then the following
is also shown

lim
r→0

U(r) = −∞, lim
r→0

U ′(r) = ∞.

Using (6.3.13), we then have

dτ

dt
=

dτ

ds

ds

dt
= λ−pa−p = λ−p

(
1

λ

)−p

= 1.

This yields t(τ) = τ + C3 with a constant C3 ∈ R. We can see t(τ) → +∞ as τ → +∞
since we focus on the points on Ws(E4). This relationship shows that

τ(t) = t+ C4, (C4 ∈ R)
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holds. Therefore, we obtain

a(t) =
1

λ
∼
{
C1e

−(α+N−2)τ (1 + o(1))
}−1

∼ C5e
(α+N−2)τ

= C6e
(α+N−2)t as t → +∞

and

b(t) =
x

λ
∼
{
C1e

−(α+N−2)τ (1 + o(1))
}−1

·
{
C2e

−(N−2)τ (1 + o(1)) +M3

}

∼ C7e
(α+N−2)τ ·

{
C2e

−(N−2)τ (1 + o(1)) +M3

}

∼ C7M3e
(α+N−2)τ

= C8e
(α+N−2)t as t → ∞

where Cj are constants. Since, the trajectories are lying on {a > 0}, it follows that C6 > 0.
From these arguments, the following follows

ȧ ∼ b as t → +∞

and C8 = C5(α+N − 2) > 0.
By using κ = −1 in (6.1.12), we have

u(r) = 1− rαa ∼ 1− C5r
−(N−2) as r → 0,

u′(r) = rα−1(−αa+ b) ∼ C9r
−(N−1) as r → 0

with a positive constant C9. Hence, from the relationship between u and U transformations
in Case 1, we obtain (6.2.2). This completes the proof of Theorem 6.2.2. !

6.6.3 Proof of Theorem 6.2.3

Next, the proof of our main result related to Case 2 is given. It should be noted that if
the initial data are located on R2\{a ≤ 0}, the existence of the solutions follows from the
standard theory of ordinary differential equations.

Proof. The proof of the existence of the connecting orbit between the points of Wu(EB)

(resp. Ws(EB)) and the points of Ws(E
2
O) (resp. Wu(E

1
O)) is obtained in Proposition

6.4.1. That is, (6.1.8) has a radially symmetric stationary solution that corresponds to the
orbit of (6.1.16). Moreover, these trajectories exist in {a > 0}, so U(r) < 1 (r ∈ (0,+∞))
from the transformation in Case 2. Therefore, it is sufficient to show that (6.2.3) and

lim
r→0

U(r) = 1− C, lim
r→0

U ′(r) = 0

Let us derive the asymptotic behavior for r → 0. The idea of the proof is almost
similar to the proof of Theorem 6.2.1. Using (6.4.4), we then have dσ/dt = 1. It shows
that σ(t) = t+A1 holds. Therefore, we can obtain

{
a(t) ∼ A2e−2t,

b(t) ∼ A3e−2t,
as t → +∞
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with A3 = −2A2 < 0. By using κ = −1 in (6.1.15), we have





lim
r→0

u(r) = lim
r→0

(−2 log r + log a) = A4,

lim
r→0

u′(r) = lim
r→0

(
−2

1

r
− 1

r

1

a
ȧ

)
= 0

with a constant A4. Hence, from the relationship between u and U transformations in
Case 2, we can obtain as follows:

lim
r→0

U(r) = 1− C, lim
r→0

U ′(r) = 0

The derivation process of (6.2.3) is similar to the proof of Theorem 6.2.1 and can be
divided into three cases according to the sign of N − 10. In particular, see [33, 32] for
the derivation process of the asymptotic behavior in the case of N = 10. Therefore, this
completes the proof of Theorem 6.2.3. !

6.6.4 Proof of Theorem 6.2.4

Proof. The proof of the existence of the connecting orbit between EO′ and EC is obtained
in Proposition 6.5.1. Therefore, the existence of a radially symmetric stationary solution
can be shown by similar arguments as before. (6.2.4) is derived in much the same way as
in Theorem 6.2.1 and Theorem 6.2.3. The same applies to the proof of

lim
r→0

U(r) = 1− C, lim
r→0

U ′(r) = 0.

Therefore, this completes the proof of Theorem 6.2.4. !

6.6.5 Proof of Theorem 6.2.6

The existence of a connecting orbit starting from the points on the unstable manifold of
EO′ and reaching the points on the stable manifold of EO′ was obtained in Proposition
6.5.2. Therefore, the existence of a radially symmetric stationary solution can be shown
by similar arguments as before. (6.2.5) and

lim
r→0

U(r) = 1−K1, lim
r→0

U ′(r) = 0

are derived by a similar procedure as before arguments. Therefore, this completes the
proof of Theorem 6.2.6. !

6.6.6 Proof of Theorem 6.2.7

The proof of the existence of the connecting orbit between EO′ and EC is obtained in
Proposition 6.5.3. The existence of a radially symmetric stationary solution can be shown
by similar arguments as before. Therefore, it is sufficient to show that (6.2.6), (6.2.7),
(6.2.8), and

lim
r→0

U ′(r) = −
√

µ

N − 1− δ
.

Note that (6.2.8) is derived in much the same way as in Theorem 6.2.1, Theorem
6.2.3, and Theorem 6.2.4. In addition, (6.2.6) is derived by a similar procedure as before
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arguments. Then, all we need to do is derive (6.2.7). This can be derived by performing
the work of selecting the principal term in the calculation process to derive (6.2.8). The
same is true for the behavior of U ′(r) as r → 0.

In order to derive (6.2.7), we focus our attention on the dynamics around EC in the
case that N/2 < δ < N − 1 and κ = −1. Similarly, as in Subsection 6.6.1, the solution
around this equilibrium is

{
a(t) ∼ K1eσ1t +K2eσ2t + L1 ∼ L1,

b(t) ∼ K1σ1eσ1t +K2σ2eσ2t,
L1 =

(
−B

µ̃

) 1
p−1

> 0, as t → ∞

when D > 0. The same is true for the solution around it when D < 0. Note that we have
chosen the principal term in the expression for a(t). By using κ = −1 in (6.1.17), we have

{
u(r) = rα − 1 ∼ L1rα − 1

u′(r) = (1− δ)r−δa− r−δb ∼ (1− δ)r−δL1
as r → 0

for both D > 0 and D < 0. From this result, we can conclude that

U(r) ∼ 1− (L1r
α)−

1
δ−1 = 1−

√
µ

N − 1− δ
r as r → 0

with L
− 1

δ−1
1 =

(
µ

N − 1− δ

) 1
2

. Thus, (6.2.7) can be derived. Similarly,

lim
r→0

U ′(r) = lim
r→0

1

δ − 1
(1− U)δu′ = −

√
µ

N − 1− δ
< 0

holds. Therefore, this completes the proof of Theorem 6.2.7. !

6.7 Concluding remarks

In this chapter, we studied the existence, information about their shape, and the asymp-
totic behavior of radially symmetric stationary solutions of (6.1.1). These are studied by
applying the framework that combines Poincaré type compactification, classical dynami-
cal systems theory, and geometric methods for desingularization of vector fields (blow-up
technique).

Motivated by the previous study [21], this chapter considers the question of how far
we can investigate the structure of solutions in a unified way by applying this framework.
Then, our framework allowed us to obtain results that were not obtained in [21] (mainly,
Theorem 6.2.2, (6.2.8) in Theorem 6.2.7) and results that were partially included in the
results there (Theorem 6.2.1, 6.2.3, 6.2.4, 6.2.6).

As mentioned in Section 6.1, one of the advantages of using these methods is that it
is possible to reveal all the dynamics of the ODEs of interest, including infinity. That is,
we expect to enumerate all solutions of (6.1.8).

However, in this problem, restrictions are imposed on the range of existence of each
of the conversions from U to u and from u to a. This also restricts the possible regions
in these ODEs, and we were not able to study the case of δ ≥ N − 1. The structure of
the solution in this range has been obtained by [21]. It remains to be seen how close we
can get to this conclusion in the framework of this chapter, or whether we can extend this
conclusion.

139



Chapter 6 Radially symmetric stationary solutions for a MEMS type reaction-diffusion
equation with fringing field

Since the theory of blow-up (desingularization of the vector fields) is not applicable
for the non-polynomial vector fields, we cannot deal with the general case that p ∈ R.
Therefore, the need to impose p ∈ N led us to consider discrete values for δ. Hence, we
leave it open here.
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Chapter 7

Traveling wave solutions for
degenerate nonlinear parabolic
equations

Abstract

We consider the traveling wave solutions of the degenerate nonlinear parabolic equation
ut = up(uxx+u) which arises in the model of heat combustion, solar flares in astrophysics,
plane curve evolution problems and the resistive diffusion of a force-free magnetic field in a
plasma confined between two walls. We also deal with the equation vτ = vp(vxx+v−v−p+1)
related with it. We first give a result on the whole dynamics on the phase space R2 with
including infinity about two-dimensional ordinary differential equation that introduced
the traveling wave coordinates: ξ = x − ct by applying the Poincaré compactification
and dynamical system approach. Second, we focus on the connecting orbits on it and
give a result on the existence of the weak traveling wave solutions with quenching for
c > 0 and p ∈ 2N. Moreover, we give the detailed information about the asymptotic
behavior of u(ξ), u′(ξ), v(ξ) and v′(ξ) for p ∈ 2N. In the case that p ∈ 2N + 1, it is
too complicated to determine the dynamics near the singularities on the Poincaré disk,
however, we classify the connecting orbits and corresponding traveling wave solutions and
obtain their asymptotic behavior. This chapter is based on the following published paper
([32]):

Ichida, Y., Sakamoto, T.O.: Traveling wave solutions for degenerate nonlinear
parabolic equations, J. Elliptic Parabol. Equ. 6, 795–832 (2020).

7.1 Introduction

In this chapter, we consider the following degenerate nonlinear parabolic equation

ut = up(uxx + u), (t, x) ∈ (0, T )× R, (7.1.1)

where p ∈ N and 0 < T < ∞. This equation arises in the modeling of heat combustion,
solar flares in astrophysics, plane curve evolution problems and the resistive diffusion of
a force-free magnetic field in a plasma confined between two walls (see [4], [46], [47], [62]
and references therein).

In particular, we briefly introduce the derivation from plane curve evolution prob-
lems. Let C(t) be a smooth Jordan curve at time t in the plane R2. The curve C(t) is

141
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parameterized by X(u, t) for u ∈ [0, 1] and moves by

Ẋ = V (u, t)N(u, t) +W (u, t)T (u, t),
(
Ẋ = ∂X/∂t

)
.

Here T is the unit tangent vector, N = −T⊥ is the unit outward normal vector, V is
the normal velocity in N -direction and W is the tangent velocity in T -direction. Also,
we denote by κ and θ the curvature and tangential angle of the curve C(t), respectively.
Then, we can see that the classical curvature flow equation V = −κ corresponds to (7.1.1)
in the case that p = 2 (see [71] for the details).

Poon [62] (and references therein) considered the following equation:

ut = up(uxx + u), (t, x) ∈ (0, T )× (−L,L), (7.1.2)

where p ∈ R and T < ∞. He studied that the non-negative solutions with either the
Dirichlet boundary condition or periodic boundary condition. As a result, the upper
bound and lower bound of the blow-up rate were obtained if a non-negative solution of
(7.1.2) blows up of type II in finite time. In these studies, the rescaled function

v(τ, x) = (pT )
1
p e−τu(t, x), t = T (1− e−pτ ), τ ∈ [0,+∞)

plays important role. One can see that if u(t, x) is a solution of (7.1.2), then v(τ, x) is a
non-negative solution of the rescaled equation

vτ = vp(vxx + v − v−p+1), (τ, x) ∈ (0,+∞)× (−L,L). (7.1.3)

In [62], the lower bound of the blow-up rate is obtained with considering the traveling wave
solutions of (7.1.3). Similarly, the equation (7.1.1) can be transformed into the following
equation

vτ = vp(vxx + v − v−p+1), (τ, x) ∈ (0,∞)× R. (7.1.4)

Since the traveling wave solutions are not only upper (or lower) solutions as discussed in
[62] but also the entire solutions of the equations, we study that of (7.1.1) and (7.1.4).

In order to consider the traveling waves of (7.1.1), we introduce the following change
of variables:

u(t, x) = φ(ξ), ξ = x− ct, c > 0.

We seek the solution φ(ξ) of the following equation:

−cφ′ = φpφ′′ + φp+1, ξ ∈ R, ′ =
d

dξ
, (7.1.5)

or equivalently, {
φ′ = ψ,
ψ′ = −cφ−pψ − φ.

(7.1.6)

Similarly, in terms of (7.1.4), we introduce the following change of variables:

v(τ, x) = φ(ξ), ξ = x− cτ, c > 0.

We also seek the solution φ(ξ) of the following equation:

−cφ′ = φpφ′′ + φp+1 − φ, ξ ∈ R, ′ =
d

dξ
, (7.1.7)
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or equivalently, {
φ′ = ψ,
ψ′ = −cφ−pψ − φ+ φ−p+1.

(7.1.8)

Combining the equation (7.1.5) and (7.1.7), we obtain the following equation:

−cφ′ = φpφ′′ + φp+1 − δφ, ξ ∈ R, ′ =
d

dξ
,

or equivalently, {
φ′ = ψ,
ψ′ = −cφ−pψ − φ+ δφ−p+1,

(7.1.9)

where δ = 0 or 1. Here we note that the case when δ = 0 corresponds to (7.1.6) and the
case that δ = 1 corresponds to (7.1.8).

We expect that the negative powers nonlinear term φ−p and δφ−p+1 could induce
the singularity in finite time (see [31, 33, 49, 50]). Therefore, we apply the Poincaré
compactification (see Section 1.1) to the dynamical system of (7.1.9) to obtain the detailed
information of the traveling wave solutions (in weak sense) for (7.1.1) and (7.1.4).

Before we state the main results of this chapter, we state the Definition of weak trav-
eling wave solutions with quenching for (7.1.1) and (7.1.4) as follows.

Definition 7.1.1
Let u(ξ) be a quasi traveling waves with quenching of (7.1.1) on a semi-infinite interval
(ξ∗,∞) satisfying

lim
ξ→ξ∗+0

|u′(ξ)| = ∞ and lim
ξ→ξ∗+0

u(ξ) = 0

(see Definition 2.1.3 or Definition 3 of [31]). Then, we say that a function

u∗(ξ) =

{
0, ξ ∈ (−∞, ξ∗],

u(ξ), ξ ∈ (ξ∗,∞)

is a weak traveling wave solution with quenching of (7.1.1).

The above Definition implies that u∗(ξ) satisfies
∫

R

[
c uϕ′ + p(up−1u′ϕ− upϕ′)u′ − up+1(ϕ′′ + ϕ)

]
dξ = 0

for all ϕ ∈ C∞
0 (R). We define a weak traveling wave solution with quenching of (7.1.4)

similarly.
We then state the main results of this chapter:

Theorem 7.1.1
Assume that p ∈ 2N. Then, for a given positive constant c, the equation (7.1.1) has a
family of weak traveling wave solutions with quenching (which corresponds to a family of
the orbits of (7.1.6)). Moreover, each weak traveling wave solution with quenching u(ξ)
satisfies the following:

•






lim
ξ→ξ∗+0

u(ξ) = 0, lim
ξ→+∞

u(ξ) = 0,

lim
ξ→ξ∗+0

u′(ξ) = +∞, lim
ξ→+∞

u′(ξ) = 0.

• u(ξ) > 0 holds for ξ ∈ (ξ∗,+∞) and u(ξ) = 0 holds for ξ ∈ (−∞, ξ∗].
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• There exists a constant ξ0 ∈ (ξ∗,+∞) such that the following holds: u′(ξ) > 0 for
ξ ∈ (ξ∗, ξ0), u′(ξ0) = 0 and u′(ξ) < 0 for ξ ∈ (ξ0,+∞).

In addition, asymptotic behavior of u(ξ) are

{
u(ξ) ∼ A(ξ − ξ∗)

1
p

u′(ξ) ∼ A(ξ − ξ∗)
− p−1

p
as ξ → ξ∗ + 0 (7.1.10)

and {
u(ξ) ∼ (pξ/c)−

1
p

u′(ξ) ∼ c(pξ/c)−
p+1
p

as ξ → +∞, (7.1.11)

where A > 0 is a constant.

Asymptotic behavior of u′(ξ) for ξ → ξ∗ + 0 that is more accurate than in [32] was
obtained after publication of the paper. Note that this was obtained by refining the
asymptotic form, as will be discussed later in the proof.

Figure 7.1.1: Schematic picture of the traveling wave solutions obtained in Theorems.
Here it should be noted that the position of the quenching point ξ∗ is not determined in
our studies, however, they are shown in the figures for the convenience. [Left: The weak
traveling wave solution with quenching in Theorem 7.1.1.] [Middle: The weak traveling
wave solution with quenching in Theorem 7.1.2 in the case that D < 0.] [Right: The
traveling wave solution on ξ ∈ R obtained in Theorem 7.1.3 in the case that D > 0.]

Theorem 7.1.2
Assume that p ∈ 2N. Then, for a given positive constant c, the equation (7.1.4) has a
family of weak traveling wave solutions with quenching (which corresponds to a family of
the orbits of (7.1.8)). Moreover, each weak traveling wave solution with quenching v(ξ)
satisfies the following:

•






lim
ξ→ξ∗+0

v(ξ) = 0, lim
ξ→+∞

v(ξ) = 1,

lim
ξ→ξ∗+0

v′(ξ) = +∞, lim
ξ→+∞

v′(ξ) = 0.

• v(ξ) > 0 holds for ξ ∈ (ξ∗,+∞) and v(ξ) = 0 holds for ξ ∈ (−∞, ξ∗].

Furthermore, the asymptotic behavior of v(ξ) and v′(ξ) for ξ → +∞ are

v(ξ) ∼






B1eω1ξ +B2eω2ξ + 1 (D > 0),
(B3ξ +B4)eωξ + 1 (D = 0),

e−
c
2 ξ

(
B5 · [sin

√
|D|
2 ξ] +B6[cos

√
|D|
2 ξ]

)
+ 1 (D < 0),

(7.1.12)
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and

v′(ξ) ∼






c2(B1λ1eω1ξ +B2ω2eλ2ξ) (D > 0),

c2
{
− c

2
(B3ξ +B4)eωξ +B3

(
1− c

2
α
)
eωξ
}

(D = 0),

c2

2

√
|D| · e−

c
2 ξ

(
B5 · [sin

√
|D|
2 ξ]−B6 · [cos

√
|D|
2 ξ]

)

−c3

2
· e−

c
2 ξ

(
B5 · [sin

√
|D|
2 ξ] +B6 · [cos

√
|D|
2 ξ]

)
(D < 0),

(7.1.13)

where Bj are constants and

ω1 =
−c+

√
D

2
, ω2 =

−c−
√
D

2
, ω = − c

2
, D = c2 − 4p.

In addition, the asymptotic behavior of v(ξ) and v′(ξ) for ξ → ξ∗ + 0 are
{

v(ξ) ∼ A(ξ − ξ∗)
1
p

v′(ξ) ∼ A(ξ − ξ∗)
− p−1

p
as ξ → ξ∗ + 0. (7.1.14)

Asymptotic behavior of v′(ξ) for ξ → ξ∗ + 0 that is more accurate than in [32] was
obtained after publication of the paper. Note that this was obtained by refining the
asymptotic form, as will be discussed later in the proof.

Theorem 7.1.3
Assume that p ∈ 2N. Then, for a given positive constant c, the equation (7.1.4) has a
family of traveling wave solutions (which corresponds to a family of the orbits of (7.1.8)).
Each traveling wave solution v(ξ) satisfies the following:

•






lim
ξ→−∞

v(ξ) = 0, lim
ξ→+∞

v(ξ) = 1,

lim
ξ→−∞

v′(ξ) = 0, lim
ξ→+∞

v′(ξ) = 0.

• v(ξ) > 0 holds for ξ ∈ R.

In addition, the asymptotic behavior of v(ξ) and v′(ξ) for ξ → +∞ are expressed as
(7.1.12) and (7.1.13).

This chapter is organized as follows. In the next section, we obtain the dynamics of
(7.1.9) with p ∈ 2N on the Poincaré disk via Poincaré compactification and basic theory
of the dynamical systems. The proof of Theorems will be completed in Section 7.3. In
Section 7.4, we consider the case that p ∈ 2N+1. Section 7.5 is devoted to the conclusions
and remarks.

7.2 Dynamics on the Poincaré disk of (7.1.9) with p ∈ 2N
In order to study the dynamics of (7.1.9) on the Poincaré disk, we desingularize it by the
time-scale desingularization

ds/dξ = {φ(ξ)}−p for p ∈ 2N. (7.2.1)

Since we assume that p is even, the direction of the time does not change via this desin-
gularization. Then we have

{
φ′ = φpψ,
ψ′ = −cψ − φp+1 + δφ,

(
′ =

d

ds

)
, (7.2.2)
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where δ = 0 or δ = 1.
It should be noted that the time scale desingularization (7.2.1) is simply multiplying the

vector field by φp. Then, except the singularity {φ = 0}, the solution curves of the system
(vector field) remain the same but are parameterized differently. Still, we refer to Section
7.7 of [44] and references therein for the analytical treatments of desingularization with
the time rescaling. In what follows, we use the similar time rescaling (re-parameterization
of the solution curves) repeatedly to desingularize the vector fields.

The system (7.2.2) has the equilibrium EO : (φ,ψ) = (0, 0) for δ = 0. Also, it has the
equilibria EO and Eδ for δ = 1. We will determine the stability of Eδ in Section 3.7. We
study the stability of EO. The behavior of solutions for δ = 0 and δ = 1 are different.

7.2.1 Dynamics of (7.2.2) near (0, 0) : the case δ = 0

When the parameter δ is δ = 0, the Jacobian matrix of the vector field (7.2.2) at EO is

EO :

(
0 0
0 −c

)
.

Then, the center manifold theory is applicable to study the dynamics near EO (for instance,
see [9]). It implies that there exists a function h(φ) satisfying

h(0) =
dh

dφ
(0) = 0

such that the center manifold of (7.2.2) is represented as {(φ,ψ) |ψ = h(φ)} near (0, 0).
Differentiating it with respect to s, we have

−ch(φ)− φp+1 =
dh

dφ
· φph(φ).

Then, we can obtain the approximation of the (graph of) center manifold as follows:

{
(φ,ψ) |ψ = −φp+1/c+O(φ3p+1)

}
. (7.2.3)

Therefore, the dynamics of (7.2.2) near (0, 0) is topologically equivalent to the dynamics
of the following equation:

φ′ = −φ2p+1/c+O(φ4p+1). (7.2.4)

These results give us the dynamics of (7.2.2) near (0, 0) for δ = 0.

7.2.2 Dynamics of (7.2.2) near (0, 0) : the case δ = 1

When the parameter δ is δ = 1, the Jacobian matrix of the vector field (7.2.2) at EO is

EO :

(
0 0
1 −c

)
.

It has the real distinct eigenvalues 0 and −c. The eigenvectors corresponding to each
eigenvalue are

v1 =

(
c
1

)
, v2 =

(
0
1

)
.
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We set matrix T as T = (v1,v2). Then, we can obtain the following:
(
φ′(s)
ψ′(s)

)
=

(
0 0
1 −c

)(
φ(s)
ψ(s)

)
+

(
φpψ

−φp+1

)

= T

(
0 0
0 −c

)
T−1

(
φ(s)
ψ(s)

)
+

(
φpψ

−φp+1

)
.

By multiplying T−1 to both sides from left,

T−1

(
φ′(s)
ψ′(s)

)
=

(
0 0
0 −c

)
T−1

(
φ(s)
ψ(s)

)
+ T−1

(
φpψ

−φp+1

)
. (7.2.5)

We set

(
φ̃(s)
ψ̃(s)

)
= T−1

(
φ(s)
ψ(s)

)
. Then, we can see the following equations:

φpψ = cpφ̃p+1 + cpφ̃pψ̃, −φp+1 = −cp+1φ̃p+1.

Therefore, the equation (7.2.5) is

d

ds

(
φ̃(s)
ψ̃(s)

)
=

(
0 0
0 −c

)(
φ̃(s)
ψ̃(s)

)
+

(
cp−1φ̃p+1 + cp−1φ̃pψ̃

−cp−1φ̃p+1 − cp−1φ̃pψ̃ − cp+1φ̃p+1

)
,

namely,
{
φ̃′(s) = cp−1φ̃p+1 + cp−1φ̃pψ̃,
ψ̃′(s) = −cψ̃ − cp−1φ̃p+1 − cp−1φ̃pψ̃ − cp+1φ̃p+1,

(
′ =

d

ds

)
. (7.2.6)

As in the case that δ = 0, the center manifold theory is applicable to study the
dynamics of (7.2.6). It implies that there exists a function h(φ̃) satisfying

h(0) =
dh

dφ̃
(0) = 0

such that the center manifold of (7.2.6) is represented as {(φ̃, ψ̃) | ψ̃(s) = h(φ̃(s))} near
(0, 0). Differentiating it with respect to s, we have

−ch(φ̃)− cp−1φ̃p+1 − cp−1φ̃ph(φ̃)− cp+1φ̃p+1 =
dh

dφ̃

(
cp−1φ̃p+1 + cp−1φ̃ph(φ̃)

)
.

Then, we can obtain the approximation of the (graph of) center manifold as follows:
{
(φ̃, ψ̃) | ψ̃(s) = −cp−2(c2 + 1)φ̃(s)p+1 +O(φ̃p+2)

}
. (7.2.7)

Therefore, the dynamics of (7.2.6) near (0, 0) is topologically equivalent to the dynamics
of the following equation:

φ̃′(s) = cp−1φ̃p+1 − c2p−3(c2 + 1)φ̃2p+1.

Note that φ̃ and ψ̃ are φ̃ = φ/c, ψ̃ = ψ− φ/c. We conclude that the approximation of the
(graph of) center manifold are

ψ(s) = φ/c− [(c2 + 1)φp+1]/c3 (7.2.8)

and the dynamics of (7.2.2) near (0, 0) is topologically equivalent to the dynamics of the
following equation:

φ′(s) = φp+1/c− [(c2 + 1)φ2p+1]/c3. (7.2.9)

These results give us the dynamics of (7.2.2) near (0, 0) for δ = 1. Now we can consider
the dynamics of (7.2.2) on the charts U j and V j .
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7.2.3 Dynamics on the chart U2

To obtain the dynamics on the chart U2, we introduce coordinates (λ, x) by the formulas

φ(s) = x(s)/λ(s), ψ(s) = 1/λ(s).

Then we have {
λ′ = cλ+ λ1−pxp+1 − δλx,
x′ = λ−pxp + cx+ λ−pxp+2 − δx2.

Time-scale desingularization dσ/ds = λ(s)−p yields
{
λσ = cλp+1 + λxp+1 − δλp+1x,
xσ = xp + cλpx+ xp+2 − δλpx2,

(7.2.10)

where λσ = dλ/dσ and xσ = dx/dσ. The system (7.2.10) has the equilibrium

E+
0 : (λ, x) = (0, 0).

The Jacobian matrix of the vector field (7.2.10) at its equilibrium is

E+
0 :

(
0 0
0 0

)
.

The equilibrium E+
0 is not hyperbolic. Therefore, to determine the dynamics near E+

0 , we
desingularize it by introducing the following blow-up coordinates:

λ = rp−1λ̄, x = rpx̄

(see Section 1.2 in this thesis and Section 3 of [14] for the desingularizations of vector
fields by the blow-up). Since we are interested in the dynamics on the Poincaré disk, we
consider the dynamics of blow-up vector fields on the charts {λ̄ = 1} and {x̄ = ±1}.

Dynamics on the chart {λ̄ = 1}

By the change of coordinates λ = rp−1, x = rpx̄, we have
{

rσ = (p− 1)−1(crp
2−p+1 + rp

2+p+1x̄p+1 − δrp
2+1x̄),

xσ = (p− 1)−1(−crp
2−px̄− rp

2+px̄p+2 + δrp
2
x̄2) + rp

2−px̄p.

The time-rescaling dη/dσ = rp
2−p yields

{
rη = (p− 1)−1(cr + r2p+1x̄p+1 − δrp+1x̄),
xη = (p− 1)−1(−cx̄− r2px̄p+2 + δrpx̄2) + x̄p.

(7.2.11)

The equilibria of (7.2.11) on {r = 0} are

E
+
0 : (r, x̄) = (0, 0), E

+
p : (0, [c/(p− 1)]

1
p−1 ).

The Jacobian matrices of the vector field (7.2.11) at these equilibria are

E
+
0 :




c

p− 1
0

0 − c

p− 1



 , E
+
p :

( c

p− 1
0

0 c

)
.

Therefore, E
+
0 is a saddle, and E

+
p is a source for c > 0.

The solutions are approximated as
{

r(η) ∼ A1e
c

p−1η(1 + o(1)),
x(η)− P ∼ A2ecη(1 + o(1)),

P :=

(
c

p− 1

) 1
p−1

with constants Aj .
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Dynamics on the chart {x̄ = 1}

By the change of coordinates λ = rp−1λ̄, x = rp, and time-rescaling dη/dσ = rp
2−p, we

have {
rη = p−1(r + crλ̄p + r2p+1 − δrp+1λ̄p),
λ̄η = p−1{−(p− 1)λ̄+ cλ̄p+1 + r2pλ̄− δrpλ̄p+1}.

The equilibria on {r = 0} are

(r, λ̄) = (0, 0), (r, λ̄) = (0, [p− 1/c]
1
p ).

By the further computations, we can see that (0, 0) is a saddle, and (0, [p − 1/c]
1
p ) is a

source.

Dynamics on the chart {x̄ = −1}

By the change of coordinates λ = rp−1λ̄, x = −rp, and time-rescaling dη/dσ = rp
2−p, we

have {
rη = p−1(−r + crλ̄p − r2p+1 + δrp+1λ̄p),
λ̄η = p−1{(p− 1)λ̄+ cλ̄p+1 − r2pλ̄+ δrpλ̄p+1}.

The equilibrium on {r = 0, λ̄ ≥ 0} is (0, 0). The linearized eigenvalues are −p−1 and
(p−1)/p with corresponding eigenvectors (1, 0) and (0, 1), respectively. Therefore, (r, λ̄) =
(0, 0) on the chart {x̄ = −1} is a saddle.

Combining the dynamics on the charts {λ̄ = 1} and {x̄ = ±1}, we obtain the dynamics
on U2 (see Figure 7.2.1).

7.2.4 Dynamics on the chart V 2

The change of coordinates

φ(s) = −x(s)/λ(s), ψ(s) = −1/λ(s)

gives the projected dynamics of (7.2.2) on the chart V 2:

{
λσ = cλp+1 + λxp+1 − δλp+1x,
xσ = xp + cλpx+ xp+2 − δλpx2,

(7.2.12)

where σ is the new time introduced by dσ/ds = λ(s)−p. We can see that the system
(7.2.12) and (7.2.10) are same.

7.2.5 Dynamics on the chart U1

Let us study the dynamics on the chart U1. The transformations

φ(s) = 1/λ(s), ψ(s) = x(s)/λ(s)

yield {
λσ = −λx,
xσ = −cλpx+ δλp − 1− x2

(7.2.13)

via time-rescaling dσ/ds = λ(s)−p. When the parameter δ is δ = 0, the system (7.2.13)
has no equilibria. If δ = 1, then the equilibrium of (7.2.13) is (λ, x) = (1, 0) that coincides
with the equilibrium (φ,ψ) = (1, 0) of (7.1.9).
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Figure 7.2.1: Schematic pictures of the dynamics of the blow-up vector fields and U2 in
the case that c > 0 and p ∈ 2N.

7.2.6 Dynamics on the chart V 1

The transformations

φ(s) = −1/λ(s), ψ(s) = −x(s)/λ(s)

yield {
λσ = −λx,
xσ = −cλpx+ δλp − 1− x2

(7.2.14)

via time-rescaling dσ/ds = λ(s)−p. We can see that the system (7.2.14) can be coincided
with (7.2.13).

7.2.7 Dynamics on the Poincaré disk

In order to see the dynamics on the Poincaré disk, we study the dynamics near finite-
equilibria of (7.1.9). If δ = 1 and p is even , then (7.1.9) has the equilibria ±Eδ : (φ,ψ) =
(±1, 0). Let J1 be the Jacobian matrix of the vector field (7.1.9) at Eδ. Then, the behavior
of the solution around Eδ is different by the sign of D (which is defined in Theorem 7.1.2).
For instance, the matrix J1 has the real distinct eigenvalues if D > 0 and other cases can
be concluded similarly. In addition, if c > 0, then the real part of all eigenvalues of J1 are
negative. Therefore, we determine that the the equilibria ±Eδ : (φ,ψ) = (±1, 0) are sink.

Combining dynamics on the chart U j and V j , we obtain the dynamics on the Poincaré
disk in the case that p is even (see Figure 7.2.2). If the Eδ is asymptotically stable, then
Eδ is a stable node for D ≥ 0 and is a stable focus (spiral sink) for D < 0.
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7.3 Proof of the Theorems

Figure 7.2.2: Schematic picture of the dynamics on the Poincaré disk and corresponding
(weak) traveling wave solutions in the case that p is even with D < 0 and c > 0.

Remark 7.2.1
In Figure7.2.2, we need to be careful about the handling of the point EO : (φ,ψ) = (0, 0)
for δ = 0 and δ = 1. When we consider the parameter s on the disk, the point EO is the
equilibrium of (7.2.2). However, EO is a point on the line {φ = 0} with singularity about
the parameter ξ. We can see that dφ/dψ takes the same values on the vector fields defined
by (7.2.2) and (7.1.9) by excepting the singularity {φ = 0}. If the trajectories start (resp.
come in ) the equilibrium EO about the parameter s, then they start from (resp. come
in) the point EO about ξ.

7.3 Proof of the Theorems

In this section, we prove our main results. If the initial data are located on H+\{φ = 0},
the existence of the solutions follows from the standard theory for the ordinary differential
equations. Therefore, we consider the existence of the trajectories that connect equilibria
and the detailed dynamics near the equilibria on the Poincaré disk and their asymptotic
behavior.

Proof of Theorem 7.1.1

Since the point (y1, y2, y3) = (0, 1, 0) on the Poincaré disk corresponds to E+
0 : (φ,ψ) =

(0,+∞), we denote it by E+
0 as well. Similarly, we denote (y1, y2, y3) = (0, 0, 1) by EO,

which corresponds to the equilibrium (φ,ψ) = (0, 0).
First, we prove the existence of connecting orbit between E+

0 and EO on the Poincaré
disk (see Figure 7.2.2).

For a given compact subset W ⊂ H+, there are no equilibrium or closed orbit in W .
Therefore, by the Poincaré-Bendixson theorem, any trajectories starting from the points
in W cannot stay in W with increasing s. This implies that the trajectories in H+ go to
EO : (φ,ψ) = (0, 0) from S1, which corresponds to {‖(φ,ψ)‖ = ∞}. Since the line {φ = 0}
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is invariant under the flow of (7.2.2), therefore, any trajectories start from the points in
{y ∈ H+ | y1 > 0} cannot go to {y ∈ H+ | y1 < 0}.

Then, let Wu
(E

+
p ) be a unstable manifold of E

+
p (which is the equilibrium of the

system (7.2.11)). We denote by Wu(E
+
p ) the unstable set, which corresponds to Wu

(E
+
p )

on the blow-up vector filed (7.2.11) of the equilibrium E+
0 of (7.2.10). Similarly, we denote

by Wc(EO) the stable set of EO, corresponding to the stable center manifold of EO on
the blow-up vector field (7.2.2).

Consider the trajectories start from the points on Wu(E
+
p ) ⊂ {y ∈ H+ | y1 > 0}. The

trajectories cannot stay in any compact subset on H+, and cannot go to {y ∈ H+ | y1 < 0},
therefore, they go to EO with lying on Wc(EO). This implies that the system (7.1.9) and
(7.2.2) possess the orbits that connect E+

0 and EO on the Poincaré disk. Also we recall
Remark 7.2.1. Thus, there are orbits connecting (φ,ψ) = (0,+∞) and (0, 0) on the original
vector field (7.1.9).

Second, we prove the existence of a constant ξ0 ∈ (ξ∗,+∞). It is sufficient to show the
connecting orbits pass through the line {ψ = 0}. Considering (7.1.9) for δ = 0, φ′|ψ=0 = 0
and ψ′|ψ=0 = −φ. Note that we focus on {y ∈ H+ | y1 > 0}, ψ′|ψ=0 satisfies ψ′|ψ=0 < 0 for

φ > 0. Therefore, any trajectories start from the points on Wu(E
+
p ) ⊂ {y ∈ H+ | y1 > 0}

must pass ψ = 0, and go to EO with lying on Wc(EO).
Finally, we compute the asymptotic behavior of the trajectories near the equilibria E+

0
and EO as follows:

(i) As shown in [31] and [33], we can obtain the asymptotic behavior of u(ξ) and u′(ξ)
at E+

0 . Indeed,

dη

dξ
=

ds

dξ
· dσ
ds

· dη
dσ

= φ−p · λ−p · rp2−p

= r−px̄−p

∼
(
A1e

c
p−1η(1 + o(1))

)−p
· (A2e

cη(1 + o(1)) + P )−p

∼ A3e
−pc
p−1η · (A2e

cη(1 + o(1)) + P )−p

= A3e
−pc
p−1η · 1

(A2ecη(1 + o(1)) + P )p

= A3e
−pc
p−1η · 1

{A2ecη(1 + o(1))}p + p {A2ecη(1 + o(1))}p−1 P + · · ·+ P p

∼ Ae
−pc
p−1η as η → −∞

holds with constants A and Aj . Note that this argument is a refinement of [33]. Here,
“ f(x) ∼ g(x) as x → a” means that f(x)− g(x) = o(g(x)) as x → a, equivalently,

lim
x→a

∣∣∣∣
f(x)

g(x)

∣∣∣∣ = 1.

This yields

ξ(η) ∼ Ae
pc

p−1η + Ã, (Ã ∈ R).

Set ξ∗ = lim
η→−∞

ξ(η), then we have

ξ∗ = A

∫ 0

−∞
e

pc
p−1ηdη < +∞.
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Therefore,

ξ − ξ∗ ∼ Ae
pc

p−1η (η → −∞)

holds. Finally, we obtain

u(ξ) = φ(ξ) = rx̄

∼
{
A1e

c
p−1η(1 + o(1))

}
· {A2e

cη(1 + o(1)) + P}

∼ A4e
c

p−1η · {A2e
cη(1 + o(1)) + P}

= A5e
c

p−1ηecη +A4 · P · e
c

p−1η

= A5e
pc

p−1η +A4 · P · e
c

p−1η

∼ Ae
c

p−1η.

Here, in last relation, since e
pc

p−1η < e
c

p−1η (η < 0) is satisfied by pc/(p−1) > c/(p−1),
we choose the term with the greater influence when η → −∞. Therefore, we have

u(ξ) = φ(ξ) ∼ Ae
c

p−1η ∼ A(ξ − ξ∗)
1
p (ξ → ξ∗ + 0).

Since the trajectories are lying on {φ > 0}, it holds that A > 0.

Similarly, we can obtain the rate for u′(ξ) = c2ψ(ξ) as ξ → ξ∗.

(ii) If the initial value is on the center manifold, the solution at the around EO on
Poincaré disk has the form






φ(s) = 2p

√
1

2
cps− 2pÃ

,

ψ(s) = −1

c

(
1

2
cps− 2pÃ

) p+1
2p

.

(7.3.1)

Since the initial value φ(0) is located on {φ > 0}, it holds that Ã < 0. These results
follow from (7.2.3) and (7.2.4). We then have

ds

dξ
= φ−p =

(
2p

c
s(ξ)− 2pÃ

) 1
2

.

Therefore, there exists a solution s(ξ) such that the following holds

s(ξ) =
pξ2 + 2Bpξ + 2Ãc2 +B2p

2c
(7.3.2)

with a constant B. Substituting (7.3.2) into (7.3.1), we have




φ(ξ) ∼ (pξ/c)−

1
p

ψ(ξ) ∼
[
−(pξ/c)−

p+1
p

]
/c

as ξ → +∞.

Therefore, we can obtain the asymptotic behavior (7.1.10) and (7.1.11). We then obtain
the weak traveling wave solutions with quenching that consist of the functions u(x− ct) =
φ(ξ) on (ξ∗,∞) and u(x− ct) = 0 on (−∞, ξ∗] (see Figure 7.1.1).

This completes the proof. !
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Proof of Theorem 7.1.2

As in the previous proof of Theorem 7.1.1, it is necessary to find the orbits that connect
E+

0 and Eδ on the Poincaré disk (see Figure 7.2.2). We note that the flow on {(φ,ψ) ∈
H+ ∪ S2 |φ > 0} and {(φ,ψ) ∈ H+ ∪ S2 |φ < 0} are separated by the line {φ = 0}. In

other words, any trajectories start from the point on the unstable manifold Wu(E
+
p ) of E

+
p

which corresponds the equilibrium E+
0 of (7.2.10) cannot go to {(φ,ψ) ∈ H+ ∪ S2 |φ < 0}

in the case that δ = 1. Since EO is unstable, any trajectories start from the point on
Wu(E

+
p ) must go to the equilibrium Eδ. Then it holds that there exist the connecting

orbits from E+
0 to Eδ.

As in the proof of Theorem 7.1.1, we can obtain the rates (7.1.14) for v(ξ) and v′(ξ)
as ξ → ξ∗ in the case that p ∈ 2N, therefore, we only consider the dynamics near Eδ. We
define

Φ(ξ) := φ(ξ)− 1 and Ψ(ξ) := ψ(ξ).

Then, there are three cases to consider:

(i) Let us consider the case that D > 0, namely, the matrix J1 has the real distinct
eigenvalues

ω1 =
−c+

√
D

2
, ω2 =

−c−
√
D

2
.

The eigenvectors corresponding to each eigenvalue are

v1 =

(
1
ω1

)
, v2 =

(
1
ω2

)
.

We then obtain the following behavior:
(

Φ(ξ)
Ψ(ξ)

)
= B1

(
1
ω1

)
eω1ξ +B2

(
1
ω2

)
eω2ξ

with any constants B1 and B2. Therefore, the solution around the equilibrium Eδ is
{
φ(ξ) ∼ B1eω1ξ +B2eω2ξ + 1,
ψ(ξ) ∼ B1ω1eω1ξ +B2ω2eω2ξ.

Using v(ξ) = φ(ξ) and v′(ξ) = c2ψ, we can derive the following:
{

v(ξ) ∼ B1eω1ξ +B2eω2ξ + 1,

v′(ξ) ∼ c2(B1ω1eω1ξ +B2ω2eω2ξ).

Since c > 0, it hold that ω1 < 0 and ω2 < 0.

(ii) Consider the case that D = 0, namely, the matrix J1 has a multiple real eigenvalue

ω = − c

2
. The eigenvector v1 and the generalized eigenvector corresponding to the

eigenvalue v2 are

v1 =

(
1

− c

2

)
, v2 =

(
α

1− c

2
α

)

with α is arbitrary constant. Therefore, the solution around the equilibrium Eδ is
{
φ(ξ) ∼ (B3ξ +B4)eωξ + 1,

ψ(ξ) ∼ − c

2
(B3ξ +B4)eωξ +B3

(
1− c

2
α
)
eωξ.
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Then, we can derive the following:
{

v(ξ) ∼ (B3ξ +B4)eωξ + 1,

v′(ξ) ∼ c2
{
− c

2
(B3ξ +B4)eωξ +B3

(
1− c

2
α
)
eωξ
}
.

Since c > 0, it holds that ω < 0. Note that we can determine

lim
ξ→+∞

(B3ξ +B4)e
ωξ = 0

by the L’Hôpital’s rule.

(iii) Consider the case that D < 0, namely, the matrix J1 has the complex eigenvalues

ω = µ± iν = − c

2
± i

1

2

√
|D|. The eigenvectors corresponding to each eigenvalue are

v =

(
1
− c

2

)
± i

(
0

1
2

√
|D|

)
.

The function Φ(ξ) and Ψ(ξ) are expressed as following:

(
Φ(ξ)
Ψ(ξ)

)
= z(ξ)

(
0

1
2

√
|D|

)
+ w(ξ)

(
1
− c

2

)
,

where
(

z(ξ)
w(ξ)

)
= eµξ

(
cos νξ − sin νξ
sin νξ cos νξ

)(
z(0)
w(0)

)
.

Therefore, the solution φ(ξ) around the equilibrium Eδ is

φ(ξ) = e−
c
2 ξ

(
[sin

√
|D|
2

ξ] · z(0) + [cos

√
|D|
2

ξ] · w(0)
)

+ 1.

Similarly, ψ(ξ) is

ψ(ξ) =
1

2

√
|D| · e−

c
2 ξ

(
[sin

√
|D|
2

ξ] · z(0)− [cos

√
|D|
2

ξ] · w(0)
)

− c

2
· e−

c
2 ξ

(
[sin

√
|D|
2

ξ] · z(0) + [cos

√
|D|
2

ξ] · w(0)
)
.

Then, we can derive the following:





v(ξ) ∼ e−
c
2 ξ

(
[sin

√
|D|
2 ξ] · z(0) + [cos

√
|D|
2 ξ] · w(0)

)
+ 1,

vξ(ξ) ∼
c2

2

√
|D| · e−

c
2 ξ

(
[sin

√
|D|
2 ξ] · z(0)− [cos

√
|D|
2 ξ] · w(0)

)

−c3

2
· e−

c
2 ξ

(
[sin

√
|D|
2 ξ] · z(0) + [cos

√
|D|
2 ξ] · w(0)

)
.

Therefore, we can obtain the asymptotic behavior (7.1.12), (7.1.13), (7.1.14). We then
obtain the weak traveling wave solutions with quenching that consist of the functions
v(x− cτ) = φ(ξ) on (ξ∗,∞) and v(x− cτ) = 0 on (−∞, ξ∗] (see Figure 7.1.1).

This completes the proof. !
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Proof of Theorem 7.1.3

As in the previous proofs of Theorem 7.1.1 and 7.1.2, it is necessary to find the orbits that
connect EO and Eδ on the Poincaré disk (see Figure 7.2.2). Note that the point EO exists
on the singularity line {φ = 0} about the parameter ξ. By Remark 7.2.1, the trajectories
start from the point on Wc(EO) must go to the equilibrium Eδ. Then it holds that there
exist the connecting orbits from EO to Eδ.

To complete the proof, we have to show that

lim
ξ→−∞

v(ξ) = lim
ξ→−∞

v′(ξ) = 0. (7.3.3)

Consider the dynamics near EO : (φ,ψ) = (0, 0) with δ = 1 that given by (7.2.9) and
(7.2.8). That is, dynamics on the center manifold (7.2.7) is locally topologically equivalent
to the dynamics of the following equation:

φ′ = φp+1/c− [(c2 + 1)φ2p+1]/c3 + h.o.t.

Let us consider the equation up to lower order terms that determine the dynamics near
the equilibrium:

φ′ = φp+1/c.

This yields

φ(s) = [−p(A+ s/c)]−
1
p

with a constant A. Then, we have

ds

dξ
= φ−p = −p(A+ s/c).

This yields
s/c+A = Be−pξ/c.

Finally, we have
φ(s) = Ceξ/c.

with a constant C . This yields (7.3.3). !

7.4 Dynamics on the Poincaré disk of (7.1.9) : p is odd

We complete the proof of main Theorems, still, we continue to consider the case that
p ∈ 2N + 1. Similarly as in the even case, we consider the dynamics (7.1.9) near (0, 0)
and the dynamics (7.1.9) on the Poincaré disk. We desingularize it by the time-scale
desingularization

ds/dξ = {φ(ξ)}−p−1.

Then, we have {
φ′(s) = φp+1ψ,
ψ′(s) = −cφψ − φp+2 + δφ2,

(
′ =

d

ds

)
, (7.4.1)

where δ = 0 or δ = 1.
As in the previous section, we can consider the dynamics of (7.4.1) on the charts U j

and V j . Here we note that the flow of (7.4.1) on {φ > 0} is the same to that of (7.1.9)
on {φ > 0}.
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7.4 Dynamics on the Poincaré disk of (7.1.9) : p is odd

The system (7.4.1) has the equilibrium EO : (φ,ψ) = (0, 0) for δ = 0 and δ = 1. The
Jacobian matrix of the vector field (7.4.1) at EO is

EO :

(
0 0
0 0

)
.

The equilibrium EO is not hyperbolic. In order to determine the dynamics near EO, we
desingularize it by introducing the following blow-up coordinates. Since the terms of δφ2

is the principal part of (7.4.1), the blow-up coordinates for δ = 0 and δ = 1 are different.
Also, we note that if δ = 1 and p is odd, then (7.1.9) has the equilibrium

Eδ : (φ,ψ) = (1, 0)

and the Jacobian matrix and stability around it are the same as in the even case.

7.4.1 Dynamics of (7.4.1) near (0, 0) : the case δ = 0

In order to determine the dynamics near EO, we desingularize it by introducing the fol-
lowing blow-up coordinates for δ = 0:

φ = εφ̄, ψ = εp+1ψ̄.

Since we are interested in the dynamics near (0, 0), we consider the dynamics of blow-up
vector fields on the charts {φ̄ = ±1} and {ψ̄ = ±1}.

Dynamics on the chart {φ̄ = 1}

By the change of coordinates φ = ε, ψ = εp+1ψ̄ and time-rescaling dσ/ds = ε, we have

{
εσ = ε2p+1ψ̄,
ψ̄σ = −(p+ 1)ε2pψ̄2 − cψ̄ − 1,

(7.4.2)

where εσ = dε/dσ and ψ̄σ = dψ̄/dσ. This system has the equilibrium on {ε = 0}

E
+
O : (ε, ψ̄) =

(
0,−1

c

)
.

The Jacobian matrix of the vector field (7.4.2) at E
+
O is

E
+
O :

(
0 0
0 −c

)
.

In order to apply the center manifold theory, we set

ε(σ) = 0 + U(σ), ψ̄(σ) = −1

c
+ V (σ).

Then, we can obtain the following equation:
{

Uσ = −U2p+1/c+ U2p+1V,
Vσ = −[(p+ 1)U2p/c2] + [2(p+ 1)U2pV ]/c− (p+ 1)U2pV 2 − cV.

(7.4.3)

There exists a function h(U) satisfying

h(0) =
dh

dU
(0) = 0
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such that the center manifold of (7.4.3) is represented as {(U, V ) |V = h(U)} near (0, 0).
Differentiating it with respect to σ, we have

−p+ 1

c2
U2p +

2(p+ 1)

c
U2ph− (p+ 1)U2ph2 − ch =

dh

dU

(
−1

c
U2p+1 + U2p+1h

)
.

Then, we can obtain the approximation of the (graph of) center manifold as follows:

{
(U, V ) |V = −(p+ 1)U2p/c3 +O(U4p)

}
. (7.4.4)

Therefore, the dynamics of (7.4.3) near (0, 0) is topologically equivalent to the dynamics
of the following equation:

Uσ =

(
−1

c
− p+ 1

c3
U2p

)
U2p+1 +O(U6p+1).

Dynamics on the chart {φ̄ = −1}

By the change of coordinates φ = −ε, ψ = εp+1ψ̄ and time-rescaling dσ/ds = ε, we have

{
εσ = −ε2p+1ψ̄,
ψ̄σ = (p+ 1)ε2pψ̄2 + cψ̄ + 1.

(7.4.5)

This system has the equilibrium on {ε = 0}

E
−
O : (ε, ψ̄) =

(
0,−1

c

)
.

The Jacobian matrix of the vector field (7.4.5) at E
−
O is

E
−
O :

(
0 0
0 c

)
.

In order to apply the center manifold theory, we set

ε(σ) = 0 + U(σ), ψ̄(σ) = −1

c
+ V (σ).

Then, we can obtain the following equation:

{
Uσ = U2p+1/c− U2p+1V,
Vσ = [(p+ 1)U2p/c2]− [2(p+ 1)U2pV ]/c+ (p+ 1)U2pV 2 + cV.

(7.4.6)

As the previous discussion, we can obtain the approximation of the (graph of) center
manifold as follows:

{
(U, V ) |V = −(p+ 1)U2p/c3 +O(U4p)

}
.

Therefore, the dynamics near (0, 0) is topologically equivalent to the dynamics of the
following equation:

Uσ =

(
1

c
+

p+ 1

c3
U2p

)
U2p+1 +O(U6p+1).
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Dynamics on the chart {ψ̄ = 1}

By the change of coordinates φ = εφ̄, ψ = εp+1 and time-rescaling dσ/ds = ε, we have

{
εσ = (p+ 1)−1(−cεφ̄− εφ̄p+2),
φ̄σ = (p+ 1)−1(cφ̄2 + φ̄p+3) + ε2pφ̄p+1.

The equilibrium on {ε = 0} is (0, 0). The Jacobian matrix of this vector field at its
equilibrium is

(
0 0
0 0

)
.

Therefore, this equilibrium (ε, φ̄) = (0, 0) is not hyperbolic again. Here we shall not
consider more complicated analysis for dynamics near (ε, φ̄) = (0, 0), however, it will be
studied that the asymptotic behavior of the connecting orbits from (or to) EO in a latter
subsection.

Dynamics on the chart {ψ̄ = −1}

By the change of coordinates φ = εφ̄, ψ = −εp+1 and time-rescaling dσ/ds = ε, we have

{
εσ = (p+ 1)−1(−cεφ̄+ εφ̄p+2),
φ̄σ = (p+ 1)−1(cφ̄2 − φ̄p+3)− ε2pφ̄p+1.

This system has the equilibria on {ε = 0}

(ε, φ̄) = (0, 0), (ε, φ̄) = (0,±c
1

p+1 ).

The Jacobian matrices of this vector field at these equilibria are

(0, 0) :

(
0 0
0 0

)
, (0,±c

1
p+1 ) :

(
0 0

0 ∓c
p+2
p+1

)
.

The dynamics around the equilibria (0,±c
1

p+1 ) are same as E
±
O. As in the previous dis-

cussion, we conclude that the dynamics near (0, 0) cannot be completely determined.

Combining the dynamics on the charts {φ̄ = ±1} and {ψ̄ = ±1}, we obtain the
dynamics near EO (see Figure 7.4.1).

7.4.2 Dynamics of (7.4.1) near (0, 0) : the case δ = 1

In order to determine the dynamics near EO, we desingularize it by introducing the fol-
lowing blow-up coordinates for δ = 1:

φ = εφ̄, ψ = εψ̄.

Since we are interested in the dynamics near (0, 0), we consider the dynamics of blow-up
vector fields on the charts {φ̄ = ±1} and {ψ̄ = ±1}.
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Chapter 7 Traveling wave solutions for degenerate nonlinear parabolic equations

Figure 7.4.1: Schematic pictures of the dynamics near EO in the case that c > 0, δ = 0
and p is odd.

Dynamics on the chart {φ̄ = 1}

By the change of coordinates φ = ε, ψ = εψ̄ and time-rescaling dσ/ds = ε, we have

{
εσ = εp+1ψ̄,
ψ̄σ = −εpψ̄2 − cψ̄ − εp + 1.

(7.4.7)

This system has the equilibrium on {ε = 0}

E
+
O′ : (ε, ψ̄) =

(
0,

1

c

)
.

The Jacobian matrix of the vector field (7.4.7) at its equilibrium is

E
+
O′ :

(
0 0
0 −c

)
.

In order to apply the center manifold theory, we set

ε(σ) = 0 + U(σ), ψ̄(σ) =
1

c
+ V (σ).

Then, we can obtain the following equation:

{
Uσ = Up+1/c+ Up+1V,
Vσ = −[(c2 + 1)Up/c2]− [2UpV ]/c− UpV 2 − cV.

(7.4.8)
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7.4 Dynamics on the Poincaré disk of (7.1.9) : p is odd

There exists a function h(U) satisfying

h(0) =
dh

dU
(0) = 0

such that the center manifold of (7.4.8) is represented as {(U, V ) |V = h(U)} near (0, 0).
Differentiating it with respect to σ, we have

−c2 + 1

c2
Up − 2

c
Uph− Uph2 − ch =

dh

dU

(
1

c
Up+1 + Up+1h

)
.

Then, we can obtain the approximation of the (graph of) center manifold as follows:
{
(U, V ) |V = −(c2 + 1)Up/c3 +O(U2p)

}
. (7.4.9)

Therefore, the dynamics of (7.4.8) near (0, 0) is topologically equivalent to the dynamics
of the following equation:

Uσ =

(
1

c
− c2 + 1

c3
Up

)
Up+1 +O(U3p+1).

Dynamics on the chart {φ̄ = −1}

By the change of coordinates φ = −ε, ψ = εψ̄ and time-rescaling dσ/ds = ε, we have
{
εσ = −εp+1ψ̄,
ψ̄σ = εpψ̄2 + cψ̄ + εp + 1.

(7.4.10)

This system has the equilibrium on {ε = 0}

E
−
O′ : (ε, ψ̄) =

(
0,−1

c

)
.

The Jacobian matrix of the vector field (7.4.10) at E
−
O′ is

E
−
O′ :

(
0 0
0 c

)
.

In order to apply the center manifold theory, we set

ε(σ) = 0 + U(σ), ψ̄(σ) = −1

c
+ V (σ).

Then, we can obtain the following equation:
{

Uσ = Up+1/c− Up+1V,
Vσ = [(c2 + 1)U2p/c2]− [2UpV ]/c+ UpV 2 + cV.

As the previous discussion, we can obtain the approximation of the (graph of) center
manifold as follows:

{
(U, V ) |V = −(c2 + 1)Up/c3 +O(U2p)

}
.

Therefore, the dynamics near (0, 0) is topologically equivalent to the dynamics of the
following equation:

Uσ =

(
1

c
+

c2 + 1

c3
Up

)
Up+1 +O(U3p+1).
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Dynamics on the chart {ψ̄ = 1}

By the change of coordinates φ = εφ̄, ψ = ε and time-rescaling dσ/ds = ε, we have
{
εσ = −cεφ̄− εp+1φ̄p+2 + εφ̄2,
φ̄σ = cφ̄2 + εpφ̄p+3 − φ̄3 + εpφ̄p+1.

The equilibria on {ε = 0} are (0, 0) and (0, c). The Jacobian matrices of this vector field
at these equilibria are

(0, 0) :

(
0 0
0 0

)
, (0, c) :

(
0 0
0 −c2

)
.

The dynamics around the equilibrium (0, c) is same as E
+
O′ . Therefore, this equilibrium

(r, φ̄) = (0, 0) is not hyperbolic again. Here we shall not consider more complicated
analysis, however, it will be studied that the asymptotic behavior of the connecting orbits
from (or to) E

+
O′ in a latter subsection.

Dynamics on the chart {ψ̄ = −1}

By the change of coordinates φ = εφ̄, ψ = −ε and time-rescaling dσ/ds = ε, we have
{
εσ = −cεφ̄+ εp+1φ̄p+2 − εφ̄2,
φ̄σ = cφ̄2 − εpφ̄p+3 + φ̄3 − εpφ̄p+1.

The equilibria on {ε = 0} are (0, 0) and (0,−c). The Jacobian matrices of this vector field
at these equilibria are

(0, 0) :

(
0 0
0 0

)
, (0,−c) :

(
0 0
0 c2

)
.

The dynamics around the equilibrium (0,−c) is same as E
−
O′ . Therefore, this equilibrium

(r, φ̄) = (0, 0) is not hyperbolic again, however, we shall not consider more complicated
analysis here.

Combining the dynamics on the charts {φ̄ = ±1} and {ψ̄ = ±1}, we obtain the
dynamics near EO (see Figure 7.4.2).

7.4.3 Dynamics on the chart U2

To obtain the dynamics on the chart U2, we introduce coordinates (λ, x) by the formulas

φ(s) = x(s)/λ(s), ψ(s) = 1/λ(s).

Then we have
{
λ′ = cx+ λ−pxp+2 − δx2,
x′ = λ−p−1xp+1 + cλ−1x2 + λ−p−1xp+3 − δλ−1x3.

(7.4.11)

Time-scale desingularization dσ/ds = λ(s)−p−1 yields
{
λσ = cλp+1x+ λxp+2 − δλp+1x2,
xσ = xp+1 + cλpx2 + xp+3 − δλpx3,

(7.4.12)

where λσ = dλ/dσ and xσ = dx/dσ. The system (7.4.12) has the equilibrium

E+
0′ : (λ, x) = (0, 0). (7.4.13)
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7.4 Dynamics on the Poincaré disk of (7.1.9) : p is odd

Figure 7.4.2: Schematic pictures of the dynamics near EO in the case that c > 0, δ = 1
and p is odd.

The Jacobian matrix of the vector field (7.4.12) at its equilibrium is

E+
0′ :

(
0 0
0 0

)
.

The equilibrium E+
0′ is not hyperbolic. As in the previous section, to determine the

dynamics near E+
0′ , we desingularize it by introducing the following blow-up coordinates

with excepting p = 1 :
λ = rp−1λ̄, x = rpx̄.

Since we are interested in the dynamics on the Poincaré disk, we consider the dynamics
of blow-up vector fields on the charts {λ̄ = 1} and {x̄ = ±1}.

Dynamics on the chart {λ̄ = 1}

By the change of coordinates λ = rp−1, x = rpx̄ and time-rescaling dη/dσ = rp
2
, we have

{
rη = (p− 1)−1(crx̄+ r2p+1x̄p+2 − δrp+1x̄2),
xη = (p− 1)−1(−cx̄2 − r2px̄p+3 + δrpx̄3) + x̄p+1.

(7.4.14)

The equilibria of (7.4.14) on {r = 0} are E
+
0′ : (r, x̄) = (0, 0) and

±E
+
p′ : (r, x̄) = (0,±q), q := [c/(p− 1)]

1
p−1 .

The Jacobian matrices of the vector field (7.4.14) at these equilibria are

E
+
0′ :

(
0 0
0 0

)
, ±E

+
p′ :

(
±qp 0
0 ±(p− 1)qp

)
.
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Therefore, +E
+
p′ (resp. −E

+
p′) is a source (resp. sink) for c > 0. Also, E

+
0′ is not hyperbolic

again. The dynamics of (7.4.14) near E
+
0′ cannot be completely determined, however, we

can study the detailed behavior of the trajectories along the unstable (resp. stable) mani-

folds of E
+
p′ (resp. −E

+
p′) of (7.4.14). For instance, the solutions near E

+
p′ are approximated

as follows.

r(η) ∼ C1e
qpη(1 + o(1)), (7.4.15)

x̄(η) ∼ C2e
(p−1)qpη(1 + o(1)) + q. (7.4.16)

Dynamics on the chart {x̄ = 1}

By the change of coordinates λ = rp−1λ̄, x = rp, and time-rescaling dη/dσ = rp
2
, we have

{
rη = p−1(r + crλ̄p + r2p+1 − δrp+1λ̄p),
λ̄η = p−1{−(p− 1)λ̄+ cλ̄p+1 + r2pλ̄− δrpλ̄p+1}.

The equilibria on {r = 0} are

(r, λ̄) = (0, 0), (r, λ̄) = (0, [p− 1/c]
1
p )

for c > 0. By the further computations, we can see that (0, 0) is a saddle, and (0, [p−1/c]
1
p )

is a source.

Dynamics on the chart {x̄ = −1}

By the change of coordinates λ = rp−1λ̄, x = −rp, and time-rescaling dη/dσ = rp
2
, we

have {
rη = p−1(−r − crλ̄p − r2p+1 − δrp+1λ̄p),
λ̄η = p−1{(p− 1)λ̄− cλ̄p+1 − r2pλ̄− δrpλ̄p+1}.

The equilibria on {r = 0} are

(r, λ̄) = (0, 0), (r, λ̄) = (0, [p− 1/c]
1
p )

for c > 0. By the further computations, we can see that (0, 0) is a saddle, and (0, [p−1/c]
1
p )

is a sink.
Combining the dynamics on the charts {λ̄ = 1} and {x̄ = ±1}, we obtain the dynamics

on U2 (see Figure 7.4.3).

7.4.4 Dynamics on the chart V 2

The change of coordinates

φ(s) = −x(s)/λ(s), ψ(s) = −1/λ(s)

give the projected dynamics of (7.2.2) on the chart V 2:
{
λσ = −cλp+1x+ λxp+2 + δλp+1x2,
xσ = xp+1 − cλpx2 + xp+3 + δλpx3,

(7.4.17)

where τ is the new time introduced by dσ/ds = λ(s)−p−1. The system (7.4.17) can be
transformed into (7.4.12) by the change of coordinates (λ, x) → (−λ, x). Therefore, it is
sufficient to consider the blow-up of singularity E−

0′ : (λ, x) = (0, 0) by the formulas

λ = rp−1λ̄, x = rpx̄ with λ̄ = 1.
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!

Figure 7.4.3: Schematic pictures of the dynamics of the blow-up vector fields and U2 in
the case that c > 0 and p is odd.

Then, we have {
rη = (p− 1)−1(−crx̄+ r2p+1x̄p+2 + δrp+1x̄2),
xη = (p− 1)−1(cx̄2 − r2px̄p+3 − δrpx̄3) + x̄p+1,

where η satisfies dη/dσ = {r(τ)}p2 . The equilibrium on {r = 0} is (0, 0) with 0 eigenvalues
for c > 0. Therefore, this equilibrium is not hyperbolic again. We shall not consider the
more complicated analysis here.

7.4.5 Dynamics on the chart U1

Let us study the dynamics on the chart U1. The transformations

φ(s) = 1/λ(s), ψ(s) = x(s)/λ(s)

yield {
λσ = −λx,
xσ = −cλpx+ δλp − 1− x2

(7.4.18)

via time-rescaling dσ/ds = {λ(s)}−p−1. When the parameter δ is δ = 0, the system
(7.4.18) has no equilibria. If δ = 1, then the equilibrium of (7.4.18) is (λ, x) = (1, 0) that
coincides with the equilibrium (φ,ψ) = (1, 0) of (7.1.9).

7.4.6 Dynamics on the chart V 1

Let us study the dynamics on the chart V 1. The transformations

φ(s) = −1/λ(s), ψ(s) = −x(s)/λ(s).
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yield {
λσ = −λx,
xσ = cλpx− δλp − 1− x2

(7.4.19)

via time-rescaling dσ/ds = {λ(s)}−p−1. The system (7.4.19) has no equilibria.

7.4.7 Classification of the connecting orbits in odd case

As studied previous subsections, there are equilibria that are not hyperbolic in the blow-up
vector fields (7.4.2),(7.4.5),(7.4.7),(7.4.10) and (7.4.14). Therefore, we cannot determine
the dynamics near the singularities explicitly. However, if the center, stable and unstable
manifolds of the equilibria on each blow-up vector field are inherited to the vector filed on
the Poincaré disk and the connecting orbits between each other are exist, then they cor-
respond to the functions satisfying (7.1.9). In this subsection, we classify the connecting
orbits and the functions corresponding them. It should be noted that if there is a quasi
traveling wave with quenching, we can find the weak traveling wave solutions with quench-
ing of (7.1.1) (for δ = 0) and (7.1.4) (for δ = 1). The proofs of Theorems (computations
of asymptotic behavior) for the odd case are similar as the even case.

Let us prepare the symbols used in this subsection as follows:

• Wcs(E
+
O) denotes the center-stable manifold of E

+
O in the dynamical system (7.4.2).

• Wcu(E
−
O) denotes the center-unstable manifold of E

−
O in the dynamical system

(7.4.5).

• Wcu(E
+
O′) denotes the center-unstable manifold of E

+
O′ in the dynamical system

(7.4.7).

• Wcu(E
−
O′) denotes the center-stable manifold of E

−
O′ in the dynamical system (7.4.10).

• Ws(−E
+
p′) denotes the stable manifold of −E

+
p′ in the dynamical system (7.4.14).

• Wu(E
+
p′) denotes the unstable manifold of E

+
p′ in the dynamical system (7.4.14).

First, we state the result for δ = 0.

Theorem 7.4.1
Assume that c > 0, δ = 0, p ∈ 2N+ 1 and the following:

• The equilibrium EO : (y1, y2, y3) = (0, 0, 1) on the Poincaré disk of (7.2.2) has
the center-stable manifold Wcs(EO) and center-unstable manifold Wcu(EO) that

corresponds to Wcs(E
+
O) and Wcu(E

−
O), respectively.

• The equilibrium E+
O′ (which is defined in (7.4.13)) on the Poincaré disk of (7.2.2)

has the stable manifold Ws(E+
O′) and unstable manifold Wu(E+

O′) that corresponds

to Ws(−E
+
p′) and Wu(E

+
p′), respectively.

Then, the following holds:

(I) If there exits a connecting orbit Γ+ that connects Wcs(EO) and Wu(E+
O′), then

(7.1.1) has a weak traveling wave solutions with quenching. In addition, it hold that

{
u(ξ) ∼ (pξ/c)−

1
p as ξ → ∞

lim
ξ→+∞

u′(ξ) = 0
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and {
u(ξ) ∼ A(ξ − ξ∗)

1
p

u′(ξ) ∼ A(ξ − ξ∗)
− p−1

p
as ξ → ξ∗ + 0

where |ξ∗| < ∞, A > 0 are constants (ξ∗ is the quenching point). In addition,
u(ξ) > 0 holds for ξ ∈ (ξ∗,∞) and u(ξ) = 0 for ξ ∈ (−∞, ξ∗).

(II) If there exits a connecting orbit Γ− that connects Wcu(EO) and Ws(E+
O′), then

(7.1.1) has a weak traveling wave solutions with quenching and its profile is obtained
by the mapping u(ξ) 2→ −u(−ξ), where u(ξ) is a weak traveling wave solutions with
quenching corresponding to Γ+.

Proof of (I) As discussed Section 7.4, the dynamics on the center manifold (7.4.4) that

gives dynamics near E
+
O is topologically equivalent to the dynamics of the following system:

dU

dσ
= −U2p+1/c+ h.o.t (7.4.20)

with

U(σ) = φ(σ) and
dσ

dξ
=

dσ

ds
· ds
dξ

= φ−p.

Then, (7.4.20) yields

φ(σ) ∼ (A+ 2pσ/c)−
1
2p as σ → ∞

with a constant A > 0. Therefore, we have

dσ

dξ
∼
√
A+ 2pσ/c.

holds near σ = ∞. This implies that

σ ∼ (p2ξ2 + 2Bp2ξ −Ac2 +B2p2)/(2cp) as σ → ∞

with a constant B. Therefore,

u(ξ) = φ(ξ) ∼ (pξ/c)−
1
p .

Let us consider the dynamics near E
+
p′ of (7.4.14). We recall (7.4.15), (7.4.16) and

dη

dξ
=

dη

dσ

dσ

ds

ds

dξ
= rp

2 · λ−p−1 · φ−p−1 = r−px̄−p−1

∼
{
C1e

qpη(1 + o(1))
}−p ·

{
C2e

(p−1)qpη(1 + o(1)) + q
}−p−1

∼ C3e
−pqpη ·

{
C2e

(p−1)qpη(1 + o(1)) + q
}−p−1

η → −∞

= C3e
−pqpη · 1

{
C2e(p−1)qpη(1 + o(1)) + q

}p+1

= C3e
−pqpη · 1

{
C2e(p−1)qpη(1 + o(1))

}p+1
+ (p+ 1)

{
C2e(p−1)qpη(1 + o(1))

}p · q + · · ·+ qp

∼ Ce−pqpη as η → −∞.

We then have
dξ

dη
= Cepq

pη.
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Figure 7.4.4: Roughly sketch of the dynamics on the Poincaré disk and corresponding
(weak) traveling wave solutions in the case that the assumptions of Theorems are satisfied
with D < 0 and c > 0.

This yields
ξ − ξ∗ ∼ Cepq

pη as η → −∞.

We then have

u(ξ) = φ(ξ) =
x

λ
=

rp

rp−1
x = rx

∼
{
C1e

qpη(1 + o(1))
}{

C2e
(p−1)qpη(1 + o(1)) + q

}

∼ C4e
qpη ·

{
C2e

(p−1)qpη(1 + o(1)) + q
}

= C5e
qpηe(p−1)qpη + C4 · q · eq

pη

= C5e
pqpη + C4 · q · eq

pη

∼ Aeq
pη.

Here, in last relation, since epq
pη < eq

pη (η < 0) is satisfied by pqp > qp, we choose the
term with the greater influence when η → −∞. Therefore, we have

u(ξ) = φ(ξ) ∼ Aeq
pη ∼ A(ξ − ξ∗)

1
p as ξ → ξ∗ + 0.

Similarly, since ψ(ξ) = 1/λ = r1−p, it holds that

ψ(ξ) ∼ Aepq
pη ∼ A (ξ − ξ∗)

− p−1
p as ξ → ξ∗ + 0.

Proof of (II) Since (7.4.1) with δ = 0 is invariant under the mapping: φ(ξ) 2→ −φ(−ξ),
the statement holds. !

Second, we state the result for δ = 1. There are three types of connecting orbits that
correspond to the (weak) traveling wave solutions of (7.1.4).
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Theorem 7.4.2
Assume that c > 0, δ = 1, p ∈ 2N+ 1 and the following:

• The equilibrium E+
O′ (which is defined in (7.4.13)) on the Poincaré disk of (7.2.2)

has the unstable manifold Wu(E+
O′) that corresponds to Wu(E

+
p′).

If there exists a connecting orbit that connects Wu(E+
O′) and Ws(Eδ), then (7.1.4) has a

weak traveling wave solutions with quenching. The asymptotic behavior for ξ → ∞ are
given by (7.1.12) and (7.1.13) in Theorem 7.1.2. In addition, the asymptotic behavior
near the quenching point ξ∗ are given by the following:

{
v(ξ) ∼ A(ξ − ξ∗)

1
p

v′(ξ) ∼ A(ξ − ξ∗)
− p−1

p
as ξ → ξ∗ + 0.

Proof Since dynamics of (7.4.1) on {φ > 0} is equivalent to the dynamics of (7.2.2)
on {φ > 0}, asymptotic behavior for ξ → ∞ is exactly same to (7.1.12) and (7.1.13) in
Theorem 7.1.2. In order to prove the Theorem, it is sufficient to compute the asymptotic
behavior along Wu(E+

p′).

We recall the dynamics on the chart U2 given by (7.4.15) and (7.4.16). Then, we have

dη

dξ
=

dη

dσ

dσ

ds

ds

dξ
= Ae−pqpη,

where A > 0 is a constant. This yields

ξ − ξ∗ ∼ Cepq
pη as η → −∞.

Further computations yield

v(ξ) = φ(ξ) = rx̄ ∼ A(ξ − ξ∗)
1
p as ξ → ξ∗ + 0

and
v′(ξ) = c2ψ(ξ) = c2r1−p ∼ A (ξ − ξ∗)

− p−1
p as ξ → ξ∗ + 0.

!

Theorem 7.4.3
Assume that c > 0, δ = 1, p ∈ 2N+ 1 and the following:

• The equilibrium EO : (y1, y2, y3) = (0, 0, 1) on the Poincaré disk of (7.2.2) has the

center-unstable manifold W cu(EO) that corresponds to Wcu(E
+
O′).

Then, if there exist a connecting orbit that connects Wcu(EO) and Ws(Eδ), then (7.1.4)
has a traveling wave solution that satisfies v(ξ) > 0 for ξ ∈ R,

lim
ξ→−∞

v(ξ) = lim
ξ→−∞

v′(ξ) = 0,

lim
ξ→∞

v(ξ) = 1 and lim
ξ→∞

v′(ξ) = 0.

Proof The dynamics near Eδ of (7.4.1)is equivalent to that of (7.2.2). Let us consider
the dynamics along Wcu(EO). We recall that the dynamics on the center manifold (7.4.9)
is locally topologically equivalent to the dynamics of the following system

dU

dσ
= Up+1/c+ h.o.t.
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This yields

U(σ) ∼ [−p(σ/c+A)]−
1
p .

Then we have
dσ

dξ
=

dσ

ds

ds

dξ
= φ−p = −p(σ/c+A).

Therefore, we have σ = Be−pξ/c −A and

v(ξ) = φ(ξ) = U(σ(ξ)) = Ceξ/c → 0 as ξ → −∞,

where C > 0 is a constant that depend on p. !

Theorem 7.4.4
Assume that c > 0, δ = 1, p ∈ 2N+ 1 and the following:

• The equilibrium EO : (y1, y2, y3) = (0, 0, 1) on the Poincaré disk of (7.2.2) has the

center-unstable manifold Wcu(EO) that corresponds to Wcu(E
−
O′).

• The equilibrium E+
O′ (which is defined in (7.4.13)) on the Poincaré disk of (7.2.2)

has the stable manifold Ws(E+
O′) that corresponds to Ws(−E

+
p′).

If there exists a connecting orbit that connects Wcu(EO) and Ws(E+
O′), then (7.1.4) has

a weak traveling wave solutions with quenching. In addition,

lim
ξ→−∞

v(ξ) = lim
ξ→−∞

v′(ξ) = 0

and {
v(ξ) ∼ A(ξ∗ − ξ)

1
p

v′(ξ) ∼ A(ξ∗ − ξ)−
p−1
p

as ξ → ξ∗ − 0

hold. Here, A < 0 is a constant and ξ∗ (|ξ∗| < ∞) is a quenching point, that is, v(ξ) < 0
for ξ ∈ (−∞, ξ∗) and v(ξ) = 0 for ξ ∈ [ξ∗,+∞) hold.

Proof Dynamics along Wcu(E
−
O′) is determined by the equation (7.4.6). Therefore,

asymptotic behavior for ξ → −∞ can be obtained as similar to the proof previous Theo-
rem.

Let us consider the dynamics along Ws(−E
+
p′). We recall (7.4.14) and Jacobian matrix

at
−E

+
p′ : (r, x̄) = (0,−[c/(p− 1)]

1
p−1 ).

Dynamics near −E
+
p′ are

r(η) ∼ C1e
−qpη(1 + o(1)) and x̄(η) ∼ C2e

−(p−1)qpη(1 + o(1))− q, q = [c/(p− 1)]
1

p−1

(cf. (7.4.15) and (7.4.16)). Further computations yield

ξ(η) = Ae−pqpη + Ã as η → +∞.

Let Ã = ξ∗ (i.e., ξ∗ = lim
η→+∞

ξ(η)) , then the asymptotic behavior can be obtained by the

similar computations in the proof of Theorem 7.4.2. !

The roughly sketch of the Poincaré disk in the case that the assumptions of Theorems
are satisfied is shown in Figure 7.4.4. We note that if the Eδ is asymptotically stable, then
Eδ is a stable node for D ≥ 0 and is a stable focus (spiral sink) for D < 0.
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7.5 Conclusions and Remarks

In this chapter, we studied whole dynamics of (7.1.9) on the phase space R2∪{(φ,ψ) | ‖(φ,ψ)‖ =
+∞} and asymptotic behavior of the solutions on R of (7.1.1) and (7.1.4) by applying the
Poincaré compactification and dynamical system approach.

We remark that since the theory of blow-up (desingularization of the vector fields) is
not applicable for the non-polynomial vector fields, we cannot deal with the general case
that p ∈ R. Hence, we leave it open here.

Further, the stabilities of the (weak) traveling waves were not discussed here. To do
that, it will be necessary another approach to (7.1.1) and (7.1.4). Therefore, also we leave
it open here.

In addition, the case that p = 1 is not discussed. The reason is that the type and
degree of the vector fields on the each local chart (for instance, see (7.4.11)) cannot be
determined through the Newton polyhedra (for instance, see [8]). Therefore, it is necessary
to more detailed analysis for the case that p = 1. It will be addressed in future works.

Let us return our attention to the relationship between (7.1.1) and (7.1.4). If v(ξ) =
v(x− cτ) is a (weak) traveling wave solution of (7.1.4), then the function

u(x, t) = p−
1
p

(
1

T − t

) 1
p

v

(
x− c

p
log

(
T

T − t

))

satisfies (7.1.1) on R × (0, T ). This results give us the profiles of blow-up solutions for
(7.1.1) and (7.1.4) associated with the traveling wave solutions.
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Chapter 8

A refined asymptotic behavior of
traveling wave solutions for
degenerate nonlinear parabolic
equations

Abstract

In this chapter, we consider the asymptotic behavior of traveling wave solutions of a
certain degenerate nonlinear parabolic equation for ξ ≡ x − ct → −∞ with c > 0. We
give a refined one of them, which was not obtained in the preceding work [32], by an
appropriate asymptotic study and properties of the Lambert W function. This chapter is
based on the following published paper ([30]):

Ichida, Y., Matsue, K., Sakamoto, T.O.: A refined asymptotic behavior of
traveling wave solutions for degenerate nonlinear parabolic equations, JSIAM
Lett., 12, 65–68 (2020).

8.1 Introduction

In this chapter, we consider the degenerate nonlinear parabolic equation

ut = up(uxx + u)− δu, t > 0, x ∈ R, (8.1.1)

where δ = 0 or 1, p ∈ 2N.
When δ = 0, this equation arises in the modeling of heat combustion, solar flares

in astrophysics, plane curve evolution problems and the resistive diffusion of a force-free
magnetic field in a plasma confined between two walls (see [4, 46, 47, 62] and references
therein). Also, there are many studies on blow-up solution to (8.1.1) (for instance, see
[4, 62] and references therein).

On the other hand, the equation (8.1.1) with δ = 1 can be obtained by transforming
solution of (8.1.1) with δ = 0 (see [62]). In [62], the traveling wave solutions of (8.1.1) play
important roles. More precisely, the lower bound of the blow-up rate is obtained by means
of the traveling wave solutions of (8.1.1) under either the Dirichlet boundary condition or
the periodic boundary condition in the case that δ = 1 and x is restricted to x ∈ (−L,L).
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In addition, the traveling wave solutions are not only upper (or lower) solutions as
discussed in [62] but also the entire solutions of the equation. These facts motivate us to
study detailed information of the traveling wave solutions to (8.1.1).

In order to consider the traveling waves of (8.1.1), we introduce the following change
of variables:

u(t, x) = φ(ξ), ξ = x− ct, c > 0.

The equation of φ(ξ) solving (8.1.1) is then reduced to

−cφ′ = φpφ′′ + φp+1 − δφ, ξ ∈ R, ′ =
d

dξ
,

equivalently {
φ′ = ψ,
ψ′ = −cφ−pψ − φ+ δφ−p+1,

(8.1.2)

where δ = 0 or 1.
In [32], a result on the whole dynamics on the phase space R2 including infinity gen-

erated by the two-dimensional ordinary differential equation (ODE for short) (8.1.2) is
obtained by applying the dynamical system approach and the Poincaré compactification
(for instance, see Section 1.1 and [14] for the details of the Poincaré compactification).
Further, connecting orbits on it are focused and several results on the existence of (weak)
traveling wave solutions are given. The following theorem is one of main results obtained
in [32].

Theorem 8.1.1 (Theorem 7.1.3 ([32], Theorem 3))
Assume that p ∈ 2N and δ = 1. Then, for a given positive constant c, the equation (8.1.1)
has a family of traveling wave solutions (which correspond to a family of the orbits of
(8.1.2)). Each traveling wave solution u(t, x) = φ(ξ) satisfies the following.

•






lim
ξ→−∞

φ(ξ) = 0, lim
ξ→+∞

φ(ξ) = 1,

lim
ξ→−∞

φ′(ξ) = 0, lim
ξ→+∞

φ′(ξ) = 0.

• φ(ξ) > 0 holds for ξ ∈ R.

Figure 8.2.1 shows dynamics on the Poincaré disk of (8.1.2) (see [14] for the definition
of the Poincaré disk). In addition, the asymptotic behavior of the traveling wave solutions
(obtained in Theorem 8.1.1) for ξ → +∞ is also given in [32], while the asymptotic
behavior as ξ → −∞ is not obtained there.

In this chapter, we give a refined asymptotic behavior of the traveling wave solutions,
which contributes to extraction of their characteristic nature. The main theorem of this
chapter is the following.

Theorem 8.1.2
The asymptotic behavior of φ(ξ) obtained in Theorem 8.1.1 as ξ → −∞ is

φ(ξ) ∼
(

µc2

µ(c2 + 1)− e−
p
c ξ

) 1
p

, as ξ → −∞,

where µ < 0 is a constant that depends on the initial state φ0 = φ(0).
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During our proof of the theorem, we see that the Lambert W function plays a key role
in describing the asymptotic behavior. Evaluation of integrals including the Lambert W
function is necessary to obtain the asymptotic behavior in the present form. Our argument
here is based on an asymptotic study of solutions in the different form from that provided
in e.g. [32, 50], which can be applied to asymptotic analysis towards further applications
in various phenomena including their numerical calculations.

8.2 Preliminaries

In this section, we partially reproduce calculations in Chapter 7 and [32] for the readers’
convenience.

First, we study the dynamics near bounded equilibria of (8.1.2). If δ = 1 and p is even,
then (8.1.2) has the equilibria ±E1 : (φ,ψ) = (±1, 0). Let J1 be the Jacobian matrix of
the vector field (8.1.2) at E1. Then, the behavior of the solution around E1 is different
by the sign of D = c2 − 4p. For instance, the matrix J1 has the real distinct eigenvalues
if D > 0 and other cases can be concluded similarly. In addition, if c > 0, then the real
part of all eigenvalues of J1 are negative. Therefore, we determine that the equilibria
±E1 : (φ,ψ) = (±1, 0) are sink.

Second, in order to study the dynamics of (8.1.2) on the Poincaré disk, we desingularize
it by the time-scale desingularization

ds/dξ = {φ(ξ)}−p for p ∈ 2N. (8.2.1)

Since p is assumed to be even, the direction of the time does not change via this desingu-
larization. Then we have

{
φ′ = φpψ,
ψ′ = −cψ − φp+1 + δφ,

(
′ =

d

ds

)
, (8.2.2)

where δ = 0 or δ = 1.
It should be noted that the time-scale desingularization (8.2.1) is simply the multipli-

cation of φp to the vector field. Then, except the singularity {φ = 0}, the solution curves
of the system (vector field) remain the same but are parameterized differently (see also
Section 7.7 of [44]).

The system (8.2.2) has the equilibrium EO : (φ,ψ) = (0, 0). When δ = 1, the Jacobian
matrix of the vector field (8.2.2) at EO is

EO :

(
0 0
1 −c

)
.

It has the real distinct eigenvalues 0 and −c. The eigenvectors corresponding to each
eigenvalue are

v1 =

(
c
1

)
, v2 =

(
0
1

)
.

We set a matrix T as T = (v1,v2). Then we obtain

(
φ′

ψ′

)
=

(
0 0
1 −c

)(
φ
ψ

)
+

(
φpψ

−φp+1

)

= T

(
0 0
0 −c

)
T−1

(
φ
ψ

)
+

(
φpψ

−φp+1

)
.
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Let

(
φ̃
ψ̃

)
= T−1

(
φ
ψ

)
. We then obtain the following system:

{
φ̃′ = cp−1φ̃p+1 + cp−1φ̃pψ̃,
ψ̃′ = −cψ̃ − cp−1φ̃p+1 − cp−1φ̃pψ̃ − cp+1φ̃p+1.

(8.2.3)

The center manifold theory (e.g. [9]) is applicable to study the dynamics of (8.2.3). It
implies that there exists a function h(φ̃) satisfying

h(0) =
dh

dφ̃
(0) = 0

such that the center manifold of EO for (8.2.3) is locally represented as {(φ̃, ψ̃) | ψ̃(s) =
h(φ̃(s))}. Differentiating it with respect to s, we have

−ch(φ̃)− cp−1φ̃p+1 − cp−1φ̃ph(φ̃)− cp+1φ̃p+1

=
dh

dφ̃

(
cp−1φ̃p+1 + cp−1φ̃ph(φ̃)

)
.

Then we obtain the approximation of the (graph of) center manifold as follows:

{
(φ̃, ψ̃) | ψ̃ = −cp−2(c2 + 1)φ̃(s)p+1 +O(φ̃p+2)

}
. (8.2.4)

Therefore, the dynamics of (8.2.3) near EO is topologically equivalent to the dynamics of
the following equation:

φ̃′(s) = cp−1φ̃p+1 − c2p−3(c2 + 1)φ̃2p+1.

We conclude that the approximation of the (graph of) center manifold is

ψ(s) = φ/c− [(c2 + 1)φp+1]/c3

and the dynamics of (8.2.2) near EO is topologically equivalent to the dynamics of the
following equation:

φ′(s) = φp+1/c− [(c2 + 1)φ2p+1]/c3. (8.2.5)

Finally, we obtain the dynamics on the Poincaré disk in the case that p is even (see
Figure 8.2.1). This argument indicates that the asymptotic behavior of φ through the
present system is calculated as a function of s and that an additional asymptotic study is
required to obtain the behavior of φ in terms of the original frame coordinate ξ.
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φ

ψ
{‖(φ,ψ)‖ = +∞}

φ

0

1

ξ

Figure 8.2.1: Schematic picture of the dynamics on the Poincaré disk and corresponding
traveling wave solutions in the case that δ = 1 and p is even with D = c2 − 4p > 0 and
c > 0.

Remark 8.2.1 ([32], Remark 1)
In Figure 8.2.1, we need to be careful about the handling of the point EO. When we
consider the parameter s on the disk, EO is the equilibrium of (8.2.2). However, EO is a
point on the line {φ = 0} with singularity about the parameter ξ. We see that dφ/dψ takes
the same values on the vector fields defined by (8.2.2) and (8.1.2) except the singularity
{φ = 0}. If the trajectories start the equilibrium EO about the parameter s, then they
start from the point EO about ξ.

8.3 Proof of Theorem 8.1.2

The proof is divided into four steps. In Step I, we derive an ODE describing the behavior
of s with respect to ξ. It turns out to contain the Lambert W function. In Step II, we
confirm that ξ(s) → −∞ as s → −∞, which is used for the direct derivation of φ(ξ)
in the asymptotic sense. Step III is devoted to obtain the relationship between φ and
ξ. According to preceding studies such as [32, 50], the asymptotic behavior of φ(ξ) can
be obtained in the composite form φ(s(ξ)), which can require multiple integrations of
differential equations. Except special cases, lengthy calculations are necessary towards
an explicit and meaningful expression of the targeting asymptotics. Instead, we directly
derive the relationship of φ to ξ without solving the ODE obtained in Step I and calculate
the asymptotic behavior of the function ξ(φ) as φ→ 0 associated with the center manifold
(8.2.4), which works well even if integrands include the Lambert W function. We finally
obtain the asymptotic behavior of φ(ξ) in Step IV via inverse function arguments.

Remark 8.3.1
The Lambert W function y = W (x) is defined as the inverse function of x = yey. We
easily see the following properties which we shall use below:

• W (x) > 0 for x > 0;

• W (x) < log x for x > e.
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See e.g. [12] and references therein for further properties.

Proof. (I): First we set

w(s) := φ(s)−p > 0.

With the aid of (8.2.5), we have

w′(s) = −p/c+ [p(c2 + 1)/c3w] = A+Bw−1, (8.3.1)

where

A = −p/c < 0 and B = [p(c2 + 1)/c3] > 0.

The solution of (8.3.1) satisfies the following.

|1 +Aw/B| e−(
A
Bw+1) = |A/B| e−

A2

B s−A2C1+B
B

with a constant C1. Since the dynamics of φ(s) near 0 (i.e., φ(s) ≈ 0) is our interest, we
may assume that w(s) is sufficiently large, which implies that [A/B]w + 1 < 0. Then we
have

− (1 +Aw/B) e−(
A
Bw+1) = −Ae−

A2

B s−A2C1+B
B /B.

By using w = φ(s)−p and the Lambert W function, we obtain

φ(s) = [−B {W (E(s)) + 1} /A]−
1
p ,

where E(s) = −[A/B]e−
A2

B s−A2C1+B
B . We consequently have

ds

dξ
= φ−p = −B {W (E(s)) + 1} /A. (8.3.2)

(II): We shall prove

ξ(s) → −∞ as s → −∞.

We note that E(·) is positive on R and hence W (E(s)) > 0 holds for s ∈ R. Integrating
(8.3.2) on (−∞, 0], we have

ξ(0)− ξ− =

∫ 0

−∞
[−B {W (E(s)) + 1} /A]−1 ds,

where

ξ− = lim
s→−∞

ξ(s).

Without loss of generality, we may set ξ(0) = 0.
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By using properties of the Lambert W function, for a negative constant s∗ satisfying
|s∗| ; 1, we have

−ξ− =

∫ 0

−∞
[−B {W (E(s)) + 1} /A]−1 ds

> −A

B

[∫ 0

s∗

{W (E(s)) + 1}−1 ds

+

∫ s∗

−∞
{log(E(s)) + 1}−1ds

]

> −A

B

∫ s∗

−∞

[
log

(
−[A/B]e−

A2

B s−A2C1+B
B

)
+ 1

]−1

ds

= −A

B

∫ s∗

−∞
[ log(−[A/B])

− (A2s+A2C1 +B)/B + 1 ]−1ds

= − lim
s→−∞

A

B

[
(−B/A2) log |(−A2/B)s+ C2|

]s∗

s

,

where

C2 = log(−A/B)− (A2C1 +B)/B + 1.

Since A < 0 < B holds, we have

−ξ− > (1/A) log{(−A2/B)s∗ + C2}
+ (−1/A) lim

s→−∞
log{(−A2/B)s+ C2} = +∞.

Therefore the asymptotic behavior of φ(s) as s → −∞ is equivalent to that of φ(ξ) as
ξ → −∞.

(III): Next, we represent ξ as a function of φ. We rewrite (8.3.2) as

dξ

ds
= φp.

Using (8.2.5), we obtain

ξ + C3 =

∫
{φ(s)}pds =

∫
φp

ds

dφ
dφ

=

∫
φp
(
1

c
φp+1 − c2 + 1

c3
φ2p+1

)−1

dφ

=

∫
c3

φ{c2 − (c2 + 1)φp}dφ

179



Chapter 8 A refined asymptotic behavior of traveling wave solutions for degenerate
nonlinear parabolic equations

with a constant C3. Introducing ϕ = φp, we further have

ξ + C3 =

∫
c3

φ{c2 − (c2 + 1)φp}dφ

=
c3

p

∫
1

ϕ{c2 − (c2 + 1)ϕ}dϕ

=
c3

p

∫ {
1

c2
1

ϕ
+

(
1 +

1

c2

)
1

c2 − (c2 + 1)ϕ

}
dϕ

=
c

p
log

∣∣∣∣
ϕ

(c2 + 1)ϕ− c2

∣∣∣∣

=
c

p
log

∣∣∣∣
φp

(c2 + 1)φp − c2

∣∣∣∣ .

Then the constant C3 is given by

C3 =
c

p
log

∣∣∣∣
φp0

(c2 + 1)φp0 − c2

∣∣∣∣ ,

where φ(0) = φ0. Moreover, it holds that C3 < 0 regardless of the value of c, provided
φ0 < 1. Indeed, it holds that

0 < φ0 <
(
c2/[c2 + 2]

) 1
p (0 < φ0 < 1).

(IV): Finally, we aim to represent φ as a function of ξ. As mentioned above, we obtain

ξ +
c

p
log

∣∣∣∣
φp0

(c2 + 1)φp0 − c2

∣∣∣∣ =
c

p
log

∣∣∣∣
φp

(c2 + 1)φp − c2

∣∣∣∣ .

This yields
φp

(c2 + 1)φp − c2
= ±

∣∣∣∣
φp0

(c2 + 1)φp0 − c2

∣∣∣∣ e
p
c ξ.

Therefore, we have

φp =
µe

p
c ξc2

µe
p
c ξ(c2 + 1)− 1

, µ = ±
∣∣∣∣

φp0
(c2 + 1)φp0 − c2

∣∣∣∣ .

If µ > 0, there exists a finite ξ such that µe
p
c ξ(c2 + 1) − 1 = 0 holds. However, as in

Theorem 8.1.1, the traveling wave solutions φ(ξ) that correspond to the connecting orbits
between EO and E1 have no singularities for ξ ∈ R. Therefore, µ must be negative. This
yields

µe
p
c ξc2

µe
p
c ξ(c2 + 1)− 1

> 0 with µ = −
∣∣∣∣

φp0
(c2 + 1)φp0 − c2

∣∣∣∣ .

Since p is even, we obtain the following.

φ(ξ) =

(
µc2

µ(c2 + 1)− e−
p
c ξ

) 1
p

→ 0, as ξ → −∞,

where µ < 0 is the constant that depends on the initial state φ0. !
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8.4 Conclusion

In this chapter, we give a refined asymptotic behavior of the traveling wave solutions of
(8.1.1) as ξ → −∞. As shown in Step III of the proof, the present result is obtained by
considering the asymptotic behavior of ξ(φ) without taking the relationship between ξ and
s into account. This is a key idea to get over the difficulties of treatment of the Lambert
W function to obtain the asymptotic behavior for u(t, x) = φ(ξ). We expect that our
approach can be applied to the asymptotic behavior of typical solutions as well as that of
singular solutions.
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Chapter 9

Classification of nonnegative
traveling wave solutions for the 1D
degenerate parabolic equations

Abstract

Traveling wave solutions for the one-dimensional degenerate parabolic equations are con-
sidered. The purpose of this chapter is to classify the nonnegative traveling wave solutions
including sense of weak solutions of these equations and to present their existence, infor-
mation about their shape and asymptotic behavior. These are studied by applying the
framework that combines Poincaré compactification and classical dynamical systems the-
ory. We also aim to use these results to generalize the results of our previous studies. The
key to this is the introduction of a transformation, which overcomes the generalization
difficulties faced by these studies. This chapter is based on the following published paper
([38]):

Ichida, Y: Classification of nonnegative traveling wave solutions for the 1D
degenerate parabolic equations, Discrete Contin. Dyn. Syst., Ser. B, 28
(2023), no. 2, 1116–1132.

9.1 Introduction

In this chapter, we consider the following spatial one-dimensional degenerate nonlinear
parabolic equation

ut = uuxx − γ(ux)
2 + ku2 − δpu, t > 0, x ∈ R, (9.1.1)

where 0 < γ < 1, k > 0, 1 < p ∈ R, and δ = 0 or 1. This equation (9.1.1) can be obtained
by setting u(t, x) = (U(t, x))p in equation

Ut = Up(Uxx + µU)− δU, t > 0, x ∈ R (9.1.2)

with µ > 0. Note that γ = (p− 1)/p and k = µp hold.
The equation (9.1.2) is also a kind of spatial 1D degenerate nonlinear parabolic equa-

tion. In addition, this equation with δ = 0 is such an equation that has many phenomena
in its background. See, for instance, [4, 32, 30, 62] and references therein for background
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phenomena. For instance, in the curve shortening problem, we can see that the classi-
cal curvature flow equation V = −κ corresponds to (9.1.2) in the case that p = 2 (see
[5, 20, 22]). Here, we denote by κ and V the curvature and outward normal velocity of
a curve, respectively. In addition, this equation arises in the modeling of the resistive
diffusion of a force-free magnetic field in a plasma confined between two walls. See [46, 47]
and references therein for derivation of equation (9.1.2) from plasma phenomena. Other
examples include heat combustion, solar flares in astrophysics.

In the equation (9.1.2), there have been many studies on blow-up solutions, and the
derivation of blow-up rates has been of particular mathematical interest. It is known that
blow-up occurs in general higher dimensional problems, but the blow-up rate is not well
understood (see [3, 61]). One of the intrinsic difficulties of this problem is Up, which comes
from degeneracy, and many problems still remain for the blow-up analysis of this type of
equation, even in the spatial one-dimensional case (see [4, 62]). In the following, we will
focus on problems in 1D.

We briefly review [5, 62], which also motivated our study. According to [5], the traveling
wave solutions correspond to special self-similar solutions of curve shortening which evolves
by rotating and contracting simultaneously. They gave the blow-up rate of (9.1.2) with
δ = 0 for p ≥ 2 under periodic boundary condition and x is restricted to x ∈ (−L,L).
Self-similarity is known to play an important role in blow-up analysis, and it can be said
that the problem of investigating the structure of traveling wave solutions was derived
from this fact. In [62], Poon gave the upper and lower bounds of the blow-up rate of
(9.1.2) with δ = 0 for p ≥ 2 under either the Dirichlet boundary condition or the periodic
boundary condition and x is restricted to x ∈ (−L,L). In particular, the equation (9.1.2)
with δ = 1 can be obtained by transformed solution of (9.1.2) with δ = 0, and the traveling
wave solution of this equation plays important roles in deriving the lower bound. More
precisely, let Ũ = Ũ(τ, x) be the solution of (9.1.2) for δ = 1 and U = U(t, x) (t ∈ (0, T )) be
the solution of (9.1.2) for δ = 0, then the following relation of transformation is satisfied:

Ũ(τ, x) = (pT )
1
p e−τU(t, x), t = T (1− e−pτ ), τ ∈ (0,+∞)

(see also [32, 62]).
Next, we briefly explain why considering traveling wave solutions leads to blow-up

analysis, based on [5, 62] and references therein. The proof of the main theorem in [62]
(e.g., Section 3 in [62]) suggests that investigating the evaluation of Ũ(τ, 0) and behavior
of Ũ(τ, 0) for τ → +∞ are the first steps in blow-up analysis. Under these symbols, let

U(ξ) = Ũ(x− cτ), ξ = x− cτ, c > 0

be the traveling wave solution in (9.1.2), and we can consider the problem of investigating
the behavior for ξ → −∞ corresponding to τ → +∞. Therefore, based on the above
explanation and discussion in [5, 62], it is important to classify the traveling wave solutions
in (9.1.2). In particular, by focusing on the asymptotic behavior for ξ → −∞, it will
provide a new perspective for future blow-up analysis (see also Remark 9.2.7).

With the motivation of contributing to the derivation of a more refined blow-up rate
by examining in more detail the traveling wave solution studied by [62], in [32, 30], they
restrict to 1 < p ∈ N, set µ = 1, and give the classification of traveling wave solutions of
(9.1.2) for both δ = 0 and δ = 1. Ichida-Sakamoto [32] shows that results on the classi-
fication (existence only for p ∈ 2N, shapes, and asymptotic behavior) of (weak) traveling
wave solutions are given by applying the dynamical system approach, the Poincaré com-
pactification, and geometric methods for desingularization of vector fields called blow-up
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technique (for instance, see Chapter 1 in this thesis and [14] for the details of the Poincaré
compactification and blow-up technique). Here, the meaning of the classification of this
solutions comes from the fact that we have revealed all dynamics to infinity of the or-
dinary differential equations (hereinafter, ODEs) obtained by introducing traveling wave
coordinates by using these methods. In addition, Ichida-Matsue-Sakamoto [30] gave a
refined asymptotic behavior, which was not obtained in the preceding work [32], by an
appropriate asymptotic study and properties of the Lambert W function.

In Chapter 7 and Chapter 8 ([32, 30]), the following issues are specified as future main
works.

• There is no discussion in general p ∈ R. This is because, in using the blow-up
technique, it is necessary to assume p ∈ N from its existing results [1, 8, 14]. It is
difficult to extend these results and make them usable in the general case.

• In Chapter 7 ([32]), when p is odd, we face the problem of not being able to de-
termine the dynamics in the neighborhood of the singularity points. To be more
precise, it is a problem in which a new singularity point appears even if the singu-
larity is desingularized by performing a blow-up transformation on a not hyperbolic
equilibrium in the two-dimensional ODE system under its consideration. Therefore,
it could not completely prove the existence of connecting orbits in this case, and
gave a conclusion assuming the existence of orbits. This problem in the case where
p is odd should be solved if the existence of the corresponding connecting orbits can
be proved without facing a similar problem with p ∈ N.

With overcoming these problems, we do not deal with equation (9.1.2) as it is, but
rather with equation (9.1.1), which is obtained by transformation, as mentioned at the
beginning of this section. That is, (9.1.1) is obtained by setting u = Up in (9.1.2), which is
assumed 1 < p ∈ R. It is important to emphasize that by introducing this transformation,
p is transferred to the coefficients from the degree. This is the key to not having to request
p ∈ N, as we will see in the analysis that follows. This transformation is also used in [2]. In
[2], they investigate decay and blow-up of solutions in the initial-boundary value problem
for general nonnegative initial functions.

In this chapter, in order to investigate the properties and structure of the nonnegative
traveling wave solution of (9.1.2) in general 1 < p ∈ R, we will study its structure in
(9.1.1). We then introduce the following change of variables:

φ(ξ) = u(t, x), ξ = x− ct, 0 < c ∈ R.

The equation of φ(ξ) solving (9.1.1) is then reduced to

φφ′′ = −cφ′ + γ(φ′)2 − kφ2 + δpφ,

(
′ =

d

dξ
, ′′ =

d2

dξ2

)
. (9.1.3)

Then, (9.1.3) is equivalent to
{
φ′ = ψ,

ψ′ = −cφ−1ψ + γφ−1ψ2 − kφ+ δp,

(
′ =

d

dξ

)
. (9.1.4)

Since this system of ODEs has φ−1, it turns out to have a singularity at φ = 0, which is
not easy to analyze about its dynamics. However, as shown in [31, 33, 32, 49, 50], it is
possible to study the dynamics of these ODEs to infinity in the framework that combines
Poincaré compactification (for instance, see Section 2 of [31] and [14, 33, 32, 49, 50] for
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the details of it) and classical dynamical systems theory. Note that, unlike the literature
cited above, we do not use blow-up technique in our analysis, and therefore do not include
it in this framework. By using these methods, the whole dynamics on the phase space
R2 including infinity (denoted by Poincaré disk) generated by the two-dimensional ODE
(9.1.4) is obtained without assuming p ∈ N. The results can be shown that the nonnegative
traveling wave solutions corresponding to each connecting orbit in the Poincaré disk are
classified. Thus, the existence of each traveling wave solution is revealed, and information
about its shape and asymptotic behavior can be obtained.

The conclusions about the traveling wave solution in (9.1.1), obtained without requiring
p ∈ N, can be reflected in (9.1.2) by u = Up. This means that we can obtain a generalized
results without the restriction p ∈ N in the conclusion obtained for (9.1.2) ([32, 30]). This
automatically proves the existence of unproven connecting orbits in the case that p is odd,
which was an issue in these studies under considering nonnegative solutions.

These arguments may be unique to this type of equation. However, to the best of the
author’s knowledge, there is no study that classifies the typical and characteristic solutions
of these equations by the dynamical systems approach. In this sense, we believe that the
classification obtained in this chapter can make a significant contribution to future research
on the derivation of the blow-up rate in (9.1.2), and lead to a deeper study of the solution
structure of this equation.

This chapter is organized as follows. In the next section, we state the main results of
this chapter. In Section 9.3, we obtain the dynamics of (9.1.4) on the Poincaré disk via
Poincaré compactification and classical dynamical systems theory. The proof of Theorems
will be completed in Section 9.4. In Section 9.5 is devoted to the concluding remarks.

9.2 Main results

Before, we state the main results of this chapter, we first state the definition of a quasi
traveling wave with singularity for (9.1.1) as follows.

Definition 9.2.1
We say that a function u(t, x) ≡ φ(ξ) is a quasi traveling wave with singularity of (9.1.1)
if the function u(t, x) is a quasi traveling wave of (9.1.1) on a semi-infinite interval such
that φ reaches 0 and only right differentiation is possible and it becomes a constant at
finite end point of the semi-infinite interval. More precisely, the function φ(ξ) is a solution
of (9.1.3) on a semi-infinite interval (ξ∗,+∞) (φ(ξ) ∈ C2(ξ∗,+∞), |ξ∗| < ∞), and satisfies

lim
ξ↘ξ∗+0

φ(ξ) = 0 and lim
ξ↘ξ∗+0

φ′(ξ) = C

with C > 0.

Remark 9.2.1
In the above definition, see Definition 2.1.2 (Definition 2 in [31]) and Definition 2.1 in
[37] for the definition of a quasi traveling wave of (9.1.1) on a semi-infinite interval.
Furthermore, note that although this definition is similar to a quasi traveling wave with
quenching as defined in these papers, the meaning of singularity is different. It is important
to emphasize that a quasi traveling wave is not a general term.

Next, we state the definition of a weak traveling wave solution with singularity for
(9.1.1) as follows. Note that u = 0 is the trivial solution to this equation. This definition
is an analogue of Definition 7.1.1 (Definition 1 in [32]).
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Definition 9.2.2
Let u(ξ) be a quasi traveling wave with singularity of (9.1.3) on a semi-infinite interval
(ξ∗,∞) satisfying

lim
ξ↘ξ∗+0

u′(ξ) = C and lim
ξ↘ξ∗+0

u(ξ) = 0

with a positive constant C. Then, we say that a function

u∗(ξ) =

{
0, ξ ∈ (−∞, ξ∗],

u(ξ), ξ ∈ (ξ∗,+∞)

is a weak traveling wave solution with singularity of (9.1.3). Singularity here means having
a point ξ∗ that is not differentiable.

The above Definition implies that u∗(ξ) satisfies
∫

R

[
uϕξ(c− uξ) + (γ + 1)(uξ)

2ϕ− u2(ϕξξ + kϕ) + δpuϕ
]
dξ = 0

for all ϕ ∈ C∞
0 (R).

Under these definitions, the main results of this chapter are described. Note that
φ(ξ) = u(ξ) and φ′(ξ) = ψ(ξ) = uξ(ξ) hold. Hereinafter, note that the meaning of the
symbol f(ξ) ∼ g(ξ) as ξ → a is as follows:

lim
ξ→a

∣∣∣∣
f(ξ)

g(ξ)

∣∣∣∣ = 1.

Theorem 9.2.1
Assume that 1 < p ∈ R, k > 0, µ > 0, and δ = 0. Then, for a given positive constant c,
the equation (9.1.1) has a family of weak traveling wave solutions with singularity (which
corresponds to a family of the orbits of (9.1.4)). Moreover, each weak traveling wave
solution with singularity u(ξ) satisfies the following:

• lim
ξ↘ξ∗+0

u(ξ) = lim
ξ→+∞

u(ξ) = lim
ξ→+∞

u′(ξ) = 0, lim
ξ↘ξ∗+0

u′(ξ) = C with a positive con-

stant C.

• u(ξ) > 0 holds for ξ ∈ (ξ∗,+∞) and u(ξ) = 0 holds for ξ ∈ (−∞, ξ∗].

• There exists a constant ξ0 ∈ (ξ∗,+∞) such that the following holds: u′(ξ) > 0 for
ξ ∈ (ξ∗, ξ0), u′(ξ0) = 0 and u′(ξ) < 0 for ξ ∈ (ξ0,+∞).

In addition, the asymptotic behavior of u(ξ) for ξ ↘ ξ∗ + 0 is

u(ξ) ∼ A(ξ − ξ∗) as ξ ↘ ξ∗ + 0, (9.2.1)

where A is a positive constant, and the asymptotic behavior of u(ξ) and u′(ξ) for ξ → +∞
are 




u(ξ) ∼ c

k
ξ−1,

u′(ξ) ∼ − c

k
ξ−2,

as ξ → +∞. (9.2.2)

Figure 9.2.1 shows the schematic pictures of the traveling wave solutions obtained in
Theorem 9.2.1 and the following theorems.

From the result of the above theorem and the relations U = u1/p and U ′ = p−1U−p+1u′,
the following holds for U . That is, the following follows immediately from the result of this
theorem. The following result corresponds to a generalization of the results in Theorem
7.1.1 and Theorem 7.4.1 in this thesis (Theorem 1 and Theorem 4 of [32]).
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u

O ξ∗ ξ ξξ∗ξ∗

u
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µ−1

u

ξO

µ−1

Figure 9.2.1: Schematic picture of the traveling wave solutions obtained in Theorems.
Here it should be noted that the position of the singularity point ξ∗ is not determined in
our studies, however, they are shown in the figures for the convenience. [Left: The weak
traveling wave solution with singularity in Theorem 9.2.1.] [Middle: The weak traveling
wave solution with singularity in Theorem 9.2.2 in the case that D < 0.] [Right: The
traveling wave solution on ξ ∈ R obtained in Theorem 9.2.3 in the case that D > 0.]

Corollary 9.2.1
Assume that 1 < p ∈ R, k > 0, µ > 0, and δ = 0. Then, for a given positive constant c, the
equation (9.1.2) has a family of weak traveling wave solutions with quenching. Moreover,
each weak traveling wave solution with quenching U(ξ) satisfies the following:

•






lim
ξ↘ξ∗+0

U(ξ) = 0, lim
ξ→+∞

U(ξ) = 0,

lim
ξ↘ξ∗+0

U ′(ξ) = +∞, lim
ξ→+∞

U ′(ξ) = 0.

• U(ξ) > 0 holds for ξ ∈ (ξ∗,+∞) and U(ξ) = 0 holds for ξ ∈ (−∞, ξ∗].

• There exists a constant ξ0 ∈ (ξ∗,+∞) such that the following holds: U ′(ξ) > 0 for
ξ ∈ (ξ∗, ξ0), U ′(ξ0) = 0 and U ′(ξ) < 0 for ξ ∈ (ξ0,+∞).

In addition, the asymptotic behavior of U(ξ) and U ′(ξ) for ξ ↘ ξ∗ + 0 are

{
U(ξ) ∼ A1(ξ − ξ∗)

1
p ,

U ′(ξ) ∼ A2(ξ − ξ∗)
− p−1

p ,
as ξ ↘ ξ∗ + 0, (9.2.3)

where A1 and A2 are positive constants, and the asymptotic behavior of U(ξ) and U ′(ξ)
for ξ → +∞ are 





U(ξ) ∼
(
k

c
ξ

)− 1
p

,

U ′(ξ) ∼ −1

p

(
k

c

)− 1
p

ξ−
p+1
p ,

as ξ → +∞. (9.2.4)

Remark 9.2.2
A several remarks about the results obtained in Corollary 9.2.1. As mentioned above, this
result is a generalization of the result of previous studies. See Fig. 7.1.1, Fig. 7.2.2 and
Fig. 7.4.4 in Chapter 7 (Fig. 1, Fig. 4 and Fig. 8 in [32]) for schematic pictures of this
solution. Note that (9.2.4) is consistent with the result obtained by restricting to µ = 1
(i.e., k = p) and p ∈ N in Theorem 7.1.1 and Theorem 7.4.1 in this thesis (Theorem 1
and Section 4.1 of [32]). On the other hand, (9.2.3) differs in the exponential part from
U ′(ξ) obtained in Theorem 7.1.1 (Theorem 1 of [32]). The reason for this is that, after
the publication of it, we chose more appropriate principal terms in the computational
process of deriving the asymptotic behavior, which resulted in a higher accuracy. This
improvement has already been introduced into [35, 37]. However, the underlying idea is
similar to the previous ones.
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Remark 9.2.3
It should be emphasized that, as will be discussed in Section 9.5, the only nonnegative
traveling wave solution to (9.1.2) with δ = 0 is the one concluded in Corollary 9.2.1.

Theorem 9.2.2
Assume that 1 < p ∈ R, k > 0, µ > 0, and δ = 1. Then, for a given positive constant c,
the equation (9.1.1) has a family of weak traveling wave solutions with singularity (which
corresponds to a family of the orbits of (9.1.4)). Moreover, each weak traveling wave
solution with singularity u(ξ) satisfies the following:

• lim
ξ↘ξ∗+0

u(ξ) = 0, lim
ξ→+∞

u(ξ) = µ−1, lim
ξ↘ξ∗+0

u′(ξ) = C with a positive constant C.

• u(ξ) > 0 holds for ξ ∈ (ξ∗,+∞) and u(ξ) = 0 holds for ξ ∈ (−∞, ξ∗].

In addition, the asymptotic behavior of u(ξ) for ξ ↘ ξ∗ + 0 is expressed as (9.2.1), and
the asymptotic behavior of u(ξ) for ξ → +∞ is

u(ξ) ∼ 1

µ
∼






B1eω1ξ +B2eω2ξ +
1

µ
, (D > 0),

(B3ξ +B4)eωξ +
1

µ
, (D = 0),

e−
µc
2 ξ

(
B5 · sin[

√
|D|
2 ξ] +B6 · cos[

√
|D|
2 ξ]

)
+

1

µ
, (D < 0),

as ξ → +∞

(9.2.5)
where Bj (1 ≤ j ≤ 6) are constants and

ω1 =
−µc+

√
D

2
< 0, ω2 =

−µc−
√
D

2
< 0, ω = −µc

2
< 0, D = µ2c2 − 4k.

As can be seen from the proof oh this theorem, which is omitted in the statement of
the theorem, the asymptotic behavior of u′(ξ) for ξ → +∞ can be displayed explicitly (see
[32]). From the result of the above theorem and the relation u = Up between u and U , we
can see that, in the same way as in Corollary 9.2.1, the following follows immediately.

Corollary 9.2.2
Assume that 1 < p ∈ R, k > 0, µ > 0, and δ = 1. Then, for a given positive constant c, the
equation (9.1.2) has a family of weak traveling wave solutions with quenching. Moreover,
each weak traveling wave solution with quenching U(ξ) satisfies the following:

• lim
ξ↘ξ∗+0

U(ξ) = 0, lim
ξ→+∞

U(ξ) = µ− 1
p , lim

ξ↘ξ∗+0
U ′(ξ) = +∞.

• U(ξ) > 0 holds for ξ ∈ (ξ∗,+∞) and U(ξ) = 0 holds for ξ ∈ (−∞, ξ∗].

In addition, the asymptotic behavior of U(ξ) for ξ ↘ ξ∗ + 0 is expressed as (9.2.3), and
the asymptotic behavior of U(ξ) for ξ → +∞ is

U(ξ) ∼ µ− 1
p ∼






(
B1eω1ξ +B2eω2ξ +

1

µ

) 1
p

, (D > 0),

(
(B3ξ +B4)eωξ +

1

µ

) 1
p

, (D = 0),

(
e−

µc
2 ξ

(
B5 · sin[

√
|D|
2 ξ] +B6 · cos[

√
|D|
2 ξ]

)
+

1

µ

) 1
p

, (D < 0),

(9.2.6)
where Bj (1 ≤ j ≤ 6) are constants.
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Remark 9.2.4
This result is also a generalization of the results in Theorem 7.1.2 and Theorem 7.4.2 in
this thesis (Theorem 2 and Theorem 5 of [32]). See Fig. 7.1.1, Fig. 7.2.2 and Fig. 7.4.4
in Chapter 7 (Fig. 1, Fig. 4 and Fig. 8 in [32]) for schematic pictures of this solution.
Note that for the principal term µ−1/p in (9.2.6), if we set µ = 1, the result is the same
as that of Theorem 7.1.2 obtained in this thesis (Theorem 2 obtained in [32]). Although
the asymptotic behavior of (9.2.6) does not seem to fully match the results of [32], the
principal term does. It should be possible to confirm this consistency by examining the
higher oder. However, this is a subject for future work.

Theorem 9.2.3
Assume that 1 < p ∈ R, k > 0, µ > 0, and δ = 1. Then, for a given positive constant
c, the equation (9.1.1) has a traveling wave solution (which corresponds to an orbit of
(9.1.4)). Moreover, its traveling wave solution u(ξ) satisfies the following:

• lim
ξ→−∞

u(ξ) = 0, lim
ξ→+∞

u(ξ) = µ−1.

• u(ξ) > 0 holds for ξ ∈ R.

In addition, the asymptotic behavior of u(ξ) for ξ → ∞ is expressed as (9.2.5), and the
asymptotic behavior of u(ξ) for ξ → −∞ is

u(ξ) ∼ Mc2e
p
c ξ

M(µc2 + 1)e
p
c ξ − 1

as ξ → −∞, (9.2.7)

where M < 0 is a constant that depends on the initial state φ(0) = φ0.

From the result of the above theorem and the relation u = Up between u and U , we
can see that, in the same way as in Corollary 9.2.1 and Corollary 9.2.2, the following holds.

Corollary 9.2.3
Assume that 1 < p ∈ R, k > 0, µ > 0, and δ = 1. Then, for a given positive constant c,
the equation (9.1.2) has a traveling wave solution. Moreover, this traveling wave solution
U(ξ) satisfies the following:

• lim
ξ→−∞

U(ξ) = 0, lim
ξ→+∞

U(ξ) = µ− 1
p .

• U(ξ) > 0 holds for ξ ∈ R.

In addition, the asymptotic behavior of U(ξ) for ξ → ∞ is expressed as (9.2.6), and the
asymptotic behavior of U(ξ) for ξ → −∞ is

U(ξ) ∼
(

Mc2e
p
c ξ

M(µc2 + 1)e
p
c ξ − 1

) 1
p

as ξ → −∞, (9.2.8)

where M < 0 is a constant that depends on the initial state φ(0) = φ0.

Remark 9.2.5
This result is also a generalization of the result in Theorem 8.1.2 in this thesis (Theorem
2 of [30]). See Fig. 8.2.1 (Fig. 1 in [30]) for schematic picture of this solution. Note that
(9.2.8) is consistent with the result obtained in Theorem 8.1.2 (Theorem 2 of [30]).
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Remark 9.2.6
It should be emphasized that there are only two type of nonnegative traveling wave so-
lutions in (9.1.2) with δ = 1, which are concluded in Corollary 9.2.2 and Corollary 9.2.3.
The reason for this will be discussed in Section 9.5.

Remark 9.2.7
As mentioned in Section 9.1, the derivation of the asymptotic behavior of the obtained
traveling wave solutions for ξ ↘ −∞ or ξ ↘ ξ∗ + 0 are expected to contribute to a more
accurate derivation of the blow-up rate. As can be also seen from the results in [62], the
results in Theorem 9.2.2 and Corollary 9.2.2 can be used for blow-up analysis (see also top
right of Figure 9.2.1). To the best of the authors’ knowledge, no conclusion has given the
existence of ξ∗ > −∞ or their asymptotic behavior there, except for our previous works
Chapter 7 and Chapter 8 ([32, 30]).

Remark 9.2.8
The stability of the (weak) traveling wave solutions obtained by main results is not known
in the framework of the analysis in this chapter. It is necessary that more detailed (and
hard) analysis in order to study the stability. However, since the main purpose of this
chapter is to investigate the existence, shape and asymptotic behavior of (weak) traveling
wave solutions of (9.1.2) from the dynamical system view point (especially, the Poincaré
compactification), we leave it open here.

9.3 Dynamics on the Poincaré disk of (9.1.4)

In this section, we study R2∪{(φ,ψ) | ‖(φ,ψ)‖ = +∞} called the dynamics on the Poincaré
disk, by the Poincaré compactification. The analysis used in this section is basically the
same in idea as the analysis in Chapter 7 and Chapter 8 ([32, 30]), except that the blow-up
technique is not used. For the reader’s convenience, the calculation process is described
here.

9.3.1 Dynamics near finite equilibria

First, we study the dynamics near finite equilibria of (9.1.4). If δ = 1, then this equation
has the equilibrium E1 : (φ,ψ) = (µ−1, 0) for {φ > 0}. Note that φ = 0 has singularity.
The Jacobian matrix of the vector field (9.1.4) at E1 is

E1 :

(
0 1
−k −cµ

)
.

Let J1 be this matrix. Then, the behavior of the solution around E1 is different by the
sign of D = µ2c2 − 4k. For instance, the matrix J1 has the real distinct eigenvalues if
D > 0 and other cases can be concluded similarly. In addition, if c > 0, then the real part
of all eigenvalues of J1 are negative. Therefore, we determine that the equilibrium E1 is
asymptotically stable. E1 is a stable node for D ≥ 0 and is a stable focus (spiral sink) for
D < 0.

Second, in order to study the dynamics of (9.1.4) on the Poincaré disk, we desingularize
it by the time-scale desingularization

ds/dξ = φ−1. (9.3.1)

Note that this allows us to include φ = 0. Since we are considering a nonnegative solution,
i.e., φ ≥ 0, the direction of the time does not change via this desingularization in this
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region. Then we have
{
φ′ = φψ,

ψ′ = −cψ + γψ2 − kφ2 + δpφ,

(
′ =

d

ds

)
. (9.3.2)

Remark 9.3.1
It should be noted that the time scale desingularization (9.3.1) is simply multiplying the
vector field by φ. Then, except the singularity {φ = 0}, the solution curves of the system
(vector field) remain the same but are parameterized differently. Still, we refer to Section
7.7 of [44] and references therein for the analytical treatments of desingularization with
the time rescaling. In what follows, we use the similar time rescaling (re-parameterization
of the solution curves) repeatedly to desingularize the vector fields.

If δ = 0, the system (9.3.2) has the equilibria

E0 : (φ,ψ) = (0, 0), E2 : (φ,ψ) =
(
0, cγ−1

)
, 0 < γ < 1.

The Jacobian matrices of the vector field (9.3.2) at these equilibria are

E0 :

(
0 0
0 −c

)
, E2 :

(
cγ−1 0
0 c

)
.

Therefore, E2 is a source since the linearized eigenvalues are cγ−1 > 0 and c > 0 with
corresponding eigenvectors (1, 0)T and (0, 1)T , respectively. Then, the center manifold
theory is applicable to study the dynamics near E0 (for instance, see [9]). We can obtain
the approximation of the (graph of) center manifold as follows:

{(φ,ψ) | ψ(s) = −kc−1φ2 +O(φ4)}. (9.3.3)

Hence, the dynamics of (9.3.2) near E0 : (0, 0) is topologically equivalent to the dynamics
of the following equation:

φ′(s) = −kc−1φ3 +O(φ5) (9.3.4)

(see Subsection 3.2 of [32] for more details of this process).
On the other hand, the system (9.3.2) has the equilibria

E0 : (φ,ψ) = (0, 0), E1 : (φ,ψ) = (µ−1, 0), E2 : (φ,ψ) = (0, cγ−1), 0 < γ < 1

in the case that δ = 1. E1 is described above. The Jacobian matrices of the vector field
(9.3.2) at these equilibria are

E0 :

(
0 0
p −c

)
, E2 :

(
cγ−1 0
p c

)
.

Note that the behavior of solutions around E0 and E2 for δ = 0 and δ = 1 are different.
E2 is a source since the linearized eigenvalues are cγ−1 > 0 and c > 0 with corresponding
eigenvectors (1, c−1p(γ−1 − 1)−1)T and (0, 1)T , respectively. By the same argument as
in Subsection 3.2 of [32] and Section 2 of [30], we can study the dynamics around the
equilibrium E0 for δ = 1. We conclude that the approximation of the (graph of) center
manifold is {

(φ,ψ) | ψ(s) = p

c
φ− p

c3
(µc2 + 1)φ2 +O(φ3)

}
(9.3.5)

and the dynamics of (9.3.2) near E0 is topologically equivalent to the dynamics of the
following equation:

φ′(s) =
p

c
φ2 − p

c3
(µc2 + 1)φ3 +O(φ4). (9.3.6)

These results give us the dynamics near finite equilibria of (9.3.2).
From the next subsection, we can consider the dynamics of this equation on the charts

U j (j = 1, 2) and V 2 since we are considering φ ≥ 0.
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9.3.2 Dynamics on the chart U2

To obtain the dynamics on the chart U2, we introduce the coordinates (λ, x) by the
formulas

φ(s) = x(s)/λ(s), ψ(s) = 1/λ(s).

In this chart, it corresponds to φ → 0 and ψ → +∞ and the direction in which x is
positive corresponds to the direction in which φ is positive. For a geometric image, see
Fig. 2 of [31] and Fig. 2 of [32]. Then, we have

{
λ′ = cλ− γ + kx2 − δpλx,

x′ = p−1λ−1x+ cx+ kλ−1x3 − δpx2.
(9.3.7)

By using the time-scale desingularization dτ/ds = λ−1, we can obtain

{
λτ = cλ2 − γλ+ kλx2 − δpλ2x,

xτ = p−1x+ cλx+ kx3 − δpλx2,
(9.3.8)

where λτ = dλ/dτ and xτ = dx/dτ . The equilibrium of the system (9.3.8) on {λ = 0} is
E3 : (λ, x) = (0, 0). E3 is a saddle since the linearized eigenvalues are −γ and p−1 with
corresponding eigenvectors (1, 0)T and (0, 1)T , respectively.

Remark 9.3.2
A similar argument shows that the origin is also the equilibrium in the argument of [32].
However, it is essentially different from the present result in that all components of the
Jacobi matrix at this equilibrium are zero. In [32], the blow-up technique was used to
solve this problem. On the other hand, since E3 is a hyperbolic, it should be emphasized
that we were able to study the behavior of the solution around this point without using
this technique. This is undoubtedly one of the major factors that allow us to investigate
without imposing p ∈ N.

9.3.3 Dynamics on the chart V 2

In this chart, it corresponds to φ → 0 and ψ → −∞ and the direction in which x is
negative corresponds to the direction in which φ is positive. The change of coordinates

φ(s) = −x(s)/λ(s), ψ(s) = −1/λ(s)

give the projected dynamics of (9.3.2) on the chart V 2:

{
λτ = cλ2 + γλ− kλx2 − δpλ2x,

xτ = −p−1x+ cλx− kx3 − δpλx2,
(9.3.9)

where τ is the new time introduced by dτ/ds = λ−1. The equilibrium of the system
(9.3.9) on {λ = 0} is E4 : (λ, x) = (0, 0). Eigenvalues of the the linearized matrix are γ
and −p−1 with corresponding eigenvectors (1, 0)T and (0, 1)T , respectively. Therefore, the
equilibrium E4 is a saddle.
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Figure 9.3.1: Schematic pictures of the dynamics on the Poincaré disk in the case that
δ = 0 or 1, 1 < p ∈ R. [Left: Case δ = 0.] [Right: Case δ = 1.]

9.3.4 Dynamics on the chart U1

In this chart, it corresponds to φ→ +∞ and ψ → 0. The transformations φ(s) = 1/λ(s),
ψ(s) = x(s)/λ(s), and time-rescaling dτ/ds = λ−1 yield

{
λτ = −λx,
xτ = −cλx− p−1x2 − k + δpλ.

(9.3.10)

This system has no equilibria. It is important to emphasize that the following holds:

xτ
∣∣
λ=0

= −p−1x2 − k < 0.

9.3.5 Dynamics and connecting orbits on the Poincaré disk

Combining the dynamics on the charts U j (j = 1, 2) and V 2, we can obtain the dynamics
on the Poincaré disk that is equivalent to the dynamics of (9.1.4) (or (9.3.2)) (see also
Figure 9.3.1).

The purpose of this subsection is to prove the existence of connecting orbits. Before
we do so, we will give some remarks about disks.

Remark 9.3.3
In Figure 9.3.1, we need to be careful about the handling of the point E0. A note on this
treatment is given for the reader’s convenience, although it is a reproduction of [32, 30].
When we consider the parameter s on the disk, E0 is the equilibrium of (9.3.2). However,
E0 is a point on the line {φ = 0} with singularity about the parameter ξ. We see that
dφ/dψ takes the same values on the vector fields defined by (9.1.4) and (9.3.2) except the
singularity {φ = 0}. If the trajectories start (resp. come in) the equilibrium E0 about the
parameter s, then they start from (resp. come in) the point E0 about ξ. This is also the
case for E2.

Let us prepare the symbols used in this subsection as follows:

• The set Φ denotes Φ = {(φ,ψ) ∈ R2 ∪ {‖(φ,ψ)‖ = +∞}}.
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9.4 Proof of theorems

• Wcs(E0) denotes the center-stable manifold of E0 in the dynamical system (9.3.2)
for δ = 0. From Remark 9.3.3, Wcs(E0) inherits the center-stable manifold of the
singularity E0 in the dynamical system (9.1.4) for δ = 0.

• Wcu(E0) denotes the center-unstable manifold of E0 in the dynamical system (9.3.2)
for δ = 1. From Remark 9.3.3, Wcu(E0) inherits the center-unstable manifold of E0

in the dynamical system (9.1.4) for δ = 1.

• Ws(E1) denotes the stable manifold of E1 in the dynamical system (9.1.4) for δ = 1.

• Wu(E2) denotes the unstable manifold of E2 in the dynamical system (9.3.2) for
both δ = 0 and δ = 1. From Remark 9.3.3, Wu(E2) inherits the unstable manifold
of the singularity E2 in the dynamical system (9.1.4) for both δ = 0 and δ = 1.

Proposition 9.3.1
Assume that δ = 0 or 1, 1 < p ∈ R, γ = (p−1)/p, µ > 0, and k = pµ. Then, the dynamics
on the Poincaré disk of the system (9.1.4) is expressed as Figure 9.3.1.

Proof. (I). First, we shall prove the existence of trajectories between E2 and E0 that
starts from the points on Wu(E2) and reaches the points on Wcs(E0) for δ = 0. Since
{φ = 0} is invariant in (9.3.2), any trajectory starting from the points in {(φ,ψ) ∈ Φ |
φ > 0} cannot go to {(φ,ψ) ∈ Φ | φ < 0}. Let us consider the trajectories starting
from the points on Wu(E2). Then, as in [32], from the Poincaré-Bendixson theorem and
Remark 9.3.3, we know that these trajectories can only go to the points on Wcs(E0) in
(9.3.2). Here, as mentioned in Remark 9.3.3, since dφ/dψ takes the same values on the
vector fields defined by (9.1.4) and (9.3.2), we can see that these trajectories possessed
by (9.3.2) is also inherited by (9.1.4). Thus, it is proved that there exists the connecting
orbits between E2 and E0 for δ = 0.
(II). Second, we shall prove the existence of trajectories between E2 and E1 that starts
from the points on Wu(E2) and reaches the points on Ws(E1) for δ = 1. From the
discussion in (I), any trajectory starting from the points on Wu(E2) cannot go to {(φ,ψ) |
φ < 0}, and can only go to the points on Ws(E1). Thus, we conclude that there exists
the connecting orbits between E2 and E1 for δ = 1.
(III). Finally, from the discussion in Remark 9.3.3 and (II), we can see that the trajectory
starting from the points on Wcu(E0) must go to the points on Ws(E1).

Therefore, we prove that there exists the connecting orbits between E0 and E1 for
δ = 1. !

9.4 Proof of theorems

In this section, we prove our main results. If the initial data are located on Φ\{φ < 0},
the existence of the solutions follows from the standard theory for the ODEs. Therefore,
we consider the existence of the trajectories that connect equilibria and detailed dynamics
near the equilibria on the Poincaré disk and their asymptotic behavior. Note from the
proof of Proposition 9.3.1 that there are no orbits that pass through the ψ-axis, so there
are no sign-changing solutions.

9.4.1 Proof of Theorem 9.2.1

The proof of existence of the connecting orbits between E2 and E0 for δ = 0 is obtained
in Proposition 9.3.1. Therefore, there exists a family of the quasi traveling waves with
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singularity which corresponds to a family of the orbits of (9.1.4). By considering this
result together with Definition 9.2.2, (9.1.1) has a family of weak traveling wave solutions
with singularity. Moreover, these trajectories exist in {φ ≥ 0}, u > 0 holds for ξ ∈ (ξ∗,∞).

Next, we prove the existence of a constant ξ0 ∈ (ξ∗,∞). The proof is presented in the
same way as the proof of Theorem 1 in [32].

Then, we shall compute the asymptotic behavior of the trajectories near the equilibria
E2 and E0. Note that the basic idea is the same as the proof of Theorem 1 in [32], however,
that the ODEs we are dealing with are different.

Let us derive (9.2.1). The solutions around E2 are approximated as




φ(s) = C1e

c
γ s(1 + o(1)),

ψ(s) = C2ecs(1 + o(1)) +
c

γ

with constants Cj (j = 1, 2). Using this equation, we obtain

ds

dξ
= φ−1 =

{
C1e

c
γ s(1 + o(1))

}−1
∼ C3e

− c
γ s as s → −∞.

Here, note that the meaning of the symbol F (s) ∼ G(s) as s → −∞ is as follows:

lim
s→−∞

∣∣∣∣
F (s)

G(s)

∣∣∣∣ = 1.

From this result, we can obtain dξ/ds ∼ C4e
c
γ s. This yields ξ(s) ∼ C5e

c
γ s + C6 (C6 ∈ R).

Set
ξ∗ = lim

s→−∞
ξ(s),

then we have
ξ − ξ∗ ∼ C7e

c
γ s as s → −∞

with constants Cj in the same discussion as [31, 33, 32, 50]. Therefore, we obtain

φ(ξ) = C1e
c
γ s(1 + o(1)) ∼ C1e

c
γ ∼ C8(ξ − ξ∗) as ξ ↘ ξ∗ + 0,

ψ(ξ) = C2e
cs(1 + o(1)) +

c

γ
∼ γ

c
as ξ ↘ ξ∗ + 0.

Since the trajectories are lying on {φ > 0}, it holds that C8 > 0. By using u(ξ) = φ(ξ)
and uξ = ψ(ξ), we can derive (9.2.1).

Finally, we shall derive (9.2.2). If the initial value is on the center manifold, the solution
around E0 on Poincaré disk has the form






φ(s) =

√√√√
1

2k

c
s−A1

=

(
2k

c
s−A1

)− 1
2

,

ψ(s) = −k

c

(
2k

c
s−A1

)−1

= − k

2ks− cA1
.

(9.4.1)

Since the initial value φ(0) is located on {φ > 0}, it holds that A1 < 0. These results
follow from (9.3.3) and (9.3.4). We then have

ds

dξ
= φ−1 =

(
2k

c
s−A1

) 1
2

.
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Therefore, there exists a solution s(ξ) such that the following holds:

s(ξ) =
k

2c
ξ2 +A2ξ +

c

2k
A2

2 +
c

2k
A1 ∼

k

2c
ξ2 as ξ → +∞ (9.4.2)

with constants Aj . Substituting (9.4.2) into (9.4.1), we have






φ(ξ) =

(
2k

c
s−A1

)− 1
2

∼ c

k
ξ−1,

ψ(ξ) ∼ −k

c
·
(
k2

c2
ξ2
)−1

= − c

k
ξ−2,

as ξ → +∞.

In addition, we can see that φ′ ∼ ψ as ξ → +∞ holds. By using u(ξ) = φ(ξ) and uξ = ψ(ξ),
we can derive (9.2.2). This completes the proof. !

9.4.2 Proof of Theorem 9.2.2

The same arguments as in Theorem 9.2.1 can be used to obtain the existence of a family of
weak traveling wave solutions with singularity and information about their shape. Then,
all that remains to be shown is to derive (9.2.1) and (9.2.5). By focusing on E1, (9.2.5)
can be proved in the same way as proof of Theorem 2 in [32].

Finally, let us derive (9.2.1) in this case. Note that this is the same conclusion as
Theorem 9.2.1, however, there is a difference in the solutions around E2 since the linearized
matrix in E2 is different for δ = 0 and δ = 1. They are approximated as






φ(s) = A1e
c
γ s,

ψ(s) = A1
p(p− 1)

c
e

c
γ s +A2ecs +

c

γ
∼ c

γ
,

as s → −∞.

From this result, (9.2.1) can be shown in the same way as in the previous subsection (see
Subsection 9.4.1). This completes the proof. !

9.4.3 Proof of Theorem 9.2.3

The same arguments as in Theorem 9.2.1 and Theorem 9.2.2 can be used to obtain the
existence of a traveling wave solution and information about its shape. Therefore, we shall
derive (9.2.7). The proof is almost the same as in [30]. However, there are some parts
that are different. We briefly reproduce the proof and describe it below for the reader’s
convenience.

First we set w(s) = φ(s)−1 > 0. With the aid of (9.3.6), we have

w′(s) = −p

c
+

p

c3
(µc2 + 1)w−1 = A+Bw−1, (9.4.3)

where A = −pc−1 < 0 and B = c−3p(µc2 + 1) > 0. These are consistent with the results
obtained in [30] when µ = 1. The solution of (9.4.3) satisfies the following:

−(1 +Aw/B)e−(
A
Bw+1) = −AB−1e−

A2

B s−A2C1+B
B
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since the dynamics of φ(s) near 0 is our interest. That is, w(s) is sufficiently large, which
implies that AB−1w + 1 < 0. Here C1 is a constant. By using w = φ−1 and the Lambert
W function (see [30] and references therein), we obtain

φ(s) = [−A−1B{W (E(s)) + 1}]−1, E(s) = −AB−1e−
A2

B s−A2C1+B
B .

We consequently have
ds

dξ
= φ−1 = −B

A
{W (E(s)) + 1}. (9.4.4)

Second, we shall prove
ξ(s) → −∞ as s → −∞.

This proof is given in [30] and is used properties of the Lambert W function.
Next, we represent ξ as a function of φ. We rewrite (9.4.4) as

dξ

ds
= φ.

Using (9.3.6), we can obtain

ξ + C3 =

∫
φ(s) ds =

∫
φ
ds

dφ
dφ

=

∫
φ
(p
c
φ2 − p

c3
(µc2 + 1)φ3

)−1
dφ

=

∫
c3

pφ{c2 − (µc2 + 1)φ} dφ

=
c3

p

∫ [
1

c2
1

φ
+

1

c2
(µc2 + 1)

1

c2 − (µc2 + 1)φ

]
dφ

=
c

p
log |φ|− c

p
log |(µc2 + 1)φ− c2|

=
c

p
log

∣∣∣∣
φ

(µc2 + 1)φ− c2

∣∣∣∣

with a constant C3. Then the constant C3 is given by

C3 =
c

p
log

∣∣∣∣
φ0

(µc2 + 1)φ0 − c2

∣∣∣∣ ,

where φ(0) = φ0. Note that we can conclude that C3 < 0 in the same way as in [30].
Finally, we aim to represent φ as a function of ξ. As mentioned above, we obtain

ξ +
c

p
log

∣∣∣∣
φ0

(µc2 + 1)φ0 − c2

∣∣∣∣ =
c

p
log

∣∣∣∣
φ

(µc2 + 1)φ− c2

∣∣∣∣ .

Therefore, we have

φ(ξ) =
Mc2e

p
c ξ

M(µc2 + 1)e
p
c ξ − 1

, M = −
∣∣∣∣

φ0
(µc2 + 1)φ0 − c2

∣∣∣∣ ,

where M < 0 is the constant that depends on the initial state φ0. This completes the
proof. !
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9.5 Concluding remarks

In this chapter, we studied whole dynamics of (9.1.4) on the phase space

R2 ∪ {‖(φ,ψ)‖ = +∞}\ {φ < 0}

and all trajectories with {φ ≥ 0} were classified. This allowed us to classify the nonnegative
traveling wave solutions including weak traveling wave solutions with singularity of (9.1.1)
and to present their existence, information about their shape and asymptotic behavior.
These are studied by applying the framework that combines Poincaré compactification
and classical dynamical systems theory.

By using the relation between u and U , we obtained the classification of the corre-
sponding traveling wave solutions in (9.1.2). The present process does not require p ∈ N
since it does not use the blow-up technique as in previous studies, concluding in a general
1 < p ∈ R results. This solves the problem in (9.1.2) where the argument in 1 < p ∈ R is
not given and the existence of connecting orbits cannot be proved when p is odd. It can
be argued that the results obtained in this chapter extend the results of Chapter 7 and
Chapter 8 ([32, 30]) to the general case.

By studying the dynamics to infinity, we can see that there is only a family of orbits
connecting E0 and E2 at δ = 0 (see Figure 9.3.1). In other words, the only nonnegative
traveling wave solution to (9.1.1) at δ = 0 is the one given by Theorem 9.2.1. Furthermore,
by following this transformation, we can conclude that the only nonnegative traveling wave
solution for (9.1.2) with δ = 0 is the one given by Corollary 9.2.1 as mentioned in Remark
9.2.3. A similar argument leads to the conclusion as in Remark 9.2.6 for δ = 1.

This is essentially due to the introduction of the transformation u = Up. This transfor-
mation has overcome the difficulty in extending the previous studies. There are problems
that impose a similar p ∈ N constraint (see [31, 33, 35, 37]). However, this idea can only
be used for this type of equation. It remains to be seen what methods will be effective in
dealing with these problems.

Furthermore, as mentioned in Remark 9.2.8, the stability of the traveling wave solution
obtained in this study has not been discussed. This problem has been an issue in Chapter
7 and Chapter 8 ([32, 30]), and will remain an issue in this chapter as well. The question of
the stability of the traveling wave solutions (including in a weak sense) is important from
the point of view of the phenomenon and blow-up analysis. Then, numerical simulation
will play an important role in providing suggestions and conjectures. However, it is not
easy due to influence of the degenerate parts of equations. We believe that the results
in this chapter will provide a new perspective for the construction of stable numerical
schemes. As noted in Remark 9.2.7, it will also contribute greatly to future blow-up
analysis.
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Chapter 10

Radially symmetric stationary
solutions for certain chemotaxis
systems in higher dimensions: a
geometric approach

Abstract

This chapter reports results on the existence, shapes, and asymptotic behavior of positive
radially symmetric stationary solutions for several models of chemotaxis in higher dimen-
sions. The systems treated in this chapter are the simplest parabolic-elliptic Keller-Segel
model and the simplest attraction-repulsion chemotaxis system, in which a positive-valued
(resp. negative-valued) solution of one is a negative-valued (resp. positive-valued) solu-
tion of the other from symmetry. In particular, the construction of functions satisfying
equations that diverge at the endpoints of finite intervals is an interesting result. The key
to the discussion is to derive a scalar equation by using a transformation on the averaged
mass for the equation satisfied by the radially symmetric stationary solution and to in-
vestigate the infinity dynamics as geometric information for the two-dimensional ordinary
differential equations derived from it. To achieve this, we use a method that combines
classical results from the continuous dynamical systems theory and Poincaré-Lyapunov
compactification. In addition, the results for singular solutions are discussed in light of
the results of previous studies. This chapter is based on the following published paper
([39]):

Ichida, Y.: Radially symmetric stationary solutions for certain chemotaxis
systems in higher dimensions: a geometric approach, Discrete Contin. Dyn.
Syst., 43 (2023), no. 5, 1975–2001.

10.1 Introduction

Let u = u(t, x) be the density of the cell population, v = v(t, x) be the concentration of
the chemotactic substance, p = p(t, x) be the concentration of the attractant, q = q(t, x)
be the concentration of the repellent and N ≥ 3. In this chapter, we consider the radially
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symmetric stationary solutions of the following systems:
{
ut = ∆u−∇ · (u∇v), x ∈ RN , t > 0,

0 = ∆v + u, x ∈ RN , t > 0
(10.1.1)

and 




ut = ∆u− α∇ · (u∇p) + β∇ · (u∇q), x ∈ RN , t > 0,

0 = ∆p+ u, x ∈ RN , t > 0,

0 = ∆q + u, x ∈ RN , t > 0,

(10.1.2)

where α and β are positive constants. Assume that α < β below.
(10.1.1) and (10.1.2) are a kind of chemotaxis systems. (10.1.1) is a system of equations

based on [43], which is considered to be the pioneering work on the model of chemotaxis,
and simplified by [58]. This equation is called the simplest classical Keller-Segel or Keller-
Segel-Patlak system, see for instance [11, 56, 57, 64], and references therein for related
works. According to [56], the convective term −∇ · (u∇v) in the first equation describes
aggregation directed towards the origin with a velocity proportional to ∇v. Mathemati-
cally, the main studies are on well-posedness, boundedness, and blow-up solution; see the
survey paper [29] and references therein. However, as also noted in [65], in many biological
processes, not only attracting effects such as (10.1.1) but also repulsive effects are quite
possible. One representative system is the attraction-repulsion chemotaxis system, and
(10.1.2) is the simplest version of them. In terms of phenomena, (10.1.2) comes from
the systems proposed in [48] and was introduced to explain the aggregation of microglia
observed in Alzheimer’s disease.

In (10.1.2), by setting v = βq − αp, we obtain
{
ut = ∆u+∇ · (u∇v), x ∈ RN , t > 0,

0 = ∆v + (β − α)u, x ∈ RN , t > 0.
(10.1.3)

Note that the sign of the convective term in (10.1.1) is different in (10.1.3). It turns out
that it is sufficient to examine the behavior of u in (10.1.3) in order to study the behavior
of the solution u of equation (10.1.2).

In [57], by focusing on radially symmetric and radially symmetric stationary solutions
of (10.1.1), [57] shows the optimal conditions on the initial data for the finite-time blow-up
and the global existence of solutions. Discussions examining the properties of solutions to
scalar equations involving the averaged mass of u (see (10.1.7)) play an important role.
In addition, for α > 0, let φ(r;α) be a solution to the following equation:

(rN−1φr)r + rN−1eφ = 0, φ(0) = α, φr(0) = 0. (10.1.4)

We set
U(r;α) = eφ(r;logα), V (r;α) = φ(r; logα)− logα for r ≥ 0.

Then, it is stated in [57] that (U, V ) = (U(r;α), V (r,α)) is a solution of the following
equations:

0 = ∇ · (∇U − U∇V ), 0 = ∆V + U.

In [57], conclusions are drawn mainly based on these facts. In addition, in (10.1.4), the
singular solution φ∗(r) = −2 log r + log(2N − 4) is shown to be unique by Mignot-Puel
[52]. This is also shown in Miyamoto-Naito [53] with a generalized equation. In [7], they
investigate the bifurcation problem for radially symmetric stationary solutions by focusing
on (10.1.4) and this singular solution.
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Generally speaking, a radially symmetric stationary solution is one of the special and
typical solutions that play a fundamental and important role in studying the solution
structure of partial differential equations in multidimensional space. Therefore, motivated
by [57], this chapter attempts to clear the structure of radially symmetric stationary
solutions of (10.1.1), (10.1.2) and (10.1.3) from a dynamical systems theory and geometric
approach different from [57] (in particular, the infinite dynamics of differential equations
based on the Poincaré type compactification). The goal is to discover new aspects of the
abundant solution structure of the chemotaxis systems.

The Poincaré type compactification is one of the compactifications of the original phase
space (the embedding of Rn into the unit upper hemisphere of Rn+1). See [14, 31, 32, 33,
34, 49, 50] and their references for details. A brief overview is given in Section 1.1. In the
following, the Poincaré type compactification includes both the Poincaré compactification
and the Poincaré-Lyapunov compactification. The difference between the two is that the
vector field is either homogeneous or quasi-homogeneous, respectively. For the quasi-
homogeneity of a vector field, see Section 1.1 and [49, 50]. The most important feature of
applying this method is that it allows us to investigate the global behavior of the system
of ODEs of interest by revealing all its dynamics including infinity (see also [34]). This
method has been used, for instance, in the analysis of the Liénard equation ([14] and
references therein), and in the reconsideration of blow-up solutions of systems of ODEs in
the view of dynamical systems ([49, 50]).

The author has used a kind of compactification of phase space called the Poincaré
type compactification to investigate the structure of special solutions (e.g., the stationary
solution, the traveling wave solution) of partial differential equations with negative powers
nonlinearity and degenerate parabolic equation ([31, 32, 33, 38]). In particular, the classi-
fication of nonnegative traveling wave solutions for the 1D degenerate parabolic equations
is given in [38]. It also reveals the global behavior of certain ODE systems, as described
in [34]. To the best of the author’s knowledge, there is no study of this method being
applied to chemotaxis systems. Therefore, by applying this method, we clarify the exis-
tence, profiles, and asymptotic behavior of radially symmetric stationary solutions from a
different angle from previous studies.

We derive a system of ordinary differential equations satisfying the radially symmetric
stationary solutions of (10.1.1), (10.1.2), and (10.1.3). The equation satisfied by the
radially symmetric solution (u, v) = (u(t, r), v(t, r)), r = |x| > 0, of equation (10.1.1) is

{
rN−1ut = (rN−1ur)r − (urN−1vr)r,

(rN−1vr)r + rN−1u = 0.
(10.1.5)

On the other hand, the equation for the radially symmetric solution of (10.1.3) derived
from (10.1.2) is as follows:

{
rN−1ut = (rN−1ur)r + (urN−1vr)r,

(rN−1vr)r + (β − α)rN−1u = 0.
(10.1.6)

Next, we introduce the following transformation:

w(t, r) :=
1

rN

∫ r

0
sN−1u(t, s) ds, r > 0. (10.1.7)

This transformation (10.1.7) involves the averaged mass of u being used, for instance, see
[57, 64] and references therein. Here we consider solutions that satisfy the following

lim
r→0

rNw(r, t) = 0. (10.1.8)
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(10.1.8) will be helpful in understanding the claims for singular solutions (see Subsection
10.5.1, Subsection 10.5.2).

Then, from (10.1.5), we can see that w(t, r) satisfies the following scalar equation:

wt = wrr +
N + 1

r
wr + rwwr +Nw2, w = w(t, r), r > 0. (10.1.9)

Furthermore, from (10.1.6) we obtain

wt = wrr +
N + 1

r
wr + (α− β)rwwr + (α− β)Nw2, w = w(t, r), r > 0. (10.1.10)

Here, if α = 1 and β = 0, (10.1.10) becomes (10.1.9), so it is sufficient to examine the
behavior of the solution of (10.1.10). Note that we assume

rN−1vr(r) → 0 (r → 0)

in this calculation process. In addition,

u(t, r) = rwr(t, r) +Nw(t, r) (10.1.11)

holds, and by differentiating both sides of (10.1.11) by r,

ur(t, r) = rwrr(t, r) + (N + 1)wr(t, r) (10.1.12)

holds.
Since we consider the radially symmetric stationary solutions of the original systems of

partial differential equations (10.1.1) and (10.1.2), this chapter is reduced to the problem
of studying the behavior of the solutions of the following equation (second-order ordinary
differential equation) satisfied by these stationary solutions w(r) from (10.1.10):

wrr +
N + 1

r
wr + (α− β)rwwr + (α− β)Nw2 = 0, w = w(r), r > 0. (10.1.13)

Note that rN−1ur = urN−1vr is naturally assumed in (10.1.5) since wt = 0 from the above
discussion. Similarly, rN−1ur = −urN−1vr is assumed in (10.1.6).

(10.1.13) is a non-autonomous system, especially, r = 0 is a singular point. Then,
we consider the following transformations that transform (10.1.13) into the autonomous
systems on R2 and remove the singularity r = 0:

t = κ log r, a(t) = r2w(r), κ = ±1. (10.1.14)

Then,

w = r−2a,

wr = −2r−3a+ κr−3ȧ,

wrr = 6r−4a− 5κr−4ȧ+ r−4ä

hold. (10.1.13) is transformed into the following:

ä+ κ(N − 4)ȧ+ κ(α− β)aȧ− 2(N − 2)a+ (N − 2)(α− β)a2 = 0, (10.1.15)

equivalently
{
ȧ = b,

ḃ = −κ(N − 4)b− κ(α− β)ab+ 2(N − 2)a− (N − 2)(α− β)a2,
(10.1.16)

204



10.1 Introduction

where we set ˙ = d/dt and ¨ = d2/dt2. This transformation (10.1.14) was also introduced
in [33, 41]. When the parameter κ is κ = 1, we see that r → ∞ as t = log r → ∞ holds.
Therefore, to discuss the behavior of the solution to (10.1.13) as r → ∞, we need to study
the information of the solutions of (10.1.16) as t → ∞. Similarly, r → 0 as t → ∞ in the
case that κ = −1. Here, switching the positive and negative values of α− β is equivalent
to applying the following transformation in (10.1.16):

(a, b) 2→ (−a,−b). (10.1.17)

That is, the solutions of (10.1.16) at α = 1 and β = 0 correspond to the radially symmetric
stationary solutions of the simplest parabolic-elliptic Keller-Segel model (10.1.1), and the
solutions of (10.1.16) at α += β (in this chapter, especially α < β) corresponds to the
radially symmetric stationary solutions of the simplest attraction-repulsion chemotaxis
model (10.1.2) or derived from it (10.1.3).

The purpose of this chapter is to focus on the radially symmetric stationary solutions of
(10.1.1), (10.1.2), and (10.1.3) and to investigate what kind of solutions exist, information
about their shapes, and their asymptotic behavior. For this purpose, in (10.1.16), we
examine the dynamics in

(i) α = 1 and β = 0 (special case of α > β, see Section 10.3), and

(ii) α < β (from the results of (i) and the symmetry (10.1.17)),

respectively, the dynamics on R2 ∪ {‖(a, b)‖ = +∞}. Therefore, the Poincaré-Lyapunov
compactification is used as described above. The dynamics including infinity, obtained by
Poincaré-Lyapunov’s one is hereafter referred to as Poincaré-Lyapunov disk. The reason
for choosing this compactification is to properly extract information at infinity in the
original phase space, taking into account the quasi-homogeneity of (10.1.16), as described
in Subsection 10.3.2 (see, for instance, Section 1.1 and [49, 50]). As noted in Section 1.1 and
[49, 50], via these compactifications, the infinity for the original phase space corresponds
to the boundary of compact manifolds. Here, we split the boundary and project each of
them to some local charts, and study the dynamics. By combining this information from
some local charts, we can obtain the dynamics including infinity. From these results, if
all connecting orbits, including those up to infinity in the original phase space (i.e., all
connecting orbits on the Poincaré-Lyapunov disk) are known, then it is expected to give
the existence of solutions not revealed in previous studies, information about the shape,
and asymptotic behavior.

Since this method can actually examine both positive-valued and negative-valued so-
lutions at once, the focus of the discussion is on examining (10.1.16). The information of
the positive-valued (resp. negative-valued) solutions of (10.1.1) corresponds to the infor-
mation of the negative-valued (resp. positive-valued) solutions of (10.1.2) and (10.1.3).
In other words, although the information on the negative-valued solution is unnecessary
from the viewpoint of the phenomenon, this information plays an important role in the
investigation of positive solutions of other chemotaxis models.

If we know the asymptotic behavior of a(t) and b(t) as t → t+ (the maximal existence
time, t+ < +∞ or t+ = +∞), we can find the asymptotic behavior of w(r) and wr(r)
as r → r− (the minimal existence interval, 0 < r− < +∞ or r− = 0) and r → r+ (the
maximal existence interval, 0 < r− < r+ < +∞ or r+ = +∞) from (10.1.14), and we can
derive it for u(r) and ur(r) from (10.1.11) and (10.1.12).

In this chapter, we clarify the existence, shape, and asymptotic behavior of radially
symmetric stationary solutions, which have not been clarified before (in particular, Theo-
rem 10.2.2). However, the stability of this solution is not obtained. The author, who has
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clarified the structure of special solutions of various partial differential equations using
this method based on dynamical systems theory and geometric approaches, believes that
their new attempts in this study will bring rich insights into solution behavior and solution
structure of chemotaxis systems and giving rise to new research.

This chapter is organized as follows. In the next section, we state the main results of
this chapter. In Section 10.3, we obtain the dynamics of (10.1.16) with α = 1 and β = 0
on the Poincaré-Lyapunov disk via Poincaré-Lyapunov compactification and basic theory
of the dynamical systems. We also use the symmetry in (10.1.17) to give the Poincaré-
Lyapunov disk of (10.1.16) in α < β (see Subsection 10.3.8 for a detailed discussion). The
proof of theorems will be completed in Section 10.4. Finally, in Section 10.5, we discuss
the uniqueness of the singular solutions in previous studies, together with the conclusions
drawn from this chapter.

10.2 Main results

The main key to obtain the main results is the availability of a phase portrait corresponding
to the Poincaré-Lyapunov disk in (10.1.16), which will be explained in detail in a later
section. Here and after, note that the meaning of the symbol f(ξ) ∼ g(ξ) as ξ → a is as
follows:

lim
ξ→a

∣∣∣∣
f(ξ)

g(ξ)

∣∣∣∣ = 1.

First, we present one new result for a positive-valued radially symmetric stationary
solution of (10.1.5).

Theorem 10.2.1
Assume that N ≥ 3. Then, (10.1.5) has a radially symmetric stationary solution (which
corresponds to an orbit of (10.1.16) in the case that α = 1 and β = 0). Moreover, its
solution u(r) satisfies the following:

• u(r) > 0 holds for r ∈ (0,+∞).

• lim
r→0

u(r) = C, lim
r→0

ur(r) = 0, lim
r→+∞

u(r) = 0,

where C > 0 is a constant. In addition, the asymptotic behavior of u(r) for r → +∞ is

u(r) ∼ 2(N − 2)r−2 (10.2.1)

∼






2(N − 2)r−2 +A1r−2+σ− +A2r−2+σ+ , (N ≥ 11)

16r−2 + (A3 log r +A4)r−6, (N = 10)

2(N − 2)r−2 + 2−1(N − 2)r−
N+2

2 W + 2−1
√
|D|r−

N+2
2 Z, (3 ≤ N ≤ 9)

(10.2.2)

where Aj are constants. Here, the following hold:

σ± = 2−1{−κ(N − 2)±
√
(N − 2)(N − 10)},

D = (N − 2)(N − 10),

Z(r) = B1 cos[2
−1
√
|D| log r]−B2 sin[2

−1
√
|D| log r],

W (r) = B1 sin[2
−1
√
|D| log r] +B2 cos[2

−1
√
|D| log r]

where Bj are constants.
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Remark 10.2.1
We give two remarks regarding Theorem 10.2.1.

(i) The behavior of the solution at r → +∞ depends on the number of dimensions N .
In particular, for 3 ≤ N ≤ 9, we can observe that u(r) goes to u = 0 with damping
oscillatory terms. The results of (10.2.1) and (10.2.2) in N ≥ 10 are consistent
with the results of [57] and Lemma 2.1 of [66], which considered (10.1.4). However,
3 ≤ N ≤ 9 is new in that it is not derived from [57, 66].

(ii) The explicit asymptotic form of u as r → 0 is not obtained in this chapter. As we will
be described in Subsection 10.4.1, this derivation requires attention to (a, b) = (0, 0)
in (10.1.16). This is because only the lowest order term is known about the solution
behavior near the origin in (10.1.16). We leave it open here.

Next, we discuss a result for a sign-changing solution. This follows from the trajectory
of the infinity dynamics obtained in Section 10.3, which gives another proof of Lemma 4.5
(i) for [57].

Proposition 10.2.1
Assume that N ≥ 3. In (10.1.5), there is no sign-changing radially symmetric stationary
solution. The same is true for (10.1.6).

Finally, we present new results that are constructing positive-valued functions on finite
or semi-infinite intervals that satisfy (10.1.6). If u 2→ −u from the symmetry of (10.1.17),
then the following results correspond to negative-valued solutions of (10.1.5).

Theorem 10.2.2
Assume that N ≥ 3. Then, the following holds:

(i) There exists a family of the functions (which corresponds to a family of the orbits
of (10.1.16) in the case that α < β) defined on the finite interval such that each
function u(r) satisfies (10.1.6) on a finite interval (r−, r+) (0 < r− < r+ < +∞).
Moreover, for each function u(r), the following holds:

• u(r) > 0 holds for r ∈ (r−, r+).

• lim
r→r−+0

u(r) = +∞, lim
r→r+−0

u(r) = +∞.

• There exists a constant r∗ ∈ (r−, r+) such that the following holds: ur(r) < 0
for r ∈ (r−, r∗), ur(r∗) = 0 and ur(r) > 0 for r ∈ (r∗, r+).

• The asymptotic behavior for r → r− + 0 is

u(r) ∼ Kr−2(log r − log r−)
−2[−(N − 2)(log r − log r−) + 1], (10.2.3)

where K > 0 and r → r+ − 0 is

u(r) ∼ Kr−2(log r+ − log r)−2[(N − 2)(log r+ − log r) + 1] (10.2.4)

where K > 0.

(ii) There exists a function (which corresponds to an orbit of (10.1.16) in the case that
α < β) defined on the semi-infinite interval such that its function u(r) satisfies
(10.1.6) on a semi-infinite interval (r−,+∞) (0 < r− < +∞). Moreover, for its
function u(r), the following holds:
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• u(r) > 0 holds for r ∈ (r−,+∞).

• lim
r→r−+0

u(r) = +∞, lim
r→+∞

u(r) = 0, lim
r→+∞

ur(r) = 0.

• The asymptotic behavior of u(r) for r → r− + 0 is expressed as (10.2.3).

(iii) There exists a function (which corresponds to an orbit of (10.1.16) in the case that
α < β) defined on the finite interval such that its function u(r) satisfies (10.1.6) on a
finite interval [0, r+) (0 < r+ < +∞). Moreover, for its function u(r), the following
holds:

• u(r) > 0 holds for r ∈ [0, r+).

• lim
r→0

u(r) = C, lim
r→0

ur(r) = 0, lim
r→r+−0

u(r) = +∞, where C > 0.

• The asymptotic behavior of u(r) for r → r+ − 0 is expressed as (10.2.4).

Remark 10.2.2
Here, the corresponding discussion in the proof indicates that the solution is constructed
only on a finite or semi-infinite interval with respect to r, so we express it as a function
(or family of functions) that satisfies the equation. Some solutions obtained in above
results satisfy the equation only on finite interval (r−, r+) (0 < r− < r+ < +∞) or semi-
infinite interval. That is, even though we are considering equations in the whole domain,
we are constructing solutions that cause singularity at the endpoints of a finite (or semi-
infinite) interval. In this chapter, we do not discuss the behavior of the solutions u(r)
after u′(r) becomes infinity (outside of the interval on that u(r) satisfies (10.1.6)). A more
detailed (and hard) analysis is needed. In addition, the main purpose of this chapter is to
investigate the existence, shapes, and asymptotic behavior of solutions of (10.1.6) from
the dynamical system viewpoint and geometric approaches, we leave it open here.

10.3 Dynamics on the Poincaré-Lyapunov disk of (10.1.16)

In this section, all the dynamics of (10.1.16) on R2 ∪ {‖(a, b)‖ = +∞} in the case that
α = 1 and β = 0 will be obtained by using Poincaré-Lyapunov compactification. It is
also given for the case α < β. Considering symmetry (10.1.17), in this section we study
(10.1.16) in the case that α = 1 and β = 0. See Subsection 10.3.8 for the calculation
process when α < β.

10.3.1 Dynamics near finite equilibria of (10.1.16)

Before starting the detailed analysis, we study the dynamics near finite equilibrium of
(10.1.16). The finite equilibria in (10.1.16) are as follows:

E0 : (a, b) = (0, 0), E1 : (a, b) = (2, 0).

Let J0 (resp. J1) be the Jacobian matrix of the vector field (10.1.16) at E0 (resp. E1). J0
and J1 are

J0 =

(
0 1

2(N − 2) −κ(N − 4)

)
, J1 =

(
0 1

−2(N − 2) −κ(N − 2)

)
.

We can claim the following for the dynamics in the neighborhood of E0 for each of κ = ±1.
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(i) When κ = 1, the eigenvalues of matrix J0 are 2 and −(N − 2), so E0 is a saddle.
The eigenvectors corresponding to the eigenvalues are (1, 2)T and (1,−(N − 2))T ,
respectively, with T representing the transpose.

(ii) When κ = −1, the eigenvalues of matrix J0 are N − 2 and −2, so E0 is a saddle.
The eigenvectors corresponding to the eigenvalues are (1, N − 2)T and (1,−2)T ,
respectively.

Furthermore, the eigenvalues σ± of matrix J1 are

σ± =
−κ(N − 2)±

√
(N − 2)(N − 10)

2
.

The corresponding eigenvectors are (1,σ+)T and (1,σ−)T , respectively. When κ = 1,
the real parts of all eigenvalues of J1 are negative. Therefore, we conclude that E1 is
asymptotically stable. On the other hand, E1 is unstable when κ = −1. From the
eigenvalues, note that the behavior of the solution near E1 in N ≥ 3 depends on the
value of N − 10. For instance, if 3 ≤ N ≤ 9, then matrix J1 has two different complex
eigenvalues. Other cases can be concluded similarly.

10.3.2 Asymptotically quasi-homogeneous vector field

Before we consider the dynamics of (10.1.16) on the charts U j and V j , we derive the type
and order of this vector field. See Section 1.1 for the definition (Definition 1.1.3) of local
charts. Let f = (f1(a, b), f2(a, b)) be

f1(a, b) = b, f2(a, b) = −κ(N − 4)b− κab+ 2(N − 2)a− (N − 2)a2.

Then we have the following observation (see Section 1.1 and [49, 50] for more details).

Lemma 10.3.1
The vector field f is asymptotically quasi-homogeneous of type (1, 2) and order 2 at infinity.

Proof. Let a type be (α1,α2) and R ∈ R. For all (a, b) ∈ R2, the following holds:

f1(R
α1a,Rα2b) = Rk+α1f1(a, b),

f2(R
α1a,Rα2b) = Rk+α2f2(a, b).

By comparing the order parts, we get





α2 = k + α1,

α2 = k + α2,

α1 + α2 = k + α2,

α1 = k + α2,

2α1 = k + α2.

(10.3.1)

Here since the first and third equations in (10.3.1) correspond to the maximum order in
(10.1.16), (α1,α2) = (1, 2) and k = 1 are obtained from them. Furthermore, they satisfy
as follows:

lim
R→+∞

R−(k+α1)
{
f1(R

α1a,Rα2b)−Rk+α1(fα,k)1(a, b)
}
= 0,

lim
R→+∞

R−(k+α2)
{
f2(R

α1a,Rα2b)−Rk+α2(fα,k)2(a, b)
}
= 0,
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where (fα,k)1 and (fα,k)2 are (fα,k)1 = b and (fα,k)2 = −κab, respectively. From the
above results, we can see that the vector field f is asymptotically quasi-homogeneous of
type (1, 2) and order k + 1 = 2 at infinity. !

10.3.3 Dynamics on the chart U2

To obtain the dynamics on the chart U2, we introduce coordinates (λ, x) by the formulas

a = x/λ, b = 1/λ2.

Here, note that the exponents of λ are derived from the type found in Lemma 10.3.1. The
image of the geometric position of these local coordinates is almost the same as in Figure
1.1.2. Then we have

{
λ̇ = 2−1κ(N − 4)λ+ 2−1κx− (N − 2)λ2x+ 2−1(N − 2)λx2,

ẋ = λ−1 + 2−1κ(N − 4)x+ 2−1κλ−1x2 − (N − 2)λx2 + 2−1(N − 2)x3.
(10.3.2)

Time-scale desingularization dτ/dt = λ−1 yields
{
λτ = 2−1κ(N − 4)λ2 + 2−1κλx− (N − 2)λ3x+ 2−1(N − 2)λ2x2,

xτ = 1 + 2−1κ(N − 4)λx+ 2−1κx2 − (N − 2)λ2x2 + 2−1(N − 2)λx3,
(10.3.3)

where λτ and xτ are λτ = dλ/dτ and xτ = dx/dτ , respectively. The equilibria in (10.3.3)
and their stability by κ = ±1, respectively, are described as follows:

• If κ = 1, then there is no equilibrium and xτ > 0 at λ = 0.

• If κ = −1, then there exists equilibria

E2 : (λ, x) = (0,−
√
2), E3 : (λ, x) = (0,

√
2).

The Jacobian matrices of vector field (10.3.3) at these equilibria are

E2 :

(
2−1

√
2 0

−2−1
√
2N

√
2

)
, E3 :

(
−2−1

√
2 0

2−1
√
2N −

√
2

)
.

Therefore, E2 is unstable and E3 is asymptotically stable. Let J3 be the Jacobian
matrix of this vector field at E3. The eigenvalues of matrix J3 are −2−1

√
2 and

−
√
2. The eigenvectors corresponding to the eigenvalues are (1, N)T and (0, 1)T ,

respectively.

10.3.4 Dynamics on the chart V 2

The change of coordinates
a = −x/λ, b = −1/λ2

give the projected dynamics of (10.1.16) on the chart V 2:
{
λτ = 2−1κ(N − 4)λ2 − 2−1κλx− (N − 2)λ3x− 2−1(N − 2)λ2x2,

xτ = 1 + 2−1κ(N − 4)λx− 2−1κx2 − (N − 2)λ2x2 − 2−1(N − 2)λx3,
(10.3.4)

where τ is the new time introduced by dτ/dt = λ−1. When κ− 1, there is no equilibrium,
and when κ = −1, there are two equilibria,

E4 : (λ, x) = (0,−
√
2), E5 : (λ, x) = (0,

√
2).

By examining the eigenvalues of the linearized matrix in Subsection 10.3.3, we conclude
that E4 is unstable and E5 is asymptotically stable.
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10.3.5 Dynamics on the chart U1

The change of coordinates a = 1/λ and b = x/λ2, and time-rescaling dτ/dt = λ−1 yield
{
λτ = −λx,
xτ = −κ(N − 4)λx− κx+ 2(N − 2)λ2 − (N − 2)λ− 2x2.

(10.3.5)

If κ = 1, then the equilibria on {λ = 0} are

E6 : (λ, x) = (0, 0), E7 : (λ, x) = (0,−2−1).

The Jacobian matrices of vector field (10.3.5) at these equilibria are

E6 :

(
0 0

−(N − 2) −1

)
= J6, E7 :

(
2−1 0

−2−1N 1

)
.

Therefore, E7 is unstable and E6 is not hyperbolic.
On the other hand, when κ = −1, the equilibria are

E6 : (λ, x) = (0, 0), E8 : (λ, x) = (0, 2−1).

In the same way as above, E8 is found to be asymptotically stable.
Therefore, in the remainder of this subsection, we investigate the dynamical system

around E6. This can be done by applying the center manifold theory (for instance, see
[9, 70]). A similar argument is made in [30, 32, 34, 38], but for the reader’s convenience,
we briefly describe the argument. The eigenvalues of matrix J6 are 0 and −κ. The
eigenvectors corresponding to the eigenvalues are

v1 = (κ,−(N − 2))T , v2 = (0, 1)T .

We set a matrix T as T = (v1,v2). Then we obtain

d

dτ

(
λ
x

)
=

(
0 0

−(N − 2) −κ

)(
λ
x

)
+

(
−λx

−κ(N − 4)λx+ 2(N − 2)λ2 − 2x2

)

= T

(
0 0
0 −κ

)
T−1

(
λ
x

)
+

(
−λx

−κ(N − 4)λx+ 2(N − 2)λ2 − 2x2

)
.

Let (
λ̃(τ)
x̃(τ)

)
= T−1

(
λ(τ)
x(τ)

)
.

We then obtain the following system:
{
λ̃τ = (N − 2)λ̃2 − λ̃x̃,

x̃τ = x̃[−κ+ 2(N − 1)λ̃− 2x̃].
(10.3.6)

The center manifold theory is applicable to studying the dynamics of (10.3.6). It implies
that there exists a function h(λ̃) satisfying

h(0) =
dh

dλ̃
(0) = 0

such that the center manifold of the origin for above system is locally represented as
{(λ̃, x̃) | x̃(τ) = h(λ̃(τ))}. However, it is not immediately possible to express an approxi-
mate function h that defines the center manifold except for x̃ = 0. This is because x̃ = 0
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is invariant from the second equation in (10.3.6). Note that in such cases, the center man-
ifold is not necessarily unique, as described in [70]. By center manifold theory, assuming
x̃ = 0 as the (graph of) center manifold in (10.3.6), the dynamics near the origin are
topologically equivalent to the following equation:

λ̃τ = (N − 2)λ̃2.

From λ = κλ̃ and x = −(N−2)λ̃+ x̃, the approximation of the (graph of) center manifold
in (10.3.5) is

{(λ, x) | x(τ) = −κ(N − 2)λ(τ)} (10.3.7)

and the dynamics near E6 is topologically equivalent to the dynamics of the following
equation:

λτ = κ(N − 2)λ2. (10.3.8)

Note that in these equations derived from x̃ = 0 only low-order information is available.

10.3.6 Dynamics on the chart V 1

The transformations a = −λ−1 and b = −x/λ2 yield

{
λτ = −λx,
xτ = −κ(N − 4)λx+ κx+ 2(N − 2)λ2 + (N − 2)λ− 2x2

(10.3.9)

via time-rescaling dτ/dt = λ−1. If κ = 1, then the equilibria on {λ = 0} are

E9 : (λ, x) = (0, 0), E10 : (λ, x) = (0, 2−1).

If κ = −1, then the equilibria on {λ = 0} are E9 and E11 : (λ, x) = (0,−2−1). As before,
by finding the linearized matrices at these equilibria, E10 is asymptotically stable, E11 is
unstable, and E9 is not hyperbolic. The dynamical system around E9 can be understood
by the center manifold theorem as in Subsection 10.3.5.

10.3.7 Dynamics and connecting orbits on the Poincaré-Lyapunov disk

Let us prepare the symbols used in this subsection as follows:

• Ws(E0) denotes the stable manifold of E0 in the dynamical system (10.1.16) in the
case that κ = −1.

• Wu(E0) denotes the unstable manifold of E0 in the dynamical system (10.1.16) in
the case that κ = −1.

• Ws(E3) denotes the stable manifold of E3 in the dynamical system (10.1.16) in the
case that κ = −1.

• Wcs(E6) denotes the center-stable manifold of E6 in the dynamical system (10.1.16)
in the case that κ = −1.

Combining the dynamics on the charts U j and V j (j = 1, 2), we obtain the Poincaré-
Lyapunov disk that is equivalent to the dynamics of (10.1.16) on R2 ∪ {‖(a, b)‖ = +∞}
(see Figure 10.3.1). The purpose of this subsection is to classify the connecting orbits
between these equilibria.

212



10.3 Dynamics on the Poincaré-Lyapunov disk of (10.1.16)

a

bκ = 1 (N ≥ 3)

E0 E1

E4(E7)E5(E10)

E6

E9

a

bκ = −1 (N ≥ 3)

E0

E1

E2(E11)

E3(E8)

E6

E9

Figure 10.3.1: Schematic pictures of the connecting orbits on the Poincaré-Lyapunov disk
in the case that N ≥ 3, κ = ±1, α = 1 and β = 0.

Remark 10.3.1
In Figure 10.3.1, the circumference corresponds to {‖(a, b)‖ = +∞}. Note that for κ = 1,

the equilibrium E4 at infinity obtained in the local chart V 2 and the equilibrium E7 at
infinity obtained in the local chart U1 overlap. In Figure 10.3.1, all equilibria at infinity
listed in parentheses are the same.

If we can classify the connecting orbits in the Poincaré-Lyapunov disk for κ = −1, we
can also obtain the κ = 1 case with the transformation

b 2→ −b, t 2→ −t.

Therefore, it is sufficient to show the existence of connecting orbits for κ = −1.
In addition,

ȧ
∣∣
a=0

= b, ȧ
∣∣
b=0

= 0, ḃ
∣∣∣
a=0

= −κ(N − 4)b, ḃ
∣∣∣
b=0

= (N − 2)a(2− a)

hold in (10.1.16). That is, the following holds:

• Trajectories departing from a point in region {(a, b) | a > 0, b > 0} (the first quadrant
of the ab-plane) should be toward a point on Ws(E3) or Wcs(E6), or toward region
{(a, b) | a < 0, b > 0} (the second quadrant of the ab-plane), depending on the initial
value.

• Trajectories departing from a point in region {(a, b) | a < 0, b > 0} should be
toward a point on Ws(E0) or toward region {(a, b) | a < 0, b < 0}, or toward region
{(a, b) | a > 0, b > 0}, depending on the initial value.

• Any trajectories departing from points on region {(a, b) | a < 0, b < 0} should all
head for points on Wcs(E9).

• Trajectories departing from a point in region {(a, b) | a > 0, b < 0} should be toward
a point on Ws(E0), or toward region {(a, b) | a < 0, b < 0}, depending on the initial
value.

Since (10.1.16) is a two-dimensional system, the Poincaré-Bendixson theorem is effective
in showing the existence of connecting orbits that connect equilibria including equilibria
at infinity. However, with only the information obtained above in the first quadrant of
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the ab-plane, trajectories departing from the points on Wu(E0) could be toward points on
Ws(E3) or Wcs(E6), or {(a, b) | a < 0, b > 0}. Since Wu(E0) is one-dimensional, we need
to know where they are going.

Therefore, the dynamics can be determined by further clarifying the flow of vector
fields in the first quadrant of the ab-plane. As a preparation, we derive the asymptotic
behavior corresponding to the trajectory attracted to a point on the stable manifold at
the equilibrium E3 at infinity.

Lemma 10.3.2
Assume that N ≥ 3 and κ = −1. Then, the solution of (10.1.16) is, if exists, characterized
by trajectories whose initial data are on the stable manifold of the equilibrium at infinity
E3 of (10.1.16). The asymptotic behavior of a(t) and b(t) are

{
a(t) ∼ M(t+ − t)−1,

b(t) ∼ M(t+ − t)−2,
as t → t+ − 0, (10.3.10)

where 0 < t+ < +∞ and M > 0 are constants.

Proof. Using the eigenvalues and eigenvectors of the linearized matrix J3, the solution at
the around E3 on chart U2 has the form

{
λ(τ) = C1e

−
√

2
2 τ ,

x(τ) = C1Ne−
√
2
2 τ + C2e−

√
2τ +

√
2,

where C1 and C2 are constants. Then

dt

dτ
= λ = C1e

−
√
2

2 τ

holds. This yields t(τ) = C3e
−

√
2

2 τ + C4. Set

t+ = lim
τ→+∞

t(τ),

then we have

t+ = C5

∫ +∞

0
e−

√
2

2 τ (1 + o(1)) dτ < ∞.

Therefore, we obtain

t+ − t ∼ C6e
−

√
2

2 τ as τ → +∞

holds with constants Cj . We then obtain

a(t) = λ−1x

=
(
C1e

−
√

2
2 τ
)−1 (

C1Ne−
√

2
2 τ + C2e

−
√
2τ +

√
2
)

∼ C7e
√

2
2 τ as τ → +∞

∼ M(t+ − t)−1 as t → t+ − 0,

where Cj are constants. Since, the trajectories are lying on {a > 0}, it follows that the
constant M > 0 holds. Similarly, the following holds:

b(t) = λ−2 =
(
C1e

−
√

2
2 τ
)−2

= C9e
√
2τ

∼ M(t+ − t)−2 as t → t+ − 0.
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Note that the first equation ȧ = b of the original equation (10.1.16) is satisfied in the
asymptotic sense ȧ ∼ b as t → t+ − 0. Therefore, we obtain (10.3.10). This completes the
proof of Lemma 10.3.2. !

Using the results of Lemma 10.3.2, the existence of connecting orbits such as those
connecting E0 and E3 in the case κ = −1 is shown by Lemma 10.3.3 below.

Lemma 10.3.3
Assume that N ≥ 3 and κ = −1. Then, there exists a connecting orbit such that the
corresponding function a(t) satisfies the following:

• a(t) is a continuous function on a semi-infinite interval (−∞, t+] and it satisfies the
equation (10.1.16) on (−∞, t+) (a(t) ∈ C2(−∞, t+)∩C0(−∞, t+], −∞ < t+ < +∞).

• a(t) has a(t) > 0 (t < t+) and satisfies the following:

lim
t→t+−0

a(t) = lim
t→t+−0

ȧ(t) = +∞, lim
t→−∞

a(t) = lim
t→−∞

ȧ(t) = 0.

In other words, there exists a connecting orbit between the points of Wu(E0) and the
points of Ws(E3) on the Poincaré-Lyapunov disk in the case that κ = −1.

Proof. First, from equation (10.3.10) of Lemma 10.3.2, the maximum existence time t+
of a(t) is finite, a(t) > 0 (t < t+), and also satisfies

lim
t→t+−0

a(t) = lim
t→t+−0

ȧ(t) = +∞.

Furthermore, by focusing on the trajectories departing from the points on Wu(E0), the
solution in the neighborhood of E0 can be expressed using positive eigenvalues and eigen-
vectors in the unstable direction as follows (see Subsection 10.3.1):

{
a(t) ∼ C1e(N−2)t,

b(t) ∼ C1(N − 2)e(N−2)t,
as t → −∞.

Therefore,
lim

t→−∞
a(t) = lim

t→−∞
ȧ(t) = 0

holds.
Next, consider the flow on the line b = (N − 2)a on which the eigenvector (1, N − 2)T

of E0 in the unstable direction in the first quadrant of the ab-plane rides. In this case,
from

ȧ
∣∣
b=(N−2)a

= b = (N − 2)a, ḃ
∣∣∣
b=(N−2)a

= (N − 2)2a,

the trajectory starting from points on Ws(E3) is found to go to Φ = {(a, b) | b > (N −
2)a, a > 0, b > 0} as Φ in the first quadrant. In other words, there is no way to leave this
area.

Finally, it is sufficient to show that equilibrium E3 at infinity exists in this region Φ
and that trajectories departing from a point in Φ are toward Ws(E3). Then, we take a
compact subset W ⊂ Φ (such that it contains a point on Ws(E3)). There is no equilibrium
or closed orbit in W . Therefore, by Poincaré-Bendixson theorem, any trajectory starting
from a point in W cannot remain in W as t increases. Therefore, any trajectories starting
from points in Φ must be toward Ws(E3). This means that the equilibrium E3 at infinity
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lies in the region Φ in this first quadrant. Thus, it can be shown that a trajectory starting
from points on Wu(E0) heads toward Ws(E3). This completes the proof of Lemma 10.3.3.
!

By the same argument as in Lemma 10.3.3, we can classify all the connected orbits in
the Poincaré-Lyapunov disk at κ = −1. Then, by the transformation

b 2→ −b, t 2→ −t,

we also obtain the case κ = 1. From the above discussion, we obtain Figure 10.3.1.
We have discussed the cases α = 1 and β = 0. The dynamics at the disks for α < β

are obtained from (10.1.17) as described above (see Figure 10.3.2). Note that for Figure
10.3.2, the equilibria are numbered at the positions obtained by the symmetry (10.1.17).

a

bκ = 1 (N ≥ 3)

E0

E1

E4(E7)
E5(E10)

E6

E9

a

bκ = −1 (N ≥ 3)

E0

E1

E2(E11)E3(E8)

E6

E9

Figure 10.3.2: Schematic pictures of the connecting orbits on the Poincaré-Lyapunov disk
in the case that N ≥ 3, κ = ±1 and α < β.

10.3.8 Dynamics on the Poincaré-Lyapunov disk of (10.1.16) in the case
that α < β

In this subsection, all the dynamics of (10.1.16) on R2 ∪ {‖(a, b)‖ = +∞} in the case that
α < β. This is obtained from the symmetry of the results obtained in Subsection 10.3.7,
but only the results are summarized for the proof of the main results (in particular, the
derivation of the asymptotic behavior). All (10.1.16) treated in this section are assumed
to be the case when α < β.

Dynamics near finite equilibria of (10.1.16)

The finite equilibria of (10.1.16) are

E0 : (a, b) = (0, 0), E1 : (a, b) = (−2(β − α)−1, 0).

The Jacobi matrices at each equilibrium, their eigenvalues and eigenvectors are the same
as in Subsection 10.3.1.

Dynamics on the chart U2

The type and order of (10.1.16) in α < β are the same as those of Lemma 10.3.1. As in
Subsection 10.3.3, we introduce coordinates (λ, x) by the formulas

a = x/λ, b = 1/λ2,

216



10.3 Dynamics on the Poincaré-Lyapunov disk of (10.1.16)

and time-rescaling dτ/dt = λ−1. Then we have
{
λτ = 2−1κ(N − 4)λ2 + 2−1κ(α− β)λx− (N − 2)λ3x+ 2−1(N − 2)(α− β)λ2x2,

xτ = 1 + 2−1κ(N − 4)λx+ 2−1κ(α− β)x2 − (N − 2)λ2x2 + 2−1(N − 2)(α− β)λx3.
(10.3.11)

• If κ = −1, then there is no equilibrium.

• If κ = 1, then there exists equilibria

E4 : (λ, x) = (0,−
√

2(β − α)−1), E5 : (λ, x) = (0,
√

2(β − α)−1).

The Jocobian matrices at these equilibria are

E4 :

(
2−1(β − α)

√
2(β − α)−1 0

2−1N
√
2(β − α)−1 (β − α)

√
2(β − α)−1

)
,

E5 :

(
−2−1(β − α)

√
2(β − α)−1 0

−2−1N
√
2(β − α)−1 −(β − α)

√
2(β − α)−1

)
= J5.

Therefore, E4 is unstable and E5 is asymptotically stable. The eigenvalues of ma-
trix J5 are −2−1(β − α)

√
2(β − α)−1 and −(β − α)

√
2(β − α)−1. The eigenvectors

corresponding to the eigenvalues are (β − α,−N)T and (0, 1)T , respectively.

Dynamics on the chart V 2

The change pf coordinates a = −x/λ and b = −1/λ2, and time-rescaling dτ/dt = λ−1

yield
{
λτ = 2−1κ(N − 4)λ2 − 2−1κ(α− β)λx− (N − 2)λ3x− 2−1(N − 2)(α− β)λ2x2,

xτ = 1 + 2−1κ(N − 4)λx− 2−1κ(α− β)x2 − (N − 2)λ2x2 − 2−1(N − 2)(α− β)λx3.
(10.3.12)

When κ = 1, there is no equilibrium, and when κ = −1, there are two equilibria,

E2 : (λ, x) = (0,−
√

2(β − α)−1), E3 : (λ, x) = (0,
√

2(β − α)−1).

By deriving the linearized matrices at these equilibria, E2 is unstable and E3 is asymptot-
ically stable. The eigenvalues of Jacobian matrix at E3 are −2−1(β−α)

√
2(β − α)−1 and

−(β−α)
√
2(β − α)−1. The eigenvectors corresponding to the eigenvalues are (β−α, N)T

and (0, 1)T , respectively.

Dynamics on the chart U1

The change pf coordinates a = 1/λ and b = x/λ2, and time-rescaling dτ/dt = λ−1 yield
{
λτ = −λx,
xτ = −κ(N − 4)λx− κ(α− β)x+ 2(N − 2)λ2 − (N − 2)(α− β)λ− 2x2.

(10.3.13)

If κ = 1, then the equilibria on {λ = 0} are

E9 : (λ, x) = (0, 0), E10 : (λ, x) = (0, 2−1(β − α)).

If κ = −1, then the equilibria on {λ = 0} are E9 and

E11 : (λ, x) = (0,−2−1(β − α)).

By deriving the linearized matrices at these equilibria, E9 is not hyperbolic and E10 is
asymptotically stable, and E11 is unstable. The dynamics around E9 can be understood
by the center manifold theorem as in Subsection Subsection 10.3.5. In addition, we can
obtain (10.3.7) and (10.3.8).
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Dynamics on the chart V 1

By using the transformations a = −1/λ and b = −x/λ2, and time-rescaling dτ/dt = λ−1,
we have

{
λτ = −λx,
xτ = −κ(N − 4)λx+ κ(α− β)x+ 2(N − 2)λ2 + (N − 2)(α− β)λ− 2x2.

(10.3.14)

If κ = 1, then the equilibria on {λ = 0} are

E6 : (λ, x) = (0, 0), E7 : (λ, x) = (0,−2−1(β − α)).

If κ = −1, then the equilibria are E6 and E8 : (λ, x) = (0, 2−1(β − α)). As before, by
finding the linearized matrices at these equilibria, E7 is unstable, E8 is asymptotically
stable, and E6 is not hyperbolic. The dynamical system around E6 can be understood by
the center manifold theorem as in Subsection 10.3.5.

10.4 Proof of theorems

In this section, we prove our main results. If the initial data exists within a finite range
in the Poincaré-Lyapunov disk, the existence of the solutions follows from the standard
theory for the ordinary differential equations. Therefore, we consider the existence of the
trajectories that connect equilibria and the detailed dynamics near the equilibria on the
Poincaré-Lyapunov disk and their asymptotic behavior. Table 10.1 shows the correspon-
dence between each connecting orbit in the case that α = 1 and β = 0 (see Figure 10.3.1)
and the radial symmetric stationary solutions described in the theorem proved below.

Table 10.1: The correspondence between each connecting orbit in Subsection 10.3.7 and
the radial symmetric stationary solutions described in the theorem proved below (see also
Figure 10.3.1).

Proposition/Theorem Connecting orbits (κ = 1) Connecting orbits (κ = −1)
Theorem 10.2.1 between E0 and E1 between E1 and E0

Proposition 10.2.1 between E4 / E9 and E1 between E1 and E3 / E9

Table 10.2 shows the correspondence between each connecting orbit in the case that
α < β (see Figure 10.3.2) and the radial symmetric stationary solutions described in the
theorem proved below.

Table 10.2: The correspondence between each connecting orbit obtained by the proposition
and the radial symmetric stationary solutions described in the theorem proved below (see
also Figure 10.3.2).

Theorem Connecting orbits (κ = 1) Connecting orbits (κ = −1)
Theorem 10.2.2 (i) between E4 and E5 between E2 and E3

Theorem 10.2.2 (ii) between E4 and E0 between E0 and E3

Theorem 10.2.2 (iii) between E0 and E5 between E2 and E0

218



10.4 Proof of theorems

10.4.1 Proof of Theorem 10.2.1

Proof. First, the proof of the existence of the connecting orbit between E0 and E1 is
obtained in Subsection 10.3.7. Therefore, equation (10.1.5) has the radially symmetric
stationary solution which corresponds to the orbit of (10.1.16).

Second, we show that u(r) > 0 for r ∈ (0,+∞). For κ = −1, this orbit is in region
{(a, b) | b < (N − 2)a} (see Figure 10.3.1). Thus, from (10.1.11), (10.1.12) and (10.1.16),
we have

u = rwr +Nw = r−2((N − 2)a− b) > 0,

which implies that u(r) > 0 for r ∈ (0,+∞).
Next, we show that

lim
r→0

u(r) = C, lim
r→0

u′(r) = 0.

For κ = −1, the solution around the equilibrium E0 is

(
a(t)
b(t)

)
= C1e

(N−2)t

(
1

N − 2

)
+ C2e

−2t

(
1
−2

)
.

Here, by focusing on the trajectory from region {(a, b) | a > 0, b < 0} into the point on
Wu(E0), i.e., along the eigenvector (1,−2)T of E0, the principal terms of the solution are
as follows: {

a(t) ∼ C2e−2t,

b(t) ∼ −2C2e−2t,
as t → +∞.

Using (10.1.14) for κ = −1, we obtain

lim
r→0

w(r) = lim
r→0

r−2a = C2, lim
r→0

w′(r) = 0.

Therefore, we obtain

lim
r→0

u(r) = lim
r→0

(rwr +Nw) = C2N, lim
r→0

u′(r) = lim
r→0

{−(N − 4)C2
2r} = 0

from (10.1.11).
Finally, we shall compute the asymptotic behavior of u for r → +∞ the trajectory

near the equilibrium E1. The derivation of the asymptotic behavior of u for r → +∞ is
almost the same as in [32, 33, 38], but is reproduced for the reader’s convenience. We
define

ã = a− 2, b̃ = b− 0.

Then, there are three cases to consider:

(i) Let us consider the case that N ≥ 11, namely, the matrix J1 has the real distinct
eigenvalues σ± (see Subsection 10.3.1). By using the eigenvalues and corresponding
eigenvectors of J1, we then obtain the following behavior:

(
ã(t)
b̃(t)

)
= C1

(
1
σ−

)
eσ−t + C2

(
1
σ+

)
eσ+t

with any constants Cj (j = 1, 2). Therefore, the solution around the equilibrium E1

is {
a(t) = C1eσ−t + C2eσ+t + 2,

b(t) = C1σ−eσ−t + C2σ+eσ+t.
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Using κ = 1 in (10.1.14), we derive the following:

w(r) ∼ 2r−2 ∼ 2r−2 + r−2 + C1r
−2+σ− + C2r

−2+σ+ as r → +∞.

Similarly, we obtain

wr(r) ∼ −4r−3 ∼ −4r−3+(−2+σ−)C1r
−3+σ−+(−2+σ+)C2r

−3+σ+ as r → +∞.

Note that −2 + σ± < 0 holds. Hence, from the above discussion and (10.1.11), we
obtain as follows:

u(r) ∼ 2(N − 2)r−2

∼ 2(N − 2)r−2 + (N − 2 + σ−)C1r
−2+σ− + (N − 2 + σ+)C2r

−2+σ+

as r → +∞. Since C1 and C2 are arbitrary constants, it holds that N − 2+ σ± > 0.

(ii) Consider the case that N = 10, namely, the matrix J1 has a multiple real eigenvalue
σ = −2−1(N−2) < 0. The eigenvector and the generalized eigenvector corresponding
to the eigenvalue are (1,−4)T and (1,−3)T . Therefore, the solution around the
equilibrium E1 is

{
a(t) = (C1t+ C2)e−4t + C1e−4t + 2,

b(t) = −4(C1t+ C2)e−4t − 3C1e−4t,

where Cj are constants. Using κ = 1 in (10.1.14), we derive the following:

w(r) ∼ 2r−2 ∼ 2r−2 + C1r
−6 log r + (C1 + C2)r

−6 as r → +∞,

wr(r) ∼ −4r−3 ∼ −4r−3 − 6C1r
−7 log r − 5C1r

−7 − 6C2r
−7 as r → +∞.

Hence, from the above discussion and (10.1.11), we obtain as follows:

u(r) ∼ 16r−2 ∼ 16r−2 + r−6[4C1 log r + 5C1 + 4C2] as r → +∞.

(iii) Consider the case that 3 ≤ N ≤ 9. The matrix J1 has the complex eigenvalues

σ = −N − 2

2
± i

1

2

√
|D|, D = (N − 2)(N − 10).

The eigenvectors corresponding to each eigenvalue are

v =

(
1

−2−1(N − 2)

)
± i

(
0

2−1
√
|D|

)
.

The function ã(t) and b̃(t) are expressed as following:

(
ã(t)
b̃(t)

)
= z(t)

(
0

2−1
√
|D|

)
+ w(t)

(
1

−2−1(N − 2)

)
,

where
(

z(t)
w(t)

)
= e−

(N−2)
2 t

(
cos[2−1

√
|D|t] − sin[2−1

√
|D|t]

sin[2−1
√
|D|t] cos[2−1

√
|D|t]

)(
z(0)
w(0)

)
.

220



10.4 Proof of theorems

Therefore, the solution around the equilibrium E1 is

{
a(t) = 2 + e−

(N−2)
2 tW (t),

b(t) = 2−1
√
|D|e−

(N−2)
2 tZ(t)− 2−1(N − 2)e−

(N−2)
2 tW (t),

where Z(t) and W (t) are

Z(t) = z(0) cos[2−1
√
|D|t]− w(0) sin[2−1

√
|D|t],

W (t) = z(0) sin[2−1
√
|D|t] + w(0) cos[2−1

√
|D|t].

Using (10.1.14) for κ = 1, we obtain from Z(t) and W (t) the following:

Z(r) = z(0) cos[2−1
√
|D| log r]− w(0) sin[2−1

√
|D| log r],

W (r) = z(0) sin[2−1
√
|D| log r] + w(0) cos[2−1

√
|D| log r].

Therefore, we obtain

w(r) ∼ 2r−2

∼ 2r−2 + r−
N+2

2 W as r → +∞,

wr(r) ∼ −4r−3

∼ −4r−3 − 2−1(N + 2)r−
N+4

2 W + 2−1
√
|D|r−

N+4
2 Z as r → +∞.

Hence, from the above discussion and (10.1.11), we obtain as follows:

u(r) ∼ 2(N − 2)r−2

∼ 2(N − 2)r−2 + 2−1(N − 2)r−
N+2

2 W + 2−1
√
|D|r−

N+2
2 Z as r → +∞.

Therefore, we obtain the asymptotic behavior (10.2.1) and (10.2.2). This completes the
proof of Theorem 10.2.1. !

10.4.2 Proof of Proposition 10.2.1

Proof. We show that (10.1.5) corresponding to the cases α = 1 and β = 0 has no sign-
changing solution. In ab-plane, when κ = −1, there exists t∗ such that t∗ = − log r∗,
r∗ ∈ (0,+∞) and

u(r∗) = r∗wr(r∗ +Nw(r∗) = r−2
∗ {(N − 2)a(t∗)− b(t∗)}.

That is, the trajectory through line b = (N − 2)a in the Poincaré-Lyapunov disk corre-
sponds to a sign-changing radially symmetric stationary solution. Two types of trajectories
correspond to this: one starting from points on Wu(E1) and reaching points on Wcs(E9),
and the other starting from points on Wu(E1) and reaching points on Ws(E3). Then,
passing through this line, u(r) turns from positive to negative due to the increase in t
(decrease in r) when κ = −1.

In addition,
ur(r∗) = r−3

∗ a(t∗){b(t∗)− (N − 2)a(t∗)} = 0

holds when passing through this line. Then, u′(r) turns from positive to negative due to
the increase in t (decrease in r) when κ = −1. In the region {(a, b) | a > 0} for κ = −1,
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we see that ur(r) turns from negative to positive due to the increase in t (decrease in r)
as it passes through this line.

In other words, the signs of u(r) and ur(r) both reverse when passing through this
line, contradicting the shape of the solution. Both of the two types of trajectories de-
scribed above are consistent in the sense of (10.1.16), but are inconsistent in shape and
increase/decrease relation in the sense of the solution of (10.1.5), which claims the non-
existence of a sign-changing radially symmetric stationary solution. The same conclusion
can be reached for (10.1.6). This completes the proof of Proposition 10.2.1. !

10.4.3 Proof of Theorem 10.2.2

Proof. (i) Similar to the proof of Theorem 10.2.1 in Subsection 10.4.1, there exists a
family of the functions (which corresponds to a family of the corresponding orbits of E2

and E3 in the case that α < β) defined on the finite interval such that each function u(r)
satisfies (10.1.6) on a finite interval (r−, r+) (0 < r− < r+ < +∞). In addition, we see that
u(r) > 0 for r ∈ (r−, r+). Note that it follows from Lemma 10.3.2 and Lemma 10.3.3 that
0 < r− < r+ < +∞. From the discussion in Subsection 10.4.2, there exists t∗ = κ log r∗
such that ur(r∗) = 0 since these connecting orbits pass through the line a = 0. All that
remains is to derive (10.2.3) and (10.2.4).

First, we show (10.2.3). For α < β, we obtain

w(r) ∼ −K1r
−2(log r − log r−)

−1 as r → r− + 0

wr(r) ∼ 2K1r
−3(log r − log r−)

−1 +K1r
−3(log r − log r−)

−2 as r → r− + 0

from (10.1.14) by the same argument as (10.3.10) in Lemma 10.3.2 (see Appendix B, if
necessary). Hence, from these discussion and (10.1.11), we obtain (10.2.3) as follows:

u(r) ∼ K1r
−2(log r − log r−)

−2[−(N − 2)(log r − log r−) + 1] as r → r− + 0.

Similarly, (10.2.4) and the following are also shown.

lim
r→r−+0

u(r) = +∞, lim
r→r+−0

u(r) = +∞.

(ii) The existence of functions satisfying equation (10.1.6) and their positivity can be
shown in the same way as in the above proof (i). The behavior of the solution for r → +∞
is shown by the following. For κ = 1, the solution around the equilibrium E0 is

(
a(t)
b(t)

)
= C1e

2t

(
−1
−2

)
+ C2e

−(N−2)t

(
−1

N − 2

)
.

Here, by focusing on the trajectory from region {(a, b) | a < 0, b > 0} into the point on
Wu(E0), i.e., along the eigenvector (−1, N − 2)T of E0, the principle terms of the solution
are as follows: {

a(t) ∼ −C2e−(N−2)t,

b(t) ∼ (N − 2)C2e−(N−2)t,
as t → +∞.

Using (10.1.14) for κ = 1, we obtain

lim
r→+∞

w(r) = lim
r→+∞

(−C2)r
−N = 0, lim

r→+∞
w′(r) = NC2r

−(N−1) = 0.
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Therefore, we obtain

lim
r→+∞

u(r) = lim
r→+∞

(rwr +Nw) = 0, lim
r→+∞

ur(r) = 0

from (10.1.11).
(iii) The existence of functions satisfying equation (10.1.6) and their positivity can be
shown in the same way as in the above proof (i), and by the same process as in Subsection
10.4.1, the following is shown:

lim
r→0

u(r) = C, lim
r→0

ur(r) = 0.

This completes the proof of Theorem 10.2.2. !

10.5 Discussion

In this chapter, we use dynamical systems theory and geometric approaches to reveal
previously unknown aspects of radially symmetric stationary solutions of some chemotaxis
equations. The introduction of the transformation of integral (10.1.7) in (10.1.5) and
(10.1.6) has made the analysis easier by attributing the problem to scalar equations. This
is because it is related to the author’s previous works to investigate dynamics at infinity
in 2-dimensional ODE (10.1.16). However, a limitation such as (10.1.8) is added to the
solution obtained. In this connection, there are connecting orbits in the dynamics at
infinity that do not give a conclusion. Some orbits also exist as connecting orbits but
cannot be explained with the corresponding solution’s shape. This chapter provides a
discussion of them.

10.5.1 A connecting orbit between E1 and E6 in the case α = 1 and β = 0

For α = 1, β = 0, and κ = −1, the existence of a connecting orbit between E1 and E6 is
obtained in Subsection 10.3.7 (see Figure 10.3.1). Therefore, there is a radially symmetric
stationary solution of (10.1.5) corresponding to this orbit of (10.1.16).

For κ = −1, this orbit is in region {(a, b) | b < (N − 2)a} (see Figure 10.3.1). Thus,
from (10.1.11), (10.1.12) and (10.1.16), we have

u = rwr +Nw = r−2((N − 2)a− b) > 0,

which implies that u(r) > 0 for r ∈ (0,+∞). Note that E6 : (a, b) = (+∞, 0) for κ = −1,
and from (10.1.11), (10.1.12), and (10.1.16) we obtain

lim
r→0

u(r) = lim
r→0

(rwr +Nw) = lim
r→0

r−2((N − 2)a− b) = +∞.

A singular solution is a solution u(r) satisfying (10.1.5) and

lim
r→0

u(r) = +∞.

We can see that the solution corresponding to the connecting orbit between E1 and E6

that we are now discussing is a singular solution. However, it is known that the positive-
valued singular solution of (10.1.1) is unique from the uniqueness of the positive-valued
singular solution of (10.1.4) derived from (10.1.1) (see [52, 53]).
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At first glance, it appears to be a contradiction. In fact, the solution corresponding to
the connecting orbit between E1 and E6 does not satisfy (10.1.8). The reason for this is
explained below.

From (10.3.7) and (10.3.8), the solution near the equilibrium E6 at infinity is

{
λ(τ) = [(N − 2)τ + L1]−1,

x(τ) = (N − 2)[(N − 2)τ + L1]−1

if the initial value exists on the central manifold (x̃ = 0). Here, L1 is a constant. Note
that κ = −1 since we examine r → 0. From λ(0) = L−1

1 > 0, we obtain that L1 > 0.
Then,

dτ

dt
= λ−1 = (N − 2)τ + L1

holds. This yields

τ(t) =
L2

N − 2
e(N−2)t − L1

N − 2
.

Since L2 > 0, this formula shows that t → +∞ corresponds to τ → +∞. Therefore, we
have

a(t) = λ−1 = (N − 2)τ + L1 = L2e
(N−2)t.

Using (10.1.14) for κ = −1, we obtain

w(r) = r−2a ∼ L2r
−N as r → 0.

Therefore, from L2 > 0, w(r) does not satisfy (10.1.8).
What the above discussion suggests is that for solutions that are non-bounded at the

origin, one must investigate whether (10.1.8) is satisfied. This is because the transforma-
tion (10.1.7) of the integral is used to investigate radially symmetric stationary solutions.

10.5.2 A connecting orbit between E0 and E6 in the case α < β

Consider the solution corresponding to the connecting orbit between E0 and E9 (together,
Figure 10.3.2) in the case α < β. From the same discussion as in Subsection 10.4.1, we
see that there exists a corresponding radially symmetric stationary solution u(r) > 0 for
r ∈ (0,+∞) and

lim
r→0

u(r) = +∞

holds. This should be a singular solution, but the same argument as for Subsection 10.5.1
shows that it does not satisfy (10.1.8).

10.5.3 Connecting orbits between E2 and E9 in the case α < β

Finally, in the case α < β and κ = −1 (see Figure 10.3.2), we give a note on the radially
symmetric stationary solutions corresponding to the connecting orbits between E2 and E9.
Note that these orbits connect between E5 and E9 for κ = 1. Focusing on the trajectories
entering E5 for κ = 1, the asymptotic behavior is (10.2.4). On the other hand, From the
same discussion as in Subsection 10.4.1, the corresponding behavior for the trajectories
entering E9 for α < β is

lim
r→0

u(r) = +∞.

In other words, there should exist r∗ ∈ (0, r+) such that ur(r∗) = 0 when considering
the shape of the radially symmetric stationary solutions corresponding to the connecting
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10.5 Discussion

orbits. However, for r∗ to exist, the trajectory must pass through a straight line with
either a = 0 or b = (N − 2)a, which is not possible. For the above reasons, the solutions
corresponding to the connecting orbits are considered to be meaningless as solutions to
the original PDE since the existence of r∗, which should exist with respect to the shape,
cannot be claimed.
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Chapter 11

On global behavior of a some SIR
epidemic model based on the
Poincaré compactification

Abstract

It is important to study the global behavior of solutions to systems of ordinary differential
equations describing the transmission dynamics of infectious disease. In this chapter, we
present a different approach from the Lyapunov function used in most of the study. This
approach is based on the Poincaré compactification. We then apply the method to an SIR
endemic model as a test case, and discuss its effectiveness and the potential applications
of this approach. In addition, we refine the discussion of dynamics near the equilibrium,
derive the asymptotic behavior, and mention its relation to the basic reproduction number.
This chapter is based on the following published paper ([34]):

Ichida, Y: On global behavior of a some SIR epidemic model based on the
Poincaré compactification, JSIAM Lett., 14 (2022), 65–68.

11.1 Introduction

There have been many studies dealing with systems of ordinary differential equations (for
short, ODEs) describing the transmission dynamics of infectious disease. In particular,
these fundamental questions are the global behavior of the solution for systems of ODEs,
such as the number of infectious and their final state, and the derivation of the basic
reproduction number, which plays an important role in understanding this behavior. For
details on the basic reproduction number and its derivation, for instance, see [67] and
references therein. Let us denote the basic reproduction number by R0.

In many studies, the Lyapunov function is constructed and discussed in order to inves-
tigate the global behavior of the solution. Note that understanding the global behavior of
the solution is the same as studying the global stability of the equilibrium. Global stability
of an equilibrium is defined as the local asymptotic stability of the equilibrium and the
convergence of all solutions of the system of ODE under consideration to the equilibrium.
The method of investigating the global stability of equilibria by means of the Lyapunov
function is very powerful, but to the best of the author’s knowledge, there is no theoretical
system that constitutes the Lyapunov function in general (for instance, see [70]). In other
words, when investigating the global behavior of solutions to complex systems of ODEs
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that incorporate more elements, constructing the Lyapunov function is itself a difficult
problem. Therefore, investigating the global behavior of solutions is not an easy work in
general.

In this chapter, we present a method using the Poincaré compactification (see Section
1.1) to study the global behavior of solutions. We then apply the method to a mathematical
model of infectious disease epidemics described by a system of ODE. Note that this is
essentially different from the analysis method using the Lyapunov function. An overview
of Poincaré compactification is given in [14], which is one of the compactifications of
the phase space (the embedding of Rn into the unit upper hemisphere of Rn+1) (see,
e.g. [14, 31, 32, 33, 49, 50]). The most important feature of applying this method is
that it allows us to investigate the global behavior of the system of ODEs of interest by
revealing all its dynamics including infinity. This method has been used, for instance,
in the analysis of the Liénard equation ([14] and references therein), in the classification
of phase portraits of ODE systems derived from the Gray-Scotte model ([10]), in the
reconsideration of blow-up solutions of systems of ODEs in the view of dynamical systems
([49, 50]), and in the analysis of the behavior of characteristic and typical solutions of
certain partial differential equations ([31, 32, 33]). To the best of the author’s knowledge,
there are no studies of its application to investigate the global behavior of solutions to
ODEs related to infectious disease epidemics, such as the susceptible-infectious-recovered
(SIR) model. In this chapter, we describe how to apply this method. Using one of the
most basic and representative mathematical models of infectious diseases, the SIR model
such that it has birth and death terms (e.g., [28]) as a test case, we show that the global
behavior of the solution can be studied by this method. It should be emphasized that this
method can be used without constructing the Lyapunov function.

Furthermore, by refining the dynamics near the equilibria that are not located at
infinity in this model (disease-free equilibria and epidemic equilibria, to be discussed in
Subsection 11.2.2), we obtain the asymptotic behavior of the decay of infectious population
for R0 < 1 and R0 = 1. In particular, this is studied by applying the center manifold
theory in the case that R0 = 1.

This chapter is organized as follows. In Section 11.2, we describe the specific model
described above and review the previously known methods for understanding the global
behavior of solutions in that model. This is based on the LaSalle’s invariance principle
with the Lyapunov function. In Section 11.3, we apply the Poincaré compactification
and concentrate on showing the effectiveness of this method for the concrete example
presented in Section 11.2. Section 11.4 shows the asymptotic behavior. Finally, Section
11.5 is devoted to the conclusions and the possible applications of this method.

11.2 The model as a test case

In this section, we present a model as a test case to verify the effectiveness of the above
method based on the Poincaré compactification. Before testing this method, we briefly
review known results for the global behavior obtained by using the LaSalle’s invariance
principle with the Lyapunov function that are known.
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11.2 The model as a test case

11.2.1 The model

In this chapter, the following model is treated as a concrete example (see [63]):






Ṡ = A− βS(t)I(t)− µS(t),

İ = βS(t)I(t)− qI(t)− µI(t),

Ṙ = qI(t)− µR(t),

(
˙=

d

dt

)
. (11.2.1)

The ODE system (11.2.1) is called an SIR model with birth and death terms, and is one
of the classical and representative mathematical models for infectious diseases. To be
more precise, we modify the Kermack-McKendrick model (for instance, see [55]), which
is the most typical SIR model, to introduce the fertility rate A as inputs and the natural
mortality rate µ. The model with A = µ is described, for instance, in [28]. The model
(11.2.1) assumes that infection has no effect on births or deaths and that there is no
vertical transmission.

S(t) represents the susceptible population, I(t) the infectious population, and R(t) the
recovered population, which are non-negative functions. In this model, we impose initial
conditions such as S(0) > 0, I(0) > 0, and R(0) ≥ 0. The constants A,β, µ, q are positive.
Furthermore, in (11.2.1), the first and second equations do not contain any information
about R(t). Therefore, it is sufficient to consider the following 2D:

{
Ṡ = A− βS(t)I(t)− µS(t),

İ = βS(t)I(t)− qI(t)− µI(t),

(
˙=

d

dt

)
. (11.2.2)

The basic reproduction number for this model is known to be R0 = Aβ/µ(q + µ).

11.2.2 Known results

Eq. (11.2.2) has the following equilibria:

E0 : (S, I) =
(
Aµ−1, 0

)
,

E∗ :
(
(q + µ)β−1, µβ−1(R0 − 1)

)
=: (S∗, I∗),

where E0 is the disease-free equilibrium and E∗ is the endemic equilibrium. Note that E∗
exists only if R0 > 1. The Jacobian matrices of the vector field (11.2.2) at these equilibria
are

E0 :

(
−µ −Aβ/µ
0 [Aβ − µ(q + µ)]/µ

)
,

E∗ :

(
−Aβ/(q + µ) −(q + µ)
µ(R0 − 1) 0

)
.

If R0 < 1, then E0 is a sink. If R0 > 1, then E0 is a saddle and E∗ is asymptotically
stable.

According to [63], if R0 > 1, then E∗ is globally asymptotically stable, and if R0 ≤ 1,
then E0 is globally asymptotically stable. When R0 > 1, we construct the following the
Lyapunov function in region Ω, which is shown by LaSalle’s invariance principle:

V (S, I) = S − S∗ − S∗ log
S

S∗
+ I − I∗ − I∗ log

I

I∗
.
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Here, we set Ω = {(S, I) | S > 0, I > 0}. On the other hand, the case R0 ≤ 1 can be
shown similarly by using the following function:

V (S, I) = S −Aµ−1 −Aµ−1 log(A−1µS) + I.

Thus, the method using the Lyapunov function does not have a general theory of con-
struction, and in this model we have to construct two functions.

11.2.3 The case R0 = 1: Application of the center manifold theory

We focus on the Jacobian matrix of the vector field (11.2.2) at E0 in the case that R0 = 1.
It has the real distinct eigenvalues −µ and 0. Therefore, the center manifold theory (e.g.
[9]) is applicable to study the dynamics of (11.2.2). In [28, 63], there is no discussion of
this case.

We set
S(t) = Aµ−1 + U(t), I(t) = 0 + V (t)

and {
U̇ = −µU −Aβµ−1V − βUV,

V̇ = βUV

hold. Note that we are only shifting E0 to the origin in this transformation.
The eigenvectors correspond to each eigenvalue are

v1 =

(
1
0

)
, v2 =

(
−Aβµ−1

µ

)
.

We set a matrix T as T = (v1,v2). Then we obtain

d

dt

(
U
V

)
=

(
−µ −Aβµ−1

0 0

)(
U
V

)
+

(
−βUV
βUV

)

= T

(
−µ 0
0 0

)
T−1

(
U
V

)
+

(
−βUV
βUV

)
.

Let (
Ũ
Ṽ

)
= T−1

(
U
V

)
.

We then obtain the following system:

{ ˙̃U = −µŨ + (Aβ2µ−1 − βµ)Ũ Ṽ + (Aβ2 −A2β3µ−2)Ṽ 2,
˙̃V = βŨ Ṽ −Aβ2µ−1Ṽ 2.

The center manifold theory is applicable to study the dynamics of above system. It implies
that there exists a function h(Ṽ ) satisfying

h(0) =
dh

dṼ
(0) = 0

such that the center manifold of the origin for above system is locally represented as
{(Ũ , Ṽ ) | Ũ(t) = h(Ṽ (t))}. Differentiating it with respect to t, we have

−µh+ (Aβ2µ−1 − βµ)hṼ + (Aβ2 −A2β3µ−2)Ṽ 2 =
dh

dṼ

{
βhṼ −Aβ2µ−1Ṽ 2

}
. (11.2.3)
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We assume that h has the form h(Ṽ (t)) = O(Ṽ 2). Substituting into (11.2.3), we obtain
Ũ(t) = h(Ṽ (t)) = Aβ2µ−1(1−Aβµ−2)Ṽ 2 +O(Ṽ 3). The, by using the transformations in
this subsection, we obtain that the approximation of the (graph of) center manifold is

{
(S, I) | S(t) = Aµ−1 −Aβµ−2I(t) +O(I2)

}
(11.2.4)

and the dynamics of (11.2.2) near E0 is topologically equivalent to the dynamics of the
following equation:

İ = −Aβ2µ−2I2 +O(I3). (11.2.5)

The above discussion has been made, for instance, in [32, 30].
Here, the dynamics around E0 is strictly different for R0 < 1 and R0 = 1. Note,

however, that in the later conclusions on global behavior and in Figure 11.3.1, they are
treated together in R0 ≤ 1 since they share the common feature of being attracted to E0.

11.3 Application of the Poincaré compactification

In this model, we have a two-dimensional system, and we can use the Poincaré-Bendixson
theorem (e.g. [70]). That is, if we know that there is no trajectory toward the equilibrium
at infinity, we can show the global stability of the equilibrium without constructing the
Lyapunov function, since it is attracted to the bounded equilibrium.

11.3.1 Dynamics on the local charts

First, to obtain the dynamics on the chart U2, we introduce the coordinates (λ, x) by the
formulas

S(t) = x(t)/λ(t), I(t) = 1/λ(t).

Then, we have {
λ̇ = −βx+ (q + µ)λ,

ẋ = Aλ− βλ−1x− βλ−1x2 + qx,

(
˙=

d

dt

)
.

By using the time-scale desingularization dτ/dt = λ−1, we can obtain
{
λτ = −βλx+ (q + µ)λ2,

xτ = Aλ2 − βx− βx2 + qλx,
(11.3.1)

where λτ = dλ/dτ and xτ = dx/dτ . The equilibrium of the system (11.3.1) on {λ =
0, x ≥ 0} is E1 : (λ, x) = (0, 0). By calculating the Jacobian matrix, we apply the center
manifold theory. Therefore, we obtain that the approximation of the (graph of) center
manifold is {

(λ, x) | x(τ) = Aβ−1λ2 +O(λ3)
}

(11.3.2)

and the dynamics of (11.3.1) near E1 is topologically equivalent to the dynamics of the
following equation:

λτ = (q + µ)λ2 −Aλ3 +O(λ4). (11.3.3)

In conclusion, this argues that the trajectories will never go to E1.
Second, we consider the dynamics on the chart U1. From the change of coordinates

S(t) = 1/λ(t), I(t) = x(t)/λ(t), and time-rescaling dτ/dt = λ−1, we obtain
{
λτ = −Aλ3 + βλx+ µλ2,

xτ = βx− qλx−Aλ2x+ βx2.
(11.3.4)
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S0 E0

E∗

I

S

I

E1

E2

R0 > 1

S0 E0

I

S

I

E1

E2

R0 ≤ 1

Figure 11.3.1: Schematic pictures of the dynamics on the Poincaré disk for (11.2.2). [Left:
Case R0 > 1.] [Right: Case R0 ≤ 1.] Note that the circumference corresponds to
{‖(S, I)‖ = +∞}.

The equilibrium of the system (11.3.4) on {λ = 0, x ≥ 0} is E2 : (λ, x) = (0, 0). By
calculating the Jacobian matrix, we apply the center manifold theory. However, it is not
shown explicitly as (11.3.2) and (11.3.3) since the center manifold is not unique. As we
can see from the nullcline, we conclude that the trajectories will never go to E2.

11.3.2 Dynamics on the Poincaré disk

Combining the dynamics on the charts U j (j = 1, 2), we can obtain the dynamics on the
Poincaré disk (see Figure 11.3.1).

We explain why the connected trajectories can be represented as shown in Figure 11.3.1
in the both cases R0 > 1 and R0 ≤ 1. First, by computing Ṡ|S=0, Ṡ|I=0, İ|S=0 and İ|I=0,
it is easy to see that both the Poincaré disks are an invariance set. Second, bounded orbits
cannot go to infinity by the local dynamics at infinity. Finally, the dynamics on them are
determined from the Poincaré-Bendixson theorem (e.g. [70]).

Thus, we can understand the global behavior of the solution to (11.2.2) without con-
structing the Lyapunov function. This means that the method introduced in Section 1.1
is effective in (11.2.2).

11.4 Asymptotic behavior

In this section, we derive the asymptotic behavior of I(t) as t → ∞ in the case that R0 < 1
and R0 = 1, respectively. We can also calculate the asymptotic behavior as t → +∞ in
the case that R0 > 1. See [32, 33] for similar arguments.

First, from the Jacobian matrix at E0 in the case that R0 < 1, the solution I(t) can
be approximated as follows

I(t) = C1e
[Aβµ−1−(q+µ)]t(1 + o(1)) = C1e

(q+µ)(R0−1)t(1 + o(1)) as t → +∞.

That is, we obtain that I(t) converges exponentially to 0 with t → ∞. Here, C1 is a
positive constant.

Next, we examine the case that R0 = 1. By considering terms up to the second order
in (11.2.5) and solving for I(t), we obtain

I(t) = (Aβ2µ−2t+ C2)
−1.
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This equation is the asymptotic behavior as t → ∞. Note that from I(0) > 0, C2 is a
positive constant.

Although these results are same in that I → 0 is obtained as t → +∞, the decay is
different. Therefore, we can see that the smaller R0 is than 1, the faster the convergence
of I(t) to 0 as t → ∞. This is a result that gives a sense of the importance of making the
basic reproduction number R0 small.

11.5 Concluding remarks

In this chapter, by using the Poincaré compactification, we were able to give another proof
for the global stability and boundedness of the equilibrium in (11.2.2). It is expected that
this method will be applied to problems for which the global behavior of the solution has
not been shown. In this sense, the Poincaré compactification seems to be very convenient.
However, this method is not applicable in all cases. To the best of the author’s knowledge,
local dynamics at infinity can be studied for phase spaces of dimension three or more, but
it becomes difficult to immediately prove connecting orbits such as Subsection 11.3.2 since
the Poincaré-Bendixson theorem cannot be used. Also, this method is not immediately
applicable to non-polynomial vector fields in 2D system (for instance, see [14]). This leads
to the question of whether the structure at infinity is properly extracted. According to [49],
a vector field satisfying the scaling law of quasi-homogeneous clears the above problem.
Solving technical problems and expanding the range of application of this method are
future works.
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