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Abstract.

Ginzburg-Landau equation has two types of behavior: one is spatio-temporal
chaos remained inside the limit cycle on the phase plane, the other is a spatially
homogeneous periodic solution on the limit cycle. If we perturb the solution
behaving spatio-temporal chaos to the outside of a limit cycle, it is numerically
observed that the perturbed solution converges to a spatially homogeneous
periodic oscillation. This is the transition from chaos to regular motions
based on a spatial homogenization by the perturbation. By constructing the
invariant sets and using the asymptotic stability of the limit cycle, we prove
analytically that the solution starting from an initial condition far from the
limit cycle converges to the limit cycle oscillation.
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Chapter 1

Introduction

Reaction-diffusion systems or reaction-diffusion equations are widely used as
mathematical models to describe many natural phenomena that are affected by
two kinds of processes, diffusion and interaction in space. Reaction-diffusion
systems have a wide range of applications, such as population dynamics,
changes in population numbers due to interactions between phytoplankton and
zooplankton, changes in the membrane potential of the heart and nerve cells,
and body surface patterns in fish and mammals, chemical reaction systems such
as the Belousov-Zhavodzinski reaction, Rayleigh-Benard convection, combus-
tion theory, and phase transitions. The dynamics arising from the equations
are also diverse, such as simple spatially uniform stationary solutions, spatially
uniform periodic solutions on limit cycles, traveling wave solutions, stripe pat-
terns, spot patterns, target patterns, spiral patterns, and even more. Complex
phenomena such as spatio-temporal chaos and dissipative soliton solutions ex-
ist. Two or more spatial dimensions are often required to form remarkable
spatial patterns such as stripe patterns and spot patterns on the surface of
organisms, and spiral and target patterns appearing in BZ reactions.

The main purpose of this paper is to study spatial homogenization when the
systems possess the complicated dynamics such as chaotic dynamics. Transi-
tions between regular motions and chaotic dynamics have been often observed
in many fields, such as fluid dynamics, motions of many particles, chemical
reactions, biological systems and so on (e.g., see [10, 19, 26, 7, 8, 6, 23, 20]).
There are various mathematical equations which possess both the chaotic dy-
namics and the regular periodic motions. Examples of equations in which
such phenomena occur include the FitzHugh-Nagumo equation and the prey-
predator model. FitzHugh-Nagumo equation describes the neuronal potential
of the heart, and the prey-predator model, which describes population den-
sity due to interactions between zooplankton and phytoplankton. Prey and
predator coexisting in the same space, mutually influencing each other and
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gradually expanding their habitat, it is a universal phenomenon widely seen
in the natural world. Phytoplankton reproduces through photosynthesis and
self-replication, and zooplankton feeds on phytoplankton and survives. The
former serves as prey and the latter as predator. In this way, it can be said
that relationships with other living things are essential for the existence of
living things. The ecosystem created by such a predator and prey consists of
the random movement(diffusion) and the interaction (reactions) in which each
other influences itself through predation, self-proliferation, natural death, etc.
It is generated by simultaneous diffusion. If we add the saturation effect and
the diffusion term of the natural reproduction and predator predation following
the logistic equation of the prey to the prey-predator model, then various be-
havior appear like the periodic oscillation on the limit cycle, the spiral pattern
and spatiotemporal chaos. It shows complicated behavior.

Heartbeat is roughly classified into two types, namely regular periodic oscil-
lations and irregular non-periodic oscillations. Examples of the latter case are
arrhythmia and ventricular fibrillation. Periodic oscillations are represented by
spatially uniform periodic solutions on limit cycles, and irregular non-periodic
oscillations are represented by spiral patterns and spatio-temporal chaotic be-
havior. In the medical field, electric shocks such as pacemakers and defibrilla-
tors are widely used as treatments for restoring irregular vibrations to normal
one, and their effectiveness is widely recognized. In a mathematical model, the
phenomenon of returning irregular vibrations to regular vibrations by defibril-
lation corresponds to giving disturbances to spatio-temporal chaos to return
it to a space-uniform periodic solution on the limit cycle. Periodic oscillations
and chaotic behaviors are often studied individually, and there are few studies
on their transient phenomena.

In this thesis, we aim to mathematically prove that defibrillation is effec-
tive in treating ventricular fibrillation and arrhythmia by showing analytically
that the chaotic behavior converges to a regular oscillation when a disturbance
is added. However, the FitzHugh-Nagumo equation is very difficult from the
point of view of mathematical analysis. Specifically, the periodic solution
cannot be obtained analytically, and it is difficult to prove the asymptotic be-
havior to the periodic solution. Therefore, it seems that there is no way to
make the periodic behavior of this equation other than obtaining an approx-
imate solution by numerical simulation. In order to facilitate the analysis, it
is necessary to reduce the FitzHugh-Nagumo equation to a more manageable
form. As a method of contraction, there is a diminishing contraction method.
This method is used to construct a general reaction-diffusion equation that
eliminates the effects of nonlinear terms of order 4 or higher by considering
only the most important nonlinear terms with respect to deviations from the
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vicinity of the Hopf bifurcation. By this method, general reaction-diffusion
systems with limit cycles are reduced to complex Ginzburg-Landau equations.
The complex Ginzburg-Landau equation is a reaction-diffusion equation with
a complex path function with nonlinear terms up to third order. Since the
vector field is spherically symmetric and the conversion to polar coordinates
simplifies the calculation, it is easy to obtain an exact solution approaching
the limit cycle. From the existence of this exact solution, it becomes possible
to discuss the convergence of the solution.

To tell the truth, it would be ideal if we could directly prove the FitzHugh-
Nagumo equation, but various difficulties arise, thus we had no choice but to
deal with the complex Ginzburg-Landau equation. In the process of proof, cal-
culations that are difficult to perform without the complex Ginzburg-Landau
equation are performed, thus the method in this paper cannot be used as it is.

This time, the proof was limited to abstract concepts such as chaos and
limit cycles on the mathematical model corresponding to the beating of the
heart, but with the development of theory in the future, proof will be made on
the mathematical model that is closer to the actual dynamics of nerve cells.
This remains for the future work.

This thesis is organized as follows. In Chapter 1.1, we define functional
spaces (e.g. Banach space, Lp space, Sobolev space), a sectorial operator,
inequalities, and Sobolev’s embedding theorem to prove the theorem about the
existence of solution of differential equations and to analyze them. In Chapter
2, we give definitions and examples of reaction-diffusion equations, the proof
about the existence of the reaction-diffusion system on Rn and its Schauder
estimation. Additionally, we explain the method of constructing invariant sets
and the principle of the maximum value used in the subsequent proofs. Chapter
3 presents some lemmas on sectorial operators and characteristic multipliers in
preparation for the book by Henry [9] on useful theorems on the asymptotic
stability of limit cycles. Then we prove that a positive invariant set containing
initial conditions moved far outside the limit cycle is sufficiently close to the
limit cycle. This proves that the solution converges to a spatially uniform
periodic solution due to the asymptotic stability of the limit cycle.

1.1 Preliminaries

1.1.1 The Gronwall inequality

Set w(t) be the continuous function in class C0(I) which satisfies

w(t) ≤ α + β
∫ t

0
w(s)ds,
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where α ≥ 0, β > 0 and I = (0,T) ⊂ R. By setting W(t) =
∫ t
0
w(s)ds, we get

dW(t)
dt

= w(t) ≤ α + βW(t).

By integrating the above inequality, we have

W(t) ≤ α
β

(
eβt − 1

)
,

which implies

w(t) ≤ α + βW(t) ≤ αeβt

is called the Gronwall inequality, and we often use this to prove the uniqueness
of the many kinds of differential equations.

1.1.2 Poincaré-Bendixson’s theorem

Consider the two-dimensional autonomous system (plane dynamical system)
as

du
dt
= f (u, v)

dv
dt
= g(u, v).

Then, there is the following theorem about the attractor of the plane dynamical
system.

Theorem 1.1.1 (Poincaré-Bendixson’s theorem, [32, 24, 31]). The attractor
(ω-limit set) of the bounded plane dynamical system is limited to the following
three:

(a): the equilibrium point.

(b): the closed trajectory connecting finite numbers of equilibrium points.

(c): the periodic closed trajectory(the limit cycle).

Specifically, the ω-limit set of the plane dynamical system without the equi-
librium point is limited to the periodic closed trajectory. In other words, the
trajectory confined in the closed bounded domain ( invariant set, see Section
2.5 for the details) on the phase plane converges to the limit cycle oscillation.
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1.1.3 Banach space

Banach space is one of the most representative functional spaces that is used
in functional analysis.

Definition 1.1.2 (completeness). Consider a Cauchy sequence {un}n≥0 in
some vector space X with norm ∥ · ∥. Cauchy sequence is the sequence that
satisfies

lim
m,n→∞

∥un − um∥ = 0.

If an arbitrary Cauchy sequence {un}n≥0 converges to u ∈ X, then vector space
X is complete.

Definition 1.1.3 (Banach space). A complete vector space with the norm
∥ · ∥ that satisfies norm’s axiom is Banach space. The norm must be satisfied
follwing axioms:

(semi-positivity) ∀x ∈ X, ∥x∥ ≥ 0. ∥x∥ = 0 ⇔ x = 0.

(homogeneity) ∀x ∈ X,∀α ∈ R, ∥αx∥ = |α | ∥x∥.
(triangle inequality) ∀x, y ∈ X, ∥x + y∥ ≤ ∥x∥ + ∥y∥.

Next we give the following examples of the Banach space.

Theorem 1.1.4. Let X be a set of all bounded and uniformly continuous func-
tions from Rn to Rm, then X is the Banach space with the norm

∥u∥ := sup
x∈Rn

|u(x)|.

Proof. Obviously the norm ∥ · ∥ satisfies the norm’s axiom, thus it suffices to
prove X is complete. Let {u j} be a Cauchy sequence in X. For any ϵ > 0,
there exists N ∈ N such that

∥ui − u j ∥ < ϵ, if i, j ≥ N .

For each x ∈ Rn, {ui(x)}i≥0 is a Cauchy sequence in a Banach space Rm, then
there exists u∞(x) ∈ Rm that satisfies

lim
i→∞

ui(x) = u∞(x).

For any ϵ > 0, there exists M ∈ N such that

∥ui − u j ∥ <
ϵ

4
, if i, j ≥ M .
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Then

|ui(x) − u j(x)| <
ϵ

4
, if i, j ≥ M, x ∈ Rm.

When j = M and i → ∞, we have

|u∞(x) − uM(x)| ≤ ϵ
4
, x ∈ Rn,

since we get

|u∞(x)| ≤ |uM(x)| + ϵ
4
≤ ∥uM ∥ + ϵ

4
.

u∞ is a bounded function on Rn. Since uM ∈ X, for any x ∈ Rm, there exists
δ(ϵ, x) > 0 such that

|uM(x) − uM(y)| < ϵ
2

if |x − y | < δ. Now we have

|u∞(x) − u∞(y)| < |u∞(x) − uM(x)| + |uM(x) − uM(y)|
+ |uM(y) − u∞(y)|

≤ϵ

for x, y ∈ Rn, |x − y | < δ. Thus u∞(x) is uniformly continuous function from
Rn to Rm and belongs to X. Finally we have

lim
j→∞

∥ui − u j ∥ = ∥ui − u∞∥ < ϵ,

and this implies the Cauchy sequence {ui} converges to u∞ ∈ X and X is
complete. Therefore, X is the Banach space. □

1.1.4 Banach’s fixed point theorem

To prove the existence of the solution of the differential equation, we often use
the following fixed point’s theorem about the contraction mapping.

Theorem 1.1.5. Let X be the complete distance space (Cauchy space) with
appropriate distance dist(x, y) for all x, y ∈ X and f : X → X be the contraction
mapping that satisfies

dist( f (x), f (y)) ≤ θ dist(x, y)

for θ ∈ (0,1). Then, f has the unique fixed point x∗ ∈ X, that is, x∗ satisfies
f (x∗) = x∗.
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Proof. Consider the sequence {xn}n≥0 that satisfies the following recurrence
formula

xn+1 = f (xn).

Using repeatedly

dist(xn+1, xn) = dist( f (xn), f (xn−1)) ≤ θdist(xn, xn−1),

we have

dist(xn+1, xn) ≤ θndist(x1, x0).

Next, set m,n ∈ N,m > n. Then,

dist(xm, xn) ≤ dist(xm, xm−1) + dist(xm−1, xm−2) + · · · + dist(xn+1, xn)
≤ θm−1dist(x1, x0) + θm−2dist(x1, x0) + · · · + θndist(x1, x0)

= θndist(x1, x0)
m−n−1∑

k=0

θk

≤ θ
ndist(x1, x0)

1 − θ .

For all ϵ > 0, there exists the large N > 0 that satisfies

θNdist(x1, x0)
1 − θ < ϵ.

Thus, for m,n ≥ N, we have

dist(xm, xn) ≤
θndist(x1, x0)

1 − θ < ϵ.

Therefore, {xn} is the Cauchy sequence. Because X is complete, there exist x∗

that satisfies

lim
n→∞

xn = x∗.

Since contraction mapping f is obviously continuous, we have

lim
n→∞

f (xn) = lim
n→∞

xn+1

⇔ f (x∗) = x∗,
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thus x∗ ∈ X is a fixed point. Finally, we show the uniqueness of fixed point. If
f has two fixed points x∗, y, these satisfy

0 ≤ dist(x∗, y) = dist( f (x∗), f (y)) ≤ θdist(x∗, y),

thus we have

0 ≤ (1 − θ)dist(x∗, y) ≤ 0, θ ∈ (0,1).

Thus dist(x∗, y) = 0 and we get x∗ = y. Eventually There exists the unique
fixed point x∗. □

Note that an arbitrary Banach space X is the complete distance space
because we can define the distance by any norm ∥ · ∥X . For all x, y ∈ X, set
dist(x, y) = ∥x − y∥X , then this definition satisfies the axiom of the distance.
We can easily check that the norm satisfies the following distance axiom.

(i) ∀x, y ∈ X, dist(x, y) = dist(y, x)

(ii) ∀x, y ∈ X, dist(x, y) = 0 ⇒ x = y.

(iii) ∀x, y, z ∈ X, dist(x, z) ≤ dist(x, y) + dist(y, z).
Therefore, we can use Banach’s fixed point theorem even if we replace the part
of ’complete distance space’ with ’Banach space’.

1.1.5 Existence of the solution of ODE

Using Banach’s fixed point theorem, we can prove the existence of the solution
of the following the differential equation.

Theorem 1.1.6. Consider the following differential equation

du
dt
= f (u), u(0) = u0, (1.1.1)

here u : R→ Rm is continous bounded function that satisfies

|u(t) − u0 | < M

for t ∈ (0, τ). Note that M depends only on τ. Assume that f : Rm → Rm is
the Lipschitz-continuous and bounded function that satisfies

| f (u) − f (v)| ≤ L |u − v |, sup
|u−u0 |≤M

| f (u)| ≤ R.

with L > 0,R > 0 and u, v ∈ Rm. Then, for t0 > 0, there exists the unique local
solution that solve (1.1.1) on t ∈ (0, t0).
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The Lipschitz continuity means that the solution is constrained by a linear
function with some degree, and expresses a function that the rate of change
cannot be infinite. Under this assumption, we can guarantee the uniqueness
of the solution. Note that extending the existence of solutions locally in time,
we can show global existence as long as they do not diverge.

Proof. Take the small t0 > 0 such that

t0 = min

{
τ,

M
R
,
1

2L

}
.

Let X be the functional space consisted of all bounded continuous functions,
namely,

X := {u ∈ C([0, t0],Rm) | sup
t∈(0,t0)

|u(t) − u0 | ≤ M}.

X is the Banach space with the norm ∥ · ∥ = supt∈(0,t0) | · |.
Define the operator Φ such that

Φu = u0 +

∫ t

0
f (u(s))ds.

At first, we show Φ : X → X. For u ∈ X, by the definition of t0, we have

|Φu − u0 | ≤
∫ t

0
| f (u(s))|ds ≤ t0R ≤ M .

Thus

∥Φu − u0∥ ≤ M

and Φu ∈ X for u ∈ X. Second, we show Φ is the contraction mapping. For
any u, v ∈ X, we have

|Φu − Φv | ≤
∫ t

0
| f (u) − f (v)| ≤ t0L |u − v | ≤ 1

2
|u − v |

for any t ∈ (t, t0), thus we have

∥Φu − Φv∥ ≤ 1

2
∥u − v∥.

Therefore, Φ : X → X is the contraction mapping and we can apply the
Banach’s fixed point theorem. There exists the unique function u∗ ∈ X that
satisfies Φu∗ = u∗ and

u∗ = u0 +

∫ t

0
f (u∗(s))ds.

This is nothing but the integral form of (1.1.1). □
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1.1.6 Lp space

Consider the functional space of the function u(x) in the spatial domain Ω ⊂ Rn

such that ∫
Ω

|u|pdx < ∞,

for 1 ≤ p < ∞. Then, this space is called Lp space with norm

∥u∥Lp(Ω) :=

(∫
Ω

|u|pdx
) 1

p

.

In case of p = ∞, the space of essential bounded function that satisfies

ess.supx∈Ω |u(x)| < ∞ (1.1.2)

is defined as L∞ space with norm

∥u∥L∞ := ess.supx∈Ω |u(x)|.

For 1 ≤ p ≤ ∞, Lp is the Banach space with norm ∥ · ∥Lp(Ω). Note that
∥u∥Lp(Ω) = 0 doesn’t mean u ≡ 0, but u = 0 except zero measure sets. It is
often expressed as almost everywhere(a.e). Specifically, in case of p = 2, L2

space is a kind of Hilbert space that is the complete functional space with
the appropriate inner product. For any f ,g ∈ L2(Ω), we can define the inner
product

( f ,g)L2 :=

∫
Ω

f g∗dx,

this is bounded by using the Cauchy Schwarz inequality and boundedness of
∥ f ∥L2, ∥g∥L2 .

1.1.7 Sobolev space

At first, we define the weak derivative. Let u be the function in Lp(Ω) and the
test function ϕ that satisfies ϕ = 0 on ∂Ω. Then, when v ∈ Lp(Ω) satisfies∫

Ω

u∂ϕdx = −
∫
Ω

vϕdx,

v is the weak derivative of u and we write as v := ∂u = ∂u
∂xi

(i = 1,2, · · · ,n).
This is the definition by the integration by parts. In the same way, the higher
derivative can be defined as the function v that satisfies∫

Ω

u∂αϕdx = (−1)|α |
∫
Ω

vϕdx,
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here α is the multi-index

α = (α1, α2, · · · , αn), |α | = α1 + α2 + · · · + αn,

and ∂α means

∂α :=
∂α1+α2+···+αn

∂xα11 ∂xα22 · · · ∂xαnn
.

Then, for m ∈ N,1 ≤ p < ∞ we can define the following functional space Wm,p:

Wm,p = {u ∈ Lp(Ω)|∂αu ∈ Lp(Ω), |α | ≤ m}.

Wm,p is the Banach space with norm

∥u∥Wm,p(Ω) :=
©­«
∑
|α |≤m

∥∂αu∥p
Lp(Ω)

ª®¬
1
p

and it is called the Sobolev space. Specifically, Wm,2 is often written as Hm

and is the Hilbert space with the following inner product

( f ,g)Hm(Ω) :=
∑
|α |≤m

(∂α f , ∂αg)L2(Ω)

for any f ,g ∈ Hm(Ω). Additionally, define Wm,p
0 (Ω) as

Wm,p
0 (Ω) = {u ∈ Wm,p(Ω)|{x ∈ Ω|u(x) , 0} ⊂ Ω}.

Wm,p
0 (Ω) is Sobolev space to which functions satisfying Dirihclet boundery con-

dition belong.

1.1.8 Sobolev’s embedding theorem

At first, we define the following Hölder space Ck,σ(Rn) for k ∈ Z,σ ∈ (0,1]:
The function u ∈ Ck(Rn) and the k−th order derivative ∂αu||α |=k is uniformly
σ-th order Hölder continuous that is

∃L > 0,∀x, y ∈ Rn, s.t . |∂αu(x) − ∂αu(y)| ≤ L |x − y |σ .

Ck,σ(Rn) is the Banach space with norm

∥u∥Ck ,σ (Rn) :=
∑
|α |≤k

|∂αu(x)| +
∑
|α |=k

sup
x,y

|∂αu(x) − ∂αu(y)|
|x − y |σ .

Then, there is the following theorem about the relation between Sobolev space
Wm,p and Hölder space Ck,σ(Rn) and their embedding.
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Definition 1.1.7 (Embedding). Let X,Y be functional spaces such that X ⊂ Y
with norm ∥ · ∥X, ∥ · ∥Y . For any function u ∈ X, if

∥u∥Y ≤ C∥u∥X

is satisfied for some constant C > 0 that depends only on Ω, then we say X is
embedding to Y and write as X ↪→ Y .

Theorem 1.1.8 (Sobolev’s embedding theorem for Rn, [29]). For Wm,p(Rn)(m ∈
N,1 ≤ p < ∞), we have following statements:

(i) In case of m − n/p < 0 : Set p∗ ∈ (p,∞) be 1/p∗ = 1/p − m/n. Then, for
all q ∈ [p, p∗], we have Wm,p(Rn) ↪→ Lq(Rn).

(ii) In case of m − n/p = 0 : For all q ∈ [p,∞), we have Wm,p(Rn) ↪→ Lq(Rn).

(iii) In case of m− n/p > 0 and m− n/p is not an integer: Then we can write
as m − n/p > 0 = k + σ for k ∈ N,σ ∈ (0,1), and we have Wm,p(Rn) ↪→
Ck,σ(Rn).

(iV) In case of m−n/p > 0 and m−n/p is an integer: Set k ∈ N as m−n/p = k.
Then, for any σ ∈ (0,1), we have Wm,p(Rn) ↪→ Ck−1,σ(Rn).

Example 1.1.9. Consider the m = 2, p = 1,n = 3, that is m = n/p = 2−3/1 < 0
(case(i) of Theorem 1.1.8), then for any q ∈ [2,6], we have H1(R3) ↪→ Lq(R3).

Next, to apply the embedding theorem for a bounded domain Ω ⊂ Rn, we
define the following expansion operator:

Definition 1.1.10 (expansion operator). For m ∈ N, p ∈ [1,∞], set the bounded
linear operator E : Wm,p(Ω) → Wm,p(Rn) that satisfies

∀u ∈ Wm,p(Ω),Eu|Ω = u,

here u|Ω : Ω→ R; x 7→ u(x). Then, E is called the expansion operator.

The expansion operator is applied as follows:

Theorem 1.1.11 (Sobolev’s embedding theorem for Ω, [29]). If there is the
expansion operator E : Wm,p(Ω) → Wm,p(Rn) for Ω ⊂ Rn, then we can re-
place parts of Rn to Ω in Sobolev’s embedding theorem 1.1.8. That is, for
Wm,p(Ω) (m ∈ N,1 ≤ p < ∞), we have following statements:

(i) In case of m − n/p < 0 : Set p∗ ∈ (p,∞) be 1/p∗ = 1/p − m/n. Then, for
all q ∈ [p, p∗], we have Wm,p(Ω) ↪→ Lq(Ω).
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(ii) In case of m − n/p = 0 : For all q ∈ [p,∞), we have Wm,p(Ω) ↪→ Lq(Ω).

(iii) In case of m−n/p > 0 and m−n/p is not an integer: Then we can write as
m−n/p > 0 = k+σ for k ∈ N,σ ∈ (0,1), and we have Wm,p(Ω) ↪→ Ck,σ(Ω).

(iv) In case of m−n/p > 0 and m−n/p is an integer: Set k ∈ N be l = m−n/p.
Then, for any σ ∈ (0,1), we have Wm,p(Ω) ↪→ Ck−1,σ(Ω).

Proof. It might be sufficient to prove the case (i). Other cases are proved in the
same way. From the assumption, Eu ∈ Wm,p(Rn) for u ∈ Wm,p(Ω),m − n/p < 0.
Additionally, because E is a bounded linear operator, for some C > 0, we have

∥Eu∥Wm,p(Rn) ≤ C∥u∥Wm,p(Ω).

By case (i) of Theorem 1.1.8, for q ∈ [p, p∗], we have

∥Eu∥Lq(Rn) ≤ C′∥Eu∥Wm,p(Rn)

for some constant C′ .Therefore, we have

∥u∥Lq(Ω) = ∥Eu∥Lq(Ω)
≤ ∥Eu∥Lq(Rn)
≤ C′∥Eu∥Wm,p(Rn)
≤ CC′∥u∥Wm,p(Ω),

and Wm,p(Ω) ↪→ Lq
Ω
. □

Finally, we mention the condition of the existence of the expansion opera-
tor.

Theorem 1.1.12 ([29]). If the spatial domain Ω has the C1 smooth boundary,
or satisfies the cone condition, there exists the expansion operator E on Ω.

Definition 1.1.13 (cone condition, [29]). Let Ω ⊂ Rn be the open set with the
bounded boundary that is not empty. Then, Ω satisfies the cone condition if the
following conditions are satisfied: There are {Oi}{i≥0}, the sequence of finite
opened cover of ∂Ω and the family of conic domain {Ci}, and if they satisfies
x + Ci ⊂ Ω for any i ∈ N, x ∈ Ω ∩ Oi, Ω then satisfies the cone condition.

For example, polygonal domains, cubic domains, or the domains with Lip-
schitz boundery satisfie the cone condition.

21



1.1.9 The Poincaré inequality

Theorem 1.1.14 ([29, 32]). Let p be a real number satisfying p ∈ [1,∞) and Ω
be a bounded domain in Rn with Lipschitz boundery. Consider u ∈ W1,p

0 (Ω),then
there exists a positive constant C depending only on Ω, p such that u satisfies

∥u∥Lp(Ω) ≤ C∥∇u∥Lp(Ω).

When u satisfies the Neumann boundary condition ∇u · n = 0 on ∂Ω where
n is the outer normal vector on ∂Ω, the above inequality does not hold because
∇u = 0 for any constant u. The alternate following inequality holds:

∥u − ū∥Lp(Ω) ≤ C∥∇u∥Lp(Ω),

where

ū =
1

|Ω|

∫
Ω

u(x)dx,

and |Ω| is the measure of Ω.

1.2 Sectorial operator

Let X be a Banach space, the norm in the Banach space be given by ∥ · ∥, and
A be the closed operator which has a dense domain in X. Consider the partial
differential equation of u(x, t) as follows:

du
dt
+ Au = 0.

For example, in case of A = −∆, this is the heat equation. Even if A is
an operator on the Banach space, can we express the solution of (1.2.3) as
u(t) = e−Atu(0)? The answer is “yes” if A is a sectorial operator. Hence, we
will explain about the sectorial operator.

Definition 1.2.1. Assume that the resolvent set ρ(A) of A contains the open
set on the complex plain with some real numbers l, θ ∈ (0, π/2) as follows:

ρ(A)⊂Σl,θ = {λ ∈ C | θ ≤ | arg(λ − l)| ≤ π,λ , l},

and satisfies

∥(λ − A)−1∥ ≤ M
|λ − l | ,

for any λ ∈ Σl,θ with some M ≥ 1. Then, A is called a sectorial operator.
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Lemma 1.2.2. Let −∆ be the Laplacian with the Neumann boundary condition
on Ω ⊂ Rn and the domain D(A) = {u ∈ H1(Ω)|∇u · n = 0 on ∂Ω}. For
u, v ∈ D(A), assume that −∆ satisfies the weak form

(−∆u(x), v) =
∫
Ω

∇u · ∇vdx,

with inner product

( f ,g) =
∫
Ω

f gdx, for f ,g ∈ H1(Ω)

Then, −∆ is the sectorial operator on L2(Ω).

Proof. For any eigenfunction ϕ ∈ D(A), consider the eigenvalue problem

−∆ϕ = λϕ

with the Neumann boundary condition. Then, we have

λ∥ϕ∥2L2(Ω) = (λϕ, ϕ)
= (−∆ϕ, ϕ)

=

∫
Ω

|∇ϕ∥2dx

= ∥∇ϕ∥2L2(Ω)

≥ C∥ϕ − ϕ∥2L2(Ω)

for some positive constant C > 0. Here we use the Poincaré inequality and ϕ
is an average of ϕ on Ω. Thus for ϕ , 0, λ ≥ C > 0. Obviously λ = 0 in case
of u = 0, finally we get λ ≥ 0. All eigenvalue of −∆ lies in R+ ∩ {0}. Therefore
−∆ is the sectorial operator. □

Example 1.2.3 ([9, 27]). Due to the definition, we can give the following
examples:

(1) If A is a bounded linear operator on a Banach space, then A is sectorial.

(2) If A is a self-adjoint densely defined operator in a Hilbert space, and if
A is bounded below, then A is sectorial.

(3) If A is sectorial in X, B is sectorial in the another Banach space Y ,
then A × B is also sectorial in X × Y , where (A × B)(x, y) = (Ax,By) for
x ∈ D(A), y ∈ D(B).
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(4) If Au(x) = −∆u(x), when u ∈ C2
0 (Ω) (Ω ⊂ Rm),and A is the closure in

Lp(Ω) of −∆|C2
0 (Ω)

(1 ≤ p < ∞), then A is sectorial.

(5) The elliptic operator L defined as

Lu :=
∑

1≤i,j≤n

∂

∂xi
ai(x)

∂u
∂x j
+ c(x)u

with u ∈ L2(Ω) under Neumann or Dirichlet boundary condition is sec-
torial.

(6) If A is sectorial in X and B is a linear operator with D(B) ∈ D(A) and
for all x ∈ D(A), ∥Bx∥ ≤ ϵ ∥Ax∥ + K(ϵ)∥x∥ (for sufficiently small ϵ > 0),
then A + B is sectorial.

To prove some properties of the sectorial operator, we define analytic semi-
group as follows:

Definition 1.2.4. An analytic semigroup on a Banach space X is a family of
continuous linear operators on X, a function {T(t)}t≥0 satisfying

(i) T(0) = I,T(t)T(s) = T(t + s) for t, s ≥ 0.

(ii) T(t)x → x as t → 0+, for each x ∈ X

(iii) t → T(t)x is real analytic on 0 < t < ∞ for each x ∈ X.

The infinitesimal generator L of this semigroup is defined by

Lx = lim
t→0+

1

t
(T(t)x − x),

with the domain D(L) consisting of all x ∈ X for which this limit (in X) exists.
The expression T(t) = eLt is often used.

Lemma 1.2.5 ( [9, Theorem 1.3.4]). Let set the Banach space X,Y and A :
X → Y . Assume that the domain D(A) ∈ X is dense in X. Then, −A is the
infinitesimal generator of an analytical semigroup {e−t A}t>0 defined by

e−t A =
1

2πi

∫
Γ

(λ + A)−1eλt dλ, (1.2.3)

where Γ is a contour in ρ(A) with arg λ→ ±θ as |λ | → ∞ for some θ in ( π2 , π).
Further e−t A can be continued analytically into {t , 0 | | arg t | < ε}. If Re λ > a
for all λ ∈ σ(A), then

∥e−t A∥ ≤ Ce−at, ∥Ae−t A∥ ≤ C
t

e−at (1.2.4)

24



for some constant C and t > 0. Finally,

d
dt

e−t A = −Ae−t A

is satisfied.

Proof. Without loss of the generality, assume a = 0 and ∥(λ+A)−1∥ ≤ M/|λ |+δ
for |π − arg λ | ≥ ϕ for some constants δ > 0,M > 0 and ϕ ∈ (0, π/2), otherwise
replace A by A − λI. Choose θ ∈ (π/2, π − ϕ). Define e−t A by (1.2.3). Note
that the integral in (1.2.3) converges absolutely when t > 0. From Cauchy’s
integral theorem, the integral is unchanged when the contour Γ is shifted to
the right a small distance. We denote the shifted contour by Γ′ Then, for
t > 0, s > 0

e−t Ae−sA =
1

(2πi)2
∫
Γ

∫
Γ′

eλt(λI + A)−1eµs(µI + A)−1dµdλ

=
1

(2πi)2
∫
Γ

∫
Γ′

eλtµs
(λI + A)−1 − (µI + A)−1

(µ − λ) dµdλ,

using the resolvent identity. Additionally, for λ ∈ Γ, µ ∈ Γ′,∫
Γ

eλt(µ − λ)−1dλ = 0,∫
Γ′

eµs(µ − λ)−1dµ = 2πieλs,

thus we have

e−t Ae−sA =

∫
Γ

1

2πi
eλ(t+s)(λI + A)−1dλ = e−A(t+s).

Thus, {e−t A}t≥0 is the semigroup. For 0 < ϵ < θ − π/2, the integral converges
uniformly in any compact set of {| arg t | < ϵ}, thus the semigroup is analytic.
For t > 0, z = λt in the integral

∥e−t A∥ =



 1

2πi

∫
Γ

ez( z
t
+ A)−1 dz

t




 ≤ M
2π

∫
Γ

|ez | |dz |
|z |

and

∥Ae−t A∥ ≤ M
2πδ

∫
Γ

|ez | |dz |
|z | · 1

t
.

These inequalities immediately imply (1.2.4).
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Next, we prove e−t Ax − x as t → 0+ for each x ∈ X. By the assumption, it
is sufficient to prove this for x ∈ D(A) For x ∈ D(A), t > 0, since ∥e−t A∥ ≤ C for
all t ≥ 0,

e−t Ax − x =
∫
Γ

eλt((λI + A)−1 − λ−1)xdλ

= − 1

2πi

∫
Γ

λ−1eλt A(λI + A)−1xdλ,

thus ∥e−t Ax−x∥ ≤ Constant · ∥Ax∥t. Thus {| arg t | < ϵ} is a strongly continuous
semigroup and can extends to analytic semigroup in | arg t | < ϵ . In the same
way, we have

d
dt

e−t Ax + Ae−t Ax =
1

2πi

∫
Γ

eλt(λ + A)(λ + A)−1dλ = 0.

Namely,

d
dt

e−t Ax = −Ae−t Ax

for x ∈ D(A) as t > 0. □

We can define the fractional powers of A when Reσ(A) > 0.

Definition 1.2.6. Suppose A is a sectorial operator and Reσ(A) > 0, then
A−α is defined as

A−α =
1

Γ(α)

∫ ∞

0
tα−1e−t Adt .

for any α > 0.

Example 1.2.7 ([9, 27]). Due to the definition, we can give the following
examples:

(1) If A is a positive scalar (X = R), then A−α is the usual (−α) power of A.

(2) If A is a self-adjoint definite, self-adjoint operator in a Hilbert space with
spectral representation A =

∫ ∞
0
λdE(λ), then A−α =

∫ ∞
0
λ−αdE(λ)

(3) If α = 1, A−1 is the inverse of A.

We can calculate A−α in a following way:
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Lemma 1.2.8 ( [9, Theorem 1.4.2]). If A is a sectorial operator in Banach
space X with Reσ(A) > 0, then for any α > 0, A−α is a bounded linear operator
on X that satisfies

A−α =
sin πα

π

∫ ∞

0
λ−α(λ + A)−1dλ

Note that A−α is the inverse of Aα(α > 0), D(Aα) = R(A−α), A0 is the identity
on X

Proof. By the assumption, there is a positive constant δ such that Reσ(A) > δ.
Then, Lemma 1.2.5 implies that ∥e−t A∥ ≤ Ce−δt for t > 0. Thus for x ∈ X,

∥A−αx∥ ≤ 1

Γ(α)

∫ ∞

0
tα−1Ce−δt dt∥x∥,

and A−α is bounded when α with α > 0. Also for α, β > 0

A−αA−β =
1

Γ(α)Γ(β)

∫ ∞

0

∫ ∞

0
tα−1sβ−1e−A(t+s)dsdt

=
1

Γ(α)Γ(β)

∫ ∞

0
e−uAdu

∫ u

0
tα−1(u − t)β−1dt

=
1

Γ(α)Γ(β)

∫ ∞

0
uα+β−1e−uAdu

∫ 1

0
zα−1(1 − z)β−1dz

= A−(α+β),

where we used the beta function B(α, β) as

B(α, β) =
∫ 1

0
zα−1(1 − z)β−1dz =

Γ(α + β)
Γ(α)Γ(β) .

Finally, (λ + A)−1 =
∫ ∞
0

e−t Ae−λt dt for λ ≥ 0, so∫ ∞

0
λ−α(λ + A)−1dλ =

∫ ∞

0
e−t A(

∫ ∞

0
e−λtλ−αdλ)dt

=

∫ ∞

0
e−t Atα−1Γ(1 − α)dt

=

∫ ∞

0
A−α
Γ(α)Γ(1 − α)

= A−α π

sin πα
,

using the reflective formula

π

sin πα
= Γ(α)Γ(1 − α).

□
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Next, we should show the evaluation about A−α as follows:

Lemma 1.2.9 ([9, Theorem 1.4.3]). Suppose A is a sectorial and Reσ(A) >
δ > 0. There exists a positive constant Cα depending on α such that

∥Aαe−t A∥ ≤ Cαt−αe−δt

for t > 0.

Proof. From Lemma 1.2.5,

∥e−t A∥ ≤ Ce−δt, ∥Ae−t A∥ ≤ Ce−δt

t

for t > 0. thus for m ∈ Z,we have

∥Ame−t A∥ = ∥(Ae−(t/m)A)m∥ ≤ (Cm)me−δt

tm

If 0 < α < 1, t > 0,

∥Aαe−t A∥ = ∥Ae−t A · A−(1−α)∥

≤ 1

Γ(1 − α)

∫ ∞

0
s−α∥Ae−(t+s)A∥ds

≤ Ct−αe−δtΓ(α).

Additionally, we have

∥Aα+βe−t A∥ ≤ ∥Aαe−t A/2∥∥Aβe−t A/2∥ ≤ CαCβ2α+βt−(α+β)e−δt .

□

Lemma 1.2.10 ( [9, Theorem 1.4.4]). For β ∈ [0,1], x ∈ D(A),

∥Aβ∥ ≤ C∥Ax∥1−β∥x∥β.

Proof. Let 0 < β < 1, ϵ > 0, thus we have

∥Γ(β)A−βx∥ =





 (∫ ϵ

0
+

∫ ∞

ϵ

)
tβ−1e−t Axdt







≤ C∥x∥ ϵ

β

β
+






ϵ β−1e−ϵAA−1x + (β − 1)
∫ ∞

ϵ
tβ−2e−t AA−1xdt







≤ C∥x∥ ϵ

β

β
+ 2C∥A−1x∥ϵ β−1.

28



The right hand side can be minimized as

∥Γ(β)A−βx∥ ≤ 2(2(1 − β))β−1
Γ(1 + β) C∥x∥1−β∥A−1x∥β.

□

Lemma 1.2.11. Suppose A,B are sectorial in X with D(A) = D(B), Reσ(A) >
0, and for some α ∈ (0,1), (A−B)A−α is bounded on X. Then for any β ∈ (0,1),
A−βB−β and B−βA−β are bounded in X.

Proof. From Lemma 1.2.8, ∥Aβ(λ+A)−1∥ ≤ C |λ |β−1 for 0 ≤ β ≤ 1, |π−arg λ | ≥
ϕ for some constants C and ϕ < π/2. For 0 < β < 1,

B−βA−β =
sin πβ

π

∫ ∞

0
λ−β(λ + B)−1(A − B)(λ + A)−1dλ

is bounded. In the same way, A−βB−β is also bounded. □

We can define the Banach space Xα with a ∥ · ∥α-norm as follows. The
space Xα provide a basic topology to prove Theorem 1.3.1.

Definition 1.2.12. Let A be a sectorial operator in a Banach space X with
norm ∥ · ∥. Define for each α ≥ 0

Xα = D(Aα1 )

with the graph norm ∥x∥α = ∥A1x∥, x ∈ Xα, where A1 = A + aI with a chosen
as Reσ(A1) > 0. A different choice of a gives equivalent norms on Xα.

Theorem 1.2.13 ( [9, Theorem 1.4.8]). Define Xα as Definition 1.2.12. for
α ≥ β ≥ 0,X0 = X, Xα is a dense subspace of X β with the continuous inclusion.
If A has compact resolvent, the inclusion Xα ⊂ X β is compact. Let A1, A2 be
sectorial operators in X with same domain and Reσ(A j) > 0 for j = 1,2.

If (A1 − A2)A−α
1 is a bounded operator for some α < 1, then X β1 = X β2 with

X βj = D(Aβj ) and equivalent norms for 0 ≤ β ≤ 1.

1.3 Asymptotic stability of periodic solutions

of complex Ginzburg-Landau equation

There is the following theorem about conversion to spatial homogeneous peri-
odic solution on a kind of PDE. Consider a solution of

ut + Au = f (u), (1.3.5)

29



where A is the sectorial operator on the Banach space X with norm ∥ · ∥ and f :
Xα → X is differentiable and Hölder continuous, here Xα is also the Banach
space with norm ∥ · ∥α.

Theorem 1.3.1 ([9]). Assume that this equation (1.3.5) has non-constant
spatial homogeneous periodic solution u(x, t) = p(t) with a period T , and Γ =
{p(t); 0 < t < T} ⊂ Xα with some α > 0, and the characteristic multiplier 1 is
an isolated simple eigenvalue, others satisfy |µ| < e−βT for some β > 0. Then,
the trajectory Γ is asymptotically stable. Namely, there exist positive constants
ρ and M such that if

distXα(u(x,0),Γ) = min
t

∥u(x,0) − p(t)∥α <
ρ

2M
,

then the solution u(t) exists for all t > 0 and satisfies

∥u(t) − p(t − θ)∥α < 2ρe−βt

for all t > 0 with some θ = θ(u(x,0)).

1.4 Characteristic multiplier

Let B(t) ∈ Rn×n be the square matrix with a time period T ,and Y be the
unknown vector sequence as Y = [y1(t), y2(t), · · · , yn(t)]. We consider

dY
dt
= BY, Y (0) = C.

Y (t),Y (t + T) is written as

Y (t) = Φ(t)C, Y (t + T) = Φ(t)D, Φ(0) = I

by Φ(t). Then, F = C−1D is called fundamental matrix of Y (t), Φ(T) is the
fundamental matrix of Φ(t). We can calculate as

Y (t + T) = Φ(t + T)C = Φ(t)Φ(T)C = Y (t)C−1
Φ(T)C,

thus we have

F = C−1
Φ(T)C.

This implies Φ(T) and F have identical eigenvalues. thus eigenvalues of Φ(T),
that is solutions of det(µI − Φ(T)) are representatively called characteristic
multiplier. moreover,

ν =
1

T
log µ
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are called Lyapunov exponent. Lyapunov exponent expresses the intensivity
how two nearby solution trajectories separate as time development. A positive
Lyapunov exponent means the solution of the dynamic system has the initial
sensitivity, negative Lyapunov exponent means that nearby orbits collapse and
converge, and zero Lyapunov exponent means solution has a periodicity.

About the stability of the periodic solution p(t), we show following theorem

Theorem 1.4.1. Let p(t) ∈ R2 be the periodic solution of plane dynamic
system

du
dt
= f (u), u ∈ R2

and its linearized equation of ξ = u − p(t) near the p(t) can be written as

dξ
dt
= J(p(t))ξ .

If ∫ T

0
Tr(J)dt < 0,

then p(t) is stable except for a phase shift.

Proof. p(t) is the periodic solution and satisfies

d p(t)
dt
= f (p(t)).

Differentiate by t, then we have

d2p(t)
dt2

= J(p(t))d p(t)
dt
.

This implies that ξ = d p(t)
dt is the solution of linearlized equation and we can

written as

d p(T)
dt

= Φ(T)d p(0)
dt
=

d p(0)
dt
.

thus 1 is a characteristic multiplier and d p(0)
dt is the one of eigenvector of Φ(T).

d p(0)
dt is tangent vector of periodic orbit at t = 0. By Liouville’s theorem, we

have

ν1ν2 = detΦ(T) = e
∫ T

0
Tr(J)dt .
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From the assumption, we have two different characteristic multipliers are

1, e
∫ T

0
Tr(J)dt(< 1). If all characteristic multipliers satisfie |µ| < 1,

|ξ(nT)| = |ξ(0)| |Φ(T)n | → 0.

This implies 1 characteristic multiplier means the trajectory doesn’t variant
along the corresponding eigenvector. thus the periodic solution is stable except
for the phase shift. □

1.4.1 Calculation of Lyapunov exponent and character-
istic multiplier

To calculate Lyapunov exponent and characteristic multiplier of du(t)dt =
f (u), there is the following algorithm.

(1) Calculate numerical solution until sufficiently long time t1

(2) Discretize as

un+1 = (I + ∆t J(un))un = Anun,

here J is the Jacobian of f and ∆t is time step, and get An = An(un) for
t ≥ t1.

(3) Let Q0 = I, then numerically calculate QR-decomposition of AnQn−1 =
QnRn for each time step, n ≥ 0. Qn,Rn are an orthogonal matrix and
a lower triangle matrix respectively. QR-decomposition is also called
Gram-Schmidt decomposition. We can get QR-decomposition of square
matrix A by using the Gram-Schmidt’s orthogonalization with regarding
A as n-dimensional linear independent vectors.

(4) Calculate Lyapunov exponents νi as

νi =
1

N∆t

N∑
n

log |(Rn)ii |

for sufficiently large N.

(5) If the solution has time-periodicity, we can calculate characteristic mul-
tipliers as

µi = eνiT

for the time period T .
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Chapter 2

Fundamental properties of
reaction-diffusion systems

2.1 Reaction-diffusion systems

Reaction-diffusion systems are used as a mathematical model to describe many
phenomena interacting reactions and diffusion in space such as population
dynamics, changes in population numbers due to interactions between phyto-
plankton and zooplankton, changes in the membrane potential of the heart
and nerve cells, and body surface patterns in fish and mammals. genera-
tion, chemical reaction systems such as the Belousov-Zhavodzinski reaction,
Rayleigh-Benard convection, combustion theory, and phase transitions. A
reaction-diffusion system is a kind of partial differential equation consisting
of two kinds of elements, a reaction term and a diffusion term. Set Ω be
a bounded region in Rn, u ∈ Rm be unknown m-compact functions that de-
pend on position x = (x1, · · · , xn) and time t, and a diagonal matrix D like
as diag(d1, d2, · · · , dm) be diffusion coefficient. Then, consider the following
differential equation:

∂u

∂t
= D∆u + f (u) (2.1.1)

where ∆ means n-dimensional Laplacian that expresses

∆ =

n∑
i=1

∂2

∂x2i
.

This equation is called a reaction diffusion system, and the first and second
term on the right hand side are called diffusion term and reaction term re-
spectively. This equation is in the form of a heat equation with a nonlinear
term. Additionally, consider the case that d1 = d2 = · · · = dm = d (all diffusion
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coefficients are same value). Reaction diffusion systems, especially in the case
of equal diffusion coefficients, are related to ODE like

du
dt
= f (u),

thus we can apply an effective theorem for analyze the solution. As we will
explain later, bounded convex positive invariant sets can be constructed for
reaction-diffusion systems when the diffusion coefficients are equal. Specif-
ically, if we can construct a positive invariant set that becomes a bounded
convex region of the reaction equation(ODE) by considering the confinement
of the vector field, then this region is the positive invariant sets of the reaction-
diffusion system when the diffusion coefficients are equal. In this paper, we
mainly treat this case.

2.2 Existence of solutions and the Schauder

estimates on Rn

Set u ∈ Rm be unknown m-compact functions that depend on position x =
(x1, · · · , xn) and time t, and a diagonal matrix D like as diag(d1, d2, · · · , dm) be
diffusion coefficients. Then, consider the following equation:

∂u

∂t
= D∆u, x ∈ Rn, t > 0. (2.2.2)

This equation is called a heat equation. Let X be a set of all bounded and
uniformly continuous functions, then X is a Banach space with the norm

∥u∥ := sup
x∈Rn

|u(x)|.

The heat equation has fundamental solution

K j(x, t) =
1

(4πd j t)
n
2

e
− |x |2
4dj t ,

that satisfies

∂K j

∂t
= d j∆K j, K j(x,0) = δ(x) ( j = 1,2, · · · ,m),

here δ(x) is the Dirac’s delta function.K j(x, t) is a heat kernel. By using the
heat kernel we can solve heat equation as

u j(x, t) =
∫
Rn

K j(x − y, t)u j(y,0)dy.
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Define the diagonal matrix K (x, t) := diag(K1,K2, · · · ,Km), then we have the
solution

u(x, t) =
∫
Rn

K (x − y, t)u(y,0)dy.

For any u0 ∈ X and any t ≥ 0, we define the operator T(t) as

T(t)u0 :=

∫
Rn

K (x − y, t)u0(x)dy.

Then {T(t)}t≥0 is the analytic semigroup defined in Definition 1.2.4, which
satisfies following conditions:

(1) T(0) = I (the identity mapping on X).

(2) T(t)T(s) = T(t + s) for t, s ≥ 0 (the associated law).

(3) limt→0+ ∥T(t)u0 − u0∥ = 0 for each u0 ∈ X.

(4) ∥T(t)∥L(X ) ≤ 1 for all t ≥ 0.

Here

∥T(t)∥L(X ) := sup
v∈X,v,0

∥T(t)v∥
∥v∥

for each t ≥ 0. According to Lemma 1.2.5, we have

d
dt

T(t)v = −AT(t)v, T(t)v |t=0 = v,

where A = D∆. This implies that we can can define e−t A := T(t) and can solve
it as v = e−t Av0. Then, consider the following reaction-diffusion system{ du

dt
= −Au + f (u), x ∈ Rn, t > 0

u(x,0) = u0(x), x ∈ Rn,
(2.2.3)

where u0 ∈ X is an initial data, A is a sectorial operator in X ( see Section1.2)
and f : Rm → Rm is a given nonlinear continuous function of class C1(Rm).
Then, we can solve (2.2.3) as

u(x, t) = T(t)u0 +
∫
Rn

T(t − s) f (u(x, s))ds (2.2.4)

for t > 0. Additionally, we show the following theorem about the existence of
solution of (2.2.3).
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Theorem 2.2.1 ([13]). There exists t0 ∈ (0,∞) and (2.2.4) is the unique solu-
tion of (2.2.3) in C([0, t0]; X).

Proof. By the variation of constants, we have

u(x, t) = e−t Au0 +

∫ t

0
e−(t−s)A f (u(x, s))ds.

Thus, we see that a solution of (2.2.3) satisfies (2.2.4) with T(t) = e−t A. Next,
we show the local existence of solutions. Let t0 > 0 be a enough small constant
such that

max
0≤t≤t0

∥T(t)u0 − u0∥ ≤ 1

2
,

t0max{max{| f (u)|, |J(u)|}; |u | ≤ 1 + ∥u0∥} ≤
1

2
,

where J(u) is a Jacobian. Let Banach space Y as

Y = {u ∈ C([0, t0]; X | max
t∈[0,t0]

∥u(x, t) − u0∥)} ≤ 1,

with norm

∥ · ∥Y := max
t∈[0,t0]

∥ · ∥.

For any u ∈ Y , define the operator Φ as

Φu = T(t)u0 +

∫ t

0
T(t − s) f (u(x, s))ds.

First, we show Φu ∈ Y . Due to the assumption, we have

∥u(x, t)∥Y ≤ 1 + ∥u0∥

and

Φu − u0 = T(t)u0 − u0 +

∫ t

0
T(t − s) f (u(x, s))ds.

Then,

∥Φu − u0∥ ≤ ∥T(t)u0 − u0∥ +
∫ t

0
∥T(t − s) f (u(x, s))∥ds

≤ 1

2
+ t0max{| f (u)|; ∥u∥Y = 1 + ∥u0∥}

≤ 1,
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thus we get Φu ∈ Y . Assume that u1, u2 are two solutions of (2.2.3). Using

Φu1 − Φu2 =

∫ t

0
T(t − s)( f (u1(x, s)) − f (u2(x, s)))ds,

we have

∥Φu1 − Φu2∥ ≤
∫ t

0
∥T(t − s)( f (u1(x, s)) − f (u2(x, s)))∥ds.

Combining this inequality and using the mean-value theorem

f (u1(x, s)) − f (u2(x, s)) =
∫ 1

0
J(θu1 + (1 − θ)u2)dθ(u1 − u2),

finally we get

∥Φu1 − Φu2∥Y ≤ t0max{|J(u)|; |u | ≤ 1 + ∥u0∥} · ∥u1 − u2∥Y

≤ 1

2
∥u1 − u2∥Y ,

for u1, u2 ∈ Y . Then, using Banach’s fixed point theorem, there exists the
fixed point u∗ that satisfies

Φu∗(x, t) = u∗(x, t) = T(t)u0 +

∫ t

0
T(t − s) f (u∗(x, s))ds.

Note that u∗ is nothing but the solution of (2.2.3).
Next, we show the uniqueness of solution. Since w = u1 − u2 satisfies

w =

∫ t

0
T(t − s)( f (u1(x, s)) − f (u2(x, s)))ds,

we have

∥w(t)∥ ≤ k
∫ t

0
∥w(s)∥ds

for 0 ≤ t ≤ t0 where

k = max{|J(u)|; |bu| ≤ 1 + ∥u0∥}.

By the Gronwall inequality,

∥w(t)∥ ≤ ∥w(0)∥ekt0 .

Since w(0) = 0, w = u1−u2 ≡ 0. Therefore, we get the uniqueness of solutions
of (2.2.3). □
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Next, we will get the following Schauder’s type estimate for{
∂u

∂t
= D∆u + f (u), x ∈ Rn, t > 0

u(x,0) = u0(x), x ∈ Rn.
(2.2.5)

This equation is a case of A = −D∆ in (2.2.3).

Theorem 2.2.2 ((Schauder’s estimate) [13]). Let u = (u1,u2, · · · ,um) be the
solution of (2.2.3), and let T > 0. Now we define

∥ui∥ := sup
x∈Rn

|ui |.

Then, for 1 ≤ j ≤ n,1 ≤ i ≤ m, we have���� ∂∂x j
ui(x, t)

���� ≤ 1
√
πt

∥ui(x,0)∥ +
2
√

t
√
π

sup
y∈Rn,0<τ<t

| fi(u(y, τ))|

for all (x, t) ∈ Rn × (0,T).
Proof. From (2.2.4), u can be written as

ui(x, t) =
∫
Rn

Ki(x − y, t)u0 +
∫ t

0

( ∫ t

0
Ki(x − y, t − s) f (u(y, s))dy

)
ds

= I1 + I2.

Now

Ki(x, t) =
1

(4πdit)
n
2

e−
|x |2
4di t

satisfies

(Dt − di∆)Ki(x, t) = 0,

∂

∂x j
Ki(x, t) = −

x j

2t
Ki(x, t),∫

Rn

���� ∂∂x j
Ki(x, t)

���� dx =
1

√
πt
,∫ t

0
(
∫
Rn

���� ∂∂x j
Ki(x, t − s)

���� dx)ds = 2

√
t
π
.

A part of I1 can be calculated as���� ∂∂x j
I1

���� ≤ ∫
Rn

���� ∂∂x j
Ki(x − y, t)| |ui(y,0)

���� dy

≤ 1

πt
∥ui(x,0)∥.
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Similarly, we get���� ∂∂x j
I2

���� ≤ ∫ t

0
(
∫
Rn

���� ∂∂x j
Ki(x − y, t − s)

���� | fi(y, s)|dy)ds

≤
∫ t

0
(
∫
Rn

���� ∂∂x j
Ki(x − y, t − s)

���� dy)ds · sup
y∈Rn,0<τ<t

| fi(u(y, τ))|

= 2

√
t
π

sup
y∈Rn,0<τ<t

| fi(u(y, τ))|.

Finally, we obtain���� ∂∂x j
ui(x, t)

���� ≤ ���� ∂∂x j
I1

���� + ���� ∂∂x j
I2

����
≤ 1

√
πt

∥ui(x,0)∥ + 2
√

t
π

sup
y∈Rn,0<τ<t

| fi(u(y, τ))|.

□

2.3 Existence of solutions on a bounded do-

main Ω

Even in case of Ω ⊂ Rn, we can prove the existence of the reaction-diffusion
system as the case of Rn.

Theorem 2.3.1 (Theorem 3.3.3 [9]). Let X be a Banach space with norm
∥ · ∥.Consider the following equations:

ut − D∆u = f (u), u(x,0) = u0

with Neumann boundary condition, where −D∆ is a sectorial operator that the
fractional powered of A1 ≡ A + aI are well defined, and the space Xα = D(Aα1 )
with the norm ∥u∥α = ∥A1u∥ can be defined for α ≥ 0. Assume that f : U → X
where U ∈ Xα for some 0 ≤ α < 1 and locally Lipschitz continuous. More
precisely, for any u1 ∈ U, there exists a neighborhood V ∈ U of u1 that satisfies

∥ f (u) − f (v)∥ ≤ L∥u − v∥α

for u, v ∈ V, L ≥ 0. Then, for any u0 ∈ U, (2.3.6) has a unique solution u on
(x, t) ∈ Ω × (0, t1) with initial value u(x,0) = u0 and the time t1 = t1(u0).
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Proof. We can define the time evolute operator T(t) = e−t A for A = −D∆, thus
we evaluate the solution and can write the solution of (2.3.6) as

u(x, t) = T(t)u0 +

∫ t

0
T(t − s) f (u(x, s))ds

like the case of Rn. Choose δ > 0, τ > 0, such that the set

V = {u ∈ U |t ∈ [0, τ], ∥u − u0∥α ≤ δ},
and

∥ f (u1) − f (u2)∥ ≤ L∥u1 − u2∥α
for u1, u2 ∈ V . Let C = ∥ f (u0)∥ < ∞ and choose t1 ∈ (0, τ) and

∥(T(h) − I)u0∥ ≤ δ
2
, for 0 ≤ h ≤ t1,

M(C + Lδ)
∫ t1

0
u−αeaudu ≤ δ

2

where

∥Aα1e−t A∥ ≤ Mt−αeat

for t > 0 by Lemma 1.2.9. Set a functional space S as

S = {u ∈ [0, t1] → Xα | ∥u − u0∥α ≤ δ}.
S is the Banach space with norm

∥u∥S = sup
t∈[0,t1]

∥u∥α.

For u ∈ S, we can define the following operator Φ:

Φu(x, t) = T(t)u0 +

∫ t

0
T(t − s) f (u(x, s))ds.

We show that Φ : S → S is the contraction mapping. Note that

∥Φu − u0∥α ≤ ∥T(t)u0 − u0∥α +
∫ t

0
∥T(t − s) f (u)∥ds

≤ δ
2
+

∫ t

0
∥Aα1e−(t−s)A∥(∥ f (u0)∥ + ∥ f (u) − f (u0)∥)ds

≤ δ
2
+

∫ t

0
∥Aα1e−(t−s)A∥(C + Lδ)ds

≤ δ
2
+ M(C + Lδ)

∫ t

0
(t − s)−αea(t−s)ds

≤ δ
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for 0 ≤ t ≤ t1. Thus Φu ∈ Y for any u ∈ Y . From the assumption

MLδ
∫ t

0
u−αeaudu ≤ M(C + Lδ)

∫ t

0
u−αeaudu ≤ δ

2
,

we have

ML
∫ t

0
u−αeaudu ≤ 1

2
.

Then if u, v ∈ Y , we have

∥Φu − Φv∥α ≤
∫ t

0
∥Aα1e−(t−s)A∥∥( f (u) − f (v))∥ds

≤ MLδ
∫ t

0
(t − s)−αea(t−s)ds · ∥u − v∥α

≤ 1

2
∥u − v∥α.

Finally we get

∥Φu − Φv∥Y ≤ 1

2
∥u − v∥Y .

Therefore Φ is a contraction mapping and we can apply the Banach’s fixed
point theorem. There exists the unique fixed point u∗ ∈ Y that satisfies Φu∗ =
u∗ and

u∗(x, t) = T(t)u0 +

∫ t

0
T(t − s) f (u∗(x, s))ds.

Hence, u∗ is nothing but the unique solution of (2.3.6). □

2.4 Maximum principle of parabolic equations

Consider now bounded region Ω ∈ Rn, QT = Ω × (0,T) and the parabolic
boundary Γ = Ω × t = 0 ⊂ ∂Ω × [0,T] for any time T > 0. Suppose that the
smooth function u : QT → R is C2,1 on QT and C1,0 on QT . Here, C2,1 means
C2 for x and C1 on t and C1,0 means C1 for x and continuous on t. Then, u
satisfies the following equation:

∂u
∂t
= D∆u + f (x, t)u (x ∈ Ω) (2.4.6)
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with Neumann boundary condition

∂u
∂ν
= 0 (x ∈ ∂Ω) (2.4.7)

that means no flux from the boundary, where f (x, t) is a bounded continu-
ous function on QT and D ∈ Rn×n is the diagonal matrix defined as D :=
diag(d1, d2, · · · , dn). Then, we have the following theorem.

Theorem 2.4.1 (Theorem 5.12 [30, 21]). The solution of (2.4.6) and (2.4.7)
satisfies the following statements.

(a) If u(x,0) ≤ 0 on Ω, then u(x, t) ≤ 0 for any t > 0. Especially, if the
solution is not constant function u ≡ 0, then u(x, t) < 0.

(b) Due to (a), if u(x,0) = 0 on Ω,then u(x, t) = 0 for any t > 0. This implies
the uniqueness of solution of the single reaction diffusion system

ut = D∆u + f (u),

with Neumann boundary condition.

To prove this theorem, we should show the following lemmas.

Lemma 2.4.2 ([30, Theorem 5.7]). The function u ∈ C2,1(QT ) ∩C0(QT ) satis-
fies

ut − D∆u + f (x, t)u ≤ 0.

Then, if u ≤ 0 on Γ, u ≤ 0 on QT .

Proof. At first, assume f (x, t) ≡ 0, and

ut − D∆u < 0.

Then, for (x0, t0) ∈ Ω × (0,T] = QT that satisfies

sup
(x,t)∈QT

u(x, t) = (x0, t0),

thus we have

ut(x0, t0) = 0, ∇u(x0, t0) = 0,
n∑

i=1

di
∂2

∂x2i
u(x0, t0) ≤ 0.
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Thus

ut − D∆u ≥ 0,

and this is contradictory to the assumption. Therefore we have

max
(x,t)∈QT

u(x, t) = max
(x,t)∈Γ

u.

Next, consider the case of

ut − D∆u ≤ 0.

Set v = ϵe−t + u for ϵ > 0 and v satisfies

vt − D∆v = ut − D∆u − ϵe−t < 0,

we have

max
(x,t)∈QT

u(x, t) ≤ max
(x,t)∈QT

(u(x, t) + ϵe−t) ≤ max
(x,t)∈Γ

(u(x, t) + ϵe−t).

Thus we get

max
(x,t)∈QT

u(x, t) ≤ max
(x,t)∈Γ

u(x, t)

as ϵ → 0. Finally, consider the case of a general function f (x, t). Take
v = ue−Mt for M = max(x,t)∈QT

| f (x, t)|. Then, we have

vt − D∆v + ( f (x, t) + M)v = (ut − D∆u + f (x, t))e−Mt ≤ 0.

If v has the maximum value vmax > 0, then we have

(vmax)t − D∆vmax ≤ −( f (x, t) + M)vmax ≤ 0,

thus it is sufficient to consider the case of f (x, t) ≡ 0. By the assumption u ≤ 0
on Γ, we have

max
(x,t)∈QT

v ≤ 0,

but it is contradictory to vmax > 0. Therefore, if u ≤ 0 on Γ , then u ≤ 0 on
QT . □
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Lemma 2.4.3 (north or south pole, [30, Lemma 5.9]). Let BR(x) be the n-th
dimensional ball with the origin x ∈ Rn. The function u ∈ C2,1(QT ) ∩ C0(QT )
satisfies

ut − D∆u + f (x, t)u ≤ 0,

and u ≤ 0 on Γ. Assume that u < 0 on BR(x0, t0) for (x0, t0) ∈ QT and
u(x1, t1) = 0 on BR(x1, t1) for (x1, t1) ∈ QT . Then, (x1, t1) is the north or south
pole of the BR(x1, t1). That is, (x1, t1) is limited to (x0, t0 + R) or (x0, t0 − R).

Proof. Consider v = e−Mt instead of u like 2.4.2, we can assume f (x, t) ≥ 0
and u ≤ 0 on u ≤ 0 on QT . Moreover, we can assume u = 0 on only (x1, t1) ∈
BR(x0, t0) since we can set BR(x0, t0) that is tangent to only (x1, t1). Set w as

w := e−γ(|x−x0 |
2+(t−t0)2) − e−γR2

for γ > 0, then w > 0 inside BR(x0, t0), w = 0 on ∂BR(x0, t0) , w < 0 out-
side BR(x0, t0). Assume x1 , x0 and show the contradiction. Consider the
sufficiently small δ ∈ (0, |x1 − x0 |) and Bδ(x1, t1) ⊂ QT . Then we have

wt − D∆w + f (x, t)w

=

{
−2γ(t − t0) −

n∑
i=1

4diγ
2 |x − x0 |2 +

n∑
i=1

2diγ

}
e−γ(|x−x0 |

2+(t−t0)2)

+ f (x, t)w
≤ {−2γ(t − t0) − 4nγ2dmin |x − x0 |2 + 2ndmaxγ + C}e−γ(|x−x0 |

2+(t−t0)2)

−Ce−γR2

with some positive constant C. By taking sufficiently large γ > 0, we have
that wt − D∆w + f (x, t)w < 0 in Bδ(x1, t1). Set v := u+ ϵw < 0 for ϵ > 0. Since
u ≤ 0 for (x, t) ∈ ∂Bδ(x1, t1) ∩ BR(x0, t0), we can assume v < 0 for sufficiently
small ϵ . Similarly since u < 0,w < 0 for (x, t) ∈ ∂Bδ(x1, t1)\BR(x0, t0), we can
assume v < 0. Then, v < 0 on ∂Bδ(x1, t1). On the other hand,

vt − D∆v + f (x, t)v
= ut − D∆u + f (x, t)u + ϵ(wt − D∆w + f (x, t)w) < 0

on Bδ(x1, t1). By applying Lemma 2.4.2, we get

max
(x,t)∈Bδ(x1,t1)

v = max
(x,t)∈∂Bδ(x1,t1)

v < 0,

but it is contradictory to v = 0 at a point (x1, t1). Therefore, x1 = x0 and this
also implies t1 = (t0 ± R). □
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Lemma 2.4.4 ([30, Lemma 5.10]). The function u ∈ C2,1(QT )∩C0(QT ) satisfies

ut − D∆u + f (x, t)u ≤ 0,

u ≤ 0 on Γ. If there is (x2, t2) ∈ QT that satisfies u(x2, t2) < 0, then u(x, t2) < 0
for all x ∈ Ω.
Proof. Assume that x3 ∈ Ω that satisfies u(x3, t2) = 0. Set E and d(x) as

E = {(y, s) ∈ QT ; u(y, s) = 0}, d(x) = inf
(y,s)∈E

√
(|x − y |2 + (t2 − s)2),

then d(x) ≤ |x − x3 |. By Lemma 2.4.3, we have u(x2, t2 + d(x2)) = 0 or
u(x2, t2−d(x2)) = 0 if d(x2) > 0, that is (x2, t2+d(x2)) ∈ E or (x2, t2−d(x2)) ∈ E .
For any δ > 0 and c such that |c | = 1, the distance from (x2 + δc, t2) to
(x2, t2 ± d(x2)) is

√
δ2 + d(x2)2 and satisfies

d(x2 + δc) ≤
√
δ2 + d(x2)2 ≤ d(x2) +

δ2

2d(x2)
.

This implies d is non-increasing and monotonous for δ. By d(x3) = 0.,we have
d ≡ 0 and u(x, t2) = 0. But it is contradictory to Lemma 2.4.3. Therefore,
there doesn’t exist (x, t2) ∈ QT that satisfies u(x, t2) = 0. By the assumption
u ≤ 0 on Γ, we have u(x, t2) < 0 on QT . □

Lemma 2.4.5 (Strong maximum principle of the parabolic equation, [30,
Theorem 5.11]). The function u ∈ C2,1(QT ) ∩ C0(QT ) satisfies

ut − D∆u + f (x, t)u ≤ 0,

u ≤ 0 on Γ. Then, u < 0 or u ≡ 0 on QT .

Proof. In the same way to Lemma 2.4.2, we can regard as f (x, t) ≥ 0. Assume
that u attains the maximum value 0 at (x0, t0) ∈ QT . We can retake t0 as

t0 = inf
u(x,t)=0;(x,t)∈QT

t.

set v as

v := e−γ |x−x0 |
2−β(t−t0) − 1.

Then, we have

vt−D∆v + f (x, t)v

=

(
−β −

n∑
i=1

4diγ
2 |x − x0 |2 +

n∑
i=1

2dinγ

)
e−γ(|x−x0 |

2+(t−t0)2) + f (x, t)v

≤
(
−β − 4ndminγ

2 |x − x0 |2 + 2ndmaxγ
)

e−γ(|x−x0 |
2+(t−t0)2) + C1v,
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for some constant C1 > 0. By taking sufficiently large β, vt−D∆v+ f (x, t)v < 0.
Set δ > 0 such that satisfies Kδ ⊂ QT where

Kδ = {(x, t) ∈ Bδ(x0, t0) | γ |x − x0 |2 + β(t − t0) ≤ 0}.

Then, w = u+ ϵv < 0 on ∂Kδ∩∂Bδ(x0, t0) for a sufficiently small ϵ > 0, because
v = 0 on γ |x − x0 |2 + β(t − t0) = 0. On the other hand, since

wt − D∆w + f (x, t)w < 0,

we can use Lemma 2.4.2 and w ≤ 0 on ∂Kδ. Since w = 0 on (x0, t0), w attains
the maximum value 0 at (x0, t0). This implies that wt(x0, t0) ≥ 0. Then,

ut(x0, t0) ≥ −ϵvt(x0, t0) = ϵ β > 0,

and it contradicts the choice of (x0, t0). □

Finally, we show the maximum principle for the parabolic equations.

Proof of Theorem 2.4.1.

(a): Assume that the non-negative maximum value M on Ω × (0,T]. Then we
can take minimum t0 that is u(x, t0) = 0, and there exists x0 ∈ Ω that satisfies
u(x0, t0) = 0 and u(x, t) < 0 on (x, t) ∈ Ω × [0, t0). If (x0, t) is an inner point of
QT , we have u ≡ 0 by the strong maximum principle(Lemma 2.4.5).Thus x0 is
a point on the boundary, and u(x, t0) < 0 for x ∈ Ω. Set the ball BR(x1, t0) ∈ QT
that is tangent to ∂Ω on x0. Consider v,w defined as

v = e−γ(|x−x1 |
2+(t−t0)) − e−γR2

,

w = u + ϵv,
Kδ = {(x, t) ∈ QT |(x, t) ∈ Bδ(x0, t0) ∩ BR(x1, t0), t ∈ (0, t0)}

for sufficiently small ϵ, δ > 0. In the same way to 2.4.3, we can calculate as

wt − D∆w + f (x, t)w < 0

and w < 0 on Kδ except (x0, t0). Then we have

∂w

∂ν
(x0, t0) ≥ 0,

namely,

∂u
∂ν

(x0, t0) ≥ −ϵ ∂v
∂ν

(x0, t0)

= 2ϵγ(x0 − x1) · ne−γ(|x0−x1 |
2+(t−t0))

> 0,
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here n is the outer normal vector on ∂Ω. But it is contradictory to the as-
sumption ∂u

∂ν (x0, t0) ≤ 0. Therefore, (2.4.6) has the negative maximum on

Ω × (0,T],that is, u(x, t) < 0 for any t > 0.

(b): Let u, v be two solutions of the single reaction diffusion system ut = D∆u+
f (u) with the same initial data. Then, w = u − v satisfies

∂w

∂t
= D∆w + h(x, t)w, ∂w

∂ν
= 0,w(x,0) = 0,

here h(x, t) is defined as

h(x, t) =


∂ f
∂u

(x, t), (u ≡ v)
f (u) − f (v)

u − v
(otherwise)

We can regard the equation of w as

∂w

∂t
≤ D∆w + h(x, t)w, ∂w

∂ν
≤ 0, w(x,0) ≤ 0

∂(−w)
∂t

≤ D∆(−w) + h(x, t)(−w), ∂(−w)
∂ν

≤ 0, −w(x,0) ≤ 0.

Now we can apply theorem 2.4.1 to these inequalities, thus we have w(x, t) ≤ 0
and −w(x, t) ≤ 0. Therefore, we get w(x, t) ≡ 0 for any t > 0, x ∈ Ω. □

2.5 Invariant regions

In this section, we review the theory of invariant sets. Consider the m-
component ordinary differential equations

du
dt
= f (u) (2.5.8)

where m is a positive integer and u ∈ Rm and f is a smooth function from Rm

to Rm. Denote a solution of (2.5.8) with u(0) = u0 by u(t; u0).
First we define the invariant set as follows.

Definition 2.5.1. A family of closed bounded sets Σ(t) in Rm is called an
invariant set of (2.5.8) if u(t; u0) ∈ Σ(t) for any u0 ∈ Σ(0) and any t > 0.

Next consider the m-component reaction–diffusion system

∂w

∂t
= ∆w + f (w), x ∈ Ω, t > 0, (2.5.9)
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with the Neumann boundary condition. We can also define an invariant set for
(2.5.9). Define a set Im(w(·)) := {w(x) | x ∈ Ω}. We also denote the solution
of (2.5.9) satisfying w(x,0) = w0(x) for x ∈ Ω by w(x, t;w0).
Definition 2.5.2. A family of closed bounded sets Σ(t) in Rm is called an
invariant set of (2.5.9) if Im(w(·, t;w0)) ∈ Σ(t) for any t > 0 and any w0 ∈
C0(Ω) satisfying Im(w0(·)) ∈ Σ(0).

This definition implies that a solution with the initial data inside the invari-
ant set remains at the same set for all time. If we can obtain Σ(t) for a given
partial differential equation, we can know the rough behavior of the solution
without knowing the exact solution of the equation. In addition, if we can
construct an invariant set that shrinks over time, it would be a powerful tool
to specify the destination of solutions to equations and to show that solutions
can only exist in a limited range after a sufficient amount of time. We have
the following property for the invariant sets.

Theorem 2.5.3 ([25, 32]). Let Σ(t) :=
∩k

j=1 Σ j(t) be a closed bounded set
defined by

Σ j(t) := {w ∈ Rm | Hj(w, t) ≤ 0} ( j = 1,2, . . . k),
where k is a positive integer and H1, · · · ,Hk are smooth functions satisfying

∂Hj

∂t
(w, t) + ∇wHj(w, t) · f (w) ≤ 0 (2.5.10)

on w ∈ ∂Σ j(t) ∩ ∂Σ(t) ( j = 1,2, . . . , k, t > 0).
Then, a family of Σ(t) is the invariant set of (2.5.8). Moreover, it is the
invariant set of (2.5.9), if Σ(t) is convex.
Proof. We can assume that

∂2Hj

∂w2
i

≥ 0, (i = 1, · · · , k)

near the ∂Σ j(t) ∩ ∂Σ(t) ( j = 1,2, . . . , k) because of the convexity of Σ(t). For
example, set Hj(w, t) as the signed distance U(x, t) near the ∂Σ j(t) from ∂Σ(t).
The signed distance is the shortest distance from w and ∂Σ j(t) with the nega-
tive sign inside Σ(t), or the positive sign outside. Then,

Ut = ∇wHj(w, t) · wt +
∂

∂t
Hj(w, t),

∇U =

m∑
i=1

∂Hj

∂wi
∇wi,

∆U =

m∑
i=1

∂2Hj

∂w2
i

|∇wi |2 + ∇wHj · ∆w.
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Note that ∇w is the gradient on the phase space of w. From this, we can get

Ut − ∆U =∇wHj(w, t) · wt +
∂

∂t
Hj(w, t)

−
m∑

i=1

∂2Hj

∂w2
i

|∇wi |2 − ∇wHj(w, t) · ∆w

=∇wHj(w, t) · (wt − ∆w) +
∂

∂t
Hj(w, t)

−
m∑

i=1

∂2Hj

∂w2
i

|∇wi |2

=∇wHj(w, t) · F(w) +
∂

∂t
Hj(w, t) −

m∑
i=1

∂2Hj

∂w2
i

|∇wi |2.

Because the initial condition is in Σ(0), U(x,0) ≤ 0. Moreover, using the

assumption of this theorem
∂2Hj

∂w2
i

, we have

∇wHj(w, t) · F(w) +
∂

∂t
Hj(w, t) ≤ 0, (2.5.11)

thus Ut − ∆U ≤ 0. Therefore, we can apply Theorem 2.4.1 and get U(x, t) ≤ 0
that implies that Σ(t) is the invariant set of (2.5.9). □

Consider diffusion coefficients cannot be expressed as D = dI where I is
identity matrix. In this case, Theorem 2.5.3 is not applicable. Instead of
Theorem 2.5.3, we have the following theorems.

Theorem 2.5.4. Let u be a solution of (2.1.1) with the Neumann boundary
condition with D = diag (d1, · · · , dm) where d j > 0. Denote the j-component
of u(x, t), f (u(x, t)) by u j(x, t),Fj(u(x, t)) respectively. Suppose that a function
a(t) satisfies following the inequality

da(t)
dt

≤ Fj(u1,u2, · · · ,u j−1,a(t),u j+1, · · · ,um).

Then, if u(x,0) ≤ a(0), we have u(x, t) ≤ a(t) for any t > 0.

Proof. Since u j satisfies

∂u j

∂t
= d j∆u j + Fj(u1,u2, · · · u j, · · · um),

49



we have

∂(u j − a)
∂t

= d j∆(u j − a) + Fj(u1,u2, · · · u j, · · · um)
−Fj(u1,u2, · · · a, · · · um).

Define the continuous function c(x, t) by

c(x, t) =


∂Fj

∂u j
, (u j(x, t) = a(t))

Fj(u1, · · · ,u j, · · · um) − Fj(u1, · · · ,u j−1,a j(t),u j+1, · · · ,um)
u j − a

,

(otherwise)

Then, by setting U := u j − a, we have

∂U
∂t
= d j∆U + c(x, t)U.

Due to the assumption, U(x,0) = u j(x,0) − a(0) ≤ 0. Therefore, we can apply
the maximum principle (Theorem 2.4.1) to the above equation and we get
U(x, t) = u j(x, t) − a(t) ≤ 0. □

From Theorem 2.5.4, in case of D , dI, we can obviously construct an
axis-parallel rectangular invariant set Σ(t) := Πm

j=1[a j(t), b j(t)]. Therefore, we
have the following theorem about a axis-parallel invariant set.

Theorem 2.5.5. Assume that (a j(t), b j(t)) ( j = 1,2, ·,m) satisfies

da j(t)
dt

≥ Fj(u1,u2, · · · ,u j−1,a j(t),u j+1, · · · ,um)
db j(t)

dt
≤ Fj(u1,u2, · · · ,u j−1, b j(t),u j+1, · · · ,um).

Then, the following rectangular set

Σ(t) := {u | a j(t) ≤ u j(x, t) ≤ b j(t) for x ∈ Ω, j = 1, · · · ,m}

is invarinat for (2.1.1).

This theorem immediately follows from Theorem 2.5.4.
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2.6 Linear stability of ODE

For u = (u, v) ∈ Rm, consider the following autonomous system

du
dt
= f (u), (2.6.12)

with a equilibrium point u = ueq that satisfies f (ueq) = 0. We aim to in-
vestigate how the solution of the ordinary differential equation behaves near
this equilibrium point. The Taylor expansion of F near the equilibrium point
u = ueq is as follows:

F(u) = J(u − ueq) + second order or higher nonlinearity of (u − ueq),

where J is a Jacobian on ueq , which is given by ∂ f (ueq)/∂u. Now we consider
the solution near the equilibrium point,thus the infection of second-order or
higher nonlinearity can be ignored and residue ξ = u−ueq is sufficiently small.
Accordingly we linearize the solution in the vicinity of the equilibrium point
u = ueq and obtain the equation of ξ as

dξ
dt
=Jξ . (2.6.13)

Any autonomous system can be linearized in this form. Assume that the
solution (2.6.13) can be written as ξ = peλt for some constant λ and some
vector p and substitute it for (2.6.13). Then, we get the equation

(J − λI)p = 0.

This is the eigenvalue problem with the eigenvalue λ and the eigenvector p.
Since it is ξ ∈ Rm, there exist m eigenvalues (λ1, λ2, · · · , λm) and the corre-
sponding eigenvectors (p1, p2, · · · , pm) if multiple roots of the characteristic
equation are not considered. In this case, since eigenvectors belonging to differ-
ent eigenvalues are linearly independent each other, m independent solutions

p1eλ1t, p2eλ2t, · · · , pmeλmt

are obtained. By the principle of superposition, the linear combination of these
independent solutions is also the solution of the linearization equation, thus
we get

ξ = p1eλ1t + p2eλ2t + · · · + pmeλmt .

If at least one of eigenvalues has a positive real part, |ξ | increases exponentially
along the eigenvector direction. In other words, u near the equilibrium point
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ueq leaves exponentially and never converges to ueq (unstable). If the real
parts of eigenvalues are all negative, |ξ | converges to 0 as t → ∞, and u in
the vicinity of ueq finally converges to the equilibrium point (stable). If there
is an eigenvalue with a real part 0, the solution trajectory will neither move
toward nor move away from the corresponding eigenvector direction.

The repeller (repulsion point) is the equilibrium point with only positive
real part of eigenvalues, the attractor is the equilibrium point with only nega-
tive real part of eigenvalues, and the saddle is the equilibrium with the positive
and negative real parts of eigenvalues.

2.7 Prey-Predator model

A typical example of reaction-diffusion systems is a Prey-Predator model as
follows:

∂u
∂t
= d∆u + u(1 − u) − uv

u + h
,

∂v

∂t
= d∆v +

ruv
u + h

− mv

(2.7.14)

with Neumann boundary condition, where u, v describe population densities
of prey (e.g. phytoplankton) and predator (e.g. zooplankton) respectively.
A positive parameter r means the intensity of predation, m means the death
rate of predator, and h means the agility of prey to evade from predation. In
addition, u, v always take positive values or zero for consistency with the actual
biological environment. The second term of the right hand side of (2.7.14)
represents the increase or decrease in concentration like the logistic equation
and it shows that a prey self-propagates until u = 1. The part of the reaction
term u/(u+h) is called a Holling II type response function, which approaches 1
when u is sufficiently large compared to h and never goes above 1. This means
that even if there are a large number of prey, predators will saturate their prey
intake. Also, the higher h, the more prey population is needed to saturate.
The term ruv/(u + h) represents the growth due to predation of predators,
and the term −mv of the following equation represents the natural death of
predators. The values of u and v variable due to such interactions working at
the same time.
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2.7.1 The stability of equilibrium points

Here, we discuss about the stability of the prey-predator model on ODE, that
is written as

du
dt
= u(1 − u) − uv

u + h
= f (u, v)

dv
dt
= r

uv
u + h

− mv = g(u, v).
(2.7.15)

Then, the curve f (u, v) = 0,g(u, v) = 0 are respectively called u-nullcline, v-
nullcline. The intersection of the two nullclines is the equilibrium point. Ac-
cording to this definition, nullclines are given by

u + u(1 − u) − uv
u + h

= 0

r
uv

u + h
− mv = 0.

Solving nullclines, we obtain three equilibrium points

(u, v) = (0,0), (1,0), (ueq, veq),

where

ueq :=
m

r − m
h > 0, veq := (1 − ueq)(ueq + h).

Here ueq, veq are positive and parameters satisfy

r > m > 0,
r

1 + h
− m > 0

Then, under this condition, three equilibrium points respectively exist on the
origin, u-axis, and the first quadrant as Figure 2.1.
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Figure 2.1: Distribution of three equilibrium points of prey-predator model
when r = 2.0, m = 0.8, h = 0.3 with u−nullcline(red line) and v−nullcline(blue
line).

The linearized equation on the equilibrium point (ueq, veq) can be written
as follows:

dξ
dt
=

(
1 − 2ueq − h

(ueq+h)2 veq − ueq
ueq+h

r h
(ueq+h)2 veq r h

ueq+h−m

)
ξ .

Since this prey-predator model has three equilibrium points, we need to study
three cases:

case(i) :(u, v) = (0,0), both prey and predator become extinct. The linearized
equation is

dξ
dt
=

(
1 0
0 −m

)
ξ .

Obviously eigenvalues are λ = 1,−m. Since there is the positive eigen-
value, (0,0) is always unstable(saddle). Thus, it can be seen that orbits
near (0,0) on the phase plane are attracted to (0,0) along the eigenvector
(0,1) and move away along the eigenvector (1,0) direction.

case(ii) : (u, v) = (1,0), prey survived and predator becomes extinct. The lin-
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earized equation is

dξ
dt
=

(
−1 − 1

1+h
0 r

1+h − m

)
ξ .

Obviously, eigenvalues are λ = −1, r
1+h − m and the corresponding eigen-

vectors are (
1
0

)
,

(
−1

1 + r
1+h − m

)
respectively. In case of r

1+h − m < 0, (1,0) is stable (attractor), and case
of r

1+h − m > 0, (1,0) is unstable (saddle). Since conditions ueq, veq > 0
contain r −m(1+ h) > 0, (1,0) is always saddle if (ueq, veq) lies in the first
quadrant.

case(iii) : (u, v) = (ueq, veq), both coexist.
Set

H(u) = u
u + h

, k =
m
r
.

The Holling type-II response function H(u) is the monotonous increasing
function with u ≥ 0, thus there exists inverse function H−1(u), (0 ≤ u ≤
1) that satisfies

ueq = H−1(k)

veq =
ueq(1 − ueq)

k
=

h
1 − k

(
1 − k

1 − k
h
)
,

here k < 1,H(ueq) = k. Moreover, using the derivative of inverse function,
we have

H′(ueq) =
1

dH−1(k)/dk
=

(1 − k)2
h
.

Thus the linearized equation on (ueq, veq) is written as

dξ
dt
=

(
k (1−k)−(1+k)h

1−k −k
r(1 − k − kh) 0

)
ξ,

and trace and determine can be calculated as

TrJ = k
(1 − k) − (1 + k)h

1 − k
detJ = rk(1 − k − kh).
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We obtain the characteristic equation λ2 − TrJλ + det J = 0. It is very
difficult to solve this equation and determine whether the eigenvalues are
real or imaginary. For example, we can calculate the eigenvalue λ in case
of r = 2.0, k = 0.4 as follows:

λ =
3 − 7h ±

√
49h2 + 30h − 99

15

When 49h2 + 30h − 99 < 0, h > 0, namely

0 < h <
−15 + 6

√
141

49
≃ 1.1479 · · · ,

eigenvalues are imaginary. When h > 1.1479, eigenvalues are real. Ad-
ditionally, if h > 1.5, then

3 − 7h +
√
49h2 + 30h − 99

15
> 0,

(ueq, veq) is the saddle. In this case (1,0) becomes the attractor. Moreover,
if 1.1479 < h < 1.5, then (ueq, veq) is the stable attractor. When the value
of trace is positive, namely

h <
1 − k
1 + k

=
3

7
≃ 0.4286 · · · ,

(ueq, veq) is the repeller (rotating), and when 0.4286 < h < 1.1479, (ueq, veq)
is attractor (rotating). For example, in case of h = 0.3,

λ = 0.06 ± 0.616765i.

Note that near the equilibrium point with imaginary eigenvalue, the
rotating solution appears. The solution of the linearized equation with
imaginary eigenvalue λ = a + bi (a, b ∈ R, b , 0) can be calculated as

ξ = p1e(a+bi)t + p2e(a−bi)t .

Using the Euler formula, we have

ξ = p1eat(cos bt + i sin bt) + p2eat(cos bt − i sin bt)
= eat(A cos bt + B sin bt),

here A = p1 + p2,B = i(p1 − p2) are the constant vector. When b , 0,
this solution implies the rotation around the equilibrium on the phase
space appears by the part of (cos bt + i sin bt).
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2.7.2 Numerical simulation of ODE

We calculate the numerical solution of (2.7.15) by using the Runge-Kutta
method with the 4th-order accuracy. In this section, we use the same initial
data as (

u(0)
v(0)

)
=

(
1
1

)
,

and the time step ∆t = 0.001, the terminal time T = 1000. We get the numerical
solution as Figure 2.2(a) under these conditions. When r = 2.0,m = 0.8, h =
0.3, by the previous section, the stability of equilibrium points is as follows:

(0,0) : unstable (saddle) by m > 0

(1,0) : unstable (saddle) by
r

1 + h
− m =

2

1.3
− 0.8 > 0

(ueq, veq) : unstable (rotation) by h =
1 − k
1 + k

<
3

7
.

Since there is no stable equilibrium point, the solution is attracted to the
periodic solution on the limit cycle. Next when r = 2.0,m = 0.8, h = 0.45, the
stability of equilibrium points is as follows:

(0,0) : unstable (saddle) by m > 0

(1,0) : unstable (saddle) by
r

1 + h
− m =

2

1.3
− 0.8 > 0

(ueq, veq) : stable (rotation) by h =
1 − k
1 + k

>
3

7
.

As seen in the previous section, when 0.4286 < h < 1.1479, the eigenvalue on
(ueq, veq) has the imaginary and negative real part, thus (ueq, veq) is the stable
attractor that appears the rotation in vicinity of the (ueq, veq). Finally, we set
r = 2.0,m = 0.8, h = 1.4, then the stability of equilibrium points is as follows:

(0,0) : unstable (saddle) by m > 0

(1,0) : unstable (saddle) by
r

1 + h
− m =

2

1.3
− 0.8 > 0

(ueq, veq) : stable attractor (without the rotation) by

h =
1 − k
1 + k

>
−15 + 6

√
141

49
.

Under this condition, the solution converges to (ueq, veq) without any rotation.
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Figure 2.2: Numerical simulations of prey-predator model.

(a) :The case of r = 2.0,m = 0.8, h = 0.3

(b) :The case of r = 2.0,m = 0.8, h = 0.45

(c) :The case of r = 2.0,m = 0.8, h = 1.4
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2.7.3 Numerical simulation of prey-predator model on
PDE

The equation (2.7.14) has many kinds of numerical solutions, such as equilib-
rium point, the periodic solution on the limit cycle like ODE (2.7.15), addition-
ally as specific solution on (2.7.14), spiral pattern and spatial temporal chaos.
However, the spatio-temporal chaotic behavior does not have unite definition,
we treat the following behaviors ’spatio-temporal chaos’ in this paper:

(i) Select a point in space Ω, observe the solution trajectory at that point
over and over time, and draw it in phase space. Then, we observe the
aspect that is similar to the strange attractor in ordinary differential
equations, in other word, the solution trajectory is bounded and non-
periodic.

(ii) The spatial non-homogeneity of the solution is preserved over time, and
its profile changes over time. In other words, the spatial structure is
constantly fluctuating over time.

We can calculate the spatial non-homogeneity by the following function

V(t) := 1

2

∫
Ω

|∇u |2dx =
1

2
∥∇u∥2L2(Ω).

When the numerical solution satisfies (i) and (ii) and shows complicated be-
havior in time and space, it is called spatio-temporal chaos. Set the domain
Ω = (0, L) × (0, L) ∈ R2, L = 200, r = 2.0, m = 0.8, h = 0.3 and the following
initial conditions and boundary conditions:

u(x, y,0) = ueq

(
1 − cos

π

L
x
)

v(x, y,0) = veq

(
1 − cos

π

L
y
)

ueq =
r

r − m
= 0.2

veq = (1 − ueq)(ueq + h) = 0.4

∇u · n = 0, on ∂Ω.

We use the Crank-Nicolson method to discretize the diffusion term and the
Adams-Bashforth method with 3rd-order accuracy to discretize the reaction
term and we apply the finite-elements-method (FEM) to solve discretized equa-
tion numerically. The time step is ∆t = 0.1, and the number of space divisions
is 40 per side.
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Figure 2.3: Numerical simulations of prey-predator model(2.7.14).

(a): The spatial pattern u at t = 160

(b): The spatial pattern u at t = 1000

(c): (u, v) plot on (x, y) = (10,10)(purple line), the limit cycle(green line)

(d): Graph of V(t)
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Then, we get the numerical solution of (2.7.14) under the following condi-
tion as Figure 2.3. Figure 2.3 (a) and (b) are respectively spatial patterns of
the numerical solution u at t = 160,1000, (c) is the (u, v) plot on (x, y) = (10,10)
over the time, and (d) is the graph of V(t) that is the intensity of the spatial
non-homogeneity. By (a) and (b), the spiral pattern at t = 160 collapsed with
time and became a chaotic spatial pattern at t = 1000. Also, the plot of
(u, v) (purple line) on a settled position in the space domain (x, y) from (c), is
the solution trajectory that is similar to the strange attractor in the ordinary
differential equation, and (u, v) always lies in limit cycle(green line) of (2.7.15).
The limit cycle is obviously the invariant set of ODE. If this limit cycle is con-
vex, plot of (u, v) always lies inside the limit cycle by theorem 2.5.3. Since We
cannot calculate analytically the trajectory of the limit cycle, it is difficult to
know whether the limit cycle is convex or not, anyway the numerical solution
(c) lies in. In addition, by (d), V(0) takes a very small positive value in the
initial state, but it gradually increases and keeps a much larger positive value
than the initial state while constantly fluctuating until t = 1000. From this, it
can be seen that spatio-temporal chaos occurs from the initial condition using
the judgment criteria.

2.7.4 Invariant set of the prey-predator model

Theorem 2.7.1 ([28]). (2.7.14) and (2.7.15) has the following invariant set Σ
without depending to time as Fig 2.4:

H1(u, v) = −u
H2(u, v) = −v
H3(u, v) = v − a(1 + h)(1 − u)

H4(u, v) = ru + v − r
(1 + m)2

4m
H5(u, v) = v − a(1 + h)(1 − ueq)

H6(u, v) = v − r
[
(1 + m)2

4m
− ueq

]
a = 1 − m +

r
1 + h

, a > 1,r > m

Σ j = {(u, v)|Hj(u, v) ≤ 0} ( j = 1,2, · · · ,6)

Σ =

6∩
j=1

Σ j .
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Figure 2.4: Comparison of the image of solution (green) and positive invariant
set Σ (red) at each time (r = 2.0,m = 0.8, h = 0.3). Blue curves denote the
numerically obtained limit cycles, (left)t = 0, (right) t = 600.

2.8 FitzHugh-Nagumo systems

In 1952, neurophysiologists Hodgkin and Huxley experimentally investigated
how electrical signals are transmitted through the nerve fibers of spear squid,
and devised the following four-component simultaneous partial differential
equations (Hodgkin-Huxley equations):{

ut = D∆u + f (u, v)
vt = g(u, v),

where t is the time, x is the distance on the nerve, u ∈ R is the magnitude of the
nerve potential, and v ∈ R3 is a three-dimensional vector-valued function rep-
resenting the condition of the nerve membrane. Also, f , g are non-linear func-
tions that represent the function of the nerve membrane. The Hodgkin-Huxley
equation is very difficult to handle mathematically because it is very difficult
to precisely describe the actual behavior of neurons. Therefore, FitzHugh and
Nagumo devised a simplified model of the Hodgkin-Huxley equation without
losing its essence, and derived the following two-component reaction-diffusion
system containing only one nonlinear term: ut = c(u − u3

3
− v + I),

vt = u − bv + a.

Here u, v are variables respectively representing membrane potential and inac-
tivation, a, b, c, I are parameters. This equation is called the FitzHugh-Nagumo
equation(ODE).
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It is known that when I is smaller than a certain value determined by
a, b, c, the solution converges to the equilibrium point (ueq, veq). This behavior
represents the neuronal excitation generated by the stimulation current, and
the equilibrium point means the quiescent state of the nerve. When the initial
value is near (ueq, veq), the orbit converges to (ueq, veq) while remaining near

it, while on the right side of (
√
3,0) it makes a large turn on the phase plane.

It will eventually converge to the equilibrium point. This is a mathematical
model that expresses the characteristics of actual nerves in that they do not
respond very well to small stimuli and are excited by stimuli that exceed the
threshold. On the other hand, when I has a sufficiently large value, the solution
of the FitzHugh-Nagumo equation exhibits a periodic orbit called a limit cycle.
When a sufficiently strong external stimulus current is applied, neurons will
cycle between excitation and rest-state. In this way, the FitzHugh-Nagumo
equation has been used in various studies because it can qualitatively reproduce
many behaviors of nerve cells even though it has a simple form. By considering
the spatial non-uniformity and adding the diffusion term, we have ut = D∆u + c(u − u3

3
− v + I),

vt = (u − bv + a).
(2.8.16)

This is also called the FitzHugh-Nagumo equation, which is one of the reaction-
diffusion systems. Such a reaction-diffusion system is used, for example, as
a model of electrical signals that travel over the heart rather than simple
linear nerves. The dynamics by (2.8.16) include complex behaviors such
as the spatially uniform periodic solution on limit cycles corresponding to
regular oscillations, spiral patterns and spatio-temporal chaos corresponding
to arrhythmia or ventricular fibrillation as well as the prey-predator model.

We calculate the numerical solution of the FitzHugh-Nagumo equation(ODE)
as Figure2.5. Figure 2.5 implies this equation has the periodic solution on the
limit cycle, thus we expect the FitzHugh-Nagumo equation has two character-
istic multipliers 1 and u(< 1). By the algorithm on 1.4.1, we can numerically
calculate and get the Lyapunov exponent ν1, ν2 and characteristic multiplier
µ1, µ2 from numerical solution as follows:

ν1 = 4.8308810469287955 × 10−9 ≃ 0, ν2 ≃ −6.9045454792035645
µ1 ≃ 1, µ2 = eν2T < 1,

here T is the time period of the limit cycle. thus we can get the approximated
value of the Lyapunov exponent and characteristic multiplier, and this satisfies
the assumption of 1.3.1.
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Figure 2.5: The numerical solution of the FitzHugh-Nagumo equation on a =
0.7, b = 0.8, c = 10, I = 0.34, (u(0), v(0)) = (1,1) (purple line), u-nullcline(green
line),v-nullcline(purple line)
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Chapter 3

Spatial homogenization of the
complex Ginzburg-Landau
equation

3.1 Introduction

Transitions from regular motions to chaotic dynamics have been observed in
many fields, such as fluid dynamics, motions of many particles, chemical reac-
tions, biological systems and so on (e.g., see [10, 19, 26, 7]). In the chaotic dy-
namics, complicated spatio-temporal regimes play an important role. Namely,
the spatial inhomogeneity persists under the chaotic behavior. One of the
examples of this transition from regular motions to chaos is ventricular fibril-
lation. If chaotic behaviors occur in the cardiac tissue of the ventricle, coor-
dinated regular heartbeats are lost and it causes ventricular fibrillation (e.g.,
see [8, 6]).

The transition from chaos to regular motions is also important for control-
ling chaos. One example of the transition from chaos to the regular motion is
electrical defibrillation. Electrical defibrillation of a strong electric shock to the
heart is an effective therapy for the ventricular fibrillation (e.g., see [23, 20]).
One way to regain regular motions is to reduce spatial inhomogeneity. Because
chaotic systems can be characterized by the extreme sensitivity to small per-
turbations, large perturbations should be necessary to regain regular motions.
We encounter the following natural question: what happens when large pertur-
bations are added ? Since the system is sensitive to even small perturbations,
the basins of attraction are complicated. Therefore, we may expect that it
is difficult to control from the spatio-temporal complicated dynamics to the
regular one. The purpose of this paper is to answer this question. We will
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show the spatial homogenization and the transition from chaos to the regular
motions by adding large perturbations. We will also explain the mechanism
by which large perturbations restore the regular motions.

There are various mathematical equations which possess both the chaotic
dynamics and the regular periodic motions. The equations for the heartbeat
such as the FitzHugh-Nagumo system [5, 17] and the Aliev-Panfilov model [1]
also possess this property. However, it is difficult to analyze directly such equa-
tions because it is difficult to obtain the precise information of the periodic so-
lutions of these systems and to examine the transient dynamics. To avoid these
technical difficulties, we use a simpler reaction-diffusion system, the complex
Ginzburg-Landau equation. The complex Ginzburg-Landau equation is one of
the most-studied nonlinear equations in physics such as phase transitions, su-
perconductivity, Bose-Einstein condensation and so on (see [2, 4] for example).
In 1974, the reductive perturbation method of reaction diffusion was first intro-
duced by [15] to understand nonlinear waves. If the reaction-diffusion systems
possess the limit cycle oscillation with small amplitude near a Hopf bifurcation
point, we can obtain the complex Ginzburg-Landau equation as the governing
equation of such oscillations by using the reductive perturbation method (see
[12] for the details). Therefore, the complex Ginzburg-Landau equation has
been intensively studied in the nonlinear phenomena of synchronization. The
complex Ginzburg-Landau equation possesses the essential structure for spa-
tial homogenization and the transition from chaos to the regular motions, since
this equation has both the spatio-temporal chaos and the limit cycle oscilla-
tion like FitzHugh-Nagumo system and the Aliev-Panfilov model. Because this
equation is rotationally invariant, it is easier to analyze it mathematically than
other reaction diffusion systems with limit cycles. Thus, we believe that the
analysis of the complex Ginzburg-Landau equation gives a well-understanding
of the underlying structure for more realistic model equations such as the
FitzHugh-Nagumo system and the Aliev-Panfilov model. Hence, we treat the
following complex Ginzburg-Landau equation:

∂z
∂t
= d∆z + (1 + iω)z − (1 + iaω)|z |2z in Ω (3.1.1)

with the Neumann boundary condition

n · ∇z = 0 on ∂Ω,

where z = u+ iv ∈ C, Ω is a bounded domain in RN with a smooth boundary, n
is the outer normal vector of the boundary ∂Ω and N is the spatial dimension.
The diffusion coefficient d is a positive constant and a,ω are real numbers. The
equation (3.1.1) is a special case of the complex Ginzburg-Landau equation
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because the diffusion coefficient is real. Using z = u+ iv, we can rewrite (3.1.1)
as 

∂u
∂t
= d∆u + u − ωv − u3 − uv2 + aω(u2 + v2)v,

∂v

∂t
= d∆v + v + ωu − v3 − u2v − aω(u2 + v2)u.

(3.1.2)

We also use the vector form:

∂u

∂t
= d∆u + f (u), (3.1.3)

where u = (u, v) and

f (u) :=
(

f1(u, v)
f2(u, v)

)
=

(
u − ωv − u3 − uv2 + aω(u2 + v2)v
v + ωu − v3 − u2v − aω(u2 + v2)u

)
. (3.1.4)

The existence of classical solutions of (3.1.1) follows from the standard the-
ory of parabolic equations. For example, see [27] and [9, Chapter 3]. The
existence of the invariant sets guarantees the existence of global solutions.
The system (3.1.2) has obviously a constant unstable solution (u, v) = (0,0).
Substituting z = eict into (3.1.1), we obtain c = (1 − a)ω. Therefore, the
complex Ginzburg–Landau equation (3.1.2) possesses a homogeneous periodic
solution p(t) := (cos((1− a)ωt + θ0), sin((1− a)ωt + θ0)). It is often called a limit
cycle. However, this system possesses spiral patterns and spatially inhomoge-
neous non-periodical solutions called spatio-temporal chaos in some parameter
regions (see [12, 11, 18] for the details). Spatio-temporal chaos appears after
collapsing the spiral pattern (e.g., see [22, 4, 2]). Actually, the spatio-temporal
“chaotic” behavior of (3.1.1) in one-dimensional interval is observed numeri-
cally as in Figure 3.1 (b).
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(d) space(vertical)-time(horizontal) plot of u

Figure 3.1: Numerical solution (u, v) of (3.1.2) in Ω = (0,200) with a = 0.9,ω =
3.0 and (u(x,0), v(x,0)) = (0.1 cos(πx/200),0). The solid curve (resp. the dotted
curve) indicates the profile of u (resp. v) (a) t = 0 (initial condition), (b)
t = 100 (spatio-temporal chaos before the perturbation), (c) t = 120 (after
the perturbation). (d) color map of space(vertical)-time(horizontal) plot of u.
Before the perturbation at t = 100, the spatio-temporal chaotic behavior is
observed. After the perturbation, u suddenly becomes spatially homogeneous
and oscillates only in time.
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Next, we consider the way to retain the regular oscillation. As seen in
Figure 3.1 (b), the “chaotic” solution is spatially inhomogeneous. Thus, the
solution must be spatially homogenized to retain the regular oscillation. One
way to homogenize solutions is to increase the diffusion coefficients. It is
known that the solution becomes spatially homogenized (see [3]). Spatially
homogeneous solutions satisfy the system of ordinary differential equations
corresponding to (3.1.3):

dU
dt
= f (U), (3.1.5)

where U = (u, v) and f is given in (3.1.4). All solutions of (3.1.5) except
for (0,0) converge to the limit cycle. By changing the diffusion coefficients,
however, the dynamics also becomes simple and the chaotic behavior are no
longer observed. Therefore, we fix the diffusion coefficient and we can assume
that d = 1 in (3.1.1), (3.1.2) and(3.1.3) without loss of generality. In this
paper, we put the perturbation on the external force to homogenize a solution.
If we add the perturbation of the delta function such as γδ(t − t0) to the right-
hand side of the equation (3.1.1), then the perturbed solution is regarded as
the solution starting from the shifted initial data z(·, t0) + γ at t = t0. In the
numerical simulation of Figure 3.1, we add the external force

P(t) :=
{γ
ε

(100 < t ≤ 100 + ε),
0 otherwise,

to (3.1.1) instead of γδ(t − 100) where γ = 30 and ε = 0.1. As seen in Fig-
ure 3.1 (c), the numerical solution becomes almost spatially homogeneous after
the perturbation. The graphs of ∥z∥2L2(Ω)/|Ω| and ∥∇z∥2L2(Ω)/2 are shown in Fig-

ure 3.2 (a) and (b) respectively. Figure 3.2 (a) shows that the perturbation
forces the solution to move to the outside of the limit cycle at t = 100. Be-
cause the average of the gradient of z indicates the spatial inhomogeneity, as
shown in Figure 3.2 (b), the solution quickly homogenizes spatially after the
perturbation (see also Figure 3.1 (d)). Thus, we expect that it converges to
the limit cycle oscillation. We state this observation mathematically as in the
following theorem.

Theorem 3.1.1 (Approach to the limit cycle by perturbation ).
Assume that aω > 0. For any initial data w(·) = (w1(·),w2(·)) ∈ C0(Ω)2, there
is a positive constant K1 depending only on ∥w∥C0(Ω) such that the solution
u of (3.1.3) with u(·,0) = w(·) + (K1,0) converges to the homogenous periodic
solution p(t − η0) with some η0 as t → ∞.

Note that the perturbed moment is regarded as t = 0 in Theorem 3.1.1. For
simplicity, we perturb the solution along the horizontal direction in the phase
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Figure 3.2: The time dependence of the average of ∥z(·, t)∥2
L2(Ω)/|Ω| and

∥∇z(·, t)∥2L2(Ω)/2. Parameters are chosen as in Figure 3.1.

plane. Since (3.1.1) is invariant under the rotation of z = u + iv ∈ C, Theorem
1.1 also holds even for any directions (K1,K2) if |(K1,K2)| is sufficiently large.

3.2 Construction of invariant sets

3.2.1 Construction of invariant sets of the Complex Ginzburg-
Landau equation

In this subsection, we construct the invariant set Σ(t) of (3.1.2) by applying
Theorem 2.5.3. To show (2.5.10), we first study the system (3.1.5) of the ordi-
nary differential equations corresponding to (3.1.2). We also denote the map
from U(0) = (u(0), v(0)) to U(t) = (u(t), v(t)) by S(t), namely, U(t) = S(t)U(0).
By the polar coordinates as (u, v) = R(cosΘ, sinΘ), (3.1.5) is rewritten to

dR
dt
= R − R3,

dΘ
dt

= ω(1 − aR2).
(3.2.6)

It is easily seen that the solution of (3.2.6) with the initial condition (R(0),Θ(0)) =
(R0,Θ0) is given by

R(t) = R0et√
R2
0(e2t − 1) + 1

, (3.2.7)

Θ(t) = Θ0 + ωt − 1

2
aω log(R2

0(e2t − 1) + 1)

= Θ0 + (1 − a)ωt − 1

2
aω log(R2

0(1 − e−2t) + e−2t). (3.2.8)
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It is denoted by (R(t; R0),Θ(t; R0,Θ0)). Note that

R0 =
R(t)e−t√

R(t)2(e−2t − 1) + 1
.

Thus we set

R0(t,r) :=
re−t√

r2(e−2t − 1) + 1
.

Remark 3.2.1. It follows from (3.2.7) and (3.2.8) that any solution of (3.2.6)
converges to the time-periodic solution (cos((1 − a)ωt + θ0), sin((1 − a)ωt + θ0))
with θ0 = Θ0 − aω log R0.

We have the following properties.

Lemma 3.2.2. Let (R1,Θ1), (R2,Θ2) be two solutions of (3.2.6).

(i) If R1(0) ≤ R2(0), then R1(t) ≤ R2(t) for any t > 0.

(ii) If R1(0) = R2(0) and Θ1(0) ≥ Θ2(0), then Θ1(t) ≥ Θ2(t) for any t > 0.

Proof. The statement (i) is easily shown by (3.2.6). We will show (ii). By
(3.2.6) with R1(0) = R2(0), R1(t) = R2(t) for any t ≥ 0, which is denoted by
R(t). Then Θ j satisfies the same equation

dΘ j

dt
= ω(1 − aR(t)2), Θ1(0) ≥ Θ2(0).

Integrating the right-hand side of the above equation, we can conclude the
second statement (ii). □

Next we will construct the invariant set of (3.1.1) by using three solutions of
(3.2.6). Let (Rj(t),Θ j(t)) := (R(t; Rj(0)),Θ(t; Rj(0),Θ j(0))) ( j = 1,2,3) be three
different solutions of (3.2.6) with initial conditions satisfying

Θ1(0) < Θ2(0) = Θ3(0), 1 < R3(0) < R1(0) = R2(0). (3.2.9)

Set U j(t) = (Rj(t) cosΘ j(t),Rj(t) sinΘ j(t)) for j = 1,2,3. It immediately follows
from Lemma 3.2.2 and (3.2.9) that

R3(t) ≤ R1(t) = R2(t), Θ1(t) < Θ2(t).
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Since Θ′3(t) −Θ′2(t) = aω(R2(t)2 − R3(t)2) ≥ 0, we get that Θ1(t) < Θ2(t) < Θ3(t)
when aω > 0. Moreover, by (3.2.8), we have

Θ3(t) − Θ1(t) = Θ3(0) − Θ1(0) + aω log
R1(0)2(e2t − 1) + 1
R3(0)2(e2t − 1) + 1

≤ Θ3(0) − Θ1(0) + 2aω log
R1(0)
R3(0)

. (3.2.10)

Under the assumption

Θ3(0) − Θ1(0) + 2aω log
R1(0)
R3(0)

< π, (3.2.11)

we have 0 < Θ3(t) − Θ1(t) < π for any t > 0.
Let Σ(t) be a set enclosed by three curves:

(i) the curve transferred from the line segment connecting U2(0) and U3(0)
by the map S(t);

(ii) the line segment connecting U1(t) and U3(t);

(iii) the arc between U1(t) and U2(t) with radius |U1(t)| = |U2(t)|.

See Figure 3.3 for its illustrative profiles. To represent the above curves ex-
plicitly, we introduce the auxiliary functions

H1(w, t) := arg w − Θ(t; R0(t, |w |),Θ2(0)),
H2(w, t) := n(t) · (U3(t) − w),
H3(w, t) := |w |2 − R1(t)2,

where

n(t) :=
(
0 −1
1 0

)
(U1(t) − U3(t)).

Here arg w is a multivalued function defined as arctan(w2/w1)+ kπ where k is
integer specified later. Introduce three sets Σ j(t) ( j = 1,2,3) by

Σ j(t) := {w ∈ R2 | Hj(w, t) ≤ 0} ( j = 1,2,3). (3.2.12)

Then set

Σ(t) :=
3∩

j=1

Σ j(t).
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Figure 3.3: The invariant sets Σ(0) and Σ(t).

When w ∈ Σ(t), arg w is chosen as min j=1,2,3Θ j(t) ≤ arg w ≤ max j=1,2,3Θ j(t).
Consider the line segment ∂Σ1(0) ∩ ∂Σ(0) described as

{(r cosΘ2(0),r sinΘ2(0)) | R3(0) ≤ r ≤ R2(0)}.
The semiflow defined by (3.1.5) maps the line segment to the curve

{R(t; r)(cosΘ(t; r,Θ2(0)), sinΘ(t; r,Θ2(0))) | R3(0) ≤ r ≤ R2(0)},
which coincides with the boundary ∂Σ1(t) ∩ ∂Σ(t). Noting that n(t) · (U3(t) −
U1(t)) = 0, we see that the boundary ∂Σ2(t)∩∂Σ(t) is the line segment between
U1(t) and U3(t). Since Σ3(t) = {w ∈ R2 | |w | ≤ R1(t)}, the boundary ∂Σ3(t) ∩
∂Σ(t) is the arc of a circle with radius R1(t) between U1(t) and U2(t).
Proposition 3.2.3. Assume that aω > 0. Then, the family of Σ(t) defined as
above is the invariant set of (3.1.5) if{

Θ2(0) = Θ3(0), 0 < Θ2(0) − Θ1(0) ≤ ε,
1 < R3(0) < R1(0) = R2(0) < (1 + δ)R3(0)

(3.2.13)

for some positive constants ε and δ.

Proof. First we show Σ(t) is a bounded closed set. It is obvious that Σ(t) is
closed. Since Σ ⊂ Σ1(t), it is bounded. The condition (3.2.11) is satisfied for
small ε > 0 and δ > 0. Next, by noting Σ j(t) ∩ ∂Σ(t) = S(t){Σ j(0) ∩ ∂Σ(0)}
( j = 1,3), we can see that (2.5.10) holds when j = 1,3, here we show it
directly. Take any positive t and any w ∈ ∂Σ1(t) ∩ ∂Σ(t). First note that, for
w = (w1,w2) = R(cosΘ, sinΘ),

RRt = w · f (w),

R2
Θt =

(
−w2

w1

)
· f (w).
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From (3.2.6), we have

d
dt
Θ(t; R0(t, |w |),Θ2(0))

= ω(1 − aR(t; R0)2) +
∂

∂R0
Θ(t; R0(t, |w |),Θ2(0))

∂

∂t
R0(t, |w |),

(∇warg w) · f (w)

=
1

w2
1 + w

2
2

(
−w2

w1

)
· f (w) = ω(1 − aR(t; R0)2),

(∇wΘ(t; R0(t, |w |),Θ2(0))) · f (w)

=
∂

∂R0
Θ(t; R0(t, |w |),Θ2(0))∇wR0(t, |w |) · f (w).

Thus, these equalities imply that

∂H1

∂t
(w, t) + ∇wH1(w, t) · f (w)

= −ω(1 − aR(t; R0)2) −
∂Θ

∂R0

∂

∂t
R0(t, |w |)

+ω(1 − aR(t; R0)2) −
∂Θ

∂R0
∇wR0(t, |w |) · f (w)

= − ∂Θ
∂R0

( ∂
∂t

R0(t, |w |) + f (w) · ∇wR0(t, |w |)
)

= − ∂Θ
∂R0

( ∂
∂t

R0(t, |w |) + 1

|w |w · f (w)∂R0

∂R

)
= 0

for any w ∈ ∂Σ1(t) ∩ ∂Σ(t), t > 0.
Consider the case where j = 3 and take w ∈ ∂Σ3(t) ∩ ∂Σ(t). Since the

first equation of (3.2.6) is autonomous, R1(t) = R(t; Rw) where R(t; Rw) = |w |
similarly to the above case. Therefore

∂H3

∂t
(w, t) + ∇wH3(w, t) · f (w)

= −2R1(t)2(1 − R1(t)2) + 2|w |2(1 − |w |2) = 0.

Thus (2.5.10) with j = 3 holds for w ∈ ∂Σ3(t) ∩ ∂Σ(t) and t > 0.
Finally we prove (2.5.10) when j = 2. Set

us(t) := sU1(t) + (1 − s)U3(t).

Because n(t) · (U3(t) − us(t)) = 0 for any t > 0, we have

d
dt

[
n(t) · (U3(t) − us(t))

]
= 0.
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Recall that H2(u, t) = n(t) · (U3(t) − u). Then

∂H2

∂t
+ ∇uH2 · f (u) = n′(t) · (U3(t) − u) + n(t) · U′

3(t) − n(t) · f (u).

Substituting u = us(t) yields(∂H2

∂t
+ ∇uH2 · f (u)

)���
u=us(t)

= n′(t) · (U3(t) − us(t)) + n(t) · U′
3(t) − n(t) · f (us(t))

=
d
dt
[n(t) · (U3(t) − us(t))] + n(t) ·

(dus(t)
dt

− f (us(t))
)

= n(t) ·
(dus(t)

dt
− f (us(t))

)
Set

I(s) := n(t) · [(1 − s) f (U3(t)) + s f (U1(t))]
−n(t) · f ((1 − s)U3(t) + sU1(t))

= n(t) ·
(dus(t)

dt
− f (us(t))

)
.

We show that I(s) ≤ 0 for any t > 0 and s ∈ [0,1]. For the simplic-
ity of notation, we write U = U(t), us = us(t) and so on. We also set
U j = (U j,Vj),U = U1 − U3, f (u) = ( f1(u), f2(u)). The definitions of f1 and
f2 in (3.1.4) imply

(1 − s) f1(U3) + s f1(U1) − f1((1 − s)U3 + sU1)
= −(1 − s)s

[
(1 + s)(U2 + V2)U + 3U3U2 +U3V2 + 2V3UV

+aω
{
− (1 + s)(U2 + V2)V − V3U2 − 2U3UV − 3V3V2

}]
,

(1 − s) f2(U3) + s f2(U1) − f2((1 − s)U3 + sU1)
= −(1 − s)s

[
(1 + s)(U2 + V2)V + 2U3UV + V3U2 + 3V3V2

+aω
{
− (1 + s)(U2 + V2)U + 3U3U2 + 2V3UV +U3V2

}]
.

Using n = (−V,U)T , we obtain

I(s) = −s(1 − s)(U2 + V2)

×
[
V3U − U3V + aω{(1 + s)(U2 + V2) + 3U3U + 3V3V}

]
= −s(1 − s)(U2 + V2)(I1 + aωI2),
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where

I1 := V3U − U3V,
I2 := (1 + s)(U2 + V2) + 3U3U + 3V3V .

Noting U j = Rj(cosΘ j, sinΘ j), we have

I1 = (R1 cosΘ1 − R3 cosΘ3)R3 sinΘ3

−R3 cosΘ3(R1 sinΘ1 − R3 cosΘ3)
= R1R3 sin(Θ3 − Θ1),

I2 ≥ (U2 + V2) + 3U3U + 3V3V
= U(U1 + 2U3) + V(V1 + 2V3)
= (R1 cosΘ1 − R3 cosΘ3)(R1 cosΘ1 + 2R3 cosΘ3)
+(R1 sinΘ1 − R3 sinΘ3)(R1 sinΘ1 + 2R3 sinΘ3)

= R2
1 − R2

3 + R3(R1 − R3) − R1R3(1 − cos(Θ3 − Θ1)).

To prove I(s) ≤ 0, we need to show I1 + aωI2 ≥ 0. By the first equation of
(3.2.6), R1(t) > R3(t). Therefore,

I2 ≥ −R1R3(1 − cos(Θ3 − Θ1)).

Combing the above inequalities, we have

I1 + aωI2 ≥ R1R3

{
sin(Θ3 − Θ1) − aω(1 − cos(Θ3 − Θ1))

}
.

From (3.2.10) and (3.2.13),

Θ3(t) − Θ1(t) ≤ Θ3(0) − Θ1(0) + 2aω log
R1(0)
R3(0)

, (3.2.14)

which implies

Θ3(t) − Θ1(t) ≤ ε + 2aω log(1 + δ).

For any positive constant κ, there exists ξ∗(κ) ∈ (0, π) such that

sin ξ ≥ κ(1 − cos ξ) for ξ ∈ [0, ξ∗(κ)].

Therefore, if positive constants ε and δ are small that

ε + 2aω log(1 + δ) < ξ∗(aω), (3.2.15)
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then

Θ3(t) − Θ1(t) < ξ∗(aω) for any t > 0.

By the choice of ξ∗(aω),

sin(Θ3 − Θ1) − aω(1 − cos(Θ3 − Θ1)) ≥ 0.

Therefore, we obtain

I1 + aωI2 ≥ 0,

which implies (∂H2

∂t
+ ∇uH2 · f (u)

)���
u=us(t)

≤ 0.

For any t > 0 and any w ∈ ∂Σ2(t)∩∂Σ(t), there is s ∈ [0,1] such that w = us(t).
The condition (2.5.10) holds when j = 2. Hence, the family of Σ(t) = ∩3

j=1 Σ j(t)
is the invariant set of (3.1.5). □

Remark 3.2.4. The invariant set Σ(t) can intersect with the ball with radius
1, because Θ3 − Θ1 is positive. Especially, for any R(cosΘ, sinΘ) ∈ Σ(t), we
have

cos
(ε
2
+ aω log(1 + δ)

)
≤ R ≤ R1(t). (3.2.16)

Lemma 3.2.5. Assume aω > 0. Then the set Σ(t) is convex.

Proof. To show the convexity of Σ(t), we only need to show that of ∂Σ1, because
∂Σ2(t) ∩ ∂Σ(t) is a line segment and ∂Σ3(t) ∩ ∂Σ(t) is a portion of a circle. The
boundary ∂Σ1(t) ∩ ∂Σ(t) is given by {w ∈ ∂Σ(t) | H1(w, t) = 0}. Thus,

∂Σ1(t) ∩ ∂Σ(t)
= {w ∈ R2 | H1(w, t) = 0, R3(t) ≤ |w | ≤ R1(t)}

=

{
R(t; r0)(cos θ, sin θ) ∈ R2

����� θ = Θ(t; r0,Θ2(0)),
R3(0) ≤ r0 ≤ R1(0)

}
.

Namely, ∂Σ1(t) ∩ ∂Σ(t) is a curve parameterized by r0 for all t > 0. Hence the
tangent vector of ∂Σ1(t) at

w = R(t; r0)(cosΘ(t; r0,Θ2(0)), sinΘ(t; r0,Θ2(0)))
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can be describe as follows:

dw
dr0
=
∂R(t; r0)
∂r0

(cosΘ, sinΘ) + R(t; r0)(− sinΘ,cosΘ)∂Θ(t; r0,Θ2(0))
∂r0

=
et

(r20 (e2t − 1) + 1)3/2
{
(cosΘ, sinΘ) + aωr20 (e2t − 1)(sinΘ,− cosΘ)

}
=

et

(r20 (e2t − 1) + 1)3/2
(cos(Θ + α), sin(Θ + α)),

where α is given by tanα := −aωr20 (e2t − 1). Here, we used

Θ(t; r0,Θ2(0)) = Θ2(0) − aω log(r20 (e2t − 1) + 1).

Therefore, the curvature of ∂Σ1(t) ∩ ∂Σ(t) satisfies

d(Θ(t; r0,Θ2(0)) + α)
dr0

=
∂Θ(t; r0,Θ2(0))

∂r0
+

1

1 + tan2 α

dα
dr0

= −aωr0(e2t − 1)
(

1

r20 (e2t − 1) + 1
+

1

1 + tan2 α

)
.

Since

1

r20 (e2t − 1) + 1
+

1

1 + tan2 α
≥ 0,

and aω > 0, the curvature is negative for any t > 0. Because the orientation
by r0 is opposite, it is shown that ∂Σ1(t) ∩ ∂Σ(t) is convex. □

Theorem 3.2.6. Let ε, δ be chosen as in Proposition 3.2.3. Under the assump-
tions (3.2.13) and aω > 0, the family of Σ(t) is the invariant set of (3.1.1).

Proof. This theorem immediately follows from Theorem 2.5.3, Proposition
3.2.3 and Lemma 3.2.5. □

As seen in Remark 3.2.1, the invariant set Σ(t) converges to the orbit of
the limit cycle, namely, {w ∈ R2 | |w |2 = 1}. Hence, Theorem 3.2.6 implies
that the solution of (3.1.1) approaches to the orbit of the limit cycle after a
sufficiently long time, even though the image of (u0(x), v0(x)) is distributed far
from the limit cycle. To show the convergence to the limit cycle, we need to
study the dynamics of (3.1.1) near the limit cycle.
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3.3 Convergence to the spatial homogeneous

periodic solution on the limit cycle

To apply Theorem 1.3.1, we first study characteristic multiplier near the peri-
odic solution p(t). Recall that p(t) = (cos((1 − a)ωt + θ0), sin((1 − a)ωt + θ0)) is
a periodic solution of (3.1.5) as well as (3.1.3). The period of p is given by

T :=
2π

(1 − a)ω.

To study the stability of p(t), we consider the linearized equation:

∂ξ

∂t
= ∆ξ + J(t)ξ, x ∈ Ω, t > 0, (3.3.17)

with the Neumann boundary condition where

J(t) := ∂ f
∂u

(p(t)).

Denote the Poincaré map of the above linearized equation by Φ(T), namely,
ξ(T) = Φ(T)ξ(0). The non-zero eigenvalues of Φ(T) are called characteristic
multipliers.

Let ϕn be an eigenfunction of −∆ which satisfies Neumann boundary con-
dition and λn be the corresponding eigenvalue related to ϕn, namely,

−∆ϕn = λnϕn, λ0 = 0 < λ1 ≤ λ2 ≤ · · · .

We can expand the solution of the linearized equation (3.3.17) by ϕn,
namely,

ξ(t) =
∞∑

n=0

cn(t)ϕn

with some cn(t) ∈ R2. Substituting the above expansion to (3.3.17) yields

dcn

dt
= (J(t) − λn)cn (n = 0,1,2, · · · ). (3.3.18)

We denote the eigenvalues of the above equation by µ(n)1 , µ
(n)
2 . Consider the

case where n = 0. Since p(t) satisfies (3.1.5), the differentiation of (3.1.5) with
respect to t yields

d2p

dt2
= J(t)d p

dt
,
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which implies that d p/dt is a solution of (3.3.18) with λn = 0. Thus we have

d p
dt

(T) = d p
dt

(0) = Φ(T)d p
dt

(0),

which implies that 1 is a characteristic multiplier and d p/dt(0) is the corre-
sponding eigenvector. Then,

µ
(0)
1 µ

(0)
2 = detΦ(T) = exp

∫ T

0
Tr(J(t))dt .

Setting µ(0)1 = 1, we have

µ
(0)
2 = exp

∫ T

0
Tr(J(t))dt .

Since

Tr(J) =
(
∂ f1
∂u
+
∂ f2
∂v

) ���
(u,v)=p(t)

=
(
1 − 3u2 − v2 + 2aωuv + 1 − 3v2 − u2 − 2aωuv

)���
(u,v)=p(t)

= 2 − 4(u2 + v2)|(u,v)=p(t) = −2 < 0,

we see that 0 < µ02 < 1. Using

d
dt
(eλnt cn) = J(t)eλnt cn,

we get

µ
(n)
1 = e−λnT, µ

(n)
2 = e−λnT µ

(0)
2 .

We can conclude that the characteristic multiplier 1 is an isolated simple eigen-
value and others are contained in the region |µ| < e−βT for some constant β > 0.

Applying [9, Theorem 8.2.3] to (3.1.3), we see that the limit cycle p(t) is
asymptotically stable in the following sense:

Theorem 3.3.1. Let Ω be a bounded domain in Rn. Consider the sectorial
operator A = −∆ : D(A) → X = Lq(Ω) where

D(A) =
{
u ∈ W2,q(ω); ∂ui

∂ν
= 0, i ∈ [1,n]

}
.

Additionally we set the nonlinear function of the Complex Ginzburg-Landau

equation f : X
1
2 → X. there are positive constants ρ and C such that for any
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u(x,0) satisfying ∥u(x,0) − p(0)∥W1,q(Ω) < ρ, the solution u(x, t) exists for all
t > 0 and

∥u(x, t) − p(t − η0)∥W1,q(Ω) < Cρe−βt for t > 0 (3.3.19)

with some η0 = η0(u(x,0)) where q > N + 1.
Then,The trajectory |u | = 1 of spatial homogeneous periodic solution of the

Complex Ginzburg-Landau equation is asymptotic stable.

Finally, we give the proof of Theorem 3.1.1.

Proof of Theorem 3.1.1. Let w(·) = (w1(·),w2(·)) be arbitrary initial functions
in C0(Ω)2. Let ρ, U j and Σ(t) be as in the previous section. The positive
constants ε, δ and the perturbation (K1,K2) will be specified later. If w(x) +
(K1,K2) ∈ Σ(0), then u(x, t) ∈ Σ(t) for any t > 0. Set U j(t) = (U j(t),Vj(t)) =
Rj(t)(cosΘ j(t), sinΘ j(t)) ( j = 1,2,3). For any R(cosΘ, sinΘ) ∈ Σ(t), by (3.2.14),
we have

0 ≤ Θ − Θ1(t) ≤ ε + 2aω log(1 + δ).

From (3.2.16) and limt→∞ R1(t) = 1, there is a positive time T1 and a positive
constant M0 such that

sup
u∈Σ(t)

|u − U1(t)| ≤ M0{ε + 2aω log(1 + δ)}.

for any t ≥ T1. The solution u = (u, v) of (3.1.2) satisfies{ (u − U1)t = ∆(u − U1) + f1(u, v) − f1(U1,V1),
(v − V1)t = ∆(v − V1) + f2(u, v) − f2(U1,V1).

(3.3.20)

Note that

sup
x∈Ω

|u(x, t) − U(t)| ≤ M0{ε + 2aω log(1 + δ)},

sup
x∈Ω

| f j(u(x, t), v(x, t)) − f j(U1(t),V1(t))| ≤ M1{ε + 2aω log(1 + δ)}

for j = 1,2 and t ≥ T1 with some positive constant M1. Applying the global
estimate (for example, see [14, 16]) to (3.3.20), we obtain

sup
x∈Ω

|∇(u(x, t) − U(t))| = sup
x∈Ω

|∇u(x, t)| ≤ M2{ε + 2aω log(1 + δ)}

for t ≥ T1 + 1 with some positive constant M2. Choose positive constants
ε and δ small that (M0 + M2){ε + 2aω log(1 + δ)}|Ω|1/q ≤ ρ/2. From the
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above inequalities, ∥u(·, t) − U1(t)∥W1,q(Ω) ≤ ρ/2 for t ≥ T1 + 1. Since U1(t)
converges to the limit cycle as t → ∞, there is a time T2 and p(0) such that
∥u(·,T2) − p(0)∥W1,q(Ω) ≤ ρ. By (3.3.19), there is a constant η0 and a positive
constant C satisfying

∥u(x, t) − p(t − η0)∥W1,q(Ω) < Cρe−βt for t > T2.

We only need to show the existence of a positive constant K1 such that
w(x) + (K1,0) ∈ Σ(0). Set

Rw := sup
x∈Ω

|w(x)| ≥ 0.

For K1 > Rw, take

R1(0) := Rw + K1, R3(0) :=
R1(0)
1 + δ

=
Rw + K1

1 + δ
,

Θ2(0) := arcsin
Rw

K1
∈

(
0,
π

2

)
.

Draw the tangent line from the point R3(0)(cosΘ2(0), sinΘ2(0)) to the circle
centered at (K1,0) with radius Rw. Define Θ1(0) such that R1(0)(cosΘ1(0), sinΘ1(0))
is the intersection point between the above line and the circle centered at the
origin with radius R1(0). By rescaling by K1, we see that

Rw

K1
→ 0,

R1(0)
K1

→ 1,
R3(0)

K1
→ 1

1 + δ

as K1 → ∞, which implies that Θ j(0) → 0 ( j = 1,2) as K1 → ∞. Thus, we can
choose K1 such that Θ2(0) − Θ1(0) < ε. By the choice of the parameters, Σ(0)
includes the image of w(x) + (K1,0), because the image is included in the disk
centered at (K1,0) with radius Rw. The proof of Theorem 3.1.1 is complete. □
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