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Chapter 1

Introduction

1.1 Motivation

The uncertain, inconsistent and incomplete nature of human knowledge makes it difficult
to deal with it on computer. To handle the uncertainty, fuzzy set theory has been proposed
and developed in several fields[1, 2]. With fuzzy sets, if-then style rules can be a powerful
tool to represent knowledge in readable way. The if-then rule is, however, generally derived
from a human expert in a heuristic way, and thus some rules may be inconsistent, that is,
some conflicts with others. In the practical large scale problem, the complete description
of knowledge is impossible, which involves the lack of information. Therefore, fuzzy sets
and if-then rules are subject to be tuned by trial and error. The manual derivation of
if-then rule is current issue in fuzzy inference methods, and several automated approaches
have been attempted, including fuzzy neural network systems, self-learning systems based
on a genetic algorithm, and adaptive networks[3, 4].

Neural Networks are also widely used to model uncertain reasoning. In neural net-
works, human knowledge is used to learn how to behave like the expert. After learning
a sufficient number of iterations, the network can approximate any given learning data.
The results of this learning are, however, numeric values of weights and thresholds that
are meaningless unless interpreted. Moreover, a practical large problem with many inputs
requires computational power to learn a knowledge. Acquisition of a underlying principle
of knowledge is therefore an important issue.

To overcome these drawbacks, we have proposed new approaches to knowledge ac-
quisition based on fuzzy switching functions[12, 13, 14]. A fuzzy switching function is a
mapping f : [0,1]* — [0,1] that can be represented by a single logic formula. A logic
formula consists of logical connectives and, or, not defined by minimum, maximum, and
1 minus. For example, we illustrate a fuzzy switching model in Figure 1.1, where a single
logic formula F = (z A y) V (~y) represents a mapping F : [0, 1]* — [0,1]. With input of
a = (0.2,0.7), this simple logic formula F replaces = by 0.2, y by 0.7, and gives

F(0.2,0.7) = max(min(0.2,0.7),1 — 0.7) = 0.3,

which can be simulated uncertain reasoning in our mind.



CHAPTER 1. INTRODUCTION 7

fix.y)

Figure 1.1: Fuzzy switching function model /' = (z A y) V (4)

The study of fuzzy switching function began early in the history of fuzzy theory, and
have been investigated: fundamental properties [6, 8]; minimization[7]; necessary and
sufficient condition[9]; representation[10]; and quantization[11]. These known properties
are useful in deriving a unique logic formula systematically.

In our approach we use a logic formula instead of if-then rules or neural networks
model. The logical description of the knowledge is readable as much as if-then rules. The
significant feature of description by a single logic formula is consistency and uniqueness.
The inconsistency of a learning data can be canceled in extracting the logic formula, which
allows consistent description only. Even if a given knowledge is incomplete, by verifying
the condition of uniqueness we can detect the lack of information of the knowledge. We
clarify the necessary and sufficient conditions for knowledge to be consistent and to be
complete, that is, the logic forinula can be determined uniquely.

1.2 Coffee Problem

Before we go into the detail, let us consider a simple problem, called “coffee prablem,”
which would help to understand the problem that we are going to deal with in this thesis.

Coffee Problem
Some people like black coffee, some with milk, sugar, or both. Preference in coffee
depends on individuals. Suppose there are three cups of coffee. Cup A is black, cup
B has milk and sugar, and cup (' just has milk.

A coffee sommelier (7) samples each cup, and replies the three question:

e Do you think there was sugar in the coffee?

¢ Do you think there was milk in the coffee?

o How good was it?
He replies with the fuzzy truth value shown in Table 1.1, where 1 means yes, 0 means
no, and 0.5 means unknown.

Determine the complete range of his liking for coffee. Does he like coffee with sugar
but no milk?

In this case, he seems to prefer sugar as in cup B, and hates milk or the lack of sugar
as in cup C. Thus, we can infer meaningful conclusions from uncertain information such
as that in Table 1.1.
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Table 1.1: Preference in coffee
cup A cup B cup C
sugar 0.4 0.8 0.2
milk 0.3 0.6 0.9
taste 0.7 0.8 0.2

1.3 Thesis goals

The coffee problem, a simple uncertain knowledge acquisition, can be represented as a
mathematical expression.
Let A and B be a finite set of objects. Knowledge is regarded as a mapping f with
domain A and range B, that is,
f:A— B,

where f maps each element of 4 to an element of B. In fact, however, it is impossible
to derive the complete range of the mapping f from a human expert as mentioned in the
coffee problem. Thus f is restricted to the domain, a subset A" of A, that is,

fleA"— B,

which is called restriction of f, and so the three cups of coffee can be expressed by three
cquations defined by,

f'(0.4,0.8) 0.2,
£(0.3,0.6) = 0.9,
£(0.7,0.8) = 0.2,

where 4 = {(0.4,0.8),(0.3,0.6),(0.7,0.8)} € V2.

The attempt of uncertain knowledge acquisition is to approximate knowledge f only
by having f’. To solve the problem, we have several models of f, which formalizes sev-
eral subgoals: an identification problem of fuzzy switching function, of P-fuzzy switching
function, and of Kleenean function; a fitting problem of fuzzy switching function as follows.

1. Identification of fuzzy switching function (Chapter 3)
Consider a mapping f' : A — [0,1] where A is a subset of [0, 1]".
(i). Show if there is at least one fuzzy switching function F' such that f'(a) = F(a)
for all @ € A (representable).
(ii). If so, show the uniqueness of identification.

(iii). Obtain the logic formula F' representing f'.

2. Identification of P-fuzzy switching function (Chapter 4)

Suppose that mapping f’ is a restriction of P-fuzzy switching function that is rep-
resentable by sum of prime implicants.
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(i). Show if there is at least one P-fuzzy switching function #, such that f(a) =
F,(a) for all @ € A (P-representable).

(ii). Show the uniqueness of F},, which is called P-uniqueness.

(ili). Obtain the logic formula F, that consists of prime implicants only.

3. Identification of Kleenean function (Chapter 5)

Suppose that mapping f’ is a restriction of fuzzy switching function with some
constant value of [0, 1], which is called Multiple-valued Kleenean function or just
Kleenean function.

(). Show if there is at least one Kleenean function Fy such that f'(a) = Fi(a) for
all a € A (K-representable).

(ii). Obtain the logic formula Fj that consists of variables, logical connectives, and
constants of [0, 1]

4. Fitting fuzzy switching function (Chapter 4)

Suppose that mapping f’ is a restriction of fuzzy switching function which includes
some noises.

(i). Find the fuzzy switching function f* with the shortest distance to the mapping
fh.

(ii). Obtain the best logic formula F* that approximates mapping f.

The first problem, identification of fuzzy switching function, is fundamental and thus
the result will be used for the other problems. Especially, the properties of simple and
complementary phrases should be clarified in order for representation by a logic formula.

In the second problem, We use a P-fuzzy switching function instead of the standard
fuzzy switching function. A P-fuzzy switching function is a special class of fuzzy switching
function that can be represented by a disjunction of prime implicants only. Since P-fuzzy
switching function never contains meaningless complementary phrase such as (~z A z), it
can simplify result of knowledge expression.

In the third problem, we study yet another multiple-valued function. A multiple-valued
Kleenean function is an exteusion of fuzzy switching function so that a logic formula
consists of any constant value of [0, 1], while traditional fuzzy switching function has no
constant except 0 and 1. Clearly, Kleenean function could make an inconsistent restriction
of fuzzy switching function be representable with arbitrary constant values.

The last problem is not an identification. We shall notice that some error and in-
completeness involved by human response could spoil the consistency of any classes of
functions. Hence, we suppose a human expert’s response based on a logic formula but
with some noise, and then attempt to fit fuzzy switching functions to the underlying
knowledge. Since this approach is an approximation, there must exist a unique solution
for any given restriction. Hence, we can omit to study a condition for uniqueness. This is
a significant feature for practical applications.
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1.4 Thesis Structure

The thesis consists of eight chapters.

Chapter 1 Iniroduction addresses the difficulty in modeling uncertain reasoning, and
define three simple problems, that are the goals of this thesis.

Chapter 2 Fuzzy Switching Functions reviews the fundamental definition and properties
examined so far including the monotonicity, the normality, and the quantization theorem.

Chapter 3 Identification studies partially specified fuzzy switching functions called
restrictions and clarified some important properties which will be used in the following
sections. Some of new concepts are taken in this section. Quantized sets, which are sets
of ternary elements of {0,0.5,1}", is defined by the fuzzy elements of the given learning
data. Expansion, which is conjunction with regularity or monotonicity of the restriction,
are defined by the corresponding quantized sets. After investigates some properties of the
quantized sets and expansions, the necessary and sufficient conditions for a restriction to
be represented by a fuzzy switching function are clarified. In addition, the uniqueness,
which shows the learning data can be represented unique fuzzy switching function, is also
clarified.

Chapter 4 P-Fuzzy Switching Iunctions discusses the simplification problem of the
derived logic formula. Since the complementary laws do not hold in fuzzy logic, the
extracted logic formula may include meaningless phrase. In this chapter, P-fuzzy switching
functions is introduced as a way to eliminate the redundant description and obtain the
simplified logic formulae. A P-fuzzy switching function is a meaningful class of fuzzy
switching functions that can be represented by prime implicants. The necessary and
sufficient conditions for any given learning data to be representable with P-fuzzy switching
functions, and to be expressed by a unique logic formula.

Chapter 5 Kleenean Functions studies the identification problem of fuzzy switching
function with constant values of [0,1], which is called a Multiple-valued Kleenean func-
tion or just a Kleenean function. After some of the fundamental properties of Kleenean
functions are clarified, we define some extended quantizations, strong, weak, and quasi
quantizations. Main result is Theorem 5.7 which clarifies a necessary and sufficient con-
dition for an identification problem of Kleenean function to be solved.

Chapter 6 Fitting studies the identification problem with some errors in learning data.
This section provides an algorithm that takes a piece of knowledge, which is to be used as
learning data, and calculates the logic formula with the shortest distance to the learning
data. The problem is solved in three steps; first, the given data is divided into some small
problems, called Q-equivalent classes; second, the local distances between the given data
and each local fuzzy switching functions; and the last, the shortest distance is obtained
by a modified graph-theoretic algorithm.

Chapter 7 Ezamples demonstrates the proposed algorithm based on the results de-
scribed in the thesis by simple evaluation problem with four input variables. It shows how
knowledge can be extracted from the learning data, and how many inputs can be solved
in the proposed algorithm.
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Chapter 8 Conclusion summarizes, concludes and indicates the direction of future work
based this thesis. The main results of this thesis is some necessary and sufficient conditions
of restrictions that are used in uncertain knowledge acquisition.

We summarize the types of problem and models discussed in this thesis on Table 1.9,

Table 1.2: Problem types and models

problem nmodel chapter
Identification fuzzy switching function 3
Identification P-fuzzy switching function 1
Identification | multiple-valued Kleenean function 5

Fitting fuzzy switching function 6

The major contribution of this thesis is to demonstrate the viability of knowledge
acquisition, uncertain reasoning, a new fuzzy inference, expert systems, fuzzy analysis
techniques, evaluation problems, and modeling human reasoning.
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Logic formula
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Logical operator called or

Logical operator called not

Partially ordered relation of ambiguity
Strict partially ordered relation of amnbiguity
(Strong) Quantization of a by A

Weak quantization of a hy A
Quasi-quantization of a by A
Q-equivalent relation
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Chapter 2

Fuzzy Switching Functions

In this chapter we review the basic definition of fuzzy switching functions and summarize
some of their important properties; the monotonicity, the normality, the quantization, and
the representation theorems. In Chapter 5, we will recall the definition of logic formula so
that it can contain any arbitrary constant of [0, 1]. While, we use anly two constant value
of 0 and 1 in this section.

2.1 Basic Definitions

2.1.1 Fuzzy Switching Function

Definition 2.1 Let V = [0,1], V5 = {0,1}, and V3 = {0,0.5,1} be the sets of truth values.
A logic formula consists of constants 0 and 1, variables z,,...,z,, and logical operators
and (A), or (V) and not (~), defined as follows:

rihz; = z;; = min(z,x;),
T Ve, = max(zz;),
~T; = 1 -z

A function from the domain n-dimensional Cartesian product V™ to the range V is called
an n-variable fuzzy function. A fuzzy function representable by a logic formula is called
an n-variable fuzzy switching function or fuzzy logic function.

To avoid having formulas cluttered with brackets, we adopt the following precedence:
~ A V.
Thus the logic formula F' = (2 V ({(~z) A y)) can be represented simply as F' =z V ~z Ay
or =z V7y.

Hereafter, we simply call a fuzzy switching function to mean n-variable fuzzy switching
function.

13



CHAPTER 2. FUZZY SWITCHING FUNCTIONS 14

2.1.2 Partially Ordered Relation of Ambiguity

On the set of truth value V, a partially ordered relation with respect to an ambiguity is
defined as follows.

Definition 2.2 Let @ and b be elements of V. Then, @ > bif and only if either 0.5 > a > b
or b>a>0.5.

The relation > can be extended to V" by letting @ = (a1,...,a,) and b = (by,...,bp)
be elements of V™, @ > b if and only if a; > b; for each ¢ (i = 1,...,7). Any two
elemients a in [0,0.5) and & in (0.5,1] are not comparable with respect to ». We denote
this by a # b.

Occasionally we write a > b to mean that a > b and a # b.

Example 2.1 Given a partial order >, we can draw a Hasse diagram on a finite set of
truth values. The following diagram shows that 0.8 > 1, 0.4 > 0.2, and 0.4 ¥ 0.8.

Q.5
0.4
0.2 0.8

Figure 2.1: The partial ordered relation >

Clearly, a = a for any element a of V. The greatest element with respect to > is 0.5
and the least elements are 0 and 1.

2.1.3 Quantization

For a treatment of infinite number of fuzzy truth values with some finite number of ele-
ments, we introduce a quantization of fuzzy truth value in this section.
A gquantization is a unary operation! that maps a value in V to one of the three values

in V3.

Definition 2.3 Let 2 and A be elements of V. A quantization T of z by A is an element
of V3 defined by:

0 if0<2z<min(A,1-2A)<05,z#0.5,
=< 1 if05<max(\1-MN<z<1,z#0.5,
0.5 otherwise.

Let # = (2y,...,2,) be an element of V™. A quantization of = by A is an element of V3
defined by T = (ﬂ)‘,...,fl,‘_n)‘).
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X

Figure 2.2: The quantizalion

Figure 2.2 illustrates the mapping made by the gquantization. The quantization parti-
tions the set of truth values V' into three sets Vs.
Example 2.2

.5

02.1.06)° =(0,1,05). (051,00 = (0.5,1,0).

Notice that quantizations of §, 1, and 0.5 are always identical to themselves, that is,

for any 2 of V, also

for any z, especially,

2.1.4 Representation of Fuzzy Switching Functions

A fuzzy switching function can be represented by a disjunctive form which is a disjunction

(or) of some conjunctions (end). However, since the complementary law (z; A (T7) = 0)

does not hold in fuzzy logic, we have two phrase types. One is a complementary phrase,

which contains a literal and its negation such as z; A (T7), the other is a simple phrase. A

complementary phrase that contains all variables is called a complementary minterm.
These two kinds of phrase correspond to elements of V* in the following way.

Definition 2.4 Let a and b be elements of VJ* and Vi* — V', respectively. A simple
phrase a® corresponding to a is defined by

L S— ay e N3
a’ =x' A Az,

"Mukaidono has defined another quantization for A € [0, 0.5)[10], which is essentially equal to Definition

2.3. This allows X to take any value in [0, 1] in order to simplify later discussions.
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where for every 7 (1 = 1,...,n),

z; ifa; =1
it =4 T; ifae; =0

1 if a; = 0.5.

A complementary phrase 3% corresponding to b is defined by

ﬂb:zgl/\.../\wl[:{l’

where for every i (i=1,...,n),
z; if b; =1
=0 7 b =0
; T; if b; = 0.5.

Example 2.3 An clement a = (0,0.5,1) € V3’ corresponds to the simple phrase a® =
~21 A z3 and to the complementary phrase 3% = ~zy A 23 A ~xy A Z3.
2.2 Properties of Fuzzy Switching Functions
From Definition 2.1, the following property is trivially true.
Theorem 2.1 (Normality) Let f be a fuzzy switching function.
a eV = f(a)€V,

Theorem 2.2 (Monotonicity) {8] Let @ and b be elements of V™, and f be a fuzzy
switching function.
arb = fla)xz f(b)

Corollary 2.1 Let a and b be elements of V™, and f be a fuzzy switching function.

a>b, fla) € {0,1} = f(b) = f(a),
a>ba>c, f(b)=1,f(c)=0= f(a)=0.5.

Theorem 2.3 (Quantization) (8] Let f be a fuzzy switching function, and a be an
element of V™. Then

fla) = f@)
for all A of V.

Theorem 2.4 [10] Let f and g be fuzzy switching functions. Then, f(a) = g(a) for every
element @ of V3, if and only if f(a) = g(a) for every element a of V'".



CHAPTER 2. FUZZY SWITCHING FUNCTIONS 17

This theorem shows that a fuzzy switching function is uniquely determined by its
values on the elements of VJ". We, therefore, can identify several fuzzy switching functions
by examining whether they are equal or not on the ternary truth table in a finite number
of steps.

Lemma 2.1 For any simple phrase a® corresponding to a € V',
a*(a) = 1.
For any complementary phrase 3° corresponding to b € V. — V',
B%(b) = 0.5.
Proof. Proof is omitted. a

Example 2.4 An element @ = (0.5,1,0) € V' corresponds to a simple phrase a® =
29 A ~23 and a complementary phrase 5% = a1 A ~21 A2y A xs.
Then,
a“(a)=1, [f*(a)=0.5.

Lemma 2.2 Let a® and /% be a simple phrase and a complementary phrase corresponding
toa € V5" and b € VJ' — V7, respectively.

a>-b & ao%b)=1

Proof. When a > b, a*(a) > a*(b) [Theorem 2.2]. Hence a*(b) = 1, since a*(a) = 1
[Lemma 2.1].

Conversely, suppose that a*(b) = 1. If ¢; = 1 then b; = 1, hence a; > b;. 1 a; =0
then b; = 0, hence a; > b;. If a; = 0.5 then a; > b; for any b;. Consequently a; > b; for
each ¢, which means a > b. |

Lemma 2.3 [12] Let a® be a simple phrase corresponding to @ € V3* and b be an element
of V¥ — V', respectively. If a®(b) = 0.5, there exists ¢ € V3" such that

a>c b>ec

Proof. Suppose that a®(b) = 0.5. If a; = 0 then b; € {0.5,0}. If a; = 1 then b, € {0.5,1}.
If a; = 0.5 then b; € V3. Thus, for each 7, at least either a; > b; or b, > a;. Hence, a; and
b; are always comparable with respect to > for every ¢. Therefore there exists an element
¢ = (¢1,...,¢,) of V5 such that ¢; = glb, {a;,b;} where glb is the greatest lower bound.
The ¢ holds @ > ¢ and b > c. O

Example 2.5 Let @ = (0.5,0) and b = (1,0.5) in V,. Then, a corresponds to a simple
phrase a*(z,y) = ~y, and so

a’(b)=1-10.5 =05,
hence, there exists ¢ € V3* which holds

a>b, b>ec.
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Lemma 2.4 Let a and b be elements of V*, 3° be a complementary phrase corresponding
to b.

a-b < pa)=05.

Proof. When a > b, 3°(a) » 3°(b) [Theorem 2.2]. Therefore a“(b) = 0.5, since 3°(b) =
0.5 [Lemma 2.1].

Conversely, let 3%(a) = 0.5. If b; = 1 then a; € {0.5,1}. If b; = 0 then q; € {0.5,0}. If
b; = 0.5 then a; = 0.5. Thus, «; > b; for every ¢, that is, @ > b. O

Lemma 2.2 and Lemma 2.4 lead to the following corollary.

Corollary 2.2
a-b & a*b)=1 & fla)=05

Theorem 2.5 (Representation Theorem) Any fuzzy switching function f is repre-
sented by a logic formula F*:

F= \ ot \/ p

acf=1(1)  bes-1(0.5)
where f71(1) and f71(0.5) arc subsets of V' defined by
i) ={ae V] fla)=1} i=1,05,

o is a simple phrase corresponding to a, and /3° is a complementary phrase corresponding
to b.

Proof. We prove that f(a) = F(a)for all @ € V' using three cases: f(a) = 1; f(a) = 0.5;
fla)=1.

When f(a) = 1, a belongs to f~!, thereby. there exists the corresponding simple
phrase a® in F' such that a’(a) =1 < F(a).

When f(a) = 0.5, there exists a complementary phrase §* in F' that corresponds to
a. By Lemma 2.1, %(a) = 0.5 < F(a). There is. however, no simple phrase o in F such
that a’(a) = 1. Otherwise, from Lemma 2.2, we have the corresponding element a’ such
that @’ > a. Thereby, however, f(a’) = 1 and f(a) = 0.5 violate monotonicity of f.

When f(a) = 0, there is no simple phrase o' such that o(a) > 0.5. Otherwise, from
Lemma 2.3, for the corresponding element a’ of o/, there exists ¢ € Vi* such that @’ > ¢
and a > ¢. However, f(a') = 1, f(a’) = 0 cannot satisfy monotonicity with e.

Moreover, there is no complementary phrase 4 in F such that f(a) = 0.5 Otherwise,
by Lemma 2.4 we have a > b for the the corresponding b of 3. However, since f(a) =0
and f(b) < 0.5, this violates the monotonicity of f.

As we have shown, f(a) = F(a) for all @ € V3'. Therefore, by Theorem 2.4, we have
fla) = F(a) for all elements of V™. This implies that that logic formula F represents
fuzzy switching function f. a
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Note that the logic formula F defined here is not in fuzzy canonical disjunctive form
in the sense of Mukaidono[10], but /" is also uniquely determined for f. By applying the
absorption law, F' can be simplified. We show that by an example.

Example 2.6 For a fuzzy switching function f given hy the ternary truth table in Ta-
ble 2.1, we have

J7HY) = {(0,0),(0.5,0),(1,0),(1,1)}
f7Y0.5) = {(0,0.5),(0.5,0.5),(1,0.5),(0.5,1)}

\/ ot = ~x~yVoesyVae~yVoy
acf-1(1)
\/ B = ~ay~yVrezy~yVay~yVa~yV aezy
bef-1(0.5)

In accordance with Theorem 2.5 and the ahsorption law, we have a simple logic formula

F = \/ a* Vv \/ ﬁb
acf-! bes-1(0.5)
= ~yVuay.

Table 2.1: ternary truth value f

Ne]0 5 1
0 |1 1 1
515 5 5
110 5 1




Chapter 3

Identification

The purpose of this section is to establish a general method to find a fuzzy switching
function representing a given restriction. The method can be considered as an approximate
reasoning. This is the first step to uncertain reasoning based on fuzzy switching functions.

The main results are the necessary and sufficient conditions for a restriction to be
represented by a fuzzy switching function, and for the fuzzy switching function to be
uniquely determined. These conditions make the proposal different than the conventional
inference methods such as neural networks or fuzzy inference. This difference will be given
as a comparison with conventional methods.

3.1 Introduction

Approximate reasoning is currently being studied as a way of dealing with uncertain knowl-
edge. It is extremely difficult to make an exact model of human knowledge, because of its
essential indefiniteness and uncertainty. Thus several methods to approximate uncertain
knowledge have been proposed such as neural networks and a fuzzy inference. Here we
regard our exact knowledge as a mapping f from a finite set A to B, that is,

f:A— B,

then what we can extract from f is just a partial mapping f’ which is restricted to the
domain A, a subset of A, that is,
fl A — B.

The methods of approximate reasoning attempt to infer or reconstruct f from f’. For
example!, when a mapping f outputs as the following,

7(0.4,03) = 0.7,
7(0.8,0.6) = 0.8,
£(0.2,0.9) = 0.2,

'An answer using fuzzy switching functions will be shown in section 3.4.

20
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what is a value of output f(z,y) for any (x,y) in V2 ? In this example, three pairs of inputs
and outputs represent a partical mapping f’, which is called a restriction. A restriction
can be regarded as a IF-THEN rule base in fuzzy inference, or as a learning data in neural
networks.

Some of the methods have heen applied to a practical use, however, they do not include
two important conditions , representability and unigueness.

Representability

A system in which any function of a class is representable is called functionally unique
for the class. In this scuse, neither fuzzy inference nor neural networks is unique for
n-variable functions. (For example, consider any discontinuous function). This means
these methods cannot always approximate a given restriction f’ that might be entirely
inconsistent. However what we want to point out is not the uniquness itself, but that
thev have no means to determine whether a function f’ is representable. There may be
no answer for a given f’.

We say that a restriction [’ is representable if f' is representable by fuzzy switching
functions.

Uniqueness

Even if f’is representable, there may not be cnough information to determine f uniquely.
Nevertheless, a neural network system always outputs delinite values. There is no differ-
ence between the certainty of output values learned hy a large number of inputs and the
certainty by onlv one input.

We say a restriction f’ is unique if a fuzzy switching function f is uniquely determined

by f.

In this section, we will attempt to establish a new approximate reasoning hased on some
properties of a fuzzy switching function that finds the fuzzy switching function representing
a given restriction. The main results are the necessary and sufficient conditions for a
restriction to be consistent and unique. These conditions make this different from the
conventional approximate reasoning methods such as neural networks or fuzzy inference.

First, we will introduce the concept of quantized sets in order to characterize some
conditions. Next, we will show necessary and sufficient condition for restrictions to be
representable, and show a certain set in order for quantized sets. Finally, we will show
necessary and sufficient condition to be unique which gives a solution of the identification
problem of a fuzzy switching function.

3.2 Representability

Let f be a mapping f : V* — V, and A be a non-empty subset of V™. A restriction
of a fuzzy switching function f to A is a mapping f|a defined by fla(a) = f(a) for all
elements a of A.
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Here, let us consider the conditions necessary for a mapping f’ from A to V to be a
restriction f|4, which means that f’is representable by a logic formula.

3.2.1 Necessary and Sufficient Conditions for Fuzzy Switching Functions

The following theorem shows a necessary and sufficient condition for a mapping flave—
V to be a fuzzy switching function. (Note that this f’ is defined on V", not on A).

Theorem 3.1 [21] A mapping f: V" — V is a fuzzy switching function if and only if :

(1) normality Va e V) fla) € Vs,
(2) Quantization Theorem VYA € V f(a,)A = f(@h).

From these two conditions (1) and (2), one can derive the following property[21],
(3) monotonicity a = b = [f(a)> f(b).

However, when a mapping is given partially by '+ A — V, conditions (1) and (2) are
insuflicient to be a fuzzy switching function. For instance, let us consider a mapping f’
from A = {0,0.5,1} to V such that:

7y =0, f(05)=1, f(1) =1

Since 0, 1, and 0.5 are unchanged for any quantization by Ain V, it is clear that f’
satisfies condition (2). In addition, condition (1) also holds in f’. Although f! satisfies
both conditions, there is no one-variable fuzzy switching function that satisfies the above
equation.

Notice that condition (3), monotonicity for ambiguity, does not hold in f'. Further-
more, we cannot believe condition (2) for a restriction, because there might be an element
a of A such as @' ¢ A for which f’ cannot map to any element of V. As we have seen,
it necessary for a restriction to define the fourth condition instead of the Quantization
Theorem.

3.2.2 Quantized Sets

Iu this section, we will introduce the concept of quantized scts, which characterizes a
restriction with some subsets of V3"

Definition 3.1 Let A = {a,a,...,a,} be a subset of V", and f be amapping f: A —
V. Quantized setsof f are subsets of V3* C1(f), Co(f), Cu(f) and C(f) defined as follows:

Cif) = @ evi|3aed eV, f(a) =1}
Co(f) = (@ eVy|3ase A, IneV, Ta) =0)

Colf) = (@ evy . dacd MeV, fla) =05)
c(f) C1(f)U Co(H)UCu(f)

= {@eVy|3aie A eV]
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Example 3.1 The quantized sets of a mapping f(0.3) = 0.7, f(0.6) = 0.4 are as follows.
((n = {03°%) = {0},

Colf) = {06°°) = {1},

w(f) = {03} ={06"} = {05},

C(f)y = {0,0.5,1}.

A fuzzy switching function f satisfies the following property concerning quantized sets.

Theorem 3.2 (disjoint) Any quantized set of a fuzzy switching function C1{f), Co(f)
and Cp(f) is disjoint to any other quantized set:

C(HNC(fH =0 (G#5€{0,1,U}).
Proof. Suppose that b € C1(f) N Cu(f). For the b, there exist clements @ and ¢ in V"
and clements A and 7 of V such that : b =@ =@, f(a)/\ =1, f(b) = 0.5. By
applying the Quantization Theorem, we have the following contradiction:

f(@) = f(b)y=1% f(e7) = f(b) = 0.5.

In other cases contradictions can be similarly derived. Hence there is no element that
belongs to multiple quantized sets. O

3.2.3 Expansions of Quantized Sets

Disjointness is a necessary condition for a mapping to be a fuzzy switching funtion. But
it is not a sufficient condition. For instance, consider mapping f defined by

f(0.7,0.5) =03  f(0.5,0.8) = 0.8.
Clearly, the quantized sets of f:

i = (@507} = 1051
Cal(f) = {(0105 © = {(1,0.5)}
Co(f) = {{05.08) ) = {(0.5,0.5)}

are disjoint to each other. However, there is no two variable fuzzy switching function that
satisfies f. In this section, to show the above case we introduce an expansion of quantized
sets,

Definition 3.2 Let f be a mapping f : A — V, C1(f), Co(f), Cu(f) and C(f) be
quantized sets of f. Then, the ezpansions of quantized sets are subsets of V3" defined as
follows:

———O 7

fi

Cy(f) = Cif)ufaeVy|be Cy(f),bx a},
cs(f) Co(fyu{ae Vi |be Co(f),b = a},

L beCr(f), arb,
Colf) = Cu(f>U{aeV3”| CEC;EQ o }

c*(f) CHIVCG(fHUCo(])-

I
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Example 3.2 The quantized sets:

C1(f) = {(0:5,0)}, Co(f) = {(1. 1)}, Cu(f) = {(0.5,0.5)}

has the expansions such that:

Crif) {(0.5,0),(1,0),(0,0)},
C3(f) = {1},
C5(F) = {(0.5,0.5),(1,0.5)}.

Expansions of quantized sets involve a property called regularity. A ternary function
f is regular if and only if

flaye {0.1} = f(a)= f(b) for every b such asa > b.

It has been already proved by M.Mukaidono[10] that monotonicity is equivalent to regu-
larity for the ternary function. IPven in fuzzy switching functions, the following theorem
shows the relation between monotonicity and regularity.

Theorem 3.3 Let [ be a restriction f : A — V, C1(f), Co(f), Cu(f) and C(f) be
quantized sets of f, CT(f). C5(f), CL(f) and C7(f) be expansions. If C7(f)NCH(f) =10

for every 1 3 3, then

r

@ =b = fla) = /(b)
cef).

Proof. Suppose that C7(f)NC3(f) = 0. We show monotonicity for all elements of C(f)
in four cases.

for every two elements @* and b of

(i). For an element @ in C'y(f), there is no element b in Cy(f) such as a > b. Because
if @ > b, then b € C7(f), which is contradictory to regularity. Therefore @ and b
holds either b > a or a ¥ b, that is, they cannot violate monotonicity.

(ii). For an element a in C'p(f), it is shown in the similar manner that f cannot violate
monotonicity,

(iii). For an element a in ("1(f), if an element b of Cy(f) holds @ > b, then b € CT(f).
If b a,then a € Cj(f). Thus for any b of Cy(f), @ # b. That means they cannot
violale monotonicity.

(iv). Two elements @ and b belonging to the same quantized set C;(f) apparently always
hold monotonicity.

Consequently, any two of ('( f) hold monotonicity. O
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3.2.4 Choice of Quantizing values

Next, we show an efficient way to obtain quantized sets. In a restriction defined over a
finite set A, the quantization should be taken not for every element in infinite set V', but
only for a few elements characterized in this section.

Lemma 3.1 Let o, b, and ¢ be elements of V.
@’ €{0,1},0° € {0,1} = @ € {0,1}.
Proof. Since @ # 0.5, then a # 0.5, and similarly b # 0.5. Thus, the following always
holds according to Definition 2.3.
min(a, | — a) < min(b, 1 — b) < min(e, 1 - ¢)
Therefore, min(a, 1 — a) < min(c, 1 — ¢), which means @ € {0,1}. O

Theorem 3.4 Let A = {a;,...,a,,1} be asubset of V. For any A in V., there exists an

element ao* of A such that @i = @*".
Proof. Let us define a subset Ay of 4 by
Ay ={ae AT €{0,1}},

where Ay # 0 since at least 1 € A . Notice that 0.5 does not belong to A,, because
05 = 0.5forany Ae V.

Let @™ be an element of A\ such that @ € {0,1} for every @ € A,. Suppose that
there exist an element a of A such that @' # @". There exists at least one «”, which is
the most similar element for A,.

(i). If @ = 0 then a € A,. Thus, according to the definition of a*, a*" € {0,1}. Hence.

a®" = 1. since @ # @, which follows
0<a<min(A1l—2A)<05<max(a*,1—a") <a<]
therefore a = 0.5. However there is no A which satisfies 05" = 0.
(i1). If @ = 1, in the same manner as i., there is no A in V.

(iii). If@* = 0.5 then @ € {0,1}. While T e {0,1} since a” € Ax. By applying Lemma
3.1, @ € {0,1}. This contradicts @* = 0.5.
Finally, over (i), (ii) and (iii), @ always contradicts the assumption. O

This theorem follows the following corollary, which presents the condition for sufficient

elements in order to obtain quantized sets.

Corollary 3.1 Let f be a mapping f: A = V, a = (ai,...,an) be an element of A.
B(f(a)) is a subset of V defined by

B(f(a)) = {a1,...,an, f(a),1}.

For any element A in V, there exists an element 7 of B(f(a)) such that

—A

fla) = f(a), @ =a.
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3.2.5 Representability

ITere we will clarify the necessary and sufficient condition for a given restriction f : A — V
to be representiable by a fuzzy switching function.

Lemma 3.2 Let A be a subset of V", f be a restriction f: A — V. fCi{(f)nC;(f) =0
for every ¢ # 7 in {0,1,U}, then

ac AnVe = f(a)e Vs

Proof. Assume that there exist an element a of ANV such that f(a) ¢ V5. Since a € Vi,
for any A in V, @ = a. While for 0.5 and 1 in V, f(a) = € {0,1} and f(a)1 = 0.5 since
fla) ¢ V5. Thereby

25 = aeCi(f)UColf),
a = acCu(f).
Thus, @ € Cy(/)NCu(f) or a € Co(f) N Cu(f). This conflicts with the hypothesis.
Therefore we have f(a) € Vi, O

Lemma 3.3 Let A be a subset V™, f he a restriction f: A — V, C(f) be a quantized
set of f. A fuzzy switching function [/ holds

F@) = fa)’
for all elements @ of C'(f), if and ouly if
I"(a) = f(a)
for all elements a of A.
Proof. When F(a@') = _(T)A for every @ € ('(f), there is no element @ of A such as

F(a) # f(a). Otherwise, for the a, either A = F(a) or A = f(a) holds that f(a)/\ #
F(nr.)A = F(@"), where @ is in C'(f). Thereby it is contradictory to the hypothesis.
Conversely, suppose that F(a) = f(a) for all elements @ of A. For any element @* of

C'(f), there exist @ € A and A € V such that f(a) = F(a). By quantizing both sides by

A, we have f(a) = F(a,)/\ = I'(a@). 0

Theorem 3.5 (representability) Let A be a subset of V*, C1(f), Co(f), Cu(f), and
C(f) be the quantized sets of a restriction f : A — V and C5(f), CF(f), C(f), and C*(f)
be their expansions. There exists a fuzzy switching function F such that F(a) = f(a) for
all elements a of A, if and only if f satisfies both of the following conditions:

R (Regularity) CrHNCHSf) = 0 (i#£7),1,7€Vs
N (Normality) Cu(fynVy =0
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Proof. It is evident that f satisfies conditions R and N by Theorem 2.1 and Theorem
3.2. We will show that I represents f when both conditions hold.
Consider a logic formula I defined by

F= \/ a'v \/ B

acC1(f) helu(f)

where o is a simple phrase corresponding to an clement a of C;(f) and $3° is a simple
phrase corresponding to an element b of Cy(f). Then, F represents a fuzzy switching

function. Here we show F satisfies that I'(a*) = f(a)'\ for all elements @* of C'(f) in the
following cases.

(i). For an element a of Ci(f), there exists a simple phrase o corresponding to a in
F such that (@) = 1 [Lemma 2.1]. Therefore, F'(a) = 1 since /" contains at least
one phrase that is 1.

(ii). For an element b of Ci/(f), there exists a complementary phrase 3% corresponding
to bin F. Since b is an element of V> — V;* by condition N, we have BP(b) = 0.5
from Lemma 2.1.

While there is no simple phrase a® in I such as a®(b) = 1. This is because the a
and b hold @ > b [ Lemma 2.2 ], and thereby b € C7(f). Since b € Cu(f), too,
which contradicts condition R.

Next, there is no element ¢ of Cy(f) such that 3°(b) = 1, because by condition N,
¢ contains at least one ¢; such that ¢; = 0.5, that is, 3¢ is a complementary phrase
which contains z; A (~z;). Any complementary phrase can never take value of 1.

Thus for any element b of Cy(f), F(b)=0.5.

(iii). For an element ¢ of Cy(f), there is no simple phrase a® in I' such that a(e) = 1.
Because by Lemma 2.2, @ > ¢, thereby ¢ € C7(f). Thus ¢ belongs both Co(f) and
C3(f). This contradicts condition R.

Next, there is no simple phrase in F such that a*(¢) = 0.5. Otherwise, by Lemma
2.3, there exists an element d of VJ* such that @ > d and ¢ > d. According to
Definition 3.2, we have d € C7(f) and d € C(f), which contradicts condition R.

Finally, there is no complementary phrase such that Ab(c) € {0.5,1}. B°(c) can
never take the value of 1, since it is a complementary phrase by condition N. Even
if 3%) = 0.5, by Lemma 2.4, ¢ » b and thereby b € C5(f). Since b belongs also
Cu(f), this is contradictory to the condition R.

Consequently, for the ¢ any phrase in F talks neither 0.5 nor 1, that means, ¥(c) = 0.
As we have seen over (i), (ii), and (iii), for any element of C'(f),

1 for everya € Ci(f)
F(a) = 0 for everya € Co(f)
0.5 for everya € Cu(f).

Hence by Lemma 3.3, we have, F(a) = f(a) for all elements a in A. O
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Theorem 3.5 means that regularity and normality for quantized sets are essential prop-
erties for a restriction of a fuzzy switching function.

Example 3.3 Let A = {(0.3),(0.8)} be a subset of V. Even though a mapping f : A — V
such as f(0.3) = 0.7, f(0.8) = 0.1 satisfies normality and monotonicity for ambiguity, f
does not satisfy regularity, as follows:

Ci(f) = {0}, Co(f) = {1,0.5}, Cu(f) = {0.5}

where 0.5 belongs to both Co(f) and Cy(f). Therefore, there is no one-variable fuzzy
switching function representing f by Theorem 3.5.

3.3 Uniqueness

Even if a restriction satisfies every condition of Theorem 3.5, the fuzzy switching function
representing f might be indefinite, that is, there can be several fuzzy switching functions
for one restriction. For instance, the f such as f(0.5) = 0.5 which apparently satisfies con-
ditions in Theorem 3.5 can be represented by the following four fuzzy switching functions:

Fl=a =~z Fy=ac A~z Fy=2V~z.
In this section, we clarifv the condition for a fuzzy switching function to be uniquely
determined for a restriction.
3.3.1 Necessary and Sufficient Condition for Restrictions to be Unique

Lemma 3.4 Let F and G be Tuzzy switching functions, A be a subset of V", C'(F|4) be
a quantized set of a restriction I'|4. Then,

F(a)= G(a)

for all elements a of A if and only if

for all elements a in C'([].4).

Proof. Suppose that F(a) = G(a) for all elements a in A. Then, for any element b
of C(F|a), there exists an element @ € A and A € V such that b = a). Tor the a,
F(a) = G(a) by the hypothesis. By quantizing both sides by A, we obtain the former
half:

Fa) = F(@) = F(b) = G(b) = G(@) = Gla) -

Conversely, when F(a) = G(a) for every a € C(F|,), let us suppose that there exist
an element b of A such as F(b) # G(b). Then, there exists a certain A in V such that:

Fo) = F®) # Gb) = G,

This contradicts the hypothesis since 5 belongs to C'(F|a)- a
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Lemma 3.5 Let I and & be fuzzy switching functions, A be a subset of V™, C(F|4) be
a quantized set of a restriction F|4, C*(F|4) be an expansion of C'(F|4). Then

Fla) = Gla)
for all elements a in C'(/]4) if and only if

Fla) = G(a)
for all elements a in C*(41,4).

Proof. Suppose that F(a) = G(a) for all elements @ in C'(F|4). Obviously, it is suflicient
to show that any element a of the difference set C*(F|4) — C(F|4) implies F(a) = G(a).

(i). For @ € C7(F|a) — C1(F|4), there exists a b in C1(F|4) such that b > a and
F(b) = 1. Hence, by Corollary 2.1,

Fla)=1= G(a).

(ii). Fora € C3(F|4) — Co{F].4). in the same manner as (i), we have F(b) = 0 = G/(b).

(iii). Fora € Cr(F|4) = Cu(F]4), there exists a b € C1(F|4) and ¢ € Co(F|4) such that
a > band a > c Hence by (i), (ii), and Corollary 2.1, we have

F(a)= 0.5 = G(a).

As we have seen over (i), (ii), and (iii), for any element a of C*(F|4), we have F(a) =
G/(a). The latter half is evident since C*(F|4) subsumes C(F|y4). a

Here we show the necessary and sufficient condition for a fuzzy switching function F'
4 to be uniquely determined.

representing a given restriction F

Theorem 3.6 (uniquness) Let /7 and G be fuzzy switching functions, F/|4 be a restric-
tion of /" to a subset A of V", C*(F|4) be an expansion of quantized set of F’|4. When
C*(F|4) satisfies a condition U:

U (Uniqueness)  C(Fla) = Cr(F|A)UCH(F|la)U CH(Fla) = Vi
then restriction F'|4 is unique, that is,

Vac A F(a)=0G(a)
)
Va c V"' F(a)= G(a).
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Proof. The followings are equivalent.

Vac A F(a)= G(a)

T [Lemma 3.4]
Vae C(Fla) Fla)= Gla)

[ [Lemma 3.5]
Va € C*(Fla) Fla)= G(a)

[ [Condition U]
Va € VI F(a) = G(a)

(3 [Theorem 2.4]
Va e V" F(a)= G(a).

]

The condition U implies unique fuzzy switching function can be decided for the given
restriction F|4.

Here, we have clarified two important conditions, representablity and uniquness, which
are characterized by some classes of fuzzy switching functions, disjoint, regular, an’ .or-
mal. These relationship is illustrated on a Venn diagram in Figure 3.1, where N, D, and
R indicates sets of normal, disjoint, and regular restrictions, respectively. Note that the
set of regular restrictions is a subset of that of disjoint restrictions. Thus there is no
restriction that is not disjoint but regular.

restriclinos

N D

@
TS

Representable Unique

Figure 3.1: Some classes of restrictions

Example 3.4 Here are seven restrictions with domain of subset of V2. Consider the
following restrictions of two variables.

£(0.3,0.1) = 05 (3.1)
£2(0.4,02) = 0.8 (3.2)
£2(0.8,0.7) = 0.2 (3.3)
£5(0.4,0.8) = 0.3 (3.4)
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£1(0.8,0.3)
£4(0.4,0.7)
(

f5(0.8,0.5)
£5(0.4,0.9)

£5(0.9,0.9)

£2(0.6,0.3)

0.8
0.4

0.8
0.1

0.8

0.7
0.1

31

(3.5)
(3.6)

(3.7)
(3.8)

(3.9)

(3.10)
(3.11)

The quantized sets and expansions are illustrated on ternary truth tables in Figure 3.2,

where the notation a/b denotes duplicate element that belongs both C, and Cj.

Table 3.1 shows properties satisfied for each restrictions. We can verify that the nor-
mality is independent of the property of regularity, though the regularity depends on
whether the quantized sets are disjoint.

class | D K N | Representable TUnique
Hh v
fa |V v
f3 v
o |V VOV v
fs |V
fe
v v v v v

Table 3.1: characteristics of restrictions
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e | 0 05 1

y\e ] 0 05 1

0 |05 05 0 [05 05
0.5 0.5 0.5 0.5
1 1
C(h) C*(f1)
y\z [0 05 1 y\z |0 05 1
0 |1 1 0 ]1 1 1/0
0.5 05 0 0.5 0.5 0
1 0 1 0
C(f2) C*(f2)
PNz |0 05 1 P\ |0 05 1
0 0
0.5 0.5 0.5 0.5
1 [0 0/05 1 |0 0/05 0
C(fs) C*(f3)
y\z |0 05 1 y\e [0 05 1
0 1 0 1
0.5 0.5 1 0.5 0.5 1
1 |0 05 1[0 05 1
C(f4) C*(fa)
y\z |0 05 1 y\z |0 05 1
0 0 1
0.5 0.5 1 0.5 0.5 1
1 {0 0 1 [0 0 1/0
C(/fs) C*(fs)
PNz |0 05 1 P\z [0 05 1
0 0
0.5 0.5 0.5 0.5
1 1/0.5 1 1/0.5
C(fs) C*(fe)
y\z l 0 05 1 y\z | 0 05
0 1 1 011 1
0.5 0.5 0505 05 0.5
1 {0 o 110 0 0
C(fr) C*(f7)

Figure 3.2: quantized sets and expansions
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3.4 Comparison with conventional methods

This section compares our proposed fuzzy switching function with two conventional infer-
ence methods, neural networks and fuzzy inference, from an engineering viewpoint. They
are compared on this problem, which was defined in the introduction:

Let f be a mapping f : V? — V, A = {(0.4,0.3),(0.8,0.6),(0.2,0.9)} be a
subset of V2. Yor each elements of A, f maps as follows:

il

f(0.4,0.3) 0.7,
f(0.2,0.9) = 0.2

Find values f(a) for any element of V2, and approximate the whole f by each
method.
3.4.1 Fuzzy Switching Function
In fuzzy switching function, there are the following three questions:
o [s there any fuzzy switching function representing f 7
o If possible, is it determined uniquely ?
¢ If it is unique, what is the logic formula representing f 7

First of all, we get quantized sets for f|4. According to Theorem 3.1, it is sufficient to
take a quantized value for A by each element of set B(f|4):

B(fla)=1{0.2,0.3,0.4.0.6,0.7,0.8,0.9, 1},
and we can thereby effectively obtain the quantized sets as follows,

Cl(fIA) {(0'570)7(050)’(130‘5)7(1’1)}3
Co(fla) = {(0,1)},
Cu(fla) = {(0.5,0.5),(0.5,1)}.

1

Next, for the quantized sets, we have the expansions as follows:

Ci(fla) = Ci(fla)yu{(1,0)},
Co(fla) Co(fla),
Co(fla) = Cul(fla)u{(0,0.5)}.

H

Table 3.2, 3.3, and 3.4 illustrate the given restrictin f|4, the quantized sets C(f|4), and
the expansions C*(f|4) on truth tables, respectively.
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Table 3.2: Restiction f

Wz |0 02 04 05 08 1
0

0.3 0.7

0.5

0.6 0.8
0.9 0.2

1

Table 3.3: Quantized set c(f)

Nz |0 05 1
0 |1 1

05| 05 1
1 {0 05 1

As shown in the figure, clearly, they satisfy condition D of Theorem 3.5:

CT(fla) N C(fla) 0
CIUflaA)NCy(fla) = 0
Colfla)nCo(fla) = @
and also satisfy condition R as we have shown before, there must be a certain fuzzy

switching function F' such as F(a) = f(a) for all elements @ of A. In addition, they
satisfy the conditions in Theorem 3.6,

Cr(fla) U Cs(fla) UCH(fla) = VA,

So we know that /' is the only fuzzy switching function representing f.
Finally, we obtain the logic formula representing F’. The result that C*(f) = V&
follows the correspondence:

Ay =), 17H08) = Cp(h).
Hence, by applying Theorem 2.5 here, we have
F(z,y) = \/ at vV \/ B

a€C(f) beCH{f)

Table 3.4: Expansion C*( f)
Y\ | 0 05 1
0 1 1 1
05 (05 05 1
1 0 05 1
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Il

VA(~y), (~a~y), (2), (2y), (z~y))
V{(z~zy~y), (z~va~y), (~ay~y))
= zV~y (by the absorption law)

In this way, we can obtain the fuzzy switching function F representing f for all elements
of A. Now we can know any value f(a) for all @ in V2 by using this logic formula F
(Figure 3.3).

Figure 3.3: Mapping F by fuzzy switching function

3.4.2 Neural Networks

In neural networks, the restriction f’ can be considered as alearning data by which weights
and thresholds are settled down. The mapping f is represented by a neural network N
that have two units z,y in the input layer, one unit u in a hidden layer and one unit
f(z,y) in the output layer. Value f(z,y) is computed as follows:

flz,y) = s(wiu(z,y) + 62),
u(o,y) = s(wdo+uly+ ),

1
s(z) = et

Figure 3.4 and Figure 3.5 illustrate the neural network model and the behavior of function

f A
By applying back propagation with f' to N, weights w] of unit ¢ at layer j and thresh-

olds 8; at layer i are trained to the following values:

wy = —3.751357, wi = 2.603957, w2 = —4.338762,

#, = —0.173989, 8; = 2.107396
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1
X W0 5
"o
fxy)
y wl
01 P

Figure 3.4: Neural network model

The results of calculation for V? are illustrated on Figure 3.6. Although this indeed coin-
cides with the restriction f’ within 0.00001 error, we should mention a few disadvantages.

e This method needs computational power that increases with the number of inputs.

¢ It cannot be guaranteed that learning will converge in a finite number of iterations.
It implies an adjustment of some parameters or a rearrangement of the network’s
topology. The condition of the existence of a significant solution as Theorem 3.5 has
not been clarified.

3.4.3 Fuzzy Inference

In fuzzy inference, we regard the restriction f’ as the following II"THEN rule base.
rule1: IFz =04 andy=0.3 Then f(z,y) =07
rule2: IF2 =08 andy=06 Then f(z,y) =08
rule3: IFz =02 andy=09 Then f(z,y) =02
where @ is a fuzzy set characterized by the following membership function pu,:
Holzy=1-la—2| a,z€V,

which is illustrated in Figure 3.8.
Then, the result f(z,y) is calculated by

EZILLB(JI y)(Z)
fla,y) = TP D)
( y) E/1'1'::?(x, )(2)

where membership function ppg(, ) is defined by

min(po.4(2), to3(¥), o.7(2)),
,UB(a:,y)(Z) = max min(,uo,g(il?), ,UO.S(?/)’NO.S(Z)):
min(po.2(z), too(¥), to2(2))

Figure 3.7 shows the consequence of fuzzy inference for V. Even recently when some
products using fuzzy inference were developed, the similarities to neural network still
exist and a number of variations have been proposed. Some fundamental properties of
fuzzy inference such as the optimal definition of membership functions or composition of
consequence are still unknown.
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Figure 3.5: I'unction s(z)

3.5 Conclusion

We have clarified some fundamental and important properties of a restriction of fuzzy
switching functions, that make it possible to extract essential information from incomplete
and uncertain knowledge, and to identify a whole mapping with a fuzzy switching function.
This is the first attempt to consider a fuzzy switching function as a method for approximate
reasoning.

The necessary and sufficient condition in order for a restriction to be a fuzzy switching
functions (Theorem 3.5) and the necessary and sufficient condition for fuzzy switching
functions to be uniquely determined by a restriction (Theorem 3.6) have been clarified.
We can see in a finite number of steps whether a given restriction has a solution as a
fuzzy switching function, and whether the solution is determined uniquely or not. From
the point of view of inference systems, this works much more effectively than conventional
approximate methods that involves trial and error.

However, the condition for a fuzzy switching function seems too strong to be a model
for our natural inferences, which is inexact and changeable. Therefore, we should make
them weaker and investigate some more general logical systems that deal with uncertainty
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Figure 3.6: Calculation in a neural network N

including unknown or contradiction.

38
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Figure 3.7: Consequences of fuzzy inference

Figure 3.8: Membership function p4(z)



Chapter 4

P-Fuzzy Switching Functions

A P-Fuzzy Switching Function is a meaningful class of fuzzy switching functions that can
be represented by a logic formula of prime implicants.

We show how knowledge can be extracted and represented as prime implicants from
given learning data. We derive necessary and sufficient conditions for the learning data to
be representable with a P-fuzzy switching function, and to be expressed by a unique logic
formula.

4.1 Introduction

In the previous chapter, we have studies the identification of fuzzy swiching function.
However, since the complementary laws, 2V ~z = | and 2 A ~2 = 0 do not hold in fuzzy
logic, the algorithm could produce non classical logic formulae. For example, with the
following learning data f.
f(0.7,0.1) = 0.9,
Nyl
{ £(0.4,0.7) = 0.4, (4.1)

illustrated in Table 4.1, we find the nonunique result of the following three logic formulae

f1, f> and fa:

fi(z,y) = aVvy, (4.2)
f2($7y) = zy\/y,
fs(z,y) = aTyvy

As the ternary truth tables in Table 4.2 show, these logic formulae are almost equivalent,
differing only for (1,0.5) and (1,1). Formulae f; and f3, however, are much more com-
plicated than fy. The complementary phrase zTy in f3 is a contradiction and becomes 0
in binary logic. Formulae such as f; and f3 are not, therefore, appropriate to modeling
human knowledge.

In this chapter, we introduce P-fuzzy switching functions as a way to eliminate the
redundant formulae from the possible solutions and obtain the simplest logic formula. A
P-fuzzy switching function[17] can be represented by a disjunction of prime implicants

40
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only. Any given learning data can be represented by P-fuzzy switching functions without
any complementary phrase.

Table 4.1: Learning data f(z,y)

Nz |0+ 4 - 7 .1
0

1 9

7 4

i

In this chapter, we will be trying to extract knowledge represented as P-fuzzy switching
functions from given learning data. The main results are the necessary and sufficient
conditions for the learning data to be representable with P-fuzzy switching functions, and
to be determined by a unique logic formula.

Firstly, we define P-fuzzy switching functions, and clarify their fundamental prop-
erties. Second, we discuss restrictions of fuzzy switching functions, which are used as
learning data. Finally, we will clarify the necessary and sufficient conditions for the given
learning data to be representable with P-fuzzy swilching functions using ternary subsets
characterized by the learning data called P-resolutions.

Table 4.2: Truth tables of f1, f2 and f3

Nzy)=2yvy filzy)=aVy falz,y) =TV azy

YN |0 5 1 YN |0 5 1 Y\ |0 5 1
0 1 1 1 0 1 1 1 0 11 1
o T B TS T S 15 501 3 T O T .
1 ]0 5 1 110 &5 1 1 0 5 0

4.2 P-Fuzzy Switching Functions

4.2.1 Prime Implicants

A lhiteral is a variable z;, or its negation Z;. A phrase is a conjunction of one or more
literals. There are two kinds of phrase: one is a complementary phrase which contains
both a variable and its negation, for at least one variable, while the other is a stmple
phrase which does not.
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Definition 4.1 An implicant of a fuzzy switching function f is a phrase a such that
a(a) < f(a) for every element a of V3*. I(f)is a set of all implicants of f.

A simple implicant of f is a simple phrase in I(f). A fuzzy implicant of f is an implicant
o such that a(a) < f(a) for every element @ of V™. SI(f) and FI(f) are phrase sets of
all simple implicants of f and all fuzzy implicants of f, respectively.

A prime implicant of f is a simple implicant that is not an implicant of any element of
SI(f). A fuzzy prime implicant of f is a fuzzy implicant that is not a fuzzy implicant of
any element of I(f). PI(f) and FPI{f) are phrase sets of all prime implicants of f and
fuzzy prime implicants of f, respectively.

Example 4.1 Sets of implicants of the fuzzy switching function f(z,y) = 27V zy vV Tyy
are illustrated in Figure 4.1. Note that phrase z is an implicant of f, but is not a fuzzy

PIty

> .
~ D a4
SENPS s,mx\

PR =
/ ~ -
2N

/ P

Figure 4.1: Implicants of f(z,y) = 2§V 2y VTyy

implicant of f as follows:

£(1,0.5) = 0.5 < 2(1,06) = 1 (4.3)

Definition 4.2 A P-fuzzy switching function f, is a fuzzy switching function which can
be represented by the disjunction of all prime implicants of f,.

Note that if f, is a P-fuzzy switching function, then every element of SI(f,) is a fuzzy
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4.2.2 Properties of P-Fuzzy Switching Functions

Definition 4.3 (Uniform) Let a be an element of V™ and B, be a subset of Vy* defined
by
B, = {b € V}'|a > b}.

A fuzzy switching function f is uniform if and only if

fla)=0 & f(B.)=1{0},
fla)=1 ¢ f(B.)=1{1), (44)

where f(B,) is an image of f by B,.

Example 4.3 The fuzzy switching functions f; and f3 in Eq.(4.2) are not uniform, be-
cause for a = (1,0.5), f(B,) = {1}, but f(a) = 0.5 # L and b = (0.5,1), f3(By) = {0},
but f3(b) = 0.5 # 0. fo is, however, uniform.

We can see this by looking at the ternary truth tables in Table 4.3. Columns and rows
in which both ends have the same value are circled, which shows the condition in Eq.(4.4),
f(B,) = {1} or f(B,) = {0}. The hatched cells violate uniformity.

Table 4.3: uniformity

fi(z, y):ify\/? falz,y) =2 VY
5 1
1
U :
y\x| 0 5 1
0 | <11 1>
51 5 5 5
ECOER R

Lemma 4.1 Let f be a fuzzy switching function. For any a € V3* and B,, the following

hold. 7
fla)=05 <« f(B,)={0,1}
flay=0 = f(B,)={0}
fla)=1 = f(B.)={1}
Proof. The proof is straightforward from Corollary 2.1. a

Theorem 4.1 A fuzzy switching function f is uniform if and only if for all @ € V7',

f(a) = 0.5 = f(B,) ={0,1}. (4.5)
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Proof. Let us assume f(B,) = {0} when Eq. (4.5) holds for every element of V. Hence,
if f(a) = 0.5 then f(B,) = {0,1}. Moreover, if f(a) = 1| then f(B.) =1 by Lemma 4.1.
Therefore, f(a) = 0. Similarly, if f(B,) = {1} then f(a) = 1. That is, f is uniform.

Conversely, let us suppose that f is uniform and f(a) = 0.5. If f(B,) = {0} then
fla) = 0. Hence, f(B,) # {0}. Similarly f(B,) # {1}. We therefore have f(B,) = {0,1}.
0

Lemma 4.2 Let f, be a P-fuzzy switching function, and a be an element of V3* and B,.
fo(Ba) ={1} = fp(a) =1

Proof. We will show that the simple phrase o® corresponding to a is an implicant of f,
when f,(B,) = {1}. For every b € V* such that a®(b) = 1, we have a > b by Lemma 2.2.
It follows that f,(b) = 1 because f,(B,) = {1}. Thus, we have fy(b) > a®(b), which
means o is an implicant of f,. Thereby, there exists a prime implicant o/ in f, such that
o’ > a*, because f, is a P-fuzzy switching function that contains all prime implicants. For
the o, fp(a) > o'(a) > a“(a) = 1. Conscquently, f,(a) =1, and this proves the Lemma.
0

Lemma 4.3 Let f, be a P-fuzzy switching function, and a be an element of V3.
fpo(By) ={0} = fola)=0.

Proof. We will show f,(a) # 1 when f,(B,) = {0}. If f,(a) =1, then f,(B,) = {1} by
Lemma 4.1, which contradicts the hypothesis. Thus, f,(a) # 1.

Next, we will show f,(a) # 0.5 when f,(B,) = {0}. Suppose that there is a simple
implicant o such that a®' (@) = 0.5. Then, by Lemma, 2.3, there exists ¢ € V* such that
a > ¢, @ > c. Thereby, from Lemma 2.2 and Theorem 2.2, we have f,(a’) = 1> f,(c) =
L, which contradicts fp(e) = 0 for every ¢ such that @ > ¢. Hence, there is no simple
implicant such that a® (a) = 0.5.

Since f, is a P-fuzzy switching function that is representable with prime implicants,
there is no complementary phrase with the value of 0.5. Therefore, f,(a) = 0. O

Theorem 4.2 Any P-fuzzy switching function f, is representable by logic formula F:

F= \/ al,

acf~1(1)
where f~1(1) is a subset of all @ € V3 such that f(a)=1.

Proof. We prove that f(a) = F(a) for all @ € V" using three cases: f(a) = 1; f(a) = 0.5;
fla) = 0.
When f(a) = 1, there exists a simple phrase a® in F, thereby, a*(a) = 1 = F(a).
When f(a) = 0.5, there exists an implicant o® of f such that o’(a) = 0.5. Since
ab(b) = 1, the o’ also exists in F'. There is, however, no simple phrase o in F such
that a°(a) = 1. Otherwise, for an element ¢ corresponding to af, we have f(c) = 1.



CHAPTER 4. P-FUZZY SWITCHING FUNCTIONS 45

Then, from Lemma, 2.2, we have ¢ = a. Thereby, however, f(c) = 1 > f(a) = 1. This
contradicts the hypothesis that f{a) = 0.5.

When f(a) = 0, there is no simple phrase o such that a®(a) > 0.5. For an element
b € V' corresponding to the a?, from Lemma 2.3, there exists ¢ € VJ* such that b > ¢
and a > ¢. Thereby, a®(b) = 1 = f(b) > f(¢) = 1 and f(a) > f(¢) = 1, and hence
f(a) > 0.5. This contradicts the hypothesis that f(a) = 0. There is, therefore, no simple
phrase such as o’ in F, either.

As we have shown. f(a) = F(a) for all elements of V*, Therefore, from Theorem 2.4,
we have f(a) = F(a) for all elements of V™. This implies that F represents f. ]

Theorem 4.3 Uniform fuzzy switching function is a P-fuzzy switching function.

Proof. We prove that the uniform fuzzy switching function f can be represented by the
logic formula F' =\ ges-1(;) @*. by verifying f(a) = F(a) for every a € V3.

We consider three cases: (i) f(a)=1; (ii) f(a)=0.5; (iii) f(a)=0.

(i) If f(a) = 1.then @ € f7'(1) and so a*(a) =1 < F(a) = 1.

(ii) If f(a) = 0.5. then from Theorem 4.1, we have f(B,) = {0,1}. Thus, there exists
b ¢ B, for which f(b) = 1. Since b € B,, we have a > b, which follows ob(a) = 0.5 from
Lemma 2.2, Hence, F(a) < 0.5.

Consider b € f~!(1) such that o®(a) = 1. Then, from Lemma 2.2, we have @ > b.
However, f(a) = 0.5 and f(b) = 1 violate the monotonicity of f. Hence, F(a) < 1.
Finally, we have F(a) = 0.5 whenever f(a) = 0.5.

(iii) If f(a) = 0. then there is no simple phrase &’ in F such that ab(a) < 0.5.
Otherwise, from Lemma 2.3, there must exist ¢ € VJ* such that @ > ¢ and b > c.
However, no value for f(c) satisfies monotonicity together with f(a) = 0 and f(b) = 1.
Therefore, F(a) = 0.

In all three cases, therefore, f(a) = F(a) for all @ € V¥, which leads to f(a) = F(a)
for all @ € V™. From Theorem 4.2, f is a P-fuzzy switching function. O

Theorem 4.4 Let f be a fuzzy switching function. The following three propositions are
then equivalent.

(i). fis a P-fuzzy switching function.

(i1). fis a uniform fuzzy switching function. That is, for any a € V3

fla)=0 & f(Ba)={0}
fla)y=1 & f(B.) = {1}

(iii). For any a € V"
f(a‘) =05 f(B.) = {051}

Proof. First, from Theorem 4.3, if fuzzy switching function f is uniform, then f is a

P-fuzzy switching function.
Conversely, Lemmas 4.1, 4.2, and 4.3 imply that the P-fuzzy switching function is
uniform. Conditions 1 and 2 are, therefore, equivalent. Condition 3 is straightforward

from Theorem 4.1. O
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4.3 Restrictions of P-Fuzzy Switching Function

Let f be a mapping f: V™ — V., 4 be a non-empty subset of V™. A restriction f|4 of f
to A is a mapping defined by f|4(a) = f(a) for all elements a of A.

In the preceding section, we have introduced the concept of quantized sets, which
characterize a restriction with some subsets of V*. Let us remind of the definition of the
quantized sets.

Let A = {a;,0,,...,a,} be a subset of V™, f be a mapping f : A — V. Quantized
sets of f are subsets of VJ* defined as follows:

Cuf) = {@|aeA eV, fla) =1)

o f) = {@laic A AV, Fla) =0}

Co(f) = {@Plaic A AeV, (@) =0.5)
Cf) = CiNHUC)UCu(S).

M

Expansions of quantized sets are subsets of V" defined as follows:

Ci(f) = Cuf)u{ae Vi [be Ci(f),b> a},

CHf) = Co(fHHufae VP |be Colf),b> a},
olf) = Cu(f)u {a € Vi Zii?(i);cé Cs(f) }

CHf) = CUN LGV CH).

4.3.1 P-Resolutions

Definition 4.4 Let C3(f) C}(f) be expansions of mapping f. P-resolutions Pi(f) and
Po(f) of f are subsets of V,* defined as follows:

P = CGnnvy

) = Cynvg

. 3 C ’
E(f) = Pi()u { o<l by ) }

| . b C ,b ’
RS = Pé(f)U{“Evzn‘ Bf— gi{)c P?{fL)}

I

P(f) = P =R =
Po(f) = Bo(f) = Po(f)*l = --.

We often call Pi(f) and P}(f) i-th P-resolutions of f.
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Example 4.4 Given the followings expansions of a P-fuzzy switching function,

ci(f)y = 0,
Cs(f) {(0,0)},
Cp(f) = {(0.5,0),(0.5,0.5),(0.5,1),(1,0.5)}

M

the P-resolutions are defined one after another as follows.

PP(f) = 0

F(f) = {(0,0)}

PHf) = Ci(fiu{(1,0)}
PI(f) = C3(f)

PX[) = PNS)

Pi(f) = Fo(f)u{(1, 1)}
PHA) = PHAU{0,1)}
PYH = PS)

PNf) = PXNf)=-=P(f)
BHFY = P(f)=-=Po(f)

We demonstrate P-resolutions in the ternary truth tables in Table 4.4, in which elements
of CH{f), Pi(f), and Pi(f) are .5, 1, and 0, respectively.

Table 4.4: Truth tables of P-resolutions

C*(f) PL(f) and P3(f)
Wz [0 5 1 Wz (0 5 1
0 0 .5 0 [0 b5 1
) S b i) S5
1 3 1 5
P{(f) and PG (f) PP(f) and P5(f)
Wz |0 5 1 Y\ |0 5 1
0 0 5 1 0 0 5 1
) b5 ) ROT:
1 S0 1 1 5 0

4.3.2 P-Representability

We say a restriction f|a of a fuzzy switching function f is P-representable if there is a
P-fuzzy switching function f, such that f(a) = f,(a) for all a € A.
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Theorem 4.5 (P-representability) Let f be a restriction of fuzzy switching functions,
and Py(f) and Fo( f) be P-resolutions of f. Then, f is a P-fuzzy switching function if and
only if .

Fo(f)n 1i(f) = 0. (4.6)

Proof. We prove by contradiction that there is no element which belongs to both P-
resolutions of P-fuzzy switching function f. Suppose that a € Pi(f) 0 Po(f). Since f is
a restriction of a fuzzy switching function, from Theorem 3.2 C3(f) N C}(f) = 0. Hence,
a ¢ PO(S) N PY(S) = 0. |

Let @ be an element of P{(f) and of P{*1(f) — Pi(f) without loss of generality. There
then exists a b € Cf5(f) such that b > a and B, C Fi. This implies f(B,) = {0} and
f(b) = 0.5, which violates uniformity of f, and hence contradicts the hypothesis that fis
a P-fuzzy switching function. We therefore have Pi(f) n Py(f) = 0.

Conversely, let us suppose f is not a P-fuzzy switching function when Pi(f)N FPo(f) =
0. Consider @ € Cy(f) such that f(B,) # {0,1}, which violates uniformity of f. If
J(B,) = {1} then there must exist b € P{(f) and b € Pit!(f) for an element b € B,.
This contradicts the hypothesis that P1(f)NFo(f) = 0. Furthermore, if f(B,) = {0} then,
in a similar way, we have b € Io(f) U Pi(f) for any b € B,. Consequently, f(B,) = {0,1}
for any a € C5(f), so [ is a P-fuzzy switching function. O

4.3.3 P-Uniqueness

We say a restriction f|4 of a fuzzy switching function is P-unique if there is a unique
P-fuzzy switching function f, such that f(a) = f,(a) for every a € A.

Lemma 4.4 Let f, and g, be P-fuzzy switching functions. Then, f(a) = g,(a) for all
a ¢ Vy if and only if f,(a) = g,(a) for all a € V™.

Proof. This is evident since all implicants are determined uniquely by elements of vy
only. O

Lemma 4.5 Let f, be P-fuzzy switching functions, and C*(f,|a), Pi(fpla) and Po(fpla)
be the expansion and the P-resolutions of a restriction f,|4, respectively. Then, f,(a) =1
forall a € Pi(f,) and f,(b) = 0 for all b e Fy(f,).

Proof. We prove this by induction by verifying it for all i-th P-resolutions.

It is clearly true for PG(f,) and PP(fp), since F3(fp) C C5(fp) and PP(f,) C CT(fp).

Assume the lemma hold for i-th P-resolutions, that is, f(a) = 1 for all @ € P}(f,)
and f,(b) = 0 for all b e P{(f,).

For a € Pi*!(f,), by Definition 4.4, there exists b € Cy(f,) such that b > a and
By—{a} C Pi(f,). Our assumption gives us f,(b) = 0.5 and f,(c) = 0 for all ¢ € B, —{a},
which is a subset of Pg(fp). Because of uniformity of f,, we have f,(By) = {0,1}, and
hence, f,(a) = 1. In the same manner, f,(a) = 0 for all @ € Pé“(fp). The lemma,
therefore holds for 7 + 1-th P-resolutions whenever the lemma holds for 7-th P-resolutions.
By the Principle of Mathematical Induction, the lemma holds for all i-th P-resolutions. O
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Theorem 4.6 (P-uniqueness) Let f, and g, be P-fuzzy switching functions. Then,
fp(a) = gy(a) for every @ € V™ if and only if

1. fr(a) = gp(a) Vae€ A, (4.7)
2. Po(fola) U Pa(fpla) = V3. (4.8)
Proof. Condition 1 is now equivalent to the following.
Va € A fo(a) = gy(a)
¥ [Lemma 3.5]
Va € C*(fyla) fo(a) = g,(a)
§ [Lemma 4.5
Va € Pl(fplA) v PO(fplA) fp(a) = gp(a‘)
¥ [Condition 2]
Va € V' fo(a) = gy(a)
§ [Lemma 4.4)
Va e V" fo(a) = gp(a)
O

By verifying the conditions in Eq.(4.6) and Eq.(4.7), we can see whether any given
restriction A — V is P-consistent or P-unique. Figure 4.2 illustrates the relationship
between some classes of restrictions, where the set of P-unique restrictions is shaded.
Note that any restriction that is unique and P-consistent is also P-unique,

restrictions

representable

—representable  unique

P-unique

Figure 4.2: Classes of restrictions

4.3.4 Representation of P-unique restriction

Definition 4.5 (P-expansion) Let CT(f), C3(f), and C};(f) be expansions of a fuzzy
switching function f, and Pi(f) and Fo(f) be P-resolutions of f. P-expansions of f are
subsets of V' defined as follows:

cr(f)
e

Ci(fiu{ae V3| B. — {a} C Pi(f)}
Ci(f)ufae V| Bo — {a} C Fo(f)}

I
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M

CH () Cmnu{aevm ﬁ:ﬁ%ﬁ;:iﬁ’}

Chf) = clihuetinucton
Theorem 4.7 For any P-expansions of P-unique restriction f,
Co NVl V() =V
Proof. It is straightforward from Theorem 4.4. a

Theorem 4.8 (Representation of P-unique restriction) Let f be a P-unique restric-
tion of a fuzzy switching function, and CT(f) = {a1,...,a,,} be a P-expansion of f. The
P-fuzzy switching function is represented by the logic formula

F=a"va"v..  va*m,
where a® is a simple phrase corresponding to a;.

Proof. From Theorem 4.2, it is sufficient to represent a P-fuzzy switching function to
collect only elements of V' that have the value 1. a

4.3.5 Example

We are now ready to obtain a P-fuzzy switching function from any restriction of a fuzzy
switching function. Let us look at the problem in the Introduction again.

Problem Let A be a subset of V2 such that A = {(0.7,0.1),(0.4,0.7)}, and f be a
mapping f: A — V defined as follows:

f(0.7,0.1) = 0.9, (4.9)
f(04,0.7) = 0.4. (4.10)

Question 1: is there a P-fuzzy switching function such that F(a) = f(a) for every a € A
'7

Question 2: What logic formula does represent f ?

We start by getting quantized sets for the restriction f as follows:

Ci(f) = {07,007 07,00"% (4.11)
= {(0.5,0),(1,0)}, (4.12)
Colf) = {0407} = {(0. 1)}, (4.13)
Cu(f) = {(07,01),004,0.7) 7} (4.14)
= {(0.5,0.5),(0.5,1)}. (4.15)
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Next, for the quantized sets, we have the following expansions:

Ci(f) = Ci(f)u{(0,0)}, (4.16)
Ca(f) = Colf), (4.17)
0y = Cu(f)u{(0,0.5)}. (4.18)
Since they satisfy condition 1 of Theorem 3.5:
anHncslyy = 0 (4.19)
CHAHNCH) = 0 (4.20)
CHANCHS) = 0 (4.21)

and also condition 2, there must be at the least one fuzzy switching function F' such
as F(a) = f(a) for all elements @ of A. For these expansions, we have the following
P-resolutions,

W) = iUl D), (4.22)
Pof) = 1), (4.23)
that satisfy Eq. (4.6) and Eq. (4.7):
PN P(f) = 0, (4.24)
P(f)UP(f) = V5. (4.25)

Thus, by Theorem 4.5 and Theorem 4.6, there is a unique P-fuzzy switching function for
f. With the following P-expansions:

Cr(f) = Ci(HU{{L,05).(1,1)} (4.26)
Cy(f) = Cslh), (4.27)
chn) = Coll) (4.28)

we can uniquely determine the logic formula F which represents f by applying Theorem 4.8
as follows:

Fo= ql00)y ql05.0) y o(10) y ((105) s (11) (4.29)
TYVFIVryVaVay (4.30)
= yVz [by absorption laws] (4.31)

This is the only P-fuzzy switching function which satisfies Eq. (4.9). We demonstrate
this mapping in Figure 4.3. We illustrate these steps in Table 4.5, which shows particular
elements in each step in boldface.

4.4 Conclusion

We have studied the properties of P-fuzzy switching functions, and clarified the necessary
and sufficient conditions for restrictions to be P-representable in Theorem 4.5 and to be P-
unique in Theorem 4.6. These conditions are useful for automatically deriving knowledge
represented as simple logic formula from any given learning data. We also described a way
to represent P-fuzzy switching functions from any P-unique restriction in Theorem 4.8.
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Figure 4.3: P-fuzzy switching function F
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Table 4.5: Truth tables of quantized sets

c(f)

y\e |0 5 1
0 11
D 5
1 0 5

()

e | 0 5 1
0 1 1 1
. b5
1 0 5

£o(f) and Pi(f)

\z | 0 1
0 |1 1

1 0 1
()

Y\ | 0 5 1
0 1 1 1
S5 501
1 0 5 1




Chapter 5

Identification of Kleenean
Functions

Some properties of the partially specified fuzzy logic functions with constants are investi-
gated and the identification problem of logic formula is solved. A fuzzy logic (switching)
function is a mapping represented by means of logic formula which consists n variables,
three logical connectives, and two constants of 0 and 1. In this chapter, any truth values of
[0, 1] are allowed to be constants in logic formula. The fuzzy logic function with arbitrary
constants is called Multiple-valued Kleenean function. Main result is Theorem 5.7 which
clarifies a necessary and sufficient condition for an identification problem of Kleenean
function to be solved.

5.1 Introduction

Fuzzy switching function is a simple mapping represented by a logic formula, and thus can
be used for logical expression of knowledge. We have studied the identification problem of
a partially specified P-fuzzy switching function and clarified the necessary and sufficient
condition for a given partial mapping to be represented by a single logic formula in the
preceding chapter. The results follow an effective algorithm of uncertain knowledge acqui-
sition that fits the best logic formula into a partial mapping specified by typical learning
data of human experts[14].

In practice, fuzzy switching function, however, is not robust, that is, any small noise
of learning data could spoil the consistency because no constant except 0 and 1 is allowed
in logic formula. For example, consider a single variable fuzzy switching function f. For
an element of 0.2, the value of f(0.2) must be either 0, 1, z = 0.2, or ~z = 0.8. None of
fuzzy switching functions can take a value of 0.3, 0.1 or 0.20001.

In this chapter, we allow any constant of [0,1] to be in logic formula such as

fi=03z~y, f =0.20001V z,

which represents a special class of multiple-valued functions called “n-variable multiple-
valued Kleenean function.” Hereafter, we often omit “n-variable” and just say a Kleenean
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function to mean it rather than fuzzy switching function with constants. From a multiple-
valued logical view point, Kleenean function has been studied and the fundamental prop-
erties including the monotonicity, the canonical form and the representation have been
clarified in [20, 24, 25].

We study some properties of Kleenean function which is partially specified by a subset
A = {ay,...,an} of [0,1]" and subset B = {by,...,b,,} of V with f(a;) = b; for all
i = 1,...,m. The identification problem of Kleenean function is to find a logic formula F
such that

fla;) = F(a;) for all a; € A

from given f: A — B. An inconsistent mapping f could involve that there is no Klee-
nean function satisfying f. Hence, the condition for an existence of Kleenean function
representing a given f is important issue and should be clarified.

In this paper, after reviewing some fundamental definitions and properties of Kleenean
functions, we define some variations of quantization, strong, weak, and quasi quantization.
Main result is the necessary and sufficient condition for existence of Kleenean function that
satisfies a given identification problem f: A — B, which provides a knowledge of given f
expressed in a logic formula.

5.2 Kleenean Functions

This section gives fundamental definition of Kleenean function though almost all definitions
arc the same as those of fuzzy switching function except arbitrary constant values of [0, 1].
The biggest differnce between them is the quantization theorem of fuzzy switching function
does not hold in Kleenean function.

5.2.1 Basic Definitions

Definition 5.1 Let V' = [0, 1], V; = {0,1} and V3 = {0,0.5,1} be the sets of truth values.
A logic formula consists of constants of [0,1], n variables 2; ( = 1,...,n), and three
kinds of logic connectives and(A), or(V) and not(~), that are defined by z; Az; = z;2; =
min{z;,z;), ; V&; = max(z;,z;), and ~z; = T; = 1 — ;.

A fuzzy logic function with constants or Kleenean function is a mapping from an n-
dimensjonal Cartesian product V™ to V' which is represented by a logic formula.

or b>a > 0.5 The relation > can be extended to V" by letting a = (ay,...,a,) and
b= (b1,...,bn) be elements of V*, @ > b if and only if a; > b; for each i (i = 1,...,n).
Any two elements ¢ in [0,0.5) and b in (0.5,1] are not comparable with respect to >. We
denote this by a % b. We write a > b to mean that a > b and a # b,

Kleenean function is representable by a disjunctive form which is a disjunction (V) of
some conjunctions (A). There are two types of phrases. One is called a complementary
phrase which contains a literal and its negation such as z; A (~z;) for some z;. The other
is called a sumple phrase which does not.
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Definition 5.3 Let a and b be elements of Vi* and VJ# — V*. A simple phrase o
corresponding to a and a complementary phrase 3° corresponding to b are defined by
a® =2 A~ Azt and g0 = ab Ao A 2b where

z; ifa; =1 T; if b; =1
e = w ife=0 =T ifb=0
1 ifa; =0.5, ;7T if6, =05

forevery i (i = 1,...,n).

Note that the above definition of simple and complementary phrases do not contain
constants of [0, 1] except 1.

5.2.2 Fundamental Properties

Theorem 5.1 (Monotonicity) [24] Let a and b be elements of V" and f be a Kleenean
function.

arb = fla)z f(b)

Theorem 5.2 [24] Let f and g be Kleenean functions. Then, f(a) = g(a) for every
element a of VJ*, if and only if f(a) = g(a) for every element @ of V™.

Theorem 5.3 (Representation) [25] Any Kleenean function f is represented by logic
formula £

F(z) = \/ {/\f(b)a'a.(z)vf(a)ﬂa.(m)}

a€ V3” axb

where a® is a simple phrase corresponding to a and 8 is a complementary phrase corre-
sponding to a (let B,(x)=0if c € VJ*).

Corollary 5.1 [25] Let f be a Kleenean function, @ = (a1,...,a,) a subset of V™. For
any ¢ (r = 1,...,m), we have

fla) = Fo~a; V Fra; vV FoFi Fos V Fosai~a;

where [y, Fy and Fps denote

FO = f(alv"'vai—lvoaa'i-}—l:"'7a71)7
Fl = f(ala"'aai~1317ai+la---aan)’
Fo,s = f(al,.. . ,ai_1,0.5,ai+1,.. . ,(ln).

Proposition 5.1 [10] For any simple phrase a® corresponding to a € V',
a’(a) = 1.
For any complementary phrase 3° corresponding to b € V,* — Ve,

A*(b) = 0.5.
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Proposition 5.2 [10] Let a* be a simple phrase corresponding to a € V.
a>b & a'b)=1
ba = o"b)=05

Proposition 5.3 [12] Let a* be a simple phrase corresponding to @ € VJ* and b be an
element of V' — V', respectively. If a®(b) = 0.5, there exists ¢ € VJ* such that

are¢, brec
Proposition 5.4 [10] Let @ and b be clements of V*, 3° be a complementary phrase

corresponding to b.

a>b < [a)=0.5.

5.3 Identification

5.3.1 Quantizations

A quantization, a useful unary operation, is frequently used in conventional fuzzy logic.
In this paper, we define new types of quantizations, called strong, weak, and quasi quan-
tization.

Definition 5.4 Let z and A be elements of V. A strong quantization > of by ) is an
element of V3 defined by:

0 if0<zx<min(A1-24)<0.5,z#0.5,
A= L if 1>z 2>max(A1—A)> 05,2 # 05,
0.5 otherwise.

2]l
}

A weak quantization x, of 2 by A is an element of V3 defined by:

0 if0<z< min(A1-2X),
T, = Iif max(A,1- X)) <a <1,
0.5 otherwise.
These two quantizations are illustrated in Figure 5.1 (where we suppose A < 0.5.)

Let ® = (z1,...,%,) be an element of V™. Strong and weak quantizations Z* and =,
of ® by A are elements of V] defined by:

= (T, T,

2y = (212,
Example 5.1 The strong and weak quantizations of @ = (0.2,0.7,0.3) are as follows:
= a""=(0,1,0),
a3 = ag7=(0,0.50.5).

a’?

Note that both quantizations by A = 0.4 are equal as follows:

a’t = Qy.4 = (03170)'
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x 0 ll-llx

Figure 5.1: Strong and weak quantizations

Proposition 5.5 Let @ be in V™ and A,7 bein V.
AT = @ ra a r-a,.
Proof. The proof is omitted. o

Definition 5.5 Let @ = (a1,...,a,) € V", and A € V. A quasi quantization of a by A is
a subset of V™ defined by

Q,\(G) = (Q)\(CLI), <o 7Q>\<a'71))1

where
—\ .
V) @ it A#a;,and A £ 1 - a,
@ala) _{ a; otherwise.
Note that either strong or weak quantization can be used in the above definition
because @;* = a;, holds whenever A # a; and A # 1 — a; hold.

Theorem 5.4 Let a = (a;1,...,a,) € V*, and f be a Kleenean function such that f(a) =
b. For any a;, we have

flar, .-, Qulag)s. . an) = b,

Proof. If a; = bor a; = 1-b then Q(,)(a;) = a;, and thus the lemma is trivially true. So
we assume that a; # b and a; # 1 —b. We shall prove by only 8 cases: (i) 0.5 < b < a;; (ii)
0.5 <a; <b;(iii) 0.5 <1-b<a;(iv)a; <b<0.5;(v)b<a; <0.5;(vi)0.5 <1—a; <b;
(vii) 0.5 < b < 1—ay; (viil) 0.5 <a; <1—b.

(i) Suppose 0.5 < b < a;. Then, Qp(a) = (ar,...,ai—1,1,8i41,...,8,) = Fy. By
Corollary 5.1, we have

f(a) = FQN(li V Flai Vv F0F1F0.5 \ 1’10.5(11"\10.1' =b. (51)



CHAPTER 5. IDENTIFICATION OF KLEENEAN FUNCTIONS 59

Fia; and Fol1Fy5 become less than b, that is, a contradiction. So Fy > b. Therefore, we
have F1 = b,1.e., f(ai,...,Qp(a;),...,a,) = b.

(ii) Suppose 0.5 < a; < b. Then, Qs(a@) = (ay,...,ai—1,0.5,8,41,...,a,) = F}. As
the same way in (i), we have that both of a; and ~a; are less than b, and thus, phrase
FoFy Iy s must be equal to b, If Fys > b then by the monotonicity we have F; > b and
Fy > b, which lead to f(a) > F1FyFys > b and so contradiction. Therefore, we have
Fos =b= flar....,Qf(a;),...,a,).

(iii) When 0.5 <1 — b < a; the theorem can be proved as in the case (i).

(iv) Suppose a; < b < 0.5. Then, F(Qy(a)) = F(a1,...,0,...,¢,) = Fy. By equa-
tion (5.1) and a; < b, either phrase Iy~a; or FoFyFys must be b. If Fy > b then
fla) > Fo~a; > b, so Fy < b. While, if Fj < b then the other phrase FyF;Fys also
becomes less than b, hence, Fy > b. Accordingly, only b can be equal to Fy.

(v) Suppose b < a; < 0.5. Then, I'(Qi(a)) = F(ai,...,0.5,...,a,) = Fos. Since
now both a; and ~a; are greater than b, all of four phrases in equation (5.1) can be b.
However, letting Fys < b leads to contradiction because the monotonicity forces F; < b
and Iy < b, that is, all of phrases are less than b. Similarly, Fos > b is also impossible
because the fourth phrase Fysa;~a; becomes greater than b, which arises the contradiction
fla) > Fysa; > b. Therefore, we obtain Fy5 = b.

(vi) (vii) (viii) The case when 0.5 <1 —a; <b,05<b<1-a;,and 0.5 <a; <1 -5
can be proved in the same as (ii), (i), and (v), respectively.

Thus we show the theorem holds for all cases.

0O
Example 5.2
f(0.2,0.6,1) = f(Qo02(0.2),0.6,1)= f(0.5,0.6,1)
= f(0.2,Q03(1),0.9) = £(0.2,0.5,1)
= f(0.2.0.6,Q03(1)) = f(0.2,0.6,1)
= .--= f(0,0.5,1) = 0.3.
Corollary 5.2 Let f be a Kleencan function with f(a) = b. For any ¢ € Vi,
cr Qpa) = fle)=b
c=Qpa) = fle)=1b
Qla) =c = b= f(c)
Proof. Theorem 5.4 shows f(c) = b. Since ¢ = Qy(a) > ¢’, we conclude that f(c) = b >
a

f(c') from the monotonicity of f.

5.3.2 Possibilities of Truth Values

Definition 5.6 Let f be a mapping such that f(a) = b for some @ € V". For f(a) =¥,
we define

a — af(a)’

Te = Zf(a)
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Note that a, > a* always holds, and Corollary 5.2 gives that
f((l) >__ f(a‘*)v
fla*) = fla).

Definition 5.7 Let A = {ay,...,a,,} be a subset of V" and f be a mapping f: A — V.
Fora € V", a” and a, € V", a subset ('f(a) of VJ* is defined by

Cila) = {c € Vla" = ¢} U {a.)

and for A,
Cs(A) = Crlar) U~ U Cplan).
Example 5.3 Let a = (0.3,0.4,0.9) and f be a Kleenean function such that f(a) =0.3.
Then,
a* = (0,0.5,1),

Gs(a) = (0.3,0.5,1),
a. = (05,05, 1),
Cyla) = {a",a.,(0,0,1),(0,1,1)}.

We illustrate the result on a Hasse diagram in Figure 5.2.

(0.5,0.5,0.5)
)

R 0.5,0.5,1)
©Q(a) :(0'310'5s1)

a =(0,0.

O
(0,0,0) (0,0,1) (0.,1.1) (1.1.1)

Figure 5.2: Hasse diagram of Cy(a)

Definition 5.8 Let f be a mapping f(a) = b for some @ € V. For ¢ € Cysla), a
posstbility of truth value is a subset of V' defined by

L(e) = {reVp>=z} ifa* e,
A\ €)= {z €V]z b} ifc> a,

if @* # a,; otherwise

{zeVb=2} ifa*»e¢,
I(c)=4 {z €eV]z»b} ifc> a.,
{b} ifc =a* = a,.
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Example 5.4 Let £(0.2,0.3) = 0.3. Then,

*

a* = (02,03)" =(0,0),
a. = (02,0.3) , =(0,0.5),

and we have

I

L02,05(0,0) = {2z€V[03>a}=[0,0.3],
L0205(0,05) = {z€V]z > 0.3} = [0.3,0.5],

I

where a notation [n,p] shows a subset {z € V|n < z < p}. Figure 5.3 illustrates these
possibilities.

1a(0,1)=[0,0.3]

0_%0‘:(0'1) 0.5
0(a)=(0.0.3),
e 2(0.2,0.3)

o005

Ia(0,0.5)=[0.3,0.5]

Figure 5.3: Possibilities for f(0.2,0.3) = 0.3

Definition 5.9 Let A = {a;,...,a,,} be a subset of V. We write I4(c¢) to mean that:

Ia(e)= () lul(c),

ay EC»';l ()

where ﬂalecf_l(c) is a subset of V* such that {a € V|c € Cy(a)}.

Note that a subset (@) depends on the value of f(a). For example, f(a) =
£(0.2,0.3) = b have the following C(a):

(@) = {(0,0)} ifb=04,
Ci(a) = {(0,0),(0,0.5)} ifb=0.3,
(a) {(0,0),(0,1),(0,0.5)} if b= 0.25,
) = V§ ifb=04.
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5.3.3 K-Representable

We say a given function f: A — V is “representable” to mean there exists at least one
Kleenean function /' such that

Cl:  f(a)= F(a)for all a € A.

In this section, we shall show the necessary and sufficient condition for K-representable
(C1) is that every possibility 74 has at least one element, that is,

C3: Ta(c) # 0forall c€ Cy(A).
To prove (C1) and (C3) are equivalent, we consider an assertion:
C2: F(e) € I4(c)for all c € Cy(A).
First, we show (C1) and (C2) are equivalent by the following lemma and theorem.

Lemma 5.1 Let a, b and ¢ be elements of V", V and V', f a mapping such that f(a) = b,
I,(c) a possibility for e. Then, Kleencan function F' satisfies Fi(a) = b if and only if
F(c) € I,(c) for all ¢ € Cy(a).

Proof. Suppose that I'(a) = b and there is ¢ € C'y(a) such that F(e) € I,(¢). For the ¢
we consider three cases: (i) a* = ¢; (ii) ¢ = a.; (ili) a* = a. = ¢. (Note that we do not
have to consider a case @* ¥ ¢ because of the definition of Ct(a).)

(i) If @* > c then the monotonicity leads to & = F(a*(c¢)) » F(c), and thereby
F(e) € I(c).

(i1) Similarly, if ¢ > a. then F(¢) = F(a.) = b, and thus F(c) € I,(e).

(iii) If ¢ = @* = a. then Corollary 5.2 follows F(c) = F(a*) = b € I,(e) = {b}.
Therefore #(e¢) is always in I,(¢).

Conversely, we suppose that F(c) # b when F(c) € I;(c) holds for all ¢ € C¢(a). Let
Fla)=V,a™=a" and a. =@

(i) If b > b’ then Proposition 5.5 shows a, »= a™ > a*, and hence F(al) > F(a™) >
F(a™). For @™, F must satisfy both &' » F(a™) and

Fa') € I(a") = {z € V]z = b}.

However, no value can be F(a™) because now b > &. Similarly, (ii) & > & follows
Fla,) ¢ L,(a.).
(i) If b # b' then there exists ¢ € C'y(a) such that @* > ¢ and a”™ > ¢, which involve
b > F(e), b= F(e).

Thereby, F(e) cannot take any value since b ¥ .
Therefore, in all cases, F'(¢) € I,(¢) holds, and thus we have the lemma. O
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Theorem 5.5 Let A = {ay,...,a,,} be subset of V", B = {b;,...,b,,},and f: A - B
a mapping such that f(a;) = b; for all # = 1,...,m, respectively. There is a Kleenean
function F such that f(a) = F(a) for all @ € A if and only if F(c) € la(c) for all
ce Cy(A).

Proof.

Ve € Cy(A) Fle) € 14(c)
< VYae€ AVe€ Cy(a) F(e) € 1,(c)
& Vae€ AF(a)= f(a)

a
Example 5.5 Let a = (0.2,0.3) and f(a) = 0.3. All of the following Kleenean functions

satisfy the condition (C2), that is, f;(0,0) € 1,(0,0) = [0,0.3] and f;(0,0.5) € 1,(0,0.5) =
[0.3,0.5] whenever f;(0.2,0.3) = 0.3.

fi = 03~zy~y
fa = y~y

f3 = 03~z~y
Ji =y

fs = ~ay~y
fo = 03~z

Here we show that condition (C1) implies (C3) by the following lemma.

Lemma 5.2 Let A and B be subsets of V™ and V, fi be a Kleenean function fy : A — B,
and T4 be the possibility of f, respectively. For all ¢ € Cs(A), we have

IA(C) - ﬂ ]a(c) 75 @

u,EC!_1 {a)

Proof. Suppose that f4(c) = @ for ¢ € Cy(A). There must be a; and a; in A such that
NS Cf(ai) n Cf(a]') = 0.

() If fi(as) ¥ fr(a;) then af = c and @} > ¢ and hence fi(a}) = fr(c) and fi(a]) =
fr(¢). But no value fi(c) can satisfy both.

(ii) Without loss of generality, we let fi(a;) > fi(a;), Io;(¢) = {x € V]z > f(a;)} and
I, (c) = {z € V|f(a;) = z}. Hence, ¢ = a; and a] > ¢, and thus a] = a;.. However,
from the monotonicity and Corollary 5.2, we have f(a;) - f(a,;) = f(au) = f(a;), which
conflicts the hypothesis. O

Here shows condition (C3) implies (C2). Since F'(e) € I4(e¢) implicitly shows I4(c) #
0, the converse, i.e., (C2) implies (C3), is trivially true.
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Theorem 5.6 Let A and B be subsets of V" and V, and f be amapping f: A — B. I{
I4(c) #0 forall c € Cy(A)
then there is at least one Kleencan function /' such that
F(c) € Ix(e) forall ce Cf(A).
Proof. Let F' be a logic formula defined by
F=1\/ fla)y,
a€A

where

) ag if f(a) > 0.5,

o= { Ba. if f(a) < 0.5,
where a,+ is a simple phrase corresponding to a*, and Bs. 18 a complemental phrase
corresponding to a.. Notice that j3,, could be a simple phrase when a. € Vgt Since F
is a logic formula containing constants of V, it defines a Kleenean functions, and so the
monotonicity must hold here.

We shall prove F(e) € I4(c) under an assumption that I4(c) # 0 for all ¢ € Cr(A).

According to the definition of Cy(A) (Definition 5. 7), we prove by three cases: (1) ¢ =
a. = a*; (2) ¢ = a;.; (3) a’ > ¢, where a; and a;, are elments of C'f(A) such that

‘f(a) ={ceVfla” = c} U {a.}.
(1). If e = af = a; then I4(e) = {f(a;)}. There are two cases: (a) f(a;) > 0.5; (b)
f(a;) <0.5.

(a) If f(a;) > 0.5 then there exists a simple phrase Ya; In F' such that v, =
aqr(€) = a,r(a}) = 1 from Proposition 5.1. Hence

F(e) 2 f(e)aa:(c) = f(e) = f(as).

Then, we show there is no phrase in F such that f()au(e) > f(c) > 0.5.
Otherwise a/(c) must be greater than a.(c) = 1, thereby we have ¢’ > ¢ and
I (e) = {z|f(c') » z} from Proposition 5.2. Wlule since f(c') > f(e), w
have

Ia(e) = I (e)n Ia,(c)
{f(a:)} N [f(a;),1] =0,
which contradicts the hypothesis. Therefore, F(e) € I4(e).

(b) If f(a:) < 0.5 then there is 7y, in F such that y,, = = Bar(e) = far(al) = 0.5.
We thus have

I

Fle) < f(ai)Be(c) = f(as).
We shall show that there is no phrase in F' such that f(aj)’Ya «(c) > f(e) b

possible three cases: ()f(a])aaj( c) > 0.5 > f(e); (i) f(aj)ﬁaj‘( ) > fle )and
aj, € Vgt — V3% (iii) f(a;j)Ba,.(c) > f(e) and a;. € V)
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i. Suppose there is a simple phrase in F such that f(aj)aa;_(c) > 0.5 > f(e).
Since a,:(c) 2 0.5, there must exist ¢’ € V§* such that

al >c, a;rc.
by Proposition 5.3. By Definition 5.7, ¢/ belongs to Cy(A). For ¢,
L,(c) =10, f(a;)], I.;(¢") = [f(ay),1],

and thus I4(¢’) = 0, which conflicts the hypothesis.

ii. Suppose there is a complementary phrase in F such that f(a;)B.;,(¢) >
fla;). Since f,,(e) = B4, (ajx) = 0.5, we have aix > aj. from Propo-
sition 5.3. Hence, I, (¢) = [f(a;),0.5]. We thus have the contradiction
that

Ta(e)

(I

L,(e) N 1y (c)
{f(a:)} n[f(a;),0.]
=0

because f(a;) < f(a;).

i. Suppose that a;. € VJ* and I’ contains a simple phrase such that 0.5 <
f(a;)Ba,,(c) and f(a;) < fB,,,(c). (Note that 3, is not a complementary
phrase when a; € V;'.) Then, a;« € V3 immediately follows that a} =
a;, € V. Since 8, (e) > 0.5, we have ¢’ € Cf(A) such that

cr¢c, an.»=d

by Proposition 5.3. Since aj, is an element of VJ*, ¢ = a;., and thus
¢ > aj.. For ¢/, we have

Ii(e) = IL(c)nl,(c)
= {f(ai)} 0 [0, f(ay)],

which leads to contradiction that I4(¢') = 0 because f(a;) > f(a:).
As we have shown above, the F(c) € I4(e¢) holds for all ¢ € Cf(A) when

c=a;, =a;.

(ii). f ¢ > a;. then the possibility can be either I,,(e) = [f(a;),0.5] or I,,(c) =
[0.5, f(a;)]. We shall prove f(e) = F(c) by two cases: (a) f(a;) > 0.5; (b)
Fla) < 0.5,

(a) Suppose f(a;) > 0.5. There is a simple phrase in F' such that a,s(e) > 0.5,

and hence
0.5< f(ai)aa;(c) < F(e),
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(b)

(iif). If @

while there is no simple phrase such that f(a,j)aa; () > f(a;). Otherwise, from
Proposition 5.2, we have a; > ¢, which leads to contradiction as follows:

]A(C) = Iai(c)ﬁ]a],
[0'57f(ai)] N [f((lj), 1]

=

Therefore F(¢) € I4(¢) holds whenever f(ai) > 0.5.

Suppose f(a;) < 0.5. There is a complementary phrase in F'such that 8,,,(¢) =
0.5, which satisfies

fla:) = f(ai)Ba,.(e) < F(e).
To show F(e) € I4(c) = [f(a:),0.5], we shall prove that there is no other
phrase in F such that f(a,j)aa;(c) > 0.5. Note that we do not have to show
nonexistence of any complementary phrase because such phrase is always less
than or equal to 0.5.
For such simple phrase, Proposition 5.3 gives ¢’ € C'f(A) such that ¢ = a;, > ¢’
and a} > ¢’. Hence, for ¢/, we have contradiction that

Ia(c) = l(c’)ﬂ]aj(c/)

1
[f(a:),0.5] N [f(a;),1]
¢

Therefore, we have F(c) € I4(c) for all ¢ such that ¢ = a;,.

> c then the possibility 7,,(c) can be either [f(a;),1] or [0, f(a;)]. We prove

by two cases: (a) f(a;) > 0.5: (b) f(a;) < 0.5.

(2)

(b)

Suppose f(e) > 0.5. Then, there is a simple phrase in F such that aqr(e) = 1.
Hence, we have
fai) = f(ai)a: (c) < F(e),
which shows F(c) € I4(c) = [f(a;),1].
Suppose f(c) < 0.5. Then, there is no phrase that is greater than f(a;). We
show this by two cases: (i) 0.5 < f(a;); (ii) fla;) < f(a;) <0.5.
1. Suppose there is a simple phrase in F such that fla;) < f(a,j)aa;(c).
Then, by Proposition 5.3, there is an element ¢’ of C¢(A) satisfing af > ¢’
and a} > c¢'. For ¢/, we have

I4(c")

L(¢) N L, ()
[0, f(a:)] N [f(az),1]
= 0,

which conflicts with the hypothesis.
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ii. Suppose there is f(a;)B,,.(¢c) > f(a;). If aj # a;. then 3, (¢) = 0.5. By
Proposition 5.4, we have ¢ > a;., which leads to
I4(€) = L)1, (e)
= [0, f(a:))]N[f(a;),0.5]
= 0,
since now f(a;) < f(a,).

Even if a’ = aj,, ie., a’

; € V3" and B,,, becomes a simple phrase, ¢’

involves

Ia(e) = [0, f(ai)]n {f(a;)}
= {.

As we have shown above, the theorem holds for all cases, and we obtain the theorem.
O

Here shows the necessary and sufficient conditions for an existence of Kleenean function
that satisfies F(a) = f(a) for all @ in A.

Theorem 5.7 (K-representability) Let A = {ai,....a,) € V" and f be a mapping
f 1A — V| respectively.
I4(e) £ for all c € Cf(a)

if and only if there is at lcast one Kleenean function F such that
F(a)= f(a) forall ac A.
Proof. As we have shown, by the theorems and lemmas, now the followings are equivalent:
Vee Ci{A) Iale) £0
& VeeCs(A) F(e) € I4(c)
& Vac A F(a)= f(a).
O

The following propositions are not used here, but also important properties with re-
spect to K-representablity.

Proposition 5.6 Let f:a — B. For any a, b of C¢(A), if a > b then
lub(I4(a)) = lub(Z4(b))
where lub(Z4(a)) is a least upper bound of I4(a).
Proof. The proof is omitted. O

Proposition 5.7 Let f: A — B, a, b elements of Ct(A). If glb({a, b}) is not empty set
then

glb({lub(Z4(a)),lub(I4(b))}) # 0,

where glb is a greatest lower bound.

Proof. The proof is omitted. ]
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5.3.4 Example

We consider a subset of 12
A= {(0.1,0.6), (0.4,0.5), (0.1,0.2),(0.9,0.2),(0.7,0.9)}

and a mapping f: A — V defined by:

flay) = f(0.1,0.6) = 0.3,
flaz) = £(0.4,0.5) = 0.4,
flaz) = £(0.1,0.2) = 0.2,
flas) = £(0.9,0.2) = 0.8,
flas) = f(0.7,0.9) = 0.6.

The goal of the identification problem is to find a logic formula I which satisfies the given
f for all elements of A.
First, by quantizing each a; by f(a;), we have

(lik = Aix = (0,05),

a; = (0,0.5),

A, = (05,05),
az; = (0,0),

€13, = (0,05),

a; = (1,0),

Qg = (],05),

a; = as. =(1,1),

that give subsets of V.* for a; € A,

Crla) = {e€ Vilaj = c} U {ar)
= {(0,0),(0,1),(0,0.5)}U{(0,0.5)}

similarly,
Cilaz) = {(0,0),(0,1),(0,0.5),(0.5,0.5)},
Cylas) = {(0,0),(0,0.5)},
(0‘4) - {(, )7(1 05)}
Crlas) = {(1, 1)}

Next, we have every possibility for each a; as follows:

I,(0,0) = {zeV|f(ay) > z} =10,0.3]
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1.,(0,0.5)
1.,(0,0)

1.,(0.5,0.5)

I.,(0,0)
1,,(0,0.5)
I,(1,0)
I, (1,0.5)

1, (1,1)

5

= [a1(071)7

= {03},

= [0,0.4]
= 1,(0,1) = 1,,(0,0.5),
= {2 eViz > faz)} = [0.4,0.5],

= [0,0.3),
= [0.3,0.5),

= [0.8,1],
= [0.5,0.8],

= {0.6).

For ¢ = (0,0.5) € Cf(A), we have

14(0.0.5) =

N

a,eA,(0,0.ES):Cf(u,']
10,(0,0.5) (1 £,,(0,0.5) 1 I, (0, 0.5)
{0.3) n[0,0.4) N [0.2,0.5]

{0.3).

69

1,,(0,0.5)

As the same way, we obtain the other possibilities and show them on truth table of V2 in

Table 5.1.

Table 5.1: Possibilities on V2

z2\z1 | O 0.5 1
0 |[0,02] : [0.8,1]
0.5 | {0.3} |[0.2,0.5] | [0.5,0.8]
1 {[0,0.3] : {0.6}

Looking at the table, we show there is no possibility of @}, thereby, from Theorem 5.7,
there must be at least one Kleenean function F.
Finally, we obtain the logic formula ¥ as defined in the proof of Theorem 5.6:

F =
a; €A

v f(ai)7ai

= fla1)Bpos) v fla2)Be.5.05) v fla3)B,0.5)
Vf(as)aq s Vv flas)aq

= 03~z y~y V0dz~zy~y V 0.2~zy~y
VO0.8z~y V 0.6zy

= 03~zy~y Vv 0.8z~yV 0.62y,
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which satisfies
F(a) = f(a)for all a € A.

We show the whole mapping F on Figure 5.4.

s e
CEERE A i
*‘&%ﬁ,ﬁ@%%@ 2

Figure 5.4: Kleenean function F

5.4 Conclusion

We have studied the partially specified Kleenean functions, and have solved the identifica-
tion problem. The main result is that the necessary and sufficient condition for existence

of Kleenean function is non-empty possibilities defined by a given f.



Chapter 6

Fitting Fuzzy Switching Function

In this chapter, we propose an algorithm which takes a piece of uncertain knowledge which
is a mapping with restricted domain and outputs the logic formula with the shortest dis-
tance to the given mapping. The execution is done in three steps; first, the given mapping
is divided into some Q-equivalent classes; second, the distances between the mapping and
each local fuzzy switching function are calculated by a simplified logic formula; and last,
the shortest distance is obtained by a modified graph-theoretic algorithm. After showing
example, the total time to execute the algorithm is also estimated.

6.1 Introduction

We have studied some uncertain reasoning methods based on some properties of fuzzy
switching functions, P-fuzzy switching function, and Kleenean functions. These models
can treat any given response of a human expert with representability and uniqueness. In
this inference scheme, we suppose that uncertain knowledge is a mapping, say fo, and find
the fuzzy switching function f that satisfies the exact value of fo.

However, these models are too restrictive for human knowledge. Thus, some noise and
incompleteness involved by human response could spoil the consistency of fuzzy switching
function. Here, we suppose a human expert’s response based on a logic formula but with
some noise, and then attempt to fit fuzzy switching function to the underlying knowledge.
Let us formalize the fitting problem.

Fitting Problem Find a 2-variable fuzzy switching function f* with the short-
est distance to the following mapping fo:

f0(0.8,0.7) = 0.9,
£0(0.3,0.1) = 0.,
f0(0.4,0.8) = 0.3,
f0(0.7,0.6) = 0.8,
£0(0.6,0.9) = 0.6.

71
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Where a mapping f; is defined on A = {(0.8,0.7), (0.3,0.1), (0.4,0.8), (0.7,0.6), (0.6, 0.9)}.
We should also define a distance between two functions. Let, J and g be mappings f: A —
Vand g : B — V. The distance D(f,g) between f and g is defined by

D(f,9)= 3 |f(a)-g(a),

a€EANB

where | f(a) — g(a)| is the absolute value of f(a) - g(a).

The first thing we can do with this problem is to examine each fuzzy switching function
one by one, which is called the “brute force algorithm.” This works well with a low
number of variables up to 3, because there are exact 43,918 fuzzy switching functions
with 3 variables. According to [15], the number of n-variable fuzzy switching functions
increases in time O(2%").

In this chapter, we will divide a problem into some meaningful small problems, what
we call Q-equivalent classes, and estimate each distance to the given fy, and then combine
them so as to represent a fuzzy switching function. This will allow us to find the fuzzy
switching function f* with the shortest distance for all possible combinations of the classes.
We use a graph-theoretic algorithm to find f*, which is a variation of Dijkstra’s shortest
path algorithm.

6.2 Dividing into Q-equivalent Classes

6.2.1 Quantized Sets and Q-equivalent Classes

Definition 6.1 Let a = (a,...,a,)in V™. A quantized set of @ is a subset of VJ* defined
by
Clay={a* eV | Ae V).

For a subset A = {a;....,a,,} of V", we often write C(A) to mean that

C(A) = Clag) U U Clan).

Example 6.1

{(0:4,08)",(04,0.8)°, (0.4,08)")

= {(0,1),(0.5,1),(0.5,0.5)}

C((0.4,0.8))

Definition 6.2 Elements @ and b of V" are Q-equivalent if and only if the quantized sets
satisfy C'(a) = C(b). We write a ~ b in this case.

Example 6.2
(0.8,0.7) =~ (0.7,0.6)

(0.3,0.8) ~ (0.2,0.9) ~ (0.4,0.9)
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Definition 6.3 Let 4 be a subset of V" and a € A. A Q-equivalent class containing a is
a subset of A defined by

The set of all equivalence classes of A is denoted by [A],i.e., [A] = {[a] Cc A]a € A}l

A partition of a nonempty set S is a collection of nonempty subsets which are disjoint
and whose unijon is S. Since & is an equivalence relation, we have a partition Af/~=[A] =
Ay,..., Ay, that is, A; and A; are disjoint and the union is A:

AiNA; =90 for every ¢ # j,
A:Alu"'UAm-

Example 6.3 Recall A in the introduction. We have the partition

A

{(0.4,0.8),(0.6,0.9),(0.7,0.6),(0.8,0.7),(0.3,0.1)}
{(0.4,0.8)} U {(0.6,0.9)} U {(0.7,0.6),(0.8,0.7)} U {(0.3,0.1)}
= AlUAQUA3UA4.

[l

Figure 6.1 shows how we divide A into Q-equivalence classes. The three small circles
indicate all elements of quantized set of C'(0.4,0.8) that characterizes Q-equivalent class
Aj.

Figure 6.1: Partition [A]

6.2.2 Some Properties of Q-equivalent Classes

Proposition 6.1 Let C(a) = {a4, a,, ... , @} be a Q-equivalent class in V3*. Then

a; > a;ora; >a; foreveryi,je {L,...,m}.

'In general, a domain of fuzzy switching functions can be divided into a few subsets in which variables
are in order[18]. This is called cell space and corresponds to a Q-equivalent class. It should be noted that
their boundary conditions are slightly different. For example, both (0.5, 0.2) and (0.6, 0.2) are in the same

cell space, while C(0.5,0.2) = {(0.5,0),(0.5,0.5)} # C(0.6, 0.2) = {(1,0),(0.5,0), (0.5, 0.5)}.
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This means that there are subscripts i1 < iy < .-+ < 4, so that
a, ra, - >a,

which implies that
al>a?> ... > ™

where o' corresponds {0 a quantized set a;.
Example 6.4 Tor quantized sets C(a) = {(0,1),(0.5,1),(0.5,0.5)},
a0503) | 5 4(051) _ y > a0l = 3y
Proposition 6.2 The number of elements of a quantized set by @ € V™ is at most n + 1.
Proof. Proof is omitted. O

Proposition 6.3 The number of quantized sets that have n + 1 elements is 27n!, and of
quantized sets that have one element is 37.

Proof. Proof is omitted. O

Proposition 6.4 Let a = (a1,...,a,) € V™ such that a; # a;, a; #1— a; for all 4 £7J
in 1,...,n. Then, the number of quantized sets that have n + 1 — ¢ elements is

( 7; )31‘2”*(71_ i)!

Proof. Proof is omitted. O

The total number of I-variable quantized sets is 33 and that of 2-variable quantized
sets is 33. However, general number of n-variable quantized sets is unknown. Note that a
number of quantized sets of A is always less than the number of elements of A.

Proposition 6.5 Let a = (a1,...,a,) and b = (b1,...,b,) be elements of V™. Then
a = b if and only if @;% = b_ib’ for every 4, in {1,...,n}.

Proof. Suppose ;% > 5;” for some 7,7 when a ~ b. Then, @’ > 5. Consider A € V
such that b_iA = a;* = 0.5. Since b; > }, 1—)7\ = 0.5 # @;% € {0,1}. Thus, there is no X
that satisfies @ = 5/\, that is, @ ¢ C'(b). When b—ib] & @;*, similarly @ ¢ C(b). When
a7 =0 and b_z-bj = 1, apparently there is no A such as b_z-)‘ =a;". Therefore, in any case,
T = b—ibJ.

Conversely, suppose @;% = b_ib’ for every i,j. For any ) ¢ {0,1}, &* = b =
(0.5,...,0.5). Forany A\ € V — {0,1}, there is k such that @ = @* and b = B,
Thus, we have a > b. )
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Theorem 6.1 Let f and g be fuzzy switching functions, and d € V7. Then, f(a) = g(a)
for all @ € C(d) if and only if f(b) = g(b) for all b€ V" such that b ~ d.

Proof. Suppose f(b) # g(b) for some b € V" when f(a) = g(a) for all @ € C(d). By
Theorem 2.3,

) S — =\
f(b) = f(b7) # g(b) = g(b")
for some A € V. This is contradictory to the hypothesis.
Conversely, suppose f(a) # g(a) for some a ~ d € C(d) when

f(b) = g(b) for every ba d.
Then, there is a b€ V™ such as b = a, and for b,

TA Z A A —=A
fla) = J(b7) = J(b)" # g(a) = g(b") = g(b)".
Since b ~ d, this contradicts the hypothesis. a

Example 6.5 Given f(0.1), f(0.5,1) and f(0.5,0.5), subset of 1% £(0.3,0.8) is deter-
mined uniquely by them.

Corollary 6.1 Let f be a fuzzy switching function, and C(z) he a quantized set of z in
Clz).

Flz)=\/ ( A F(b)a“(m)VF(a)ﬂ“(w))

aeC(x) \a>xbeC(x)

For example, (0.3,0.8) can be determined from only three values F(0,1), F(0.5,1) and
£7(0.5,0.5). This means that any fuzzy switching function can be divided with some of
quantized sets.

6.3 Estimation of Local Distances

6.3.1 Partially Specified Fuzzy Switching Function

According to Theorem 2.5(representation theorem), any fuzzy switching function can be
determined by 3" parameters F(a) for a € V3'. However, 3" is too many to identify a
logic formula. In this section, we will reduce the number of parameters.

Definition 6.4 Let a € V', and b € {0,1}. Wesay a fuzzy switching function f is a
partially specified or a restriction if and only if fla)=band f(¢)=05forallc € V3 such
that ¢ > a. A partially specified fuzzy switching is denoted by f°. We often write R(C)
to mean a set of all partially specified fuzzy switching functions by C = {¢,, ... ,€Ci}, that
is,

R(C)={flla€ C,be {0,1}}).
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Note that ¢ > a does not mean ¢ = a.
Also, note that a partially specified fuzzy switching function is, generally, not unique.

For example, here are two restrictions f(lo):
f](.’L‘)IE, fg((L‘):(E\/f.
Both of them satisfy f(0) = 1 and f(0.5) =0.5.

Example 6.6 We illustrates six partially specified fuzzy switching functions for Cla) =
{(0,1),(0.5,1),(0.5,0.5)} in Figure 6.2. Where a small circle for each function indicates a
of f2. There are two choices of b for each element of C'(a), which has three elements. The
total of partially specified fuzzy switching functions is thus six.

Next, we will show that any fuzzy switching function can be represented by combing
some partially specified fuzzy switching functions.
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0 1
f(O.S.O.S) f(O.S,O.S)

Figure 6.2: Partially specified fuzzy switching functions f
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Lemma 6.1 Let f be a fuzzy switching function and d € V. If f(d) € V5 then

fla)=0.5 forall @ € C(d) such as @ > a*,
f(a®) € {0,1},

where a* = Ef(d).

Proof. Since f(d) ¢ Vs, obviously, f(d)f(d) = f(af(d)) = f(a*) € {0,1}. For any b > a*,
there is a A € V such that b = d > ' and f(d) = A. Thus f(d)/\ = 0.5, and thus,
£(@Y = f(b) = 0.5. o

Theorem 6.2 Let d € V™ and f be a fuzzy switching function. For every ¢ € V™ with
cx~d,

fle)= F1* e,

where a* = Ef(d).

Proof. For any ¢ = a*, obviously Fj.(a‘)(c) = f(c). For any ¢ > a~, Flf.(a')(c) =0.5=
f(e) [Lemma 6.1]. For any a* > e, F(f,(“‘)(c) = f(a*) = f(c) [Theorem 2.2]. Thus,
Faf.(a‘)(c) = fla”) = f(c) for all elements of C(d), and by Theorem 6.1, Faf.(a‘)(c) =
f(a™) = f(e) for all elements of [d]. a

This theorem states that a fuzzy switching function can be determined uniquely within
the given Q-equivalence class, and that for any fuzzy switching function £, there must be
! in a given Q-equivalence class. Hence, combinations of (a,b) are enough to represent
all fuzzy switching functions.

Corollary 6.2 Let 4 = {ai,...,a,} be a subset of V7", Ay, ..., A; be Q-equivalent
classes of A, and f be a function f A= V. For any fuzzy switching function F, there
are @y, ...,a, € VM and by,... b, € {0,1} that satisfy

DIEf) =) (flas) = F(a:)) = 3 D(FY fla,)
1=1 =1
where f|4; is a restriction of f by A, that is, fla, 0 A; — V.
Proof. It is a straightforward from Theorem 6.2 and the definition of D. a

Example 6.7 Let A4; be as in Example 6.3. For F(z,y) =gV 7y,

D(F,f) = D(F(lo,l)vf’A]) + D(F(c;,o)vfl/lfz) + D(F(Olp)?f,/is) + D(F(lo,syo),f,AJ'



CHAPTER 6. FITTING FUZZY SWITCHING FUNCTION 79

6.3.2 Representation of Restrictions

Theorem 6.3 Let dc V", ¢ ¢ C(d), b € V3, and f be a fuzzy switching function. For

a € V"™ such as a ~ d,
b ) of(a) ifb=1
ﬂm”‘{mm) if b=0.

Proof. For ¢ > a, fi{a) = 1 = o%(a) = 1 and fHa) = 0 =a%(a) =0 [Proposition
22]. Fora>e, f’(a)=0.5= a‘(a) = a*(a) = 0.5 [Proposition 2.4]. Thus, the theorem
holds for all elements of C(d). Therefore, by Theorem 6.1, we have fl(a) = a‘(a) and
fAa) = a(a) for cvery a ~ d. o

Example 6.8 Let d = (0.3,0.8), and ¢ = (0,1) € C(d). For any @ € V™ such as
a ~ (0.3,0.8),

fon(a) = o®V(a) = Ty(a),
fony(a) = o®(a) =Ty(a) = (z v 7)(a).
Since 0 <7< a<05<T<y<1 [Proposition 6.5], we have

Mron=1(x) =7, fly01)=0(x) = .

Example 6.9 Let fy and A4 be as for the fitting problem shown in the Introduction. We
calculate every distance to f, for each Q-equivalent class in [A]. For d = (0.8,0.7) in A,
we have the quantized set C'(d) and the Q-equivalent class [d]:

Cld) = {(1,1),(1, 0.5),(0.5,0.5)},
[d = {(0.8,0.7), (0.7,0.6)}.
By Corollary 6.2, the distances for every fuzzy switching function are given by examining

cach a in C(d), that is, |C(d)| - |Va| = 3-2 = 6 restrictions in [d]. Theorem 6.3 is useful
to simplify the calculation of distances. For example,

D(fiay fol) = 3 Ifo(a) = alt(a)]

a€ld]
[hm&&ﬂ—(wm&aﬂkHﬁmJﬂﬁyﬂmeﬂﬁW
0.9 -0.7] + [0.8 — 0.6] = 0.4

0.9 - 0.3] 4+ (0.8 - 0.4| = 1.0

fl

D(f{ .1y, folay)
Table 6.1 lists the distances to fy for each Q-equivalent class, A;,..., Ay.

6.4 Combining Local Solutions

In the previous section, we have obtained a]l possible local distances for each Q-equivalence
class in the partitions [A]. The next problem is how to combine them and find the global
solution f* with the shortest distance. We use a graph-theoretic algorithm, which is a
variation of Dijkstra’s shortest path algorithm[23].
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Table 6.1: Distances E(f, k)
E(f£7f0|A1) E(f£7fOIA2) E(fgaf0|A3) E(f37f0lA4)
a\b 1 0 a\b 1 0 a\b 1 0 a\b 1 0
(01) J03 01 (1) [0 02  (L1) |04 10  (0,0) |01 03
(0.51) 105 01 (0.51) [03 02 (1,05) (02 12  (050) | 0.3 05
(0-50.5) | 0.7 0.3 (0.50.5) [ 04 06 (0.50.5) | 0.3 1.7 (0.50.5) |04 0.6
6.4.1 Condition for Two Functions for Representable

Corollary 6.3 Let A and B be distinct subsets of V3, f and g be restrictions of a fuzzy
switching function such that f : 4 — V and g B — V. There is a fuzzy switching
function F that satisfies F(c) = f(e) for all ¢ € A and F(c) = g(c) for all ¢ € B if and

only if

R)(CIN V@) N(C(NUCHg) =0 for every i # ;.
Proof. The corollary is obvious from Theorem 3.2 (disjoint) and Theorem 3.5 (repre-
sentability). O

Example 6.10 For the following restrictions of fuzzy switching function fy, fa, f3 :

fl(o'/ )=

1, £1(0.5,0.5) = 0.5,
f2(1?1) =0,

f2(0.5,0.5) = 0.5,

£(0.5,1) = 1,
f)(l,OS) =0,

there is no fuzzy switching function that satisfies both. That is because element (1, 1) e

CT(f1) N C5( f2) violates the condition (R) in Corollary 6.3.
6.4.2 Algorithm FFSF
Input: A subset of A = {ai,...,a,} and a mapping fy: A — V.
Stepl: For each a; of A, obtain the quantized set C(a;).

Step2: Based on C(a1),...,C(ay), make A be partitioned into several Q-equivalent
classes as follows:
A=la]U[az]U---Ula]],

where a; is the representative element of Q-equivalent class.

Step3: For each Q-equivalent class [@;], obtain a set of partially specified fuzzy switching
functions R(C(a;)) as follows:

R(C(a:)) = {fllc € C(as),b € {0,1}).
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Step4: For each element f° of a set R(C(a;)), calculate the distance to the restriction fo
of [a}]. For simplification, we write the distance by

DS = DU, folpa):
According to Theorem 6.3, D'( f°) is obtained by,

ifrby _ Zae[ai] lfo(a) —a(a)l ifb=1,
D) ‘{ > seioy | fola) - a7(@)] if b= 0.

Step5: Chose the partially specified fuzzy switching function that has the shortest dis-
tance to fo for R(C(a})), and write it by 7. If there are alternative element, chose
any of it. Let & = 0.

Step6: Verify that (rf,.. .,7'11“) satisfies the condition (R) of Theorem 3.5, that is,

for every ¢ £ i' € {0,1,0.5}. 1f this holds, go to Step 8.
Step7: Chose an alternative combination (#i+1, ... ,erH) so that the distance to fy is as
short as possible. If there are several combinations, chose carefully to avoid infinite

loop. Then, letting £ = k£ + 1 and back to step 6.
Step8: Let f* be the fuzzy switching function defined by
[*(a) = rf(a)
for all @ € A such that a € [a!]. Obtain the logic formula F* as follows:
FF=\/ o \/ g,
a€CT(f*)  beCy,(f*)

where o® and 8 are a simple phrase and a complementary phrase corresponding to
a and b.

Output The fuzzy switching function f* and the logic formula F*.

Proposition 6.6 A fuzzy switching function f* computed by Algorithm FFSF has the
shortest distance to f.

Proof. Consider fuzzy switching function g that has shorter distance than f* when k = 0.
By Theorem 6.2, there must exist a partially specified fuzzy switching function f,f such
that g{a;) < 72(a;) = f%(a;), which contradicts step 5. Hence, there is no g for k = 0.
By the mathematical principle of induction and step 6 and 7, no fuzzy switching
function g has smaller distance than f*. O
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Proposition 6.7 A logic formula £ computed by Algorithm FFSF represents the small-
est fuzzy switching function for all fuzzy switching functions that satisfy f*.

Proof. If f+ is unique, that is, C(f") = Vi, then the proposition is clearly true. We
prove that F* is the smallest for all @ € VJ* — C(f*).

Obviously, there is no @ such that F*(a) = 1, because from the definition of VN
contains a simple phrase a® such that a > a, which conflicts with step 8 and the definition
of C~,

Next, when F(a) = 0, the proposition holds. Finally, we show there is no fuzzy
switching function ¢ such that g(a) = 0, F*(a) = 0.5. Since F*(a) = 0.5, there exists a
simple phrase o’ such that b € CT(/f") and @ = b. Then, g(a) = 0 and g(b) = 1 violates
the monotonicity. Therefore, we have that F* is the smallest. a|

Proposition 6.8 Algorithm FFSF always stops.

Proof. It is obviously true because the shortest fuzzy switching function must exist for
any fo. m)

6.4.3 Replacement with Undirected Graph

Algorithm FFSF is general and does not specify any rule for selecting partially fuzzy
switching functions. This section provides more concrete algorithm that is suitable for an
implementation on computer.

Definition 6.5 Let D = {dj,... ,dn} be a subset of V7, A (undirected) graph G char-
acterized by D consists of two nonempty sets, the set V(G) of vertices of G and the set
Ed(G) of edges of GG as follows:

V(G):{fl[d]lf€f7ld€ D}:V€1UV€2U"'UV€5

where F is a set of all n-variable fuzzy switching functions and Ve; (i = 1,...,s) is defined

by
Ve ={fluj | f € Fn} = {Uz'lavz?a-~-7vi(2(n+1))}'

If vertices u,v € V(G) satisfy the following conditions:
(R) (Crw)uCr(v))n (CHu)uCi(v)) =0  for every i # j,
(A) there is no vertex w in V(G) with edges {z,w} and {w,v},
then edge {u,v} is in Bd(G).
A weight W(v) of a vertex v in V(G) is defined by

W(v)= E(v,h)= 3 |fo(d) - v(d)|
deC(v)
where E(v,h) is a distance between v and fo, and C(v) is the quantized set of v, which

corresponds to the Q-equivalent class.

Example 6.11 Figure 6.3 illustrates the undirected graph G given by D in Example 3.3,
where restrictions v;; are indicated on the truth tables for Vi
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Ve1 Ve2 Ve3 Ve4 Ve1
11
1 1 11 1 1
11 1 11
0.7 4 03 0.4 0.7
11
5 5 51 5 5
11 11 { 11
0.5 0.3 0.2 0.3 0.5
15
5 5 5.5 5 5
15 51 1 15
0.3 0.0 0.4 0.1 a3
05
5 5 5.5 5 5
0.5 50 0 05
0.1 02 1.0 0.3 Q.
00
5 5 50 5 5
00 00 0 00
0.1 qa.5 1.2 0.5 .1
00
0 0 00 0 0
00 00 0 00
0.3 0.6 1.7 0.6 0.3

Figure 6.3: Graph ¢

6.4.4 Shortest Path Algorithm(SPA)

To find f* with the shortest distance D(f*,h) is to find sequence vi,...,v* in V(G)
such that 377 E(v?, k) is the lowest value for all others. We prefer a quicker way without
checking all possible combinations.

Assume Ve;, Ve, 1 € V(G) are in order so that edge {v;,vi41} € Ed(G) for some
v; € Ve; and viyy € Ve, Figure 6.4 shows how the shortest path algorithm works with
min-weight W;.

Example 6.12 We apply the shortest path algorithm to the graph @ in Example 3.9 (in
Table 6.2).

Table 6.2: Matrices W(G)

VR N1 2 N1 2 3 N1 2 3 4
1|7 1|7 11 1 |7 11 14 1|7 11 14 21
2 | .5 2 |5 .8 2|5 8 3 2 |5 8 3 6
3 |.3 3 (3 .1 303 1 5 303 1 5 .4
401 401 3 411 3 13 401 3 13 6
5 1.1 511 .6 5 1.0 6 15 501 6 15 10
6 | .3 6 |3 .9 6 |3 9 23 6 |3 9 23 29
W(v;) W(v;;) Wi(vi;) W4 (v;;)

Clearly the shortest path algorithm always stops, and the minimum weight in final
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Shortest Path Algorithm(SPA ).

For each v in Ve,

Set Wl(v) = E(v,h)
Set Pl(v) = {v}
End for
Fori=2tos

For each v in Ve,

For each u in Ve;y with {u,v} in Ed(G)
If Wiv) > Wit (u) + E(v, h)

Set W(v) = Wi !(u) + E(v,h)
Set u* = u

End for
Set P'(v) = P~ (u*) U {v}
End for
End for

Figure 6.4: Algorithm SPA
Ws:

* = min W*(v) = E(f*
w 0211‘/25” (v) = E(f",h)

is the intended distance to f* and P* = Ps(v*) = {vf,va%,...,v]} gives f*, that is, for
any d € D,
fH(d) = v*(d) for some v* € P*.
Example 6.13 Given W* and P* in Example 6.12, we have
W* = min W4v) = W*(vg3) = 0.03,
’UEV84
Pt =

{U14, 23, V32, '043}.
According to Theorem 4.8, we can reconstruct the logic formula representing f* as follows:

f*(z,y) = zyveVeyVITeTyV aTyV Yy

= VI

This is the answer f* and we have solved the fitting problem. Note that z V TY£zVTY
in fuzzy lagic.
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6.4.5 Estimation of SPA

If we simply examine each fuzzy switching functions one by one, using a brute force
algorithm (BFA), it takes as much time as the number of n-variable fuzzy switching func-
tions ||, which is greater than the number of n-variable boolean switching functions
|Bn| = 2%". The time to execute BFA is thus 0%,

For simplifying the estimation, we assume D & (V — V3)" as we have done in the
examples. The number of Q-equivalent classes |[D]| is at most 2%n!, because by Proposition
6.5, it is equal to the permutation of n variables with two literals z; and ;. For each Q-
equivalent class [d], there are 2(n+1) restrictions of fuzzy switching functions. The number
of vertices [V/(G)| is thus less than or equal to 2(n + 1)-2%n! = 2"+l (n 4 1)!. For example,
when n = 2, [V(G)| = 22+1 . (2 4 1)! = 48. If we examine all of the possible sequences
V15, Vs in V(G) so that v; € Vey, then the total time is O(2(n + 1)2"""), which is worse
than BFA.

The computation could be speeded up considerably by the shortest path algorithm
(SPA). The comparison/replacement step inside the u-loop takes at most some fixed
amount of time. The step is done at most |[Ve,_,| = 2(n + I) times in the u-loop, which
1s done [Ve;| = 2(n + 1) times for the v-loop, which is done s — 1 = 2"n! — 1 times for the
outside i-loop. The total time to execute the algorithm is O2(n+1) 2(n+1)-2"n!) =
O(2"* 2n!(n 4 1)?). Table 6.3 is how long each algorithm takes for n = 1,...,5.

Table 6.3: Computational times

n\ algorithm BFA(|F.1) | BFA’(|B,]) SPA
o(?) O(2%) | 0(2*"'n!(n + 1)2)

1 6 4 16

2 84 16 144

3 43918 256 1536

4 160297985276 65536 19200

5 — | 4294967296 276480

6.5 Conclusion

We have proposed an algorithm to find the fuzzy switching function with the shortest
distance to a given partial function. We have proved that the division of the uncertain
knowledge into some Q-equivalent classes is sufficient to calculate all possible local dis-
tances in Theorem 6.1, and have shown some useful properties with respect to restrictions
of fuzzy switching functions. The shortest path algorithm can work with a large value of
n on weighted graph GG which corresponds to all possible n-variable fuzzy switching func-
tions. We have also estimated the algorithm and shown that it can reduce computation
in finding the fuzzy switching function with the shortest distance for all others.
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Practical Example

This section shows how a logic formula is derived from a real estimation made by a person.
An example of winning possibilities of several baseball teams is demonstrated.

In the algorithm, an evaluation made by humans is represented by a single logic formula
instead of several IF-THEN rules.

7.1 Example: Baseball teams

7.1.1 Introduction

When a person makes some decisions, he/she unconsciously uses a certain logic. For
example, a winning possibility of baseball game depends mainly upon the good batter and
the good pitcher. Other factors such as the defense or the director are used optionally. Our
decision making processes is made based on the logical relationship among the estimation
factors. The estimation, however, involves uncertainty and incomplete, which make it
difficult to derive the underling logical knowledge.

In this section, we are trying to model such human estimation by means of fuzzy
switching functions. The algorithm proposed in preceding section takes input data given
by an expert and output the best logic formula that has the least difference of the input
data. This approach has the advantages as follows:

A single logic formula is never inconsistent, while several IF-THEN rules might
conflict each other.

* By taking the sum of all input data would cancel the small noise of input data, which
is a critical in exact matching.

e The total time required in the algorithm is proportional to number of input, so it
can be used in practical large scale knowledge acquisition.

e The total error provides the degree of approximation.

86
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7.1.2 Sample Judgment by Expert

A sample data of evaluation, which will be used as a learning data, is given by questioning
an human expert. We consider four factors:

z1: batting,
xy:  defense,
x3: pitching,
T4 manager,

to determine the possibility of winning. The range is 0 to 1, with 0 means “absolutely bad,”
I means “the best,” and 0.5 means “unknown.” For example, z; = 0.8 means “the team
has good pitcher with degree of 0.8,” or “the team has many nice pitchers,” and z, = 0.2
means “the lack of good pitcher is weak point of the team with certainty.” Notice that
the degree of 0.2 simply shows certainty of 1 — 0.2 = 0.8 rather than uncertainty. Hence,
the most uncertain degree is 0.5.

With the above estimation, the expert answers the possibility of winning by a truth
value of [0,1]. We denote the possibility by fo(z1,22,23,24) or shortly fo(z).

Table 7.1 shows a result of questioning for twelve baseball tecams.

Table 7.1: Sample Estimation (input)

Team | 27 x2 x3 24 | fo
T D o6 8 6.5
G 6 6 7T 7.7
¢ S 7 6 6.5
5 6 5 7 817
Y 4 5 5 6| 4
D S o4 4 313
L K 8 B 8.8
B B 6 6 6.6
F 6 5 6 5| 4
H 6 6 7 81 .5
M 6 4 5 6| .4
X 4 5 5 31.3

7.1.3 Fitting Steps

Input: Let A and f; be a subset of V4 and a mapping fy : A — V defined by Table 7.1.
We denote A by a,,...,a;2 corresponding to symbols T, G, ... in the table.

Stepl: For each a; of A, We have the quantized set C(a;) as displayed in Table 7.2.

Step 2: We wish A be partitioned into several Q-equivalent classes [a;,],...,[a:,], but
there is no two element of A that belong to same Q-equivalent class in this case. So
we still remain to use the same notation of [a;,] = {a;}.
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Table 7.2: Quantized sets C'(A)

a; | C(a;)

T | (5L 1,1)(5,5,1,.5),(-5,5,.5,-5)

G | (1,1,1,1), (.5,.5,1,1), (.5,.5,.5,.5)

C | (5,1,1,1), (5,1,5,.5), (.5,.5,.5,.5)

S LSLL, (8,511), (5,:5,51), (5,5,5.5)
Y [ (0.5.5,1), (.5:.5,.5..5)

D | (5,0,0,0), (.5, 5,.5,0), (.5,5,.5,.5)

L | (L1110, (.5.5.5.5)

B | (1,1,1,1), (1,5,5,5), (.5,.5,.5,.5)

F | (1,5,1,5), (.5,.5,.5,.5)

A | (1,1,1,1), (5,.5,1,1), (.5,.5,.5,1), (.5,.5,.5,.5)
M | (1,0,5,1), (.5,.5,.5,.5)

X | (0,.5,.5,0), (.5,.5,.5,0), (-5,.5,.5,.5)

Step 3,4: For each Q-equivalent class [a;], we get a set of the restrictions or the partial
specified fuzzy switching functions R(C’(al)) For example, team T’s quantized set
Clay) ={(.5,1,1,1).(.5,.5,1,.5),(.5,.5,.5,.5)} has the set of restrictions as follows:

R(C(a1) = {flsany fls110) /(s,51.5)

] 1 0
fis, 50,8) J(5,5,5,5) J(5,.5.5.5)}
= {xyz314, T3T3%4, 3, T3, 1, 0}.

Moreover, we compute the distances from restrictions to fo for all Q-equivalent
classes [a;] as follows:

D(fis111) folar)) = |zazsza(ar) — fo(ay)l

| min(.6,.8,.6) — .5| = 0.1,
[T27374(ay) — fo(ay)|

~ |1 - min(.6,.8,.6) — .5| = 0.1,

f

D(fﬁs.l,l,l)’fo(al))

Thus, we show the result of Step 3 and 4 on Table 7.3.

Step 6: Let r? be a restriction that has the shortest distance to fy in R(C(a;)) for

i=1,...,12.
T{ = T2T3%4
Ty = 314
.0
T3 LoZ3T 4
7‘2 T3T4g
0 ==
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7‘2 = T4

r? = Z1T2Z3T4

rg T1To23%4

rg = TT3=T[VI3

7'(1)0 = T129T324

ri = TiTata =TV o VI
" = T

Step

We then take a sum of restrictions r{,...,7}, and see if the sum f! is representable
by the condition of consistency. Table 7.4 shows the result of sum of the selected
restrictions. Looking at the table, unfortunately, we detect a contradiction that
element of (.5,.5,1,1) takes both 1 and .5, which is denoted by 1/.5. Thereby we
know that f! obviously is not representable, so we must go to Step 7.

7: We chose an alternative combination of restrictions for each R(C(a;)) that has
as short distance to fy as possible. In this case we have two choices of restrictions:
for R(C(ay)),
D(ry, fo(ay)) = D(f65,1,1,1),f0(01)) =0.1
= D(f(o.s,l,l,l)»fO(al))
= D(727374, folar))

and for R(C'(ay)),

D(r3, folas)) = D(f(l.5,1,1,1)7f0(a’3)) =01
= D(f(o_‘grlylyl)yf()(aﬁ))
= D(T3%3%4, Jo(as))
and for R(C(ay0)),
D(rdy, folas)) = D(f(11,1,1,1)’ fo(ao)) = 0.1

= D(f(ol,l,l,l)’ folaio))
= D(T172%3%4, fo(aro),

so we have total of 2 X 2 x 2 —1 = 7 combinations with the same distance as that of
fP. For each combination we go on trying to check the condition for representable
in step 6. This trial goes on till the condition of representable is to be satisfied.

As the results, we find the combination of restrictions that can hold the condition
for the first time in Table 7.5. On the table, the restrictions of Y and M are fuzzy
switching functions that take a value of .5 for the chosen element of C(as) and
C(ap), respectively. The total distance to fy is 1.0, that is, the shortest distance.
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\\x1 0 5 1
X2N\_ 0 5 1 0 5 1 0 5 | X3

0

D=0.1

0.5

X4

Figure 7.1: Sum of restrictions ff,..., fF,

Step 8: Figure 7.1 illustrates the fuzzy switching function f* defined by the sum of
restrictions chosen in step 7. Where, we denote the restrictions and distances to
fo by the symbols such as 7" = 0.1.

Taking the expansion C*( f*) of the quantized set, now we obtain the fuzzy switching
function f* on Table 7.6.

Since the all of cells of the table are not filled, according to the condition of unique-
ness, there could be several fuzzy switching functions with the shortest distance.
Hence, we shall define two special fuzzy switching functions by the minimum f.; and
the maximum f.. with respects to numerical order of truth value. The minimum
fuzzy switching function is defined by filling in all blank cells with as many values
of 0 as possible. Note that some of blank cells such as (0.5,0,0.5,1) or (1,1,0.5,1)
must be 0.5 because of the monotonicity. We show the result on Table 7.7. Simi-
larly, Table 7.8 shows the result of the maximum fuzzy switching function f,.. which
is filled in blanks with value of 1.

Finally, we apply the representation rule to each fuzzy switching functions in step
8, and have the logic formulae F,; and F,. as follows:

Fa = Voot B
c€CH(f*)  BECH(S*)
= a(1,0,1,0) Y ¥1,01,.5) V Q(1,0,1,1) ¥V 01,51,0) V (1,5.1,.5) V
Q1,5,1,1) YV @1,1,1,0) V1,5 Vo Voo Vv
O(5.51,1) V51,11V ¥o01,1) VY %0,.51,1) VY %0,1,1,1) VY
B1,0,50) V Ba.5.5 V Bao.s1 VBa,s.s0 VBa,s.s,.5 V
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Ba,s.50) V B11,50 YV Bua,s.s) VBuis1) v Bs0.50 V
Bi5.0.5.5) V Bs0.51) V 85,550 VY B(s,.5.5.5 V B(s,5.5.1) V
Bsa,50) V Bsi,s,.5) V Bsi,.s1) V Bs01,5 V B(s,5.1,5 V
Bisa1,5) V Boo,.s.5 Vv Boo,.s1) V Bo,5,.5,5) V Bo,5,.51) V
Bioj.5,.5 V Boi.s1) YV Boors V Basis Y Bor,s)

= &1I3V T3y,

Similarly,
Foe = m123 V 2324 V 2129 V 2224.

In Table 7.9, we make sure that the both Jogic formulae satisfy the given fy for all
a; of A,l.e.,
F..(a;) = Fy(a;) = fo(a;) for all a; of A.

thus

])(Fcc-,fO) = 1)(Eér[1f0) = 1.0.

We remark that the logic formulae represents P-fuzzy switching functions, i.e., both
satisfy the uniformity. Hence, these contain no complementary phrases. Thus, the result
Fq can be interpreted as “the team would win if and only if it has powerful batters (zy)
and pitchers (x3) or good pitchers (r3) and great manager (z4)." Indeed, the expert who
gives the estimation data fo mentions that the factor of pitching is the most important,
which agrees with the result that can be transformed as

Fog = x3(2, V2y).

We therefore believe that our fitting algorithm can be used for knowledge acquisition by
means of logical expression.

If the expert does not know about baseball, a logic formula could not be unique, or no
logic formula could exist because of a contradiction derived from a lack of information. In
the sense, the total distance implies the degree of unknown.

7.1.4 Conclusion

We have demonstrated how to work the fitting algorithm of fuzzy switching function by
a practical example of a winning possibility of baseball teams, and have shown the logic
formulae that approximate the knowledge of an expert.
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Table 7.3: Restrictions and distances

Teams c Il Dy 12 Do

(.5,1,1,1) Tol3T4 |5— 6’ ToTalg ’5—4|

T (5515 | =z |ls5-8| zm |[|5-.2
(.5,.5,.5,.5) 1 15— 1 0 1.5~ 0]
(1,1,1,1) T1To23X4 ‘7—6[ W |7—4’

G (.5,.5,1,1) T3T4 |.7— .7 T304 [.7 — .3
(.5,.5,.5,.5) 1 17— 1] 0 1.7 = 0]
(.5,1,1,1) T2T324 | .5 — 6] | Tpzzzq | |5 - 4]

c (51,55 | s-a =z |53
(5,.5,.5,.5) 1 15— 1 0 15— 0
(1.,5,1,1) Trxzvy | |7 — 6] | T(ZzZq |.7 — 4|

S (.5,.5,1,1) T3ly4 |.7—.7]| T3T4 |.7 — .3
(.5,.5,.5,1) T4 [.7T— 8] Ta .7 —.2]
(,5,.5,.5,.5) 1 17— 1| 0 170

Y (0,.5,.5,1) T724 |.4 - .6] T124 |.4 — 4
(.5,.5,.5,.5) 1 .4 — 1 0 .4 — 0]
(5,0,0,0) | 227375 ||3—.6]| Tyzs24 | |3 — .4

D (5,550 = (|37 x4 ||3-.3]
(.5,.5,.5,.5) 1 13— 1 0 .3 0f

L (LL L) |2jasaszy | |8 - 8] | Z1zo2322 |.8 —.2]
(.5,.5,.5,.5) 1 .8 — 1] 0 [.8 — 0]
(1,1,1,1) [ zi2qa32q | |6 — .6] | Tizgz37q |.6 — 4]

B | (1,.5,.5,.5) 2y 16— 8| =z |]6-.2
(.5,.5,.5,.5) 1 [.6 — 1] 0 [.6 — 0]

F (1,.5,1,.5) T123 |4 — .6] 173 [4 — 4]
(5,.5,.5,.5) 1 4 — 1] 0 .4 — 0|
(1,1,1,1) | 21201324 |.5 —.6| | TyT2z324 | |5 — 4]

bij (.5,.5,1,1) T3y [.5 - .7] T3T4 .5 —.3|
(5,551 | 2 ||15-8| 7 |[5-2
(.5,.5,.5,.5) 1 [.5 — 1] 0 [.5 - 0|

M (1,0,.5,1) 1ZT324 | |4 - 6] | zi1Zyz4 | |4 — 4
(.5,.5,.5,.5) |4 -1 0 |4~ 0f
(0,.5,.5,0) T1T4 |.3 — 6] ZiTg | [.3— .4

X (.5,.5,.5,0) T4 .3 —.7] T3 |.3 —.3]
(5,.5,.5,.5) 1 .3 1] 0 .3~ 0]

92
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Table 7.4: Fuzzy switching function f?

T2\ zy 0 0.5 1
0 0
0 .5
1 1 1 0
0 0 0
5 5 R B 50
1 0 S5 1/.5 1
0
1 5 5

1 1 1

Table 7.5: Minimum combination of r§,... rf,
Teams rk rk D(rE, fo)

T f(1_511’1 1) ToI3T4 0.1
G f(l.s,.s 1,1) T34 0
C f(].5,1,1,1) TyIaly 0.1
S f(l.s,.5,1,1) TyTy 0
Y f(g,-S,-S,l) T1ToTo Ty 0.2
D f(o.s,o,o,o) To VI3V Ty 0.1
L f(11,1,1,1) T1T2T3Ty 0
B f(llvl,l,l) T1Z2T3T4 1
F f(ll,.S,l,.S) I1T3 0.2
" (1.5,.5,1,1) T3%4 0.2
M f(‘f,O,‘S,l) TyVIoVazVITzVIg 0.1
X f(Oo,.s,.s,o) Ty V T4 0.2
A fF —~ 1.0
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Table 7.6: Fuzzy switching function f*
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Table 7.7: The minimum fuzzy switching function f.q
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Table 7.8: The maximum fuzzy switching function f..

[t
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5

0

0

0
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0

D

21

z2\

z4\T3

Table 7.9: Distances to fo
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Chapter 8

Conclusion

We have studied knowledge acquisition based on fuzzy switching functions and some classes
of multiple-valued functions. and investigated partially specified fuzzy switching functions.
These results make it possible to extract essential information from incomplete and un-
certain knowledge, and to identify a whole mapping with a logic formula. This is the first
attempt to consider a fuzzy switching function as a method for approximate reasoning.

The necessary and sufficient condition in order for a restriction to be a fuzzy switching
functions (Theorem 3.5) and the necessary and sufficient condition for fuzzy switching
functions to be uniquely determined by a restriction (Theorem 3.6) have been clarified.
We can see in a finite number of steps whether a given restriction has a solution as a
fuzzy switching function, and whether the solution is determined uniquely or not. From
the point of view of inference systems, this works much more effectively than conventional
approximate methods that involves trial and error.

We have studied the properties of P-fuzzy switching functions, and clarified the nec-
essary and sufficient conditions for restrictions to be P-consistent in Theorem 4.5 and
to be P-unique in Theorem 4.6. These conditions are useful for automatically deriving
knowledge represented as simple logic formula from any given learning data. We also
described a way to represent P-fuzzy switching functions from any P-unique restriction in
Theorem 4.8,

We have studied the partially specified Kleenean functions, mappings representable
by logic formula that contains any constant truth values of [0,1], and have solved the
identification problem of Kleenean functions. We have clarified the necessary and sufficient
condition for existence of Kleenean function is non-empty possibilities defined by a given
[ in Theorem 5.7. The results provide a robust logic description of knowledge.

We have proposed an algorithm to find the fuzzy switching function with the shortest
distance to a given partial function. We have proved that the division of the uncertain
knowledge into some Q-equivalent classes is sufficient to calculate all possible local dis-
tances in Theorem 6.1, and have shown some useful properties with respect to restrictions
of fuzzy switching functions. The shortest path algorithm can work with a large value of
n on weighted graph  which corresponds to all possible n-variable fuzzy switching func-
tions. We have also estimated the algorithm and shown that it can reduce computation
in finding the fuzzy switching function with the shortest distance for all others.
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