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PREFACE

In the end of the 19th century, commutative ring theory was originally established by
D. Hilbert throughout the study of invariant algebras. He then proved that every ideal
in the polynomial ring over a field is finitely generated, which is nowadays known as
Hilbert’s Basis Theorem. After the breakthrough of his work, E. Noether played a cen-
tral role of the developments of the theory of commutative algebra. At the middle of
the 20th century, the notion of homological method was innovated into commutative
ring theory by many researchers, say M. Auslander, D. A. Buchsbaum, D. Rees, D. G.
Northcott, J.-P. Serre and others. Among them J.-P. Serre finally produced an inno-
vative result which insists that any localization of a regular local ring is again regular.
Since then, and up to the present day, commutative ring theory has been developed

dramatically by investigating the theory of Cohen-Macaulay rings and modules.

Cohen-Macaulay rings are named after the results of F. S. Macaulay and I. S. Cohen.
In 1916, F. S. Macaulay showed that the polynomial ring over a field satisfies the
unmizedness theorem. Remember that an ideal I of a Noetherian ring R is called
unmized if I has no embedded associated prime divisors, more precisely, the associated
prime ideals of R/I are exactly the minimal prime ideals of I. We say that a Noetherian
ring R satisfies the unmixedness theorem, if every ideal [ of R generated by htg [
elements is unmixed. 1. S. Cohen who was one of the students of O. Zariski proved
in his Ph.D. thesis that the unmixedness theorem holds for every regular local ring.
After their achievements, Cohen-Macaulay ring is defined to be a ring satisfies the
unmixedness theorem. It is known that a Noetherian local ring is Cohen-Macaulay if

its Krull dimension equals to the depth.

The origin of Gorenstein rings traces back to the article of D. Gorenstein [16] in 1952,
which dealt with the plane curves. After that, A. Grothendieck introduced in 1957 the

concept of Gorenstein local ring to be a Cohen-Macaulay local ring which is isomorphic
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to its canonical module. Hence Gorenstein rings are a special class of Cohen-Macaulay
rings. Being inspired by this definition, H. Bass discovered in 1963 the deep relation-
ship between the Gorenstein property and the finiteness of self-injective dimension and
proved that the above two conditions are equivalent to each other (see [9]). Thereafter
we confirm that Gorenstein rings are defined to be the rings which possess locally finite
self-injective dimension. Gorenstein rings enjoy a beautiful symmetry. For instance,
the numerical semigroup ring is Gorenstein if and only if the corresponding semigroup
is symmetric. This fact is given by E. Kunz ([52]) in 1970, which was the starting point
of the study of numerical semigroups and semigroup rings. Another example is the
behavior of the h-vector (hg, hy, ..., hs) of a Cohen-Macaulay homogeneous domain R.
In 1978, R. P. Stanley showed that R is Gorenstein if and only if h; = h,_; for every
i=0,1,...,s/2] ([68]).

There are known numerous examples of Cohen-Macaulay rings and among the
progress of the theory of Cohen-Macaulay rings, we often encounter non-Gorenstein
Cohen-Macaulay rings in the field of not only commutative algebra, but also algebraic
geometry, representation theory, invariant theory, and combinatorics. On all such occa-
sions, we have a natural query of why there are so many Cohen-Macaulay rings which
are not Gorenstein. As we mentioned above, Gorenstein rings are defined by locally
finite self-injective dimension. However there is a huge gap between the two conditions
of finiteness and infiniteness of self-injective dimension. Based on this observation, the
aim of this dissertation is to find a new class of Cohen-Macaulay rings, which may not
be Gorenstein, but sufficiently good next to the Gorenstein rings.

One of the candidates for such a class is almost Gorenstein rings, which was orig-
inally studied by V. Barucci and R. Fréberg ([8]) in the case where the local rings
are analytically unramified and of dimension one. After that, S. Goto, N. Matsuoka
and T. T. Phuong ([26]) extended in 2013 the notion of almost Gorenstein property
over one-dimensional Cohen-Macaulay local rings which are not necessarily analytically

unramified. We are now in a position to ask the following question.
Problem A. Find a possible definition of almost Gorenstein rings of higher dimension.

To explain the aim and motivation of Problem A more precisely, let us review on the

definition of almost Gorenstein rings of dimension one in the sense of Goto, Matsuoka,
and Phuong ([26]).

v



For the moment, let R be a Cohen-Macaulay local ring with maximal ideal m and
dim R = 1. Let Kp stand for the canonical module of R. Then an ideal I of R is called
canonical, if I # R and I = Kg as an R-module. Notice that this definition implicitly
assume the existence of the canonical module. By the result [43, Satz 6.21] of J. Herzog
and E. Kunz, R possesses a canonical ideal if and only if the total ring of fractions Q(}A%)
of R is Gorenstein, where we denote by R the m-adic completion of R. Hence the ring
R contains a canonical ideal I if it is analytically unramified. Since [ is faithful and
dim R = 1, I is an m-primary ideal of R. Therefore there exist integers ey(/) > 0 and
e1(I) such that

1
for all integers n > 0. The integers e;(1)’s are called the Hilbert coefficients of R with

a0 =0 (")~ el

respect to I. These integers describe the complexity of given local rings, and there
are a huge number of preceding researches about them, e.g., [18, 19, 26, 28, 29]. In
particular, the integer eo(I) > 0 is called the multiplicity of R with respect to I and has
been explored very intensively.

Let r(R) stand for the Cohen-Macaulay type of R ([43, Definition 1.20]). Then the

almost Gorenstein ring is defined as follows.

Definition B ([26]). We say that R is an almost Gorenstein local ring, if R possesses
a canonical ideal I of R such that e1(I) < r(R).

Remember that if R is Gorenstein, then any parameter ideal ) of R is canonical and
hence e1(Q) < r(R) = 1, which implies that every Gorenstein local ring is an almost
Gorenstien ring.

We now assume that I contains a parameter ideal ) = (a) as a reduction, so that
I™t = QI" for some integer r > 0. This assumption is automatically satisfied, if the

residue class field R/m of R is infinite. We set
I T
K {Zlzerjcam)

a
Notice that K is a fractional ideal of R such that
RCKCR and K =Kpg

where R denotes the integral closure of R in Q(R). Then the result [26, Theorem
3.11] says that R is an almost Gorenstein ring if and only if mK C R, or equivalently



m/ = m(@). The latter condition is the original definition of almost Gorenstein ring in
the sense of [8]. Therefore if R is analytically unramified, that is R is reduced, then
the these two definitions of almost Gorenstein ring coincides, provided the residue class
field R/m of R is infinite.

In Chapter 1 of this thesis we introduce the notion of almost Gorenstein local ring
of arbitrary dimension. In what follows, let (R, m) be a Cohen-Macaulay local ring of
dimension d > 0. Suppose that R possesses the canonical module Kz of R. Then my

proposal for the definition of almost Gorenstein local ring is the following.

Definition C (Definition 1.1.1). We say that R is an almost Gorenstein local ring, if

there exists an exact sequence
0>R—>Kr—>C—0

of R-modules such that pur(C) = €2 (C). Here ur(C) (resp. €2(C)) denotes the number
of elements in a minimal system of generators for C' (resp. the multiplicity of C" with

respect to m).

Notice that every Gorenstein ring is by definition almost Gorenstein, and the converse
holds if the ring R is Artinian. Thus Definition C requires that if R is an almost
Gorenstein local ring, then R might be non-Gorenstein but the ring R can be embedded
into its canonical module Kg so that the difference Kz/R should have good properties.

We look at an exact sequence
0—-R—-Kr—C—=0

of R-modules. Here we do not need to assume that R is almost Gorenstein. If C' # (0),
then C' is a Cohen-Macaulay R-module of dimension d — 1. Suppose that the ring R
possesses the infinite residue class field R/m. Set R = R/[(0) :z C] and let m denote the
maximal ideal of R. Choose elements fi, fa, ..., fs-1 € m such that (f1, fo,..., fa_1)R

forms a minimal reduction of m. Then we have
en(C) = en(C) = Lr(C/(f1, f2s-- -+ fa—1)C) > Lr(C/mC) = pgr(C).

Therefore €2 (C) > pr(C) and we say that C'is an Ulrich R-module if €2(C) = pr(C),
since C' is a mazimally generated mazimal Cohen-Macaulay R-module in the sense of
B. Ulrich ([10]). Thus C' is an Ulrich R-module if and only if mC = (fi, fo, ..., fa—1)C.
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Therefore if dim R = 1, then the Ulrich property for C' is equivalent to saying that C'
is a vector space over R/m.

One can construct many examples of almost Gorenstein rings of higher dimen-
sion. The significant examples of almost Gorenstein rings are one-dimensional Cohen-
Macaulay local rings of finite Cohen-Macaulay representation type and two-dimensional
rational singularity. Therefore, by using Auslander’s result, every two-dimensional fi-
nite Cohen-Macaulay representation type is almost Gorenstein. Furthermore, for all the
known examples of finite Cohen-Macaulay representation type are almost Gorenstein.
Thus, it might be true that for any finite Cohen-Macaulay representation type is almost
Gorenstein for arbitrary dimension, which we leave as an open question.

Let me explain how this thesis is organized. In Chapter 1 we shall give basic prop-
erties of almost Gorenstein local rings, including the so-called non-zerodivisor charac-
terization. We obtain a lot of generalization of the results given by Goto, Matsuoka,
and Phuong ([26]); for example, we have a characterization of almost Gorenstein rings
in terms of canonical ideals, which extends the result [26, Theorem 3.11] to higher-
dimensional local rings. The graded version is also posed and explored.

In Chapter 2 and 3 we focus our attention on the almost Gorenstein property for
Rees algebras. The study of Cohen-Macaulay and Gorenstein properties for the Rees
algebras are traced back to the research by S. Goto and Y. Shimoda ([33]) in 1979
and we nowadays have a satisfactorily developed theory about the Cohen-Macaulay
property for the Rees algebras. Among Cohen-Macaulay Rees algebras, Gorenstein
Rees algebras are rather rare. Nevertheless some of Cohen-Macaulay Rees algebras are
still good and might be almost Gorenstein. This expectation naturally inspires the

following question.

Problem D. Find the condition of when the Rees algebra R(I) of a given ideal I is

almost Gorenstein.

In Chapter 2 we shall give the characterization for the Rees algebras of ideals gener-
ated by subsystem of parameters and ideals so-called socles ideals to be almost Goren-
stein rings. In Chapter 3 we shall prove that the Rees algebras of integrally closed
ideals over two-dimensional regular local rings are almost Gorenstein.

The main purpose of Chapter 4 is to clarify the structure of Ulrich ideals of almost

Gorenstein local rings. Ulrich ideals are one of the inventions of S. Goto and their
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basic properties are provided by the two joint papers [30, 31]. The motivation for
this research of Chapter 4 comes from a result of Kei-ichi Watanabe, who showed that
non-Gorenstein almost Gorenstein numerical semigroup rings do not contain Ulrich
monomial ideals except the maximal ideal. His result suggests that there should be
some restriction of the distribution of Ulrich ideals of an almost Gorenstein but non-

Gorenstein local ring, namely let me ask the following question.
Problem E. Determine Ulrich ideals in a given almost Gorenstein ring.

In Chapter 4, the structure of the complex RHompg(R/I, R) is explored for an Ulrich
ideal I in a Cohen-Macaulay local ring R. As a direct consequence we have that inside
of a one-dimensional almost Gorenstein but non-Gorenstein local ring, the only possible
Ulrich ideal is the maximal ideal. We shall also study the problem of when Ulrich ideals
of almost Gorenstein local rings have the same minimal number of generators.

The results in Chapter 1 and 4 are based on the joint works [36, 37] with Shiro Goto
and Ryo Takahashi. The paper [36] (Chapter 1) was published in the Journal of Pure
and Applied Algebra and the paper [37] (Chapter 4) has been accepted for publication
in the Proceeding of the American Mathematical Society. The researches in Chapter 2
and 3 are submitted for possible publication in the papers [34, 35] jointly with Shiro
Goto, Naoyuki Matsuoka, and Ken-ichi Yoshida.

December, 2015 NAOKI TANIGUCHI
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CHAPTER 1

ALMOST (GORENSTIEN RINGS
— TOWARDS A THEORY OF HIGHER DIMENSION —

1.1 Introduction

For the last fifty years, commutative algebra has been concentrated mainly in the study
of Cohen-Macaulay rings/modules and has performed huge achievements ([11]). While
tracking the development, the authors often encounter non-Gorenstein Cohen-Macaulay
rings in divers branches of (and related to) commutative algebra. On all such occasions,
they have a query why there are so many Cohen-Macaulay rings which are not Goren-
stein rings. Gorenstein rings are, of course, defined by local finiteness of self-injective
dimension ([9]), enjoying beautiful symmetry. However as a view from the very spot,
there is a substantial estrangement between two conditions of finiteness and infiniteness
of self-injective dimension, and researches for the fifty years also show that Gorenstein
rings turn over some part of their roles to canonical modules ([43]). It seems, never-
theless, still reasonable to ask for a new class of non-Gorenstein Cohen-Macaulay rings
that could be called almost Gorenstein and are good next to Gorenstein rings. This ob-
servation has already motivated the research [26] of one-dimensional case. The second
step should be to detect the notion of almost Gorenstein local/graded ring of higher
dimension and develop the theory.

Almost Gorenstein local rings of dimension one were originally introduced in 1997
by Barucci and Froberg [8] in the case where the local rings are analytically unramified.
As was mentioned by [6] as for the proof of [8, Proposition 25], their framework was not
sufficiently flexible for the analysis of one-dimensional analytically ramified local rings.

This observation has inspired Goto, Matsuoka, and Phuong [26], where they posed a
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modified definition of one-dimensional almost Gorenstein local rings, which works well
also in the case where the rings are analytically ramified. The present research aims
to go beyond [26] towards a theory of higher dimensional cases, asking for possible
extensions of results known by [6, 8, 7, 26].

To explain our aim and motivation more precisely, let us start on our definition.

Definition 1.1.1. Let R be a Noetherian local ring with maximal ideal m. Then R is

said to be an almost Gorenstein local ring, if the following conditions are satisfied.
(1) R is a Cohen-Macaulay local ring, which possesses the canonical module Kz and
(2) there exists an exact sequence

0—R—-Kr—C—=0

of R-modules such that ur(C) = €2 (C).

0

(C)) denotes the number of elements in a minimal system of

Here pug(C) (resp. e
generators for C' (resp. the multiplicity of C' with respect to m).

With this definition every Gorenstein local ring is almost Gorenstein (take C' = (0))
and the converse is also true, if dim R = 0. In the exact sequence quoted in Definition
1.1.1 (2), if C' # (0), then C' is a Cohen-Macaulay R-module with dimp C' =dim R — 1
and one has the equality mC' = (fa, fs,..., f4)C for some elements f, f5,..., fs € m
(d = dim R), provided the residue class field R/m of R is infinite. Hence C is a
mazximally generated Cohen-Macaulay R-module in the sense of [10], which is called in
the present chapter an Ulrich R-module. Therefore, roughly speaking, our Definition
1.1.1 requires that if R is an almost Gorenstein local ring, then R might be a non-
Gorenstein local ring but the ring R can be embedded into its canonical module Kz so
that the difference Kz/R should be tame and well-behaved.

In the case where dim R = 1, if R is an almost Gorenstein local ring, then mC = (0)
and R is an almost Gorenstein local ring exactly in the sense of [26, Definition 3.1]. The
converse is also true, if R/m is infinite. (When the field R/m is too small, the converse
is not true in general; see Remark 1.3.5 and [26, Remark 2.10].) With Definition 1.1.1,
as we will later show, many results of [26] of dimension one are extendable over higher-

dimensional local rings, which supports the appropriateness of our definition.
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Let us now state our results, explaining how this chapter is organized. In Section 1.2
we give a brief survey on Ulrich modules, which we will need throughout this chapter.
In Section 1.3 we explore basic properties of almost Gorenstein local rings, including the
so-called non-zerodivisor characterization. In Section 1.4, we will give a characterization
of almost Gorenstein local rings in terms of the existence of certain exact sequences of
R-modules. Let M be an R-module. For a sequence = x1, 2o, ...,x, of elements in
R, the Koszul complex of M associated to x is denoted by K,(x, M). For each z € M,

we define a complex

Ulz,M)=(—=0—-R5M—=> 0 —---),
2 1 0 —1

where the map ¢ is given by a — az. Let us say that an R-complex C' = (---— Cy —

C1 — Cy — 0) is called an acyclic complex over M, if Hy(C) = M and H;(C) = (0) for

all 7 > 0. With this notation the main result of Section 1.4 is stated as follows.

Theorem 1.1.2. Let (R,m) be a Cohen-Macaulay local ring with dim R = d > 1 and
the Cohen-Macaulay type r. Suppose that R admits the canonical module Kg and that
the residue class field R/m of R is infinite. Then the following conditions are equivalent.

(1) R is an almost Gorenstein local ring.

(2) There exist an R-sequence x = x1,%s,...,Tq-1 and an element y € Kg such that

Ko(x, R) @ U(y, Kg) is an acyclic complex over k™.

(3) There exist an R-sequence x (not necessarily of length d — 1 ) and an element
y € Kg such that K¢(x, R) ®r U(y,Kg) is an acyclic complex over an R-module
annthilated by m.

In Section 1.5 we give the following characterization of almost Gorenstein local rings
in terms of canonical ideals. When dim R = 1, this result corresponds to [26, Theorem

3.11].

Theorem 1.1.3. Let (R,m) be a Cohen-Macaulay local ring with d = dim R > 1 and
infinite residue class field. Let I (# R) be an ideal of R and assume that I = Kg as an

R-module. Then the following conditions are equivalent.

(1) R is an almost Gorenstein local ring.



(2) R contains a parameter ideal Q = (f1, f2, ..., fa) such that f; € [ and m(I + Q) =
mQ.

With the same notation as Theorem 1.1.3, if R is not a Gorenstein ring, we then
have e1(I + Q) = r(R) (here e;({ + Q) (resp. r(R)) denotes the first Hilbert coefficient
of the ideal I + @ of R (resp. the Cohen-Macaulay type of R)). A structure theorem
of the Sally module Sp(I + Q) of I + () with respect to the reduction @ shall be
described. These results reasonably extend the corresponding ones in [26, Theorem
3.16] to higher-dimensional local rings.

In Section 1.6 we study the question of when the idealization A = R x X of a
given R-module X is an almost Gorenstein local ring. Our goal is the following, which

extends [26, Theorem 6.5] to higher-dimensional cases.

Theorem 1.1.4. Let (R,m) be a Cohen-Macaulay local ring of dimension d > 1, which
possesses the canonical module Kgr. Suppose that R/m is infinite. Let p € Spec R such
that R/p is a regular local ring of dimension d — 1. Then the following conditions are

equivalent.
(1) A= R x p is an almost Gorenstein local ring.
(2) R is an almost Gorenstein local ring.

In Section 1.7 we explore a special class of almost Gorenstein local rings, which
we call semi-Gorenstein. A structure theorem of minimal free resolutions of semi-
Gorenstein local rings shall be given. The semi-Gorenstein property is preserved under
localization while the almost Gorenstein property is not, which we will show later; see
Section 1.9.

In Section 1.8 we search for possible definitions of almost Gorenstein graded rings.
Let R = @nZO R, be a Cohen-Macaulay graded ring with £ = Ry a local ring. Assume
that R possesses the graded canonical module Kx. This condition is equivalent to saying
that k is a homomorphic image of a Gorenstein local ring ([40, 41]). Let 9t denote the
unique graded maximal ideal of R and let a = a(R) be the a-invariant of R. Hence
a = max{n € Z | [HL(R)], # (0)} ([40, Definition (3.1.4)]), where {[H%(R)]n}nez
denotes the homogeneous components of the d-th graded local cohomology module
HZ,(R) of R with respect to 9. With this notation our definition of almost Gorenstein

graded ring is stated as follows, which we discuss in Section 1.8.
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Definition 1.1.5. We say that R is an almost Gorenstein graded ring, if there exists
an exact sequence
0— R—Kg(—a) = C —0

of graded R-modules with pr(C) = eX,(C). Here Kg(—a) denotes the graded R-module
whose underlying R-module is the same as that of Kz and whose grading is given by
[Kr(—a)], = [Kg]n_q for all n € Z.

In Section 1.9 we study almost Gorensteinness in the graded rings associated to
filtrations of ideals. We shall prove that the almost Gorenstein property of base local
rings is inherited from that of the associated graded rings with a certain condition on
the Cohen-Macaulay type. In general, local rings of an almost Gorenstein local ring
are not necessarily almost Gorenstein, which we will show in this section; see Remark
1.9.3.

In Section 1.10 we explore Cohen-Macaulay homogeneous rings R = k[R;] over an
infinite field £ = Ry. We shall prove the following, which one can directly apply, for

instance, to the Stanley-Reisner rings R = k[A] of simplicial complexes A over k.

Theorem 1.1.6. Let R = k[R;] be a Cohen-Macaulay homogeneous ring over an infi-
nite field k and assume that R is not a Gorenstein ring. Let d = dim R > 1 and set

a = a(R). Then the following conditions are equivalent.

(1) R is an almost Gorenstein graded level ring.

(2) The total ring Q(R) of fractions of R is a Gorenstein ring and a =1 — d.

In Section 1.11 we study the relation between the almost Gorensteinness of Cohen-
Macaulay local rings (R, m) and their tangent cones gr,(R) = @, -, m"/m"tt. We
shall prove, provided R/m is infinite and v(R) = % (R) +dim R — 1 (h;re v(R) denotes
the embedding dimension of R), that R is an almost Gorenstein local ring if and only if
Q(gr,(R)) is a Gorenstein ring, which will eventually show that every two-dimensional
rational singularity is an almost Gorenstein local ring (Corollary 1.11.5).

In the final section we shall prove that every one-dimensional Cohen-Macaulay com-
plete local ring of finite Cohen-Macaulay representation type is an almost Gorenstein
local ring, if it possesses a coefficient field of characteristic 0.

As is confirmed in Sections 1.8, 1.9, 1.10, our definition of almost Gorenstein graded

rings works well to analyze divers graded rings. We, however, note here the following.
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By definition, the ring Ryy is an almost Gorenstein local ring, if R is an almost Goren-
stein graded ring with unique graded maximal ideal 9T, but as Example 7?7 shows,
the converse is not true in general. In fact, for the example, one has a(R) = —2 and
there is no exact sequence 0 — R — Kg(2) — C' — 0 of graded R-modules such that
pr(C) = €5 (C), while there exists an exact sequence 0 — R — Kx(3) — D — 0 such
that pr(D) = e} (D). The example seems to suggest the existence of alternative and
more flexible definitions of almost Gorensteinness for graded rings. We would like to
leave the quest to forthcoming researches.

In what follows, unless otherwise specified, let R denote a Noetherian local ring with
maximal ideal m. For each finitely generated R-module M, let pug(M) (resp. ¢r(M))
denote the number of elements in a minimal system of generators of M (resp. the length
of M). We denote by €2 (M) the multiplicity of M with respect to m.

1.2 Survey on Ulrich modules

Let R be a Noetherian local ring with maximal ideal m. The purpose of this section is
to summarize some preliminaries on Ulrich modules, which we will use throughout this

chapter. We begin with the following.

Definition 1.2.1. Let M (# (0)) be a finitely generated R-module. Then M is said
to be an Ulrich R-module, if M is a Cohen-Macaulay R-module and pug(M) = e%(M).

Proposition 1.2.2. Let M be a finitely generated R-module of dimension s > 0. Then

the following assertions hold true.

(1) Suppose s =0. Then M is an Ulrich R-module if and only if mM = (0), that is M

is a vector space over the field R/m.

(2) Suppose that M is a Cohen-Macaulay R-module. If mM = (fi, fa,..., fs)M for
some f1, fa,..., fs €m, then M is an Ulrich R-module. The converse is also true,
if R/m is infinite. (We actually have mM = (fi, fo, ..., fs)M for any elements
fi, fo, .., fs € m whose images in R/[(0) :r M| generate a minimal reduction of
the mazimal ideal of R/[(0) :r M].) When this is the case, the elements fi, fa, ..., fs

form a part of a minimal system of generators for m.
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(3) Let ¢ : R — S be a flat local homomorphism of Noetherian local rings such that
S/mS is a regular local ring. Then M is an Ulrich R-module if and only if S®@p M

1s an Ulrich S-module.

(4) Let M be an Ulrich R-module with s = dimg M > 1. Let f € m and assume that
f is superficial for M with respect to m. Then M/fM is an Ulrich R-module of

dimension s — 1.

(5) Let f € m and assume that f is M-regular. If M/fM is an Ulrich R-module, then
M is an Ulrich R-module and f & m?.

Proof. (1) This follows from the facts that ur(M) = £r(M/mM) and €2 (M) = {r(M).

(2) Suppose that mM = (fi, fo,..., fs)M for some fi, fo,...,fs € m. Then
fi, fay ..., fs is a system of parameters of M and m" "M = (fy, fo,..., fo)" "M for
all n > 0. Hence lr(M/m" ™M) = (r(M/(f1, fo,..., fs)M)-("!*) and therefore
V(M) = br(M/(f1, for, -, fs)M) = Lr(M/mM), so that M is an Ulrich R-module.
Let R = R/[(0) :x M] and let f; denote the image of f; in R. We then have
mM = (fi, fa,..., fo)M, where m = mR. Hence (fi, f2,..., fs) is a minimal reduc-
tion of m, because M is a faithful R-module, so that fi, fo,..., fs form a part of a
minimal system of generators for the maximal ideal m.

Conversely, suppose that R/m is infinite and that M is an Ulrich R-module. Let

us choose elements fi, fa,...,fs € m so that (fi, fa,..., fs) is a minimal reduction
of m. Then e2(M) = (M) = e(()ﬁﬁ .... ﬁ)(M) = (r(M/(f1, fo,..., [s)M). Hence
mM = (f1, fa,- -, fs)M as Lp(M/mM) = €2 (M).

(3) Choose a regular system gy, go, ..., g, € n of parameters for the regular local

ring S/mS (here n = dim S/mS) and set S = S/(g1,92, - -,9n)S. Then the composite
map ¥ : R — S — S is flat ([43, Lemma 1.23]) and

(S®R M)/(917927' e ugn)<S®R M) gE(X)R M7
so that passing to the homomorphism v, we may assume mS = n. We then have
ps(S @ M) = pr(M), (S ®@r M) = en(M).

Hence M is an Ulrich R-module if and only if S ®z M is an Ulrich S-module.
(4) Since f is superficial for M with respect to m and s > 0, f is M-regular
and ) (M/fM) = & (M). Therefore M/fM is a Cohen-Macaulay R-module, and
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consequently M/ fM is an Ulrich R-module, because ug(M/fM) = ur(M) = €2 (M) =
en(M/fM).

(5) We put R(X) = R[X|ug and S(X) = S[X]usix], where X is an indeter-
minate. Then, since mR[X]| = nS[X] N R[X], we get a flat local homomorphism
Y R(X) — S(X), extending ¢ : R — S. Because pupx)(R(X) ®r M) = pr(M) and
eprx) (R(X) ®r M) = ey (M), R(X) ®g M is an Ulrich R(X)-module. For the same
reason, S(X)®g(S®grM) is an Ulrich S(X)-module if and only if S®z M is an Ulrich S-
module. Therefore, since S(X)/mS(X) = (S/mS)(X) is a regular local ring, passing to
the homomorphism v : R(X) — S(X), without loss of generality we may assume that

the residue class field R/m of R is infinite. We now choose elements fs, f5,..., fs € m
so that m-(M/fM) = (fs, f3,.--, fs)(M/fM). Then mM = (fi, fo,..., fs)M with
fi = f. Therefore by assertion (2), M is an Ulrich R-module and f ¢ m?. O

1.3 Almost Gorenstein local rings

Let R be a Cohen-Macaulay local ring with maximal ideal m and d = dim R > 0,
possessing the canonical module Kg. Hence R is a homomorphic image of a Gorenstein
ring ([58]). The purpose of this section is to define almost Gorenstein local rings and
explore their basic properties.

We begin with the following.

Lemma 1.3.1. Let R 2 Kr — C — 0 be an ezact sequence of R-modules. Then the

following assertions hold true.

(1) If dimg C' < d, then ¢ is injective and the total ring Q(R) of fractions of R is a

Gorenstein ring.

(2) Suppose that ¢ is injective. If C' # (0), then C' is a Cohen-Macaulay R-module of

dimension d — 1.
(3) If ¢ is injective and d = 0, then p is an isomorphism.

Proof. (1) Let L = Kery and assume that L # (0). Choose p € Assg L and we
have the exact sequence 0 — L, — R, 2, (Kr)p, = Cy — 0 of Ry,-modules. Since
p € Ass R and dimp C < d, we get C, = (0), whence ¢, is an epimorphism. Therefore,
because (Kg), = Kg, ([43, Korollar 6.2]) and (g (Kg,) = {g,(Ry), @, is necessarily an
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isomorphism and hence L, = (0), which is impossible. Thus L = (0) and ¢ is injective.
The second assertion is clear, because R, = (Kg), = Kp, for every p € Ass R.

(2) Let p € Suppy C with dim R/p = dimg C. If dimp C' = d, then p € Ass R and
hence (g, (Ry) = lr,(Kg,) = lr,((Kg)p), so that C, = (0), because the homomorphism
v, 1 R, = (Kg), is injective, which is impossible. Hence dimp C' < d, while we get
depthp, C > d — 1, applying the depth lemma to the exact sequence 0 - R — Kp —
C — 0. Thus C' is a Cohen-Macaulay R-module of dimension d — 1.

(3) This is clear. O

Remark 1.3.2. Suppose that d > 0 and that Q(R) is a Gorenstein ring. Then R
contains an ideal I (# R) such that [ = Kg as an R-module. When this is the case,
R/I is a Gorenstein local ring of dimension d — 1 ([43, Satz 6.21]).

We are now ready to define almost Gorenstein local rings.

Definition 1.3.3. Let (R,m) be a Cohen-Macaulay local ring which possesses the
canonical module K. Then R is said to be an almost Gorenstein local ring, if there is

an exact sequence 0 — R — K — C — 0 of R-modules such that uz(C) = €2 (C).

In Definition 1.3.3, if C' # (0), then C' is an Ulrich R-module of dimension d — 1
(Definition 1.2.1 and Lemma 1.3.1 (2)). Note that every Gorenstein local ring R is
almost Gorenstein (take C' = (0)) and that R is a Gorenstein local ring, if R is an
almost Gorenstein local ring of dimension 0 (Lemma 1.3.1 (3)).

Almost Gorenstein local rings were defined in 1997 by Barucci and Froberg [8] in the
case where R is analytically unramified and dim R = 1. Goto, Matsuoka and Phuong
[26] extended the notion to the case where R is not necessarily analytically unramified
but still of dimension one. Our definition 1.3.3 is a higher-dimensional proposal. In

fact we have the following.

Proposition 1.3.4. Let (R,m) be a one-dimensional Cohen-Macaulay local ring. If R
1s an almost Gorenstein local ring in the sense of Definition 1.3.3, then R is an almost
Gorenstein local ring in the sense of [26, Definition 3.1]. The converse also holds, when
R/m is infinite.

Proof. Firstly, assume that R is an almost Gorenstein local ring in the sense of Def-

inition 1.3.3 and choose an exact sequence 0 — R —— I — C' — 0 of R-modules so
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that up(C) = el (C), where I (# R) is an ideal of R such that I = Kg as an R-module
(Lemma 1.3.1 (1) and Remark 1.3.2). Then, because mC' = (0) by Proposition 1.2.2
(1), we get mI C (f), where f = p(1). We set Q = (f). Then, since m@Q) C m/ C @, we
have either m@Q) = m/ or m/ = Q). If mI = mQ), then () is a reduction of I, so that R
is an almost Gorenstein local ring in the sense of [26, Definition 3.1] (see [26, Theorem
3.11] also). If mI = @, then the maximal ideal m of R is invertible, so that R is a
discrete valuation ring. Hence in any case, R is an almost Gorenstein local ring in the
sense of [26].

Conversely, assume that R is an almost Gorenstein local ring in the sense of [26] and
that R/m is infinite. Let us choose an R-submodule K of Q(R) such that R C K C R
and K = Kp as an R-module, where R denotes the integral closure of R in Q(R). Then
by [26, Theorem 3.11], we get mK C R, and therefore R is an almost Gorenstein local
ring in the sense of Definition 1.3.3 (use Proposition 1.2.2 (1)). O

Remark 1.3.5. When the field R/m is finite, R is not necessarily an almost Gorenstein
local ring in the sense of Definition 1.3.3, even though R is an almost Gorenstein local

ring in the sense of [26]. The ring
R = k[[X’Y7 Z“/[(Xa Y) N (Y, Z) N (Z7X)]

is a typical example, where k[[X, Y, Z]] is the formal power series ring over k = Z/(2)
([26, Remark 2.10]). This example also shows that R is not necessarily an almost
Gorenstein local ring in the sense of Definition 1.3.3, even if it becomes an almost

Gorenstein local ring in the sense of Definition 1.3.3, after enlarging the residue class

field R/m of R.
We note the following.

Proposition 1.3.6. Suppose that R is not a Gorenstein ring and consider the following

two conditions.
(1) R is an almost Gorenstein local ring.

(2) There exist an exact sequence 0 — R — Kr — C — 0 of R-modules, a non-
zerodivisor f € (0) :g C, and a parameter ideal q (T R) for R/(f) such that
mC = qC.
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Then the implication (2) = (1) holds. If R/m is infinite, the reverse implication (1) =

(2) is also true.

Proof. (2) = (1) We have C' # (0), so that by Lemma 1.3.1 (2) C'is a Cohen-Macaulay
R-module of dimension d — 1. Hence Proposition 1.2.2 (2) shows C' is an Ulrich R-
module, because mC = qC.

(1) = (2) We take an exact sequence 0 - R — Kr — C' — 0 of R-modules such
that C' is an Ulrich R-module of dimension d — 1. Hence [(0) :g C] contains a non-
zerodivisor f of R. We choose elements { f;}a<i<q of m so that their images in R/(f)
generate a minimal reduction of the maximal ideal of R/(f). We then have mC = qC
by Proposition 1.2.2 (2), because the images of {f;}2<i<a in R/[(0) :g C] also generate

a minimal reduction of the maximal ideal of R/[(0) :g C]. O

Let us now explore basic properties of almost Gorenstein local rings. We begin with

the non-zerodivisor characterization.
Theorem 1.3.7. Let f € m and assume that f is R-reqular.

(1) If R/(f) is an almost Gorenstein local ring, then R is an almost Gorenstein local

ring. If R is moreover not a Gorenstein ring, then f & m?2.

(2) Conversely, suppose that R is an almost Gorenstein local ring which is not a Goren-

stein ring. Consider the exract sequence
0—-R—>Kr—>C—=0

of R-modules such that ur(C) = e (C). If f is superficial for C with respect to m
and d > 2, then R/(f) is an almost Gorenstein local ring.

Proof. We set R = R/(f). Remember that Kr/fKr = Kz ([43, Korollar 6.3]), because
f is R-regular.

(1) We choose an exact sequence 0 — R N Kz — D — 0 of R-modules so that
D is an Ulrich R-module of dimension d — 2. Let ¢ € Kg such that (1) = &, where £

denotes the image of £ in K = Kg/fKgr. We now consider the exact sequence
R Kpr—>C—0
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of R-modules with (1) = &. Then, because ¢ = R ®g ¢, we get D = C/fC, whence
dimp C < d, because dimgr D = d—2. Consequently, by Lemma 1.3.1 (1) the homomor-
phism ¢ is injective, and hence by Lemma 1.3.1 (2), C' is a Cohen-Macaulay R-module
of dimension d — 1. Therefore, f is C-regular, so that by Proposition 1.2.2 (5), C' is an
Ulrich R-module and f ¢ m?. Hence R is almost Gorenstein.

(2) The element f is C-regular, because f is superficial for C' with respect to m and
dimr C' = d — 1 > 0. Therefore the exact sequence 0 - R — Kg — C' — 0 gives rise

to the exact sequence of R-modules
0= R—Kg— C/fC =0,

where C'// fC is an Ulrich R-module by Proposition 1.2.2 (4). Hence R is almost Goren-

stein. [
The following is a direct consequence of Theorem 1.3.7 (1).

Corollary 1.3.8. Suppose that d > 0. If R/(f) is an almost Gorenstein local ring for

every non-zerodivisor f € m, then R is a Gorenstein local ring.

We are now interested in the question of how the almost Gorenstein property is
inherited under flat local homomorphisms. Let us begin with the following. Notice
that the converse of the first assertion of Theorem 1.3.9 is not true in general, unless
R/m is infinite (Remark 1.3.5).

Theorem 1.3.9. Let (S,n) be a Noetherian local ring and let ¢ : R — S be a flat local
homomorphism such that S/mS is a reqular local ring. Then S is an almost Gorenstein
local ring, if R is an almost Gorenstein local ring. The converse also holds, when R/m

18 infinite.

Proof. Suppose that R is an almost Gorenstein local ring and consider an exact sequence
0 — R — Kg — C — 0 of R-modules such that pur(C) = e2(C). If C = (0), then R is
a Gorenstein local ring, so that S is a Gorenstein local ring. Suppose C' # (0). Then
S ®p C'is an Ulrich S-module by Proposition 1.2.2 (2), since C'is an Ulrich R-module.
Besides, Kg = S ®r Kg as an S-module ([43, Satz 6.14]), since S/mS is a Gorenstein

local ring. Thus S is almost Gorenstein, thanks to the exact sequence of S-modules
0—-S—-Kg—S®rC —0.
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Suppose now that R/m is infinite and S is an almost Gorenstein local ring. Let
n = dim S/mS. We have to show that R is an almost Gorenstein local ring. Assume
the contrary and choose a counterexample S so that dimS = n + d is as small as
possible. Then S is not a Gorenstein ring, so that dim S = n +d > 0. Choose an exact
sequence

0—-S—-Kg—D—=0

of S-modules with ug(D) = €2(D). Suppose n > 0. If d > 0, then we take an element
g € n so that g is superficial for D with respect to n and g is a part of a regular
system of parameters of S/mS, where § denotes the image of g in S/mS. Then g is
S-regular and the composite homomorphism R % S — S /gS is flat. Therefore the
minimality of n + d forces R to be an almost Gorenstein local ring, because S/gS is
an almost Gorenstein local ring by Theorem 1.3.7 (2). Thus d = 0 and p = mS is a
minimal prime ideal of S. Hence the induced flat local homomorphism R % S — Sy
shows that R is a Gorenstein ring, because S, is a Gorenstein ring (Lemma 1.3.1 (1)).
Consequently n = 0 and n = mS.

Suppose now that d > 2. Then because n = mS, we may choose an element
f € m so that f is R-regular and ¢(f) is superficial for D with respect to n. Then by
Theorem 1.3.7 (2) S/fS is an almost Gorenstein local ring, while the homomorphism
R/fR—S/fS is flat. Consequently, R/fR is an almost Gorenstein local ring, so that
by Theorem 1.3.7 (1) R is an almost Gorenstein local ring.

Thus d = 1 and n = mS, so that R is an almost Gorenstein local ring by [26,

Proposition 3.3], which is the required contradiction. O
Let 1(R) = (g(Ext%h(R/m, R)) denote the Cohen-Macaulay type of R.

Corollary 1.3.10. Let R be an almost Gorenstein local ring and choose an exact se-
quence 0 — R 25 Kz — C — 0 of R-modules so that ur(C) = €2 (C). If (1) € mKg,
then R is a regular local ring. Therefore, ur(C) =r(R) — 1, if R is not a regular local

Ting.

Proof. Enlarging the residue class field of R, by Theorem 1.3.9 we may assume that
R/m is infinite. Suppose ¢(1) € mKg. Then C' # (0) and therefore d > 0 (Lemma 1.3.1
(3)). Assume d = 1. Then by Lemma 1.3.1 (1) Q(R) is a Gorenstein ring. Therefore
by Remark 1.3.2 we get an exact sequence 0 — R Y5 I = C = 0 of R-modules with
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(1) € mI, where I (€ R) is an ideal of R such that [ = Kg as an R-module. Let
a = 9(1). Then mI = (a), because mC = (0) and a € mI. Hence R is a discrete
valuation ring, because the maximal ideal m of R is invertible.

Let d > 1 and assume that our assertion holds true for d — 1. Let f € m be a non-
zerodivisor of R such that f is superficial for C' with respect to m. We set R = R/(f)
and C'= C/fC. Then by Theorem 1.3.7 (2) (and its proof) R is an almost Gorenstein
local ring with the exact sequence 0 — R N Kg — C — 0 of R-modules, where
» = R®g ¢ and Kiz = Kz/fKg. Therefore, because %(1) € mKg, the hypothesis of
induction on d shows R is regular and hence so is R.

The second assertion follows from the fact that ugr(C) = pr(Kg) — 1 =1(R) — 1
([43, Korollar 6.11]), because (1) & mKg. O

The following is an direct consequence of Theorem 1.3.9. See [43, Satz 6.14] for the
equality r(S) = r(R).

Corollary 1.3.11. Suppose that R is an almost Gorenstein local ring. Then for every
n > 1 the formal power series ring S = R[[ X1, Xa, ..., X,]] is also an almost Gorenstein
local ring with v(S) = r(R).

Proposition 1.3.12. Let (S,n) be a Noetherian local ring and let ¢ : R — S be a flat
local homomorphism such that S/mS is a Gorenstein ring. Assume the following three

conditions are satisfied.
(1) The field R/m is infinite.
(2) R and S are almost Gorenstein local rings.
(3) S is not a Gorenstein ring.

If dim R = 1, then S/mS is a regular local ring.

Proof. When dim S/mS > 0, we pass to the flat local homomorphism R — S/g¢S,
choosing g € n so that g is S/mS-regular and S/¢S is an almost Gorenstein local
ring. Therefore we may assume that dim S/mS = 0. Choose an ideal I C R of R so
that I = Ky as an R-module. Therefore IS = Kg as an S-module, since S/mS is a

Gorenstein local ring. Let e;(I) (resp. e1(1.5)) be the first Hilbert coefficient of R (resp.
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S) with respect to I (resp. I1.S). Then by [26, Theorem 3.16] and [43, Satz 6.14] we
have

er(l) =r(R) =r1(5) = e1(15) = Ls(S/mS)-e (1),
because R and S are almost Gorenstein local rings and both of them are not Gorenstein

rings. Thus £g(S/mS) = 1, so that S/mS is a field. O

Unless dim R = 1, Proposition 1.3.12 does not hold true in general, as we show in

the following.

Example 1.3.13. Let T" be an almost Gorenstein local ring with maximal ideal my,
dimT =1, and r(7T) = 2. Let R = T[[X]] be the formal power series ring and let R[Y]
be the polynomial ring. We set S = R[Y]/(Y? — X). Then the following assertions hold

true.
(1) R and S are two-dimensional almost Gorenstein local rings with r(R) = r(S) = 2.

(2) S is a finitely generated free R-module of rank two but S/mS is not a field, where
m = mgR + X R denotes the maximal ideal of R.

Proof. We set k = T /my. Notice that S is a local ring with maximal ideal mS + 3.5,
where y denotes the image of Y in S. The R-module S is free of rank two and S/mS =
(R/m)[Y]/(Y?) = Kk[Y]/(Y?). The T-algebra S is flat with

S/moS = (K[[X]DY]/(YV* = X),

which is a discrete valuation ring. By Corollary 1.3.11 R is an almost Gorenstein local

ring with r(R) = 2. We now consider the exact sequence
) 0T —=Kyr—T/my—0

of T-modules. Then since Kg = S ®r K7, tensoring exact sequence (f) by S, we get
the exact sequence
0—=S5—Ks— S/mgS —0

of S-modules. Therefore S is an almost Gorenstein local ring by definition, since S/myS
is a discrete valuation ring, while r(S) = 2 by [43, Satz 6.14], since S/mS is a Gorenstein
ring. [
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Let us note a few basic examples of almost Gorenstein local rings.

Example 1.3.14. Let U = k[[X3, Xo,..., X,,, Y1, Ys,, ..., Y,]] (n > 2) be the formal
power series ring over a field & and put R = U/Iy(M), where I,(M) denotes the ideal
of U generated by 2 x 2 minors of the matrix M = ()511 )5522 - )f,: ). Then R is almost

Gorenstein with dim R =n+ 1 and r(R) =n — 1.

Proof. 1t is well-known that R is a Cohen-Macaulay normal local ring with dim R = n+1
and r(R) =n — 1 ([12]). The sequence {X; — Y;_1 }1<i<n (here Yy =Y, for convention)

forms a regular sequence in R and
R/<Xl - }/;*1 ‘ 1 < l < TI,)R = k[[X17X27 cee JXnH/IQ(N)7

where N = (! 2 7 %ot %) Let S = k[[X1, X, ..., X,]]/12(N). Then S is a Cohen-
Macaulay local ring of dimension one, such that n? = z1n and Kg = (21,29, ..., Tp_1),
where n is the maximal ideal of S and z; is the image of X; in S. Hence S is an
almost Gorenstein local ring, because n(xy,zs,...,2,-1) C (x1). Thus R is an almost

Gorenstein local ring by Theorem 1.3.7 (1). O

Example 1.3.15. Let S = k[[X, Y, Z]] be a formal power series ring over a field k£ and
let M = (21 25 2;) be a matrix such that f;; € kX + kY +kZ for each 1 <7 <2 and
1 < j < 3. Assume that htglo(M) = 2 and set R = S/Io(M). Then R is an almost

Gorenstein local ring if and only if R % S/(Y, Z)%.

Proof. Since Q(S/(Y, Z)?) is not a Gorenstein ring, the only if part follows from Lemma
1.3.1 (1). Suppose that R % S/(Y, Z)%. Then, thanks to [32, Classification Table 6.5],
without loss of generality we may assume that our matrix M has the form M = (% $ %),
where g; € kX +kY +kZ forevery 1 <i < 3. Let dy =Y g3— Zgs, do = Zg, — X g3, and

d3 = Xgo — Yg1. Then the S-module R = S/(dy, ds, d3) has a minimal free resolution
052 M g3 bl o p o

and, taking the S-dual, we get the presentation S3 BN Kz — 0 of the canonical

module K = Ext(R, S). Hence Kg/RE = S?/L = S/(X,Y, Z), where £ = £((3)), and
X\ (Y\ (Z 0

L denotes the S-submodule of S? generated by (gl), (gz), (93), and (1) We therefore

have an exact sequence R — Kr — R/m — 0 of R-modules, where m is the maximal

ideal of R. Hence R is almost Gorenstein by Lemma 1.3.1 (1). O

16



Example 1.3.16. Let a,/ € Z such that a > 4, £ > 2 and let
R = k[[t" ¢ {1 hicico-a}]] C K[[T]

be the semigroup ring of the numerical semigroup H = (a,al — 1,{al +i}1<i<a—3),
where k[[t]] denotes the formal power series ring over a field k. Then R is an almost
Gorenstein local ring with r(R) = a — 2. Therefore the formal power series rings

R[[X1, Xa,..., X,]] (n > 1) are also almost Gorenstein.

PTOOf. Let I = (tZaE—a—17 {tgaé_?a_i_l}lgiga_g). Then I = KR and m/ = thaK_a_l,
where m denotes the maximal ideal of R. Hence R is an almost Gorenstein local ring
(see [20, Example 2.13] for details). O

Remark 1.3.17. The local rings R, (p € Spec R \ {m}) of an almost Gorenstein local
ring (R, m) are not necessarily Gorenstein rings (Example 1.10.9). Also, the local rings

R, of an almost Gorenstein local ring R are not necessarily almost Gorenstein (Example
1.9.13).

1.4 Characterization in terms of existence of certain
exact sequences

In this section we investigate the almost Gorenstein property of local rings in terms of
the existence of certain exact sequences.

Throughout this section, let (R, m, k) be a Cohen-Macaulay local ring of dimension
d and Cohen-Macaulay type r, admitting the canonical module Kg. In what follows,
all R-modules assumed to be finitely generated. For each sequence x = x1,xs,..., 2,
of elements in R and an R-module M, let K,(x, M) be the Koszul complex of M

associated to x. Hence
K.(m, M) = K.(.ﬁlfl,R) ®R s ®R K.(l?n,R) ®R M

For each z € M let R =+ M stand for the homomorphism a ~ az. Denote by Ug(z, M)

the complex

Up(z, M)=(--—=0—=R3M—= 0 —---).

2 1 0 -1
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When there is no danger of confusion, we simply write U(z, M) as Ugr(z, M). Let D(R)
denote the derived category of R. Hence for two complexes X, Y of R-modules, one has
H,(X)=H;(Y) foralli € Z, it X 2Y in D(R).

Let us begin with the following.

Lemma 1.4.1. Let x = x1, 25, ...,x, be an R-sequence and let y € Kgr. Then
R/(x) ©% Ur(y, Kr) = Ur/(@)(y, Kr/xKg)
in D(R), where § denotes the image of y in Kr/xKg.

Proof. Since Ug(y, Kg) is the mapping cone of the map R Yy Kg, we get an exact
triangle R % Kz — Ug(y, Kg) ~ in D(R), which gives rise to, applying the triangle

functor R/(x) ®% —, an exact triangle

R/(x)®%y
-y

R/(x) ®f R R/(zx) @5 Kr — R/(x) @5 Ur(y, Kr) ~ .

Notice that R/(z) ®% R = R/(z) and that Tor®(R/(x), Kg) = H;(Ke(x, Kz)) = (0) for
all i > 0, since x is also an Kg-sequence; hence R/(x) @% Kr = Kg/xKg. Observe that
R/(x) @% Ug(y, Kg) is isomorphic to the mapping cone of the map R/(x) XN Kgr/zKg,
which is nothing but Ug/ () (¥, Kr/xKg). ]

We firstly give a characterization of Gorenstein local rings.
Proposition 1.4.2. The following conditions are equivalent.
(1) R is a Gorenstein ring.

(2) There exist an R-sequence & and an elementy € Kg such that K¢(z, R)@rU(y, Kg)

1S an exract sequence.

Proof. (1) = (2) Choose y € Kpg so that Kr = Ry and notice that Uy, Kgr) =
Ke(1, R) = (0) in D(R). Therefore for each R-sequence x we get

K.(z, R) ®r Uy, Kg) = K,(z, R) @5 Uy, Kg) = K. (z, R) ®@% (0) = (0)

in D(R), where the first isomorphism comes from the fact that Ke(z, R) is a complex
of free R-modules. Thus the complex K, (x, R) ®r U(y, Kg) is exact.

18



(2) = (1) By Lemma 1.4.1
(0) = Ko(, R) @1 U(y, Kgr) = R/(x) ®F Ur(y, Kg) = Ug/(2) (7, Kr/xKg)

in D(R). Hence the map R/(x) 2 Kp/xKpy is an isomorphism, which shows R/(z) =

Kg/(z). Therefore R/(x) is a Gorenstein ring and hence so is R.

O

The following theorem 1.4.3 is the main result of this section, characterizing almost
Gorenstein local rings. For an R-module M and a complex C' = (---— Cy — C] —
Coy — 0) of R-modules, we say that C'is acyclic over M, if Hy(C') = M and H;(C) = (0)
for all + > 0.

Theorem 1.4.3. Assume that d = dim R > 1 and the field k = R/m is infinite. Then

the following conditions are equivalent.
(1) R is an almost Gorenstein local ring.

(2) There exist an R-sequence * = x1,%s,...,Tq4-1 and an element y € Kg such that

Ke(x, R) @ U(y, Kg) is an acyclic complex over k™.

(3) There exist an R-sequence & and an element y € Kg such that K¢(x, R)@rU(y, Kg)

is an acyclic complex over an R-module M such that mM = (0).

Proof. (1) = (2) By Theorem 1.3.7 (2) applied repeatedly, we get an R-sequence & =
x1,Z,...,T41 such that R/(x) is an almost Gorenstein local ring of dimension one.

Choose an exact sequence
0— R/(x) S Kg/xzKgr — k"1 — 0.

Setting ¥ = ¢(1) with y € Kg, we see that U(y, Kg/xKpg) is quasi-isomorphic to k™.
By Lemma 1.4.1

Ke(z, R) @z U(y,Kr) = R/(x) @5 Uy, Kg) = U(7, Kr/zKg) = k"~

in D(R). Hence Kq(x, R) @ U(y, Kg) is an acyclic complex over k!
(2) = (3) This is obvious.
(3) = (1) By Lemma 1.4.1

Uy, Kr/xKg) = R/(x) @% U(y, Kg) = K.(z, R) @z U(y, Kg) = k"
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for some n > 0. Hence there exists an exact triangle R/(x) EN Kr/xKr — k" ~~ in
D(R), which gives the exact sequence 0 — R/(z) & Kr/xKg — k™ — 0 of homology.
Thus R/(x) is an almost Gorenstein local ring of dimension one, whence by Theorem

1.3.7 (1) R is an almost Gorenstein local ring. O

Applying Theorem 1.4.3 to local rings of lower dimension, we readily get the follow-

ing.
Corollary 1.4.4. Assume that k = R/m is infinite.

(1) Let d = 1. Then R is an almost Gorenstein local ring if and only if there exist an

element y € K and an exact sequence

0>RLKr ok =0

(2) Let d = 2. Then R is an almost Gorenstein local ring if and only if there exist an

R-reqular element x, an element y € Kg, and an exact sequence
(i’fz) (Ivy) r—1
0—R—Kr®dR——Kr— k""" —0.

(3) Let d = 3. Then R is an almost Gorenstein local ring if and only if there exist an

R—sequence T1,T2, an element Yy c KR, and an ezxact sequence
y T2 -y 0
( X2 ) —x1 0 —y
—x1 0 z1 =z
S -

For an R-module M let pdy M and Gdimgrp M denote the projective dimension

0 R Kp & R? K2 @ R WY Ky skt .

and the G-dimension of M, respectively (we refer the reader to [13] for details of G-

dimension).

Corollary 1.4.5. Assume that R is an almost Gorenstein local ring of dimension d > 1.

Then the following assertions hold true.

(1) The exact sequence
_ d—1
0= R—KnaR ' = KR 5o 5K aRrt T S KGR S Ky o S0
arising from Theorem 1.4.3 (2) is self-dual with respect to Kg, that is, after du-
alizing this exact sequence by Kg, one obtains the same exact sequence (up to

isomorphisms).
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(2) Suppose that R is not a Gorenstein ring. Then R is G-regular in the sense of [71],
that is Gdimp M = pdy M for every finitely generated R-module M.

Proof. (1) Let X[n] denote, for a complex X of R-modules and n € Z, the complex X
shifted by n (to the left). Then with the same notation as in Theorem 1.4.3 (2), K =
Ke(z, R) and U = U(y, Kg). Therefore Homg(K, R) = K[1 — d] and Homg(U, Kg) =
U[—1], which show

HOIHR(K SR U, KR) = HOIHR(K, HOIHR(U, KR)) = HOIIIR<K, U[—l])
= HomR(K, R) QR U[—l] = K[l — d] QR U[—l] = (K QR U)[—d]

(for the third isomorphism, remember that K is a bounded complex of free R-modules).
Hence we get the assertion, because Hy(K®@rU) = k™! and H;(K®zU) = (0) fori > 0
by Theorem 1.4.3 (2).

(2) It suffices to show that every R-module M of finite G-dimension is of finite
projective dimension. Let N be a high syzygy of M. Then since NN is totally reflexive

and maximal Cohen-Macaulay, we have
Exth(N, R) = (0) = Exth(N, Kp)

for all i > 0. Apply the functor Hompg (N, —) to the exact sequence in assertion (1) and

we get
Exty(N, k1) = (0)

for i > 0. Since r — 1 > 0 (as R is not Gorenstein), N has finite projective dimension,
and so does M. O

Let us consider the Poincaré and Bass series over almost Gorenstein local rings.
First of all let us fix some terminology. Let X (respectively, Y) be a homologically
right (respectively, left) bounded complex of R-modules, possessing finitely generated
homology modules. The Poincaré series of X and the Bass series of Y are defined as

the following formal Laurent series with coefficients among non-negative integers:

Px(t) = dimy Torf (X, k)-t", () = ) _ dimy, Extf(k, Y)-2".

nez ne”L

We then have the following, in which the Poincaré and Bass series of C' = Coker ¢ are

described in terms of the Bass series of R.
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Theorem 1.4.6. Let (R,m, k) be an almost Gorenstein local ring of dimension d > 1

and assume that R is not a Gorenstein ring. Consider an exact sequence
#) 0RB3Kr—C—0
of R-modules such that C' is an Ulrich R-module. We then have the following.
(1) RHompg(C,Kg) = C[—1] in D(R).
(2) Po(t) = 117 (t) — 1 and I€(¢) = I7(t) — L.

Proof. (1) Since C is a Cohen-Macaulay R-module of dimension d — 1, Ext’%(C, Kg) =
(0) for all 4 # 1 ([43, Satz 6.1]). To see C' = Ext(C,Kg), take the Kz-dual of exact

sequence (f) and we get the following commutative diagram

0 — Homp(Kp, Kg) “28PE0 yomp(R Kp) —— ExtL(C,Kp) — 0
0 — R —~ Kg — C — 0,

where the vertical isomorphisms are canonical ones. Hence C' = Ext}z(O, Kg), so that
rr(C) = pr(C) =r — 1 by Corollary 1.3.10 and [43, Satz 6.10].
(2) By [13, (A.7.7)]

tIC (t) = 1€ (1) = [REem(@KR) (1) — P (1)IK(2),
while
I°(t) = t" 'Pc(t),

as I5(t) = t4. Therefore, since rg(C) = pg(C) = r — 1, applying Homg(k, —) to exact

sequence (f) and writing the long exact sequence, we get

(0) (i
Extl(k,C) = { k1 (i
ExtZ ' (k, R) (i

~
(AVARR VAN
SUERSUERSE
|
—_
:_/

Hence 1°(t) = I7(t) — t4-1, O
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1.5 Characterization in terms of canonical ideals

Let (R, m) be a Cohen-Macaulay local ring of dimension d > 0, which possesses the
canonical module Ki. The main result of this section is the following characteriza-
tion of almost Gorenstein local rings in terms of canonical ideals, which is a natural

generalization of [26, Theorem 3.11].

Theorem 1.5.1. Suppose that Q(R) is a Gorenstein ring and take an ideal I (# R)

such that I = Kg as an R-module. Consider the following two conditions:

(1) R is an almost Gorenstein local ring.

(2) R contains a parameter ideal Q = (f1, f2, ..., fa) such that f; € [ and m(I + Q) =
mQ.

Then the implication (2) = (1) holds. If R/m is infinite, the implication (1) = (2) is

also true.

Proof. (2) = (1) Let q = (fs, f3,..., fa). Then q is a parameter ideal for the Cohen-
Macaulay local ring R/I, because I +Q = I +q. We set R = R/q, m = mR, and
I =IR. Notice that I = I/ql = Kg, since qN [ = ql. Let f1 be the image of f, in R.
Then since m-I = m-f1, by [26, Theorem 3.11] R is an almost Gorenstein local ring, so
that R is an almost Gorenstein local ring by Theorem 1.3.7.

(1) = (2) Suppose that R/m is infinite. We may assume that R is not a Gorenstein
ring (because [ is a principal ideal, if R is a Gorenstein ring). We consider the exact
sequence

0R-5S5T1—-C—=0 (1)

of R-modules such that C' is an Ulrich R-module. Let f; = ¢(1) € I. Choose an
R-regular sequence fo, f3,..., fa € mso that (1) fi, f2, ..., fa is a system of parameters
of R, (2) fa, f3,...,fa is a system of parameters for the ring R/I, and (3) mC =
(fa, f3,-.., fa)C (this choice is, of course, possible; see Proposition 1.2.2 (2)). Let
q=(fa f3,..., fs) and set R = R/q, m = mR, and [ = IR. Then exact sequence ()

gives rise to the exact sequence

0>R-—>5ST—>C—=0
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of R-modules where C' = C'/qC, because I = I/ql and fy, f3,..., fs form a C-regular
sequence. Therefore, since I = K% and mC = (0), R is an almost Gorenstein local ring.
We furthermore have that m-7 = m-f; (here f; denotes the image of f; in R), because
R is not a discrete valuation ring (see Corollary 1.3.10; remember that f; = 3(1)).

Consequently, since m/ C mf; + q, we get
m/ C(mfi+q)NI=mfi+(qNI)=mf; +q/ CmQ,

where Q = (f1, f2,- .., fa). Hence m(I + Q) = mQ) as wanted. O

Let R be an almost Gorenstein local ring of dimension d > 2. Let I be an ideal
of R such that I = K as an R-module. Suppose that R is not a Gorenstein ring but
contains a parameter ideal Q = (f1, f2, ..., fa) such that f; € [ and m(I + Q) = mQ.
Let q = (fo, f3,..., f4). Weset R = R/q, m =mR and I = IR. Then R is an almost
Gorenstein local ring with I = K and (f) is a reduction of T with mI = mf, where f
denotes the image of f in R (see Proof of Theorem 1.5.1).

We explore what kind of properties the ideal J = I 4+ ) enjoys. To do this, we fix

the following notation, which we maintain throughout this section.

Notation 1.5.2. Let 7 = R[Qt] C R = R[It] C R[t| where ¢ is an indeterminate and
set gr;(R) = R/JR (= @50 /") We set

S=8q(J)=JR/IJT
(the Sally module of J with respect to Q; [76]). Let
B="T/mT
(= (R/m)[T1, Ty, ..., T,, the polynomial ring) and
redg(J) = min{n >0 | J* = QJ"}.

We denote by {e;(J)}o<i<a the Hilbert coefficients of R with respect to J.

Let us begin with the following. We set f = f;.
Corollary 1.5.3. The following assertions hold true.
(1) redg(J) = 2.
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(2) So(J) = B(—1) as a graded T -module.

(3) Lr(R/JI™Y) = Lr(R/Q)- ("1 —x(R)- ("t 1)+ ("19,?) for alln > 0. Henceey(J) =

d—1 d—2

r(R), ea(J) =1, and ¢;(J) =0 for 3 <i <d.

(4) Let G = gr,;(R). Then the elements fot, fst, ..., fat (€ T1) form a regular sequence
in G but ft is a zero-divisor in G. Hence depthG = d — 1 and the graded local
cohomology module H,(G) of G is not finitely generated, where M = mG + G,

Proof. Let K = @ :g m. Then Q C J C K. Notice that {g(J/Q) = ur(J/Q) =
pr(I/(f)) =1(R)—1=r1(R)—1, because f € mI and I = Kz. Therefore {x(K/J) =1
since (r(J/Q) = r(R), so that K = J + () for some x € K, while K? = QK ([14]), as
R is not a regular local ring. Consequently, J®> = QJ? by [29, Proposition 2.6]. Thus
redg(J) = 2, since T # f-I (26, Theorem 3.7]).

Let us show £z(J%/QJ) = 1. We have ER(TQ/f-T) = 1 by [26, Theorem 3.16]. Choose
g € I? so that I? C fI+ (g) +q. Then

P=(fI+(9)+a)NI*C fI+(g9)+al,

since q NI = ql. Hence J*> = QJ + (g), because J> = QJ + I?. Consequently
(r(J?/QJ) = 1, since mJ? = m@Q? (remember that m.J = m@Q). Therefore, thanks to
(63, 76], we have S(J) = B(—1) as a graded T-module, e;(J) = eo(J) — lr(R/J) + 1,
and

Cr(R/I™Y) = eo()-("3Y) —er()-("EEH) + (55

d—1

for all n > 0. Hence
eil(J) =eo(J) = lr(R/J) +1="Lr(R/Q) — (r(R/J]) +1=Lr(J/Q) +1=1(R).

Thus assertions (1), (2), and (3) follow.

To see assertion (4), we claim the following, which shows the sequence
fot, fst, ..., fat is gr;(R)-regular.

Claim. qNJ" = qJ" ! for alln € Z.
Proof of Claim. As J*> = QJ + (g9) = fJ + (g) + qJ, we have
qNJ*=qJ+qn[fJ+(9)] CaJ + (aNI)=qJ.
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Suppose that n > 3 and that our assertion holds true for n — 1. Then
qNJ" = qNQJ"" = qJ " +(@NfJ" ) = @ T (NI ) = g T fq T T = g
Hence qN J" = qJ" ! for all n € Z. [

To show that ft is a zero-divisor in gr;(R), remember that g & QJ, because J? #
QJ. Since J? C Q, we may write ¢ = fy + h with y € R and h € q. Then because
fy=g—heI*+q, wesee

fye(*+q)nI=1*+ql CJ?
while y € J. In fact, if y € J, then
h=g—fyeqnJ?=qJ CQJ,
so that ¢ = fy + h € QJ, which is impossible. Thus ft is a zero-divisor in gr;(R). O

Let p : gr;(R) -2 gr,(R) N gr7(R) be the composite of canonical homomorphisms
of associated graded rings and set A = Im . We then have gr;(R) = A[&, &, ..., &4,
where & = fit denotes the image of fit in gr,;(R). We are now interested in the

question of when {¢;}2<;<4 are algebraically independent over A. Our goal is Theorem
1.5.7 below.
We begin with the following, which readily follows from the fact that Kerp =

@nzo[jnﬂ +(qn ™))/t
Lemma 1.5.4. Ker ¢ = Ker p if and only if qN I™ C J"L for all n > 2.

Lemma 1.5.5. Let n > 2. Then qNI™ = qI" if and only if R/I" is a Cohen-Macaulay

Ting.

Proof. It R/I™ is a Cohen-Macaulay ring, then q N I" = qI", because fs, f3,..., fq
form a regular sequence in R/I"™. Conversely, suppose that q N I"™ = q/™. Then the

descending induction on ¢ readily yields that

(f2, fos fao oo, i) VT = (fo, f3, -, fi) I

for all 2 < ¢ < d, from which it follows that the sequence f, fs,..., fq is R/I"-regular.
]
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Proposition 1.5.6. The following assertions hold true.

(1) If R/I? is a Cohen-Macaulay ring, then I* = fI? and therefore the ideal I has
analytic spread one and red (1) = 2.

(2) If R/I? is a Cohen-Macaulay ring and I* = fI?, then R/I" is a Cohen-Macaulay
ring for alln > 1

Proof. (1) We have q N I? = qI® by Lemma 1.5.5, while T’ = 71" by Corollary 1.5.3
(1). Therefore I3 C (fI?+q)NI3 = fI>+ql3, so that I? = fI? by Nakayama’s lemma.
Hence I is of analytic spread one and reds (/) = 2, because T # f-I ([26, Theorem
3.7)).

(2) We show that g N I"™ = q[" for all n € Z. By Lemma 1.5.5 we may assume that

n > 3 and that our assertion holds true for n — 1. Then
qNI"=qnfI"t = fani"t) = fal"t Cal”.

Hence qN " = qI" for all n € Z, whence R/I™ is a Cohen-Macaulay ring by Lemma
1.5.5. [

We are now ready to prove the following.

Theorem 1.5.7. Suppose that R/I* is a Cohen-Macaulay ring and I®> = fI*. Then
A is a Buchsbaum ring and &,&3, ..., &y are algebraically independent over A, whence

gr;(R) = Al&, &, . .., &) is the polynomial ring.

Proof. We have Kerp = Kerp by Lemma 1.5.4, 1.5.5, and Proposition 1.5.6, which
shows that the composite homomorphism A < gr,(R) N gr7(R) is an isomorphism,
where ¢ : A — gr;(R) denotes the embedding. Hence A is a Buchsbaum ring ([26,
Theorem 3.16]). Let k = Aj and let C = k[Xs, X3, ..., X4| denote the polynomial ring.
We regard C to be a Z-graded ring so that Cy = k and deg X; = 1. Let B = A®;C. Then
itjnAi @ Cj for all n € Z. We
put V; = 1 ® X; and consider the homomorphism ¥: B = A[Y,,Ys,...,Yy] — gr (R)
of A-algebras defined byW( Y;) = &; for all 2 < i < d. Let K = Ker W. We then have
the exact sequence 0 — K — B — gr;(R) — 0, which gives rise to the exact sequence

B is a Z-graded ring whose grading is given by B,, = )

O_>}C/(}/2a}/377}/d)IC—>B/<}/27}/375Yd) %ng(R)/(g%g&"wgd) —>0a
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since the sequence &9, &s, ..., &y is gr (R)-regular (Corollary 1.5.3 (4)). Because

B/(Y%YE’H s 7}/;1) =A= grf(ﬁ) = ngR/(g%&ﬂv ce 7§d)7

we have K/(Ya,Ys,...,Yy)K = (0) and hence K = (0) by graded Nakayama’s lemma.
Thus ¥: B — gr;(R) is an isomorphism of 4-algebras. O

The ring R/I™ is not necessarily a Cohen-Macaulay ring. Let us explore one example.

Example 1.5.8. Let S = k[[s,t]] be the formal power series ring over a field k and
set R = k[[s%, 5%, st*,t%]] in S. Then R is a Cohen-Macaulay local ring of dimension 2.
Setting = s%, y = s%t, z = st?, and w = 13, we have I = (y,2) = Ky as an R-module
and m-(/ + Q) = m-Q, where Q = (y,z — w). Hence R is an almost Gorenstein local
ring with r(R) = 2. Let q = (z — w). Then qN I? = qI?, because

(x—w)NI*C(z—w)(s*>SNR) C (z —w)-I*

However, q N I3 # qI3. In fact, if N I? = qI3, by Proposition 1.5.6 (1) I is of analytic
spread one, which is however impossible, because (R/m) ®g gr;(R) = k[y, z]. Hence
R/I?* is a Cohen-Macaulay ring but R/I? is not a Cohen-Macaulay ring (Lemma 1.5.5).
We have e;(J) = r(R) = 2 and depth gr;(R) =1, where J =1+ Q = (z —w,y, 2).

Question 1.5.9. Let T" be an almost Gorenstein but non-Gorenstein local ring of
dimension 1 and let K be an ideal of T" with K = Kg as a T-module. Let R =
T[[ X2, X5,...,X4]] (d > 2) be a formal power series ring and set / = KR. Then
I = Kg as an R-module and R/I™ is Cohen-Macaulay for all n > 1. We suspect that

this is the unique case for gr;(R) to be the polynomial ring over A.

1.6 Almost Gorenstein local rings obtained by ide-
alization

Throughout this section let (R, m) be a Cohen-Macaulay local ring, which possesses the
canonical module Kg. For each R-module M let MY = Hompg(M,Kg). We study the
question of when the idealization R x MY is an almost Gorenstein local ring.

Let us begin with the following, which is based on [26, Proposition 6.1] and gives

an extension of the result to higher dimensional local rings.
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Theorem 1.6.1. Let (R, m) be a Cohen-Macaulay local ring of dimension d > 1, which
possesses the canonical module K. Let I (# R) be an ideal of R and assume that R/I

1s a Cohen-Macaulay ring of dimension d—1. We consider the following two conditions:

(1) A= Rx IV is an almost Gorenstein local ring.

(2) R contains a parameter ideal Q = (f1, f2, ..., fa) such that f; € I, m(I+Q) = mQ),
and (I +Q)*=QU + Q).

Then one has the implication (2) = (1). If R/m is infinite, the reverse implication
(1) = (2) is also true.

Proof. (2) = (1) Let q = (f2, f3,..., fa) and set R = R/q, m = mR, and I = IR. Then
1= 1/ql,since fy, f3,. .., fais aregular sequence in R/I, while Homy(I, K%) 2 1V/qI",
because fs, f3,..., fq is an R-sequence and [ is a maximal Cohen-Macaulay R-module
([43, Lemma 6.5]). Therefore since T = fi-I and m-I = m-f; (here f; denotes the
image of f; in R), by [26, Proposition 6.1] the idealization A/qA = R x Homgz(I, K%)
is an almost Gorenstein local ring. Hence A = R x IV is an almost Gorenstein local
ring by Theorem 1.3.7, because fs, f3,..., fq form a regular sequence in A.

(1) = (2) Suppose that R/m is infinite and that A = Rx IV is an almost Gorenstein

local ring. Choose an exact sequence
0A—-Ky—C—=0 (1)

of A-modules such that ps(C) = €)(C'), where n = m x IV is the maximal ideal of A. If
C = (0), then A is a Gorenstein local ring. Hence IV = Kg ([58]), whence I = K}, = R
and assertion (2) is certainly true. Assume that C' # (0). Then C'is an Ulrich A-module
of dimension d — 1. We put a = (0) :4 C and consider R to be a subring of A via the
homomorphism R — A, r — (r,0). Then, since B = A/a is a module-finite extension
of S =R/laNR], dimS =dim B = dimy C =d — 1. We set ng = nB and mg = mS.

Then mgB is a reduction of npg, because [(0) x IV]*> = (0) in A. We choose a subsystem

fa, f3, ..., fa of parameters of R so that f, fs,... fq is a system of parameters for R/I
and (fa, f3,..., fa)B is a reduction of ng. Then nC = (fo, f3,..., f4)C by Proposition
1.2.2 (2). Consequently, since fs, f3, ..., fqis a C-regular sequence, from exact sequence

(#) above we get the exact sequence
0= A/gA —- Ku/qK4 — C/qC — 0
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of A/qA-modules, where q = (fa, f5,..., fa). Hence A/qA is an almost Gorenstein local
ring of dimension one, because K4/qK4 = Ka/qa and n(C/qC) = (0). Let R = R/q,
m =mR, and [ = IR. Then since qNI = qI, we get I = [I +q]/q = I/qI and therefore
the ring

R x Homg(I,Kg) = (R/q) » (I'/qI") = A/qA

is an almost Gorenstein local ring. Consequently, by [26, Proposition 6.1] we may
choose f; € I so that m-I = m-f; and 7= fi-1, where f; denotes the image of f; in R.
Let Q = (f1, fo, ..., fa). We will show that m(I + Q) = mQ and (I + Q)? = Q( + Q).
Firstly, since m-I = m-f1, we get m/ C (mf; +q)NI =mf; + (qNI). Hence mI C mQ,
because qN I = ql, so that m(/ + Q) = m(@). Since 7= f1-1, we similarly have

PC(fil+qNnI?C fil+ql =QI,

whence (I + Q)* = Q(I + Q). Notice that @ is a parameter ideal of R, because
V@ = /T + @ = m, which proves Theorem 1.6.1. [

Let us consider the case where R is a Gorenstein ring. The following result extends

[26, Corollary 6.4] to local rings of higher-dimension.

Corollary 1.6.2. Suppose that (R,m) is a Gorenstein local ring of dimension d >
1. Let M be a Cohen-Macaulay faithful R-module and consider the following two

conditions:
(1) A= Rx M is an almost Gorenstein local ring.

(2) M =R or M =p as an R-module for some p € Spec R such that R/p is a reqular

local ring of dimension d — 1.

Then the implication (2) = (1) holds. If R/m is infinite, the reverse implication (1) =

(2) is also true.

Proof. (2) = (1) We may assume M = p, where p € Spec R such that R/p is a regular

local ring of dimension d — 1. We choose a subsystem fs, f3, ..., f4 of parameters of R
so that m =p + (fo, f3,. .., fa) and set q = (fa, f3,..., fa). Then

p/ap = [p+q]/qg =m/q
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and hence A/qA = R/q x m/q. Therefore A/qA is an almost Gorenstein local ring by
[26, Corollary 6.4] and hence A is an almost Gorenstein local ring by Theorem 1.3.7.

(1) = (2) Suppose that R/m is infinite and let p € Ass R. Then A,y = R, x M,
and M, # (0). Because Q(A) is a Gorenstein ring, we get M, = Kg, = R, ([58]). Hence
Q(R) ®r M = Q(R) and therefore we have an exact sequence

0—>R—->M-—>X—0 (f1)

of R-modules such that Q(R) ®r X = (0). Notice that X is a Cohen-Macaulay R-
module of dimension d — 1, because X # (0) and depthp M = d. Take the Kg-dual (in

fact, Kr = R) of exact sequence (f1) and we get the exact sequence
0— MY 25 R— Exth(M,Kg) =0

of R-modules. Let [ = p(M"). Then M = IV and R/I is a Cohen-Macaulay local
ring of dimension d — 1. Consequently, because A = R x IV is an almost Gorenstein
local ring, by Theorem 1.6.1 R contains a parameter ideal @ = (f1, fa, ..., f4) such that
Ael,m(I+Q)=mQ,and (I +Q)*=Q(I +Q). Weset q= (f, f3,..., fq). Then,
since Q C I+ @ C @ :g m and R is a Gorenstein local ring, we have either Q = I + Q)
or I +Q=Q :pm.

IfQ=1+0@Q, then

rconi=I[(f)+qnil=(f)+al,

since q NI = ql, so that [ = (f;) = R. Therefore M = IV = R, which is impossible.
Hence I+Q =@ :gmand I € Q. Choose z € I\ Q. We then have I +Q = @+ (x) and
therefore I = [(Q + (z)] NI = (f1,2z) + ql, so that I = (fi,z). Notice that pgr(l) =2,
because I % R. Let p = (f1) :r @. Then I/(f1) = R/p and hence dim R/p < d. On the
other hand, thanks to the depth lemma applied to the exact sequence

0R-5T1—-R/p—0 (#2)

of R-modules where (1) = f, we get depth R/p > d — 1. Hence dim R/p = d — 1. Set
= R/q, m=mR, and [ = IR. Then m-I C (/f;), where f; denotes the image of f; in

R
R. Since I 2 R®p I, we see

R@rR/p=Rp([I/(f)]21/(f1)
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and therefore m = p + q, because m-(I/(f1)) = (0). Thus R/p is a regular local ring.

Now we take the Kg-dual of exact sequence (f;) and get the exact sequence
0— 1Y = R— Exth(R/p,Kg) — 0

of R-modules. Because Extp(R/p, Kr) = R/p, we then have IV = p. Hence M = [V =
p as R-modules, which proves the implication (1) = (2). O

When R contains a prime ideal p such that R/p is a regular local ring of dimension
d — 1, we have the following characterization for A = R x p to be an almost Gorenstein

local ring, which is an extension of [26, Theorem 6.5].

Theorem 1.6.3. Let (R,m) be a Cohen-Macaulay local ring of dimension d > 1, which
possesses the canonical module Kgr. Suppose that R/m is infinite. Let p € Spec R and
assume that R/p is a regular local ring of dimension d—1. Then the following conditions

are equivalent.
(1) A= R x p is an almost Gorenstein local ring.
(2) R is an almost Gorenstein local ring.

Proof. By [26, Theorem 6.5] we may assume that d > 1 and that our assertion holds
true for d — 1.

(1) = (2) Let 0 > A — K4 — Y — 0 be an exact sequence of A-modules such that
pa(Y) =e(Y), where n = m x p is the maximal ideal of A. Let us choose a parameter
f of R so that f is superficial for Y with respect to n and R/[p + (f)] is a regular local
ring of dimension d — 2. Then A/fA is an almost Gorenstein local ring (see the proof
of Theorem 1.3.7 (2)) and

A/fA=R/(f) xp/fp=R/(f) = [p+ (N]/(f),

which shows R/(f) is an almost Gorenstein local ring. Thus R is almost Gorenstein by
Theorem 1.3.7.

(2) = (1) We consider the exact sequence 0 - R — Kgr — X — 0 of R-modules
with pr(X) = €2 (X) and choose a parameter f of R so that f is superficial for X with
respect to m and R/[p + (f)] is a regular local ring of dimension d — 2. Then because
A/fAZ R/(f)x[p+(f)]/(f), the ring A/fA is an almost Gorenstein local ring. Hence

by Theorem 1.3.7 A is an almost Gorenstein local ring. [
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The following example extends [26, Example 6.10].

Example 1.6.4. Let (R, m) be a Gorenstein local ring of dimension d > 1 and infinite
residue class field. Let p € Spec R and assume that R/p is a regular local ring of
dimension d — 1. We set A = R x p. Then, thanks to Theorem 1.6.3, A is an almost
Gorenstein local ring. Therefore because p x p € Spec A with A/[p x p] = R/p, setting

R R (n=0) b, — p (n=0)
" Rn,1 X Pp—1 (TL > O) ’ " Pr—1 X Pp_1 (n > 0) ’

we get an infinite family {R,,},>0 of almost Gorenstein local rings. Notice that R, is

not a Gorenstein ring, if n > 2 ([26, Lemma 6.6]).

1.7 Generalized Gorenstein local rings

Throughout this section let (R, m) denote a Noetherian local ring of dimension d >
0. We explore a special class of almost Gorenstein local rings, which we call semi-
Gorenstein.

We begin with the definition.

Definition 1.7.1. We say that R is a semi-Gorenstein local ring, if R is an almost
Gorenstein local ring, that is R is a Cohen-Macaulay local ring having a canonical

module Ky equipped with an exact sequence
) 0> R—>Kr—C—0

of R-modules such that pr(C) = €% (C), where either C' = (0), or C' # (0) and there
exist R-submodules {C;}i<j<, of C such that C = @®{_,C; and pr(C;) = 1 for all
1< <.

Therefore, every Gorenstein local ring is a semi-Gorenstein local ring (take C' = (0))
and every one-dimensional almost Gorenstein local ring is semi-Gorenstein, since mC' =
(0). We notice that in exact sequence (f) of Definition 1.7.1, if C' # (0), then each C; is
a cyclic Ulrich R-module of dimension d — 1, whence C; = R/p; for some p; € Spec R
such that R/p; is a regular local ring of dimension d — 1.

We note the following. This is no longer true for the almost Gorenstein property,

as we will show in Section 1.9 (see Remark 1.9.12).
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Proposition 1.7.2. Let R be a semi-Gorenstein local ring. Then for every p € Spec R

the local ring R, is semi-Gorenstein.

Proof. We may assume that R is not a Gorenstein ring. Choose an exact sequence
0—-R—-Kr—C—=0

of R-modules which satisfies the condition in Definition 1.7.1. Hence C' = @®!_, R/p;,
where for each 1 < ¢ < ¢, p; € Spec R and R/p; is a regular local ring of dimension
d — 1. Let p € Spec R. Then since Kg, = (Kg),, we get an exact sequence

0— Ry, - Kg, - C, —0

of Ry-modules, where C, = ®,,c,Ry/p; Ry is a direct sum of finite cyclic Ulrich R,-
modules R, /p;R,, so that by definition the local ring R, is semi-Gorenstein. ]

Let us define the following.

Definition 1.7.3 (cf. [7]). An almost Gorenstein local ring R is said to be pseudo-
Gorenstein, if r(R) < 2.

Proposition 1.7.4. Let R be a pseudo-Gorenstein local ring. Then R is semi-

Gorenstein and for every p € Spec R the local ring R, is pseudo-Gorenstein.

Proof. We may assume that r(R) = 2. Because R is not a regular local ring, in the
exact sequence 0 — R 5 Kp — C — 0 of Definition 1.3.3 we get ¢(1) ¢ mKg by
Corollary 1.3.10, whence pgr(C) = ur(Kg) — 1 = 1. Therefore R is semi-Gorenstein,

and the second assertion follows from Proposition 1.7.2. O]
We note one example.

Example 1.7.5. Let k[[t]] be the formal poser series ring over a field k. For an integer
a > 4 we set

R=FK[t""|0<i<a—1buti#a— 2
in k[[t]]. Then Kr = R+ Rt"! and mKzr C R. Hence R is a pseudo-Gorenstein local
ring with r(R) = 2.

Whether C' is decomposed into a direct sum of cyclic R-modules depends on the
choice of exact sequences 0 — R — Kg — C' — 0 with ug(C) = €2(C), although R is

semi-Gorenstein. Let us note one example.
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Example 1.7.6. Let S = k[X,Y] be the polynomial ring over a field & and consider
the Veronesean subring R = k[X* X3V, X2Y2 XVY3 Y4 of S with order 4. Then
Kr = (X3Y, X2Y?% XY?3) is the graded canonical module of R. The exact sequence

0— R5 Kg(l) = R/(XPY, X?Y2, XY3 YY) @ R/(XY, XY, X?Y? XY?) = 0

of graded R-modules with ¢(1) = X?2Y? shows that the local ring Ryy is semi-

Gorenstein, where 9 = R, . However in the exact sequence
O%RiKR(l)%D%O

with ¥ (1) = XY3 Dy is an Ulrich Ry-module of dimension one, but Dgy is inde-
composable. In fact, setting A = Rgy and C' = Dgy, suppose C = A/p; & A/p, for
some regular local rings A/p; (p; € Spec A) of dimension one. Let a = XY3A4 :,
(X3Y, X?Y2 XY?3)A. Then a = (0) :4 C = p; NP, so that a should be a radical ideal
of A, which is impossible, because X°Y? € a but X3Y ¢ a.

Let us examine the non-zerodivisor characterization.

Theorem 1.7.7. Suppose that R/m is infinite. If R is a semi-Gorenstein local ring
of dimension d > 2, then R/(f) is a semi-Gorenstein local ring for a general non-

zerodivisor f € m\ m%.

Proof. We may assume R is not a Gorenstein ring. We look at exact sequence () 0 —
R — Kz — C — 0 of Definition 1.7.1, where C' = &/ R/p; (r = r(R)) and each R/p;
is a regular local ring of dimension d — 1. Then R/(f) is a semi-Gorenstein local ring
for every f € m such that f ¢ Uf:l[m2 +Pil UUpeassr P- O

We now give a characterization of semi-Gorenstein local rings in terms of their

minimal free resolutions, which is a broad generalization of [26, Corollary 4.2].

Theorem 1.7.8. Let (S,n) be a regular local ring and a C S an ideal of S with n =
htsa. Let R = S/a. Then the following conditions are equivalent.

(1) R is a semi-Gorenstein local ring but not a Gorenstein ring.

(2) R is Cohen-Macaulay, n > 2, r =1(R) > 2, and R has a minimal S-free resolution
of the form:

0%Fn:ST%Fn,1:SQ—>Fn,2—>---—>F1—>F0:S—>R—>O
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where

Yo1Y22 -~ Y2¢  Y31Y32---Yse 0 YriYr2 - Yre Z1%2 0 Zm
To1 X2 "+ Ty 0 0 0 0
M = 0 31232 w3 0 0 0 7
O O 0 L1yt * Ty O,

C=n+1,q¢>r—1)0m=q—(r—1)¢, and x;1,x;2, ...,y is a part of a reqular

system of parameters of S for every 2 <1 <.

When this is the case, one has the equality

T

a= (21,2, ... 2m) + Y Ly (¥1yz sy,
=2

where 1o(N) denotes the ideal of S generated by 2 x 2 minors of the submatric N =
(2 v = &% ) of ML
Proof. (1) = (2) Choose an exact sequence

0R5Kr—C—0

of R-modules so that C' = @]_,S5/p;, where each S/p; (p; € SpecS) is a regular local
ring of dimension d — 1. Let p; = (x;; | 1 < j < () with a part {z;; }1<j<¢ of a regular
system of parameters of S, where ¢ = n + 1 (= htgp;). We set f; = ¢(1) € Kg and

consider the S-isomorphism
Kr/Sfi = S/p2 @ S/ps @ -+ @ S/py,

choosing elements {f; € Kg}a<i<, so that

() = (0,...,0,1,0...,0) € S/ps @ S/ps & - & S/py.,

where f; denotes the image of f; in Kz/Sf,. Hence {fihi<i<, is a minimal system of
generators of the S-module K. Let {€;}1<;<, denote the standard basis of S™ and let
e : 8" — Kg be the homomorphism defined by e(e;) = f; for each 1 <i < r. We now

look at the exact sequence
0—>L—S =5 Kgr—0.
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Then because x; f; = 0 in Kz/Sf1, we get y;; f1 + x4 f; = 0 in Ky for some y;; € n. Set
of a minimal basis of L, because {z;;}1<;j<¢ is a part of a regular system of parameters
of S (use the fact that L C nS"). Hence ¢ > (r — 1)L.

Let a € L and write a = ;

i ae; witha; € S. Then a; € p; = (x;; | 1 < 5 < () for
every 2 <14 <r, because Y.._,a;f; = 0 in Kg/Sf;. Therefore, writing a; = Z?Zl CijTij
with ¢;; € S, we get a — > ., ¢;;a;; = cey for some ¢ € S, which shows L is minimally

the S-module K = Ext¢(R, S) possesses a minimal free resolution
e 51 Mg S Kp 0

with ¢ = m + (r — 1)¢, in which the matrix M has the required form. Since R =
Ext(Kg, S) ([43, Satz 6.1]), the minimal S-free resolution of R is obtained, by taking
the S-dual, from the minimal free resolution of Kg, so that assertion (2) follows.

(2) = (1) We look at the presentation
51 M 9m 5 Ky — 0

of Kp = Ext$(R,S). Let {e;}1<i<, be the standard basis of S and set f; = ¢(ey).
Then

Kp/Rfi 2 S"/Im"™™ + Se,| = @ S/ (x5 | 1 < j < 1),
=2

where each S/(z;; | 1 < j <{) is a regular local ring of dimension d — 1, so that R is a

semi-Gorenstein local ring, because the sequence

0 R5Kr—@PS/(ay; | 1<j<t)—0
i=2
is exact by Lemma 1.3.1 (1), where ¢(1) = f;. This completes the proof of equivalence
(1) & (2).

To prove the last equality in Theorem 1.7.8, we need a preliminary step. Let S
be a Noetherian local ring. Let * = x1,x9,...,2, be a regular sequence in S and
Y = Y1, %Y, -, Y & sequence of elements in S. We denote by K = K,(x,S) the Koszul
complex of S associated to xy, s, ...,z and by L = K,(y, S) the Koszul complex of S
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associated to y = y1,Ys, .. .,ye. We consider the diagram.

o5 of
KQ —— Kl == Ll

Lo(y;S) =S

and set L = 9F(Ker 9F). Then because Ker 9F =Im 09X, we get the following.
Lemma 1.7.9. L = (zayp —2pya | L <a< <) =L (52 0%).

Let us now check the last assertion in Theorem 1.7.8. We maintain the notation
in the proof of implication (1) = (2). Let a € S. Then a € a if and only if af; = 0,

because a = (0) :5 K. The latter condition is equivalent to saying that

m

aer = Y cij(yijes + xijes) + Y di(zer)

2<i<r, 1<5<¢ k=1

for some ¢;;, dj, € S, that is

T l m l
a= Z <Z cijyij> + Z drz, and Z cijri; =0 forall 2 <¢<r.

=2 7j=1 k=1 j=1

¢
If 375, cijwij = 0, then by Lemma 1.7.9 we get
¢
Yil Yi2 - Yie
> ey € Lo (B ),
j=1
because x;1, T, ..., x; is an S-sequence. Hence
T
Yi1 Yi2 - Yie
ag(21722,...,2m)+§ 12(1521922"' xze)
i=2

To see the reverse inclusion, notice that z; € a for every 1 < k < m, because z;f; = 0.
Let 2<i<rand 1 <a< f </{ Then since

(TiaVip — TiplYia)€1 = Tin(yige1 + Tig€i) — Tig(Yin€1 + Tin€i) € Kere,

we get (TialVis — TipTia)f1 = 0, so that z,,Yig — TigYia € a. Thus (21, 29,...,2m) +
Yor oL (¥ vz ¥ie) C a, which completes the proof of Theorem 1.7.8. ]
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Corollary 1.7.10. With the notation of Theorem 1.7.8 suppose that assertion (1) holds
true. We then have the following.

(1) If n=2, thenr =2 and q = 3, so that "M = (42 422 ¥23).

(2) Suppose that a C n®. If R has mazimal embedding dimension, then r = n and

qg=n%—1, so that m = 0.

Proof. (1) Since n =2, weget ¢ =r+1> (r—1)¢. Hence 2 > (r—1)({—1) =2(r —1),
as { = 3. Hence r =2 and ¢ = 3.

(2) We set v = lr(m/m?) (= dim S), e = €2 (R), and d = dim R (= v — n). Since
v =-e+d—1, we then have r = v — d = n, while ¢ = (e — 2)-(_°,) by [62]. Hence
qg=n?>—1=(r —1)¢, so that m = 0. O

One cannot expect m = 0 in general, although assertion (1) in Theorem 1.7.8 holds

true. Let us note one example.

Example 1.7.11. Let V' = k[[t]] be the formal power series ring over a field k and set
R = k[[t5,1%,¢7,1°]]. Let S = k[[X,Y,Z,W]] be the formal power series ring and let
¢ : S — R be the k-algebra map defined by ¢(X) = t*,0(Y) = t° o(Z) = t7, and

©(W) =1t Then R has a minimal S-free resolution of the form
0-552M56 495 49 R0,

N — (W X2 XY YZ Y2-XZ Z2-XW ; . 0 wi _
where 'M = (W} X7 XY vz yio &W). Hence R is semi-Gorenstein with r(R) = 2

Kero=(Y?—-XZ,2° - XW)+1L (WX Xyvz),

1.8 Almost Gorenstein graded rings

We now explore graded rings. In this section let R = P, ., . be a Noetherian graded
ring such that £ = Ry is a local ring. Let d = dim R and let 9t be the unique
graded maximal ideal of R. Assume that R is a Cohen-Macaulay ring, admitting the
graded canonical module Kg. The latter condition is equivalent to saying that &k = Ry
is a homomorphic image of a Gorenstein ring ([40, 41]). We put a = a(R). Hence
a=max{n € Z | [H%L(R)], # (0)} = —min{n € Z | [Kg], # (0)}.
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Definition 1.8.1. We say R is an almost Gorenstein graded ring, if there exists an exact
sequence 0 — R — Kg(—a) — C — 0 of graded R—modules such that uz(C) = e3,(C).
Here Kr(—a) denotes the graded R-module whose underlying R-module is the same as

that of Kg and the grading is given by [Kgr(—a)|, = [Kg|n—a for all n € Z.

The ring R is an almost Gorenstein graded ring, if R is a Gorenstein ring. As
(Kr)m = Kgyy,, the ring Ry is an almost Gorenstein local ring, once R is an almost
Gorenstein graded ring.

The condition stated in Definition 1.8.1 is rather strong, as we show in the following.

Firstly we note:

Theorem 1.8.2 ([23]). Suppose that A is a Gorenstein local ring and let I (# A) be an
ideal of A. If gr;(A) = D, I /1™ s an almost Gorenstein graded ring, then gr;(A)

1s a Gorenstein ring.

We secondly explore the almost Gorenstein property in the Rees algebras of pa-
rameter ideals. Let (A,m) be a Gorenstein local ring of dimension d > 3 and
Q = (ay,as,...,a4) a parameter ideal of A. We set R = R(Q) = A[Qt] C At],

where t is an indeterminate. We then have the following.

Theorem 1.8.3. The Rees algebra R = R(Q) of Q is an almost Gorenstein graded
ring if and only if @ = m (and hence A is a regular local ring).

To prove Theorem 1.8.3, we need some preliminary steps. Let B = A[Xy, Xs, ..., X4]

be the polynomial ring and let ¢ : B — R be the homomorphism of A-algebras defined

X1 Xo ... Xd)
ay as ... aq

by ¢(X;) = a;t for all 1 < i < d. Then ¢ preserves grading and Ker ¢ = I (
is a perfect ideal of B, since dimR = d + 1. Therefore R is a Cohen-Macaulay ring.
Because 9t = \/(Xl, {Xi+1 — ai}1<i<a—1, —aq) R and

R/(X1,{Xis1 — aih1<ica1, —aa)R =2 A/[(a1) + (az, as, . . ., aq)?],

we get 1(R) = r(A/[(ay) + (ag, as, . ..,a4)?]) = d—1> 2. Hence R is not a Gorenstein
ring.

Let G = grg(A) and choose the canonical Q-filtration w = {wy}nez of A which
satisfies the following conditions ([23, HTZ]).

i) w, =A, ifn<dand w, = Q" %y, if n > d.
(i)

40



(i) [R(w)]+ = Kg and gr (A)(—1) = Kg as graded R—modules, where R(w) =
> nsownt™ and gr ,(A) = P, 5 Wn/wWn 1.

On the other hand, since G = (A4/Q)[T1,T5,...,T,4] is the polynomial ring, we get
Kg = G(—d). Therefore wy_1/wg = A/Q by condition (ii) and hence wy = @, because
wg_1 = A by condition (i). Consequently w, = Q" 9! for all n > d. Therefore
Kr = Zd 2 At" + Rt91, so that we get the exact sequence 0 — R LN Kr(1l) = C =0
of graded R-modules, where (1) =t. Hence a(R) = —1, because C,, = (0), if n < 0.

Let f = t¢=1 denote the image of t*! in C' and put D = C/Rf. Then it is standard
to check that (0) :x C' = (0) :x f = Q¥7?R. Hence D = Zd ? D, is a finitely graded
R-module and £4(D) < oc.

Let R = R/Q%?R and look at the exact sequence

0-R2-d) 3>C—-D—0 ()

of graded R-modules, where (1) = f. Then since Ry = A4/Q%?% is an Artinian local
ring, the ideal MR of R contains [R], = (ait,ast, ..., aqt)R as a reduction. Therefore
thanks to exact sequence (f), we get egy(C) = e) ~(C) = e?,R] (C) = e?ﬁh(ﬁ)’ because
(4(D) < oo but dimz C = dimR = d. In order to compute eZ. (R), it suffices to see

the Hilbert function £4([R],). Since

Rl+

Ca([R]n) = La(A)QH42) — L4(A/Q™) = La(A/Q)- [("H27) — (471

for all n > 0, we readily get eg,(C) = e([%H(ﬁ) =l4(A/Q)(d — 2). Summarizing the
above observations, we get the following, because ugr(C) =1r(R) —1=d — 2.

Lemma 1.8.4. ug(C) = el(C) if and only if La(A/Q) =1, i.e., Q = m.
We are now ready to prove Theorem 1.8.3.

Proof of Theorem 1.8.3. If Q@ = m, then ugr(C) = e3(C) by Lemma 1.8.4. Let us
show the only if part. Since R is an almost Gorenstein graded ring, we get an exact
sequence 0 — R 2 Kp(1) = X — 0 of graded R-modules such that pg(X) = eQy(X).
Let £ = p(1) € [Kg]1 = At and remember that { ¢ 9Kz (Corollary 1.3.10). We
then have ¢ = et for some € € U(A) and therefore X = C' = (Kg/Rt)(1) as a graded
R-module. Hence ) = m by Lemma 1.8.4, because pugr(X) = eJ;(X). O

We thirdly explore the almost Gorenstein property in the polynomial extensions.

41



Theorem 1.8.5. Let (R, m) be a Noetherian local ring with infinite residue class field.
Let S = R[X4, Xs, ..., X,] be the polynomial ring and consider S to be a Z-graded ring
such that Sy = R and deg X; = 1 for every 1 < i < n. Then the following conditions

are equivalent.
(1) R is an almost Gorenstein local ring.
(2) S is an almost Gorenstein graded ring.

Proof. We put 9t =mS + 5,.
(2) = (1) This follows from Theorem 1.3.9, because Spy is an almost Gorenstein
local ring and the fiber ring Son/mSyy is a regular local ring.
(1) = (2) We may assume that R is not Gorenstein. Hence d = dim R > 0. Choose
an exact sequence
(1) 0> R—>Kr—C—=0

of R-modules so that pur(C) = €% (C) and consider R to be a Z-graded ring trivially.

Then, tensoring sequence (f;) by S, we get the exact sequence
(fl2) 0=2S—=>5S®rKr—=>5S®rC —0

of graded S-modules. Let D = S®rC. Then D is a Cohen-Macaulay graded S-module
of dim D = dimgr C' +n = dim .S — 1. We choose elements f1, fo,..., fs—1 € m so that
mC = C[C, where q= (fl, fg, ceey fd—l)- Then

MD = (mS)D +S,D = (qS)D + S, D,

so that pug(D) = el (D). Therefore, exact sequence (fz) shows S to be an almost

Gorenstein graded ring, because a(S) = —n and S @ Kg = Kg(n). O

Corollary 1.8.6. Let (R,m) be an Artinian local ring and assume that the residue
class field R/m of R is infinite. If the polynomial ring R[ X1, Xo, ..., X,] is an almost

Gorenstein graded ring for some n > 1, then R is a Gorenstein ring.
The last assertion of the following result is due to S.-i. Iai [48, Theorem 1.1].

Corollary 1.8.7. Let (R, m) be a Noetherian local ring with d = dim R > 0 and infinite

residue class field. Assume that R is a homomorphic image of a Gorenstein local ring.
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We choose a system aq,as, . ..,aq of parameters of R. Let 1 < r < d be an integer and
set q = (a1,az,...,a,). If gry(R) is an almost Gorenstein graded ring, then R is an
almost Gorenstein local ring. In particular, R is a Gorenstein local ring, if r = d and

gry(R) is an almost Gorenstein graded ring.

Proof. The ring R is Cohen-Macaulay, because the associated graded ring gr,(R) of g
is Cohen-Macaulay. Hence aq, as, ..., a, forms an R-regular sequence, so that grq(R) =
(R/q)[X1, Xa, ..., X,] is the polynomial ring. Therefore by Theorem 1.8.5, R/q is an
almost Gorenstein local ring, whence R is almost Gorenstein. Remember that if r = d,
then R is Gorenstein by Corollary 1.8.6, because dim R/q = 0. ]

Unfortunately, even though Ry is an almost Gorenstein local ring, R is not neces-

sarily an almost Gorenstein graded ring. We explore one example.

Example 1.8.8. Let U = k[s,t] be the polynomial ring over a field k£ and look at
the Cohen-Macaulay graded subring R = k[s, s3t, s3t?, s3t3] of U. Then Ryy is almost
Gorenstein. In fact, let S = k[X,Y, Z, W] be the weighted polynomial ring such that
degX =1, degY = 4, degZ = 5, and degW = 6. Let v : S — R be the k-
algebra map defined by ¥(X) = s, ¥(Y) = $3, ¢(Z) = s3t?, and (W) = s33. Then

Kervy = I, ())(/3 Y I%/) and the graded S-module R has a graded minimal free resolution

AR (A1 Az Ag)
=

0— S(—13) ® S(—14) ~Z W25 5(—10) @ S(—9) @ S(—8) S% R0,

whereA | = Z2 - YW, Ay = X3W — Y Z, andA 3 = Y2 — X3Z. Therefore, because
Kgs = S(—16), taking the Kg-dual of the resolution, we get the presentation
(37 &)

S(—6) D S(—7) D S(—8) 275 S(—=3)® S(—2) = Kr — 0 (%)
of the graded canonical module K of R. Hence a(R) = —2. Let £ = ¢((})) € [Krls
and we have the exact sequence 0 = R 5 Kr(3) — S/(Y, Z,W)(1) — 0 of graded R-
modules, where (1) = £. Hence Ry is a semi-Gorenstein local ring. On the other hand,
thanks to presentation (1) of Kz, we know [Kg]s = kn # (0), where n = £((})). Hence

if R is an almost Gorenstein graded ring, we must have ur(Kgr/Rn) = ey (Kgr/Rn),
which is impossible, because Kr/Rn = [S/(X3,Y, Z)](-3).
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This example 1.8.8 seems to suggest a correct definition of almost Gorenstein graded
rings might be the following: there exists an exact sequence 0 — R — Kgr(n) - C — 0
of graded R-modules for some n € Z such that pur(C) = €3;(C). We would like to leave

further investigations to readers as an open problem.

1.9 Almost Gorenstein associated graded rings

The purpose of this section is to explore how the almost Gorenstein property of base

local rings is inherited from that of the associated graded rings. Our goal is the following.

Theorem 1.9.1. Let (R,m) be a Cohen-Macaulay local ring with infinite residue class
field, possessing the canonical module Kgr. Let I be an m-primary ideal of R and let
gry(R) = @, ["/I™" be the associated graded ring of 1. If gri(R) is an almost
Gorenstein graded ring with r(gr;(R)) = r(R), then R is an almost Gorenstein local

TIng.

Theorem 1.9.1 is reduced, by induction on dim R, to the case where dim R = 1. Let

us start from the key result of dimension one. Our setting is the following.

Setting 1.9.2. Let R be a Cohen-Macaulay local ring of dimension one. We consider
a filtration F = {I,},ez of ideals of R. Therefore {I,},ez is a family of ideals of R
which satisfies the following three conditions: (1) I, = R for all n < 0 but [; # R, (2)
I, O I,y foralln € Z, and (3) 1,1, C I, 4, for allm,n € Z. Let t be an indeterminate
and we set

R=R(F) =) _ ILt" C R[],

n>0

R =R(F)=R[t""] =) Lt"CR[tt], and

neL

G=G(F)=R(F)/t'R(F).

We call them respectively the Rees algebra, the extended Rees algebra, and the associ-

ated graded ring of F. We assume the following three conditions are satisfied:

1. R is a homomorphic image of a Gorenstein ring,
2. R is a Noetherian ring, and
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3. G is a Cohen-Macaulay ring.

Let a(G) = max{n € Z | [Hiy(G)], # (0)} ([40]), where {[Hy;(G)]n}nez stands for
the homogeneous components of the first graded local cohomology module H, (G) of G
with respect to the graded maximal ideal 9 = mG + G4 of G. We set ¢ = a(G) + 1
and K = Kg. Then by [23, Theorem 1.1] we have a unique family w = {w,}nez of

R-submodules of K satisfying the following four conditions:

(1) wp D wyyq for all n € Z,
(ii) w, = K for all n < —¢,
(iil) Lnwn C Wiy for all myn € Z, and
(iv) Krr 2 R'(w) and K¢ = G(w)(—1) as graded R'-modules,

where R'(w) = Y, cpwat™ C K[t,t7!] and G(w) = R'(w)/t 'R/ (w), and Kgs and K¢
denote respectively the graded canonical modules of R’ and G. Notice that [G(w)], =
(0) if n < —c (see condition (ii)).

With this notation we have the following.

Lemma 1.9.3. There exist integers d > 0 and k > 0 such that wg,_. = Ig‘kwdk_c for
alln > k.

Proof. Let L = R(w)(—c), where R(w) = > s w,t™ € K[t]. Then L is a finitely
generated graded R-module such that L, = (6) for n < 0. We choose an integer
d > 0 so that the Veronesean subring R@ = ano Ran of R with order d is standard,
whence R = R[R,4]. Then, because L(? = Y ns0 Lan 1s a finitely generated graded
R@-module, we may choose a homogeneous system {f;}1<;<¢ of generators of L@ so
that for each 1 <3 </

fi € [IL9]s, = [R(w)]ak,—e

with k; > €. Setting k = max{k; | 1 <4 < (}, for all n > k we get

¢
n—k
Wan—c © E Lgtn—y)Wak;—c € 1] "Wak—c,
i=1

as asserted. O]
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Let us fix an element f € K and let £ = ft—¢ € G(w)(—c) denote the image of
ft=¢ € R'(w) in G(w). Assume (0) :¢ & = (0) and consider the following short exact
sequence

(E) 0— G5 Gw)(—c) = C —0,
of graded G-modules, where (1) = {&. Then C, = (0) for all p € AssG, because
[G(w)]y = [Kelp = K, as Gy-modules by condition (iv) above and ¢, (G,) = (g, (Kg,)
([43, Korollar 6.4]). Therefore (r(C) = {c(C) < oo since dimG = 1, so that C' is

finitely graded. We now consider the exact sequence
R 4 R (w)(—c) = D —0

of graded R’-modules defined by ¢(1) = ft=¢. Then C' = D/uD as a G-module, where
u = t~1. Notice that dimR’/p = 2 for all p € Ass R/, because R’ is a Cohen-Macaulay
ring of dimension 2. We then have D, = (0) for all p € AssR’, since dimg: D <
1. Hence the homomorphism ¢ is injective, because R'(w) = Kg/ by condition (iv)
and Lz ([R'(W)]p) = lrp([Krlp) = lrip(Kry) = lry(Ry) for all p € AssR'. The
snake lemma shows u acts on D as a non-zerodivisor, since u acts on R'(w) as a non-
zerodivisor.

Let us suppose that C' # (0) and set S = {n € Z | C, # (0)}. We write S = {n; <
ng < --- < ng}, where £ = #S > 0. We then have the following.

Lemma 1.9.4. D, = (0) if n > ng and D, = K/Rf if n < 0. Consequently,
(r(K/R[) = lr(C).

Proof. Let n > ny. Then C,, = (0). By exact sequence (E) above, we get [,,/[,+1 =
Wn—c/Wnt1—c, Whence wy,_. = I, f + wpy1—. Therefore w, —c C I,,f + w, for all g € Z.
By Lemma 1.9.3 we may choose integers d > 0 and k£ > 0 so that

Wn-e C Inf +Wam—c C Inf + 177" f

for all m > k. Consequently, w,_. = I,,f. Hence D,, = (0) for all n > n,. If n <0, then
D, = [R'(w)(—0)]n/R.f = K/Rf (see condition (ii) above). To see the last assertion,
notice that because S = {n; < ns < --- <y}, D, =u""™D,, = D, if n <n; and
D, = u™+"D, =D

for n > ny, we get

it i if 1< @ < £and n; <n < niyq. Therefore since D, = (0)

(r(K/Rf) = lr(Do) = Lr(Dy,) = ZKR(Cm) = (r(C).
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]

Exact sequence (E) above now shows the following estimations. Remember that
r(R) < 1(G), because Kq[t] = Kt,t7!] so that up(K) < ue(Ka).

Proposition 1.9.5. 1(R) — 1 <1(G) — 1 < pe(C) < lg(C) = Lr(C) = Lr(K/Rf).
We are now back to a general situation of Setting 1.9.2.

Theorem 1.9.6. Let G be as in Setting 2 and assume that G is an almost Gorenstein

graded ring with v(G) = r(R). Then R is an almost Gorenstein local ring.

Proof. We may assume that G is not a Gorenstein ring. We choose an exact sequence
0= G5 Gw)(—c) = C =0

of graded G-modules so that C' # (0) and 9MMC = (0). Then pg(C) = £a(C). We set
¢ = (1) and write £ = ft—¢ with f € K. Hence (0) :¢ £ = (0). We now look at
the estimations stated in Proposition 1.9.5. If r(R) — 1 = {g(C), then (r(K/Rf) =
ur(K/Rf) because r(R) — 1 = pur(K) —1 < pr(K/Rf) < Up(K/Rf) = ls(C), so that
m-(K/Rf) = (0). Consequently, we get the exact sequence

0+R3>K— K/Rf -0

of R-modules with ¢(1) = f, whence R is an almost Gorenstein local ring. If r(R)—1 <
l;(C), then (1) € M-[G(w)(—c)] because r(G) — 1 < pe(C), so that Gey is a discrete

valuation ring. This is impossible, since G is not a Gorenstein ring. [

The converse of Theorem 1.9.6 is also true when G satisfies some additional condi-
tions. To see this, we need the following. Recall that our graded ring G is said to be
level, if K¢ = G-[Kg]_a, where a = a(G). Let R denote the m-adic completion of R.

Lemma 1.9.7. Suppose that Q(R) is a Gorenstein ring and the field R/m is infinite.
Let us choose a canonical ideal K of R so that R C K C R. Leta € m be a reqular
element of R such that I = aK C R. We then have the following.

(1) Suppose that G is an integral domain. Then there is an element f € K \ wi_,
so that af € I generates a minimal reduction of I. Hence (0) :¢ & = (0), where

= ft= e Gw)(~o).
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(2) Suppose that Q(G) is a Gorenstein ring and G is a level ring. Then there is
an element f € K such that af € I generates a reduction of I and Gp-% =
G(w)(—=0)]y = Gy for all p € AssG, where £ = ft=¢ € G(w)(—c). Hence (0) :¢
£ =(0).

Proof. (1) Let L = w;—.. Then aL C aK = I, since L C K. We write
I = (z1,%9,...,x,) such that each z; generates a minimal reduction of I. Choose
f = x; so that z; € L, which is the required one.

(2) Let M = G(w)(—c). Then since M = G-My and M, # (0), My Z pM, N M for
any p € AssG. Choose an element f € K so that af generates a reduction of I and
£E=ftecd pM, N M for any p € AssG. Then Gp-§ = M, for all p € AssG, because
M, = G,. [

Theorem 1.9.8. Suppose that R is an almost Gorenstein local ring and the field R/m

1s infinite. Assume that one of the following conditions is satisfied:
(1) G is an integral domain;
(2) Q(GQ) is a Gorenstein ring and G is a level ring.

Then G is an almost Gorenstein graded ring with r(G) = r(R).

Proof. The ring Q(ﬁ) is Gorenstein, since R is an almost Gorenstein local ring. Let K
be a canonical ideal of R such that R € K C R. We choose an element f € K and
a € m as in Lemma 1.9.7. Then pur(K/Rf) =1r(R) — 1, since f is a part of a minimal
system of generators of K (recall that af generates a minimal reduction of [ = aK).
Therefore by Proposition 1.9.5, r(G) = r(R) and 9M-C' = (0), whence G is an almost
Gorenstein graded ring. O

Suppose that (R, m) is a complete local domain of dimension one and let V = R.
Hence V is a discrete valuation ring. Let n be the maximal ideal of V" and set I,, = n""NR
for each n € Z. Then F = {I, },ez is a filtration of ideals of R. We have I; = m and
G(F) (S gr,(V) = @,5n"/n"") is an integral domain. The ring R(F) is Noetherian,
since n” C R for all n > 0. Therefore, applying Theorems 1.9.6 and 1.9.8 to this setting,
we readily get the following, where the implication (2) = (1) is not true in general,
unless r(G) = r(R) (see Example 1.9.13).
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Corollary 1.9.9 (cf. [8, Proposition 29]). Let R and F be as above and consider the

following conditions.
(1) R is an almost Gorenstein local ring;
(2) G is an almost Gorenstein graded ring and r(G) = r(R).

Then the implication (2) = (1) holds true. If the field R/m is infinite, the converse is

also true.
To prove Theorem 1.9.1, we need one more result.

Proposition 1.9.10. Let G = Gy|G4] be a Noetherian standard graded ring. Assume
that Gy is an Artinian local ring with infinite residue class field. If G is an almost
Gorenstein graded ring with dim G > 2, then G/(x) is an almost Gorenstein graded

ring for some non-zerodivisor x € G.

Proof. We may assume that G is not a Gorenstein ring. Let m be the maximal ideal of

Gy and set M = mG + G.. We consider the sequence
0—G—Kg(—a) > C —0

of graded G-modules such that ug(C) = €3,(C), where a = a(G) is the a-invariant of
G. Then because the field Gy/m is infinite and the ideal G4 = (G;) of G is a reduction
of M, we may choose an element x € Gy so that x is G-regular and superficial for
C with respect to M. We set G = G/(z) and remember that x is C-regular, as
dimg C' =dim G — 1 > 0. We then have the exact sequence

0— G/(x) = (Kg/2Kg)(—a) - C/xC — 0
of graded G-modules. We now notice that a(G) = a + 1 and that
(Ke/7Kg)(—a) = Kg(—(a+ 1))
as a graded G-module, while we see
egﬁ/(a&)(c/xc) = eq(C) = pe(C) = pa(C/z0),

since z is superficial for C' with respect to 9. Thus G is an almost Gorenstein graded

ring. [
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We are now ready to prove Theorem 1.9.1.

Proof of Theorem 1.9.1. We set d = dim R and G = gr;(R). We may assume that G is
not a Gorenstein ring. Hence d = dim G > 1. By Theorem 1.9.6 we may also assume

that d > 1 and that our assertion holds true for d—1. Let us consider an exact sequence
0—G—Kg(—a) > C—0

of graded G-modules with pg(C) = €3,(C), where M = mG + G, and a = a(G). We
choose an element a € I so that the initial form a* = a + I? € Gy = I/I* of a is
G-regular and G//a*G = gr;,(,)(R/(a)) is an almost Gorenstein graded ring (this choice
is possible; see Proposition 1.9.10). Then the hypothesis on d shows R/(a) is an almost
Gorenstein local ring. Therefore R is an almost Gorenstein local ring, because a is

R-regular. ]

In general, the local rings R, (p € Spec R) of an almost Gorenstein local ring R
are not necessarily almost Gorenstein, as we will show by Example 1.9.13. To do this,
we assume that R is a Cohen-Macaulay local ring of dimension d > 0, possessing the
canonical module Kg. Let F = {I,,},cz be a filtration of ideals of R such that Iy = R
but I; # R. Smilarly as Setting 2, we consider the R-algebras

R=> Lt"CR[t], R'=> Lt"CR[tt"], and G=R/t"'R'
n>0 neL
associated to JF, where t is an indeterminate. Notice that R’ = R[t™!] and that G =
®n>0ln/ 1. Let N denote the graded maximal ideal of R'. We then have the following.

Theorem 1.9.11. Suppose that R/m is infinite and that R is a Noetherian ring. If

Gy s a pseudo-Gorenstein local ring, then R is pseudo-Gorenstein.

Proof. By Theorem 1.3.7 (1) R'y is an almost Gorenstein ring with r(Gy) = r(R'n) < 2,
as Gy = R/t 'R/ and t 7! is R'-regular. Let p = m-R[t,t"!] and set P = pNR’. Then
P C M, so that by Proposition 1.7.2 R[t,t!], is an almost Gorenstein ring, because
R[t,t7 !, = R'p = (R'w)prry;- Thus by Theorem 1.3.9 R is an almost Gorenstein
ring with r(R) < 2, because R/m is infinite and the composite homomorphism R —
R[t,t7'] = R[t,t7'], is flat. O
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Remark 1.9.12. The following example 1.9.13 is given by V. Barucci, D. E. Dobbs,
and M. Fontana [7, Example I11.1.19]. Because R[t,t'], = R'p = (R'n)pry with
the notation of the proof of Theorem 1.9.11, Theorem 1.3.9 and Example 1.9.13 show
that (R'm)pry, is not an almost Gorenstein local ring (here we assume the field k is
infinite). Hence, in general, local rings R, (p € Spec R) of an almost Gorenstein local
ring R are not necessarily almost Gorenstein. Notice that Ry, is not a semi-Gorenstein
local ring (remember that the local rings of a semi-Gorenstein local ring are semi-
Gorenstein; see Proposition 1.7.2). Therefore the example also shows that a local ring
R is not necessarily semi-Gorenstein, even if R/(f) is a semi-Gorenstein ring for some

non-zerodivisor f of R.

Example 1.9.13. Let k be a field with chk # 2 and let R = k[[z*, 25 + 27, 2] C V,
where V' = k[[z]] denotes the formal power series ring over k. Then V = R. Let v denote
the discrete valuation of V' and set H = {v(a) | 0 # a € R}, the value semigroup of R.
We consider the filtration F = {(zV)" N R},ez of ideals of R and set G = R/t 'R/,
where R’ = R/(F) is the extended Rees algebra of F. We then have:

(1) H = (4,6,11,13).

(2) G =kt 2% 21, 2] (

C k[z]) as a graded k-algebra and Gy is an almost Goren-
stein local ring with r(Gy) = 3, where 91 is the graded maximal ideal of R'.

(3) R is not an almost Gorenstein local ring and r(R) = 2.

1.10 Almost Gorenstein homogeneous rings

In this section let R = k[R;] be a Cohen-Macaulay homogeneous ring over an infinite
field £ = Ry. We assume d = dim R > 0. Let 9 = R, and a = a(R). For each
finitely generated graded R-module X, let [X]= > " dim; X,-A" € Z[\] be the
Hilbert series of X, where X,, (n € Z) denotes the homogeneous component of X with

degree n. Then as it is well-known, writing [R] = % with F'(\) € Z[A], we have

deg F(A\) = a+d >0 and [Kg(—a)] = % Let fi, fa,..., fa be a linear system
of parameters of R. Then, because a(R/(f1, fo,..., f4)) = a + d, we have a = 1 — d
if and only if M2 = (f1, fo, ..., fo)DN and M # (f1, fo, ..., f4). Conversely, we get the

following. Remember that the graded ring R is said to be level, if Kr = R-[Kg]_q.
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Proposition 1.10.1. Suppose that a = 1 —d. Then R is a level ring with [R] 1tc

and [Kr(—a)| = %, where ¢ = dimy, Ry — d.

The following lemma shows that the converse of Proposition 1.10.1 is also true, if

R is an almost Gorenstein graded ring.

Lemma 1.10.2. Suppose that R is an almost Gorenstein graded ring and assume that

R is not a Gorenstein ring. If R is a level ring, then a =1 —d.

Proof. Suppose that R is a level ring and take an exact sequence 0 — R — Kg(—a) —
C — 0 of graded R-modules so that pur(C) = e3;(C). Then C # (0) and hence C'is a
Cohen-Macaulay R-module of dimension d — 1 (Lemma 1.3.1 (2)). We have C' = RCj
and pgr(C) =r(R) — 1 (Corollary 1.3.10). Remember that IMC = (fo, f3,..., fa)C for
some fo, f3,..., fa € Ry (see Proposition 1.2.2 (2)) and we have [C] = #, where
r =r(R). Consequently, [Kr(—a)] — [R] = #, so that F(5)-A*™ — F(A) = (r —
1)(1=A). Let us write F(\) = 3200 ¢, M with ¢; € Z. Then the equality 3¢ ¢,y g A\ =
SN 4 (r — 1)(1 — \) forces that if a +d > 2, then A\ = ¢, gA*" and
Catd = Co + (r — 1), which is impossible, since ¢y = 1 and r > 1. Therefore we have

a+d =1, because 0 < a + d and R is not a Gorenstein ring. O
The following is a key in our argument.

Lemma 1.10.3. Suppose that R is a level ring and Q(R) is a Gorenstein ring. Then
there exists an exact sequence 0 — R — Kgr(—a) — C — 0 of graded R-modules with
dimg C < d.

Proof. Let V = [Kg]_q. Then Kgr = RV. For each p € Ass R, let L(p) be the kernel of
the composite of two canonical homomorphism h(p) : Kg = (Kg)y = (Kg)y/p(Kg),.
Then V' & L(p), because K = RV and (Kg), = R,. Let us choose £ € V\U,casr L(P)
and let ¢ : R — Kg(—a) be the homomorphism of graded R-modules defined by
©(1) = €. Look now at the exact sequence R % Kg(—a) — C — 0 of graded R-
modules. Then, because (Kg), = R,% for all p € Ass R (remember that (Kg), = Ry),
we have Cy, = (0) for all p € Ass R. Hence dimp C' < d and therefore ¢ is injective (see
Lemma 1.3.1 (1)). O

We now come to the main result of this section.
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Theorem 1.10.4. Suppose that Q(R) is a Gorenstein ring. If a =1 —d, then R is an

almost Gorenstein graded ring.

Proof. We may assume that R is not a Gorenstein ring. Thanks to Lemma 1.10.3,
we can choose an exact sequence 0 - R — Kg(—a) - C — 0 of graded R-modules
so that C' is a Cohen-Macaulay R-module of dimension d — 1 (see Lemma 1.3.1 (2)
also). Then Proposition 1.10.1 implies [C] = [Kr(—a)] — [R] = #, where ¢ =
dimy Ry —d. Let fi, fo,..., fa_1 (€ R1) be a linear system of parameters for C. Then
because [C/(fa, ..., f2)C] = (1 = N4[C] = ¢ — 1, we get C/(fi, fa,.. ., fa1)C =
([C/(f1, fay -, fa—1)Clo, which shows that IMC = (fi, fa,..., fa—1)C. Thus purC =

ey (C) and hence R is an almost Gorenstein graded ring. O

Example 1.10.5. Let S = k[X;, Xo,..., X, Y1, Y5, ..., Y] (n > 2) be the polynomial
ring over an infinite field k£ and let R = S/, (i(,ll i(,j - iﬁ: ). Then R is a Cohen-Macaulay
normal ring with dim R = n+1. We have a(R) = 1—dim R, because 9M? = (X1, {X;1—
Yihi<i<n—1, Yn)9. Hence by Theorem 1.10.4, R is an almost Gorenstein graded ring.

We explore almost Gorenstein Veronesean subrings.

Corollary 1.10.6. Suppose that d =2, R is reduced, and a(R) < 0. Then the Verone-

sean subrings R™ = k[R,] of R are almost Gorenstein graded rings for all n > 1.

Proof. Let S = R™. Then S = k[S)] is a Cohen-Macaulay reduced ring and dim S = 2.
Since H2,(S) = [H2;(R)]™ (here 9t = S, ), we get a(S) < 0. Hence it suffices to show
that R is an almost Gorenstein graded ring, which readily follows from Theorem 1.10.5,
because Q(R) is a Gorenstein ring and a(R) < 1 — dim R (remember that R is the
polynomial ring, if a(R) = —dim R). O

Let us explore a few concrete examples.

Example 1.10.7. Let R = k[X,Y, Z]/(Z* — XY'), where k[X,Y, Z] is the polynomial

ring over an infinite field k. Then R™ is an almost Gorenstein graded ring for all n > 1

Proof. The assertion follows from Corollary 1.10.6, since R is normal with dim R = 2
and a(R) = —1. O

Example 1.10.8. Let R = k[X;, Xs, ..., X4] (d > 1) be the polynomial ring over an
infinite field k. Let n > 1 be an integer and look at the Veronesean subring R™ = k[R,)]
of R. Then the following hold.
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(1) R™ is an almost Gorenstein graded ring, if d < 2.

(2) Suppose that d > 3. Then R™ is an almost Gorenstein graded ring if and only if
either n | d, or d =3 and n = 2.

Proof. Assertion (1) follows from Corollary 1.10.6. Suppose that d > 3 and consider
assertion (2). The ring R™ is a Gorenstein ring if and only if n | d ([53]). Assume that
n{dandput S = R™. Ifd =3 and n = 2, then S = k[X?, X2, X2, X, X,, X5 X3, X3X)]
with [S,]? = (X2, X2, X2)S, . Hence S is an almost Gorenstein graded ring by Theorem
1.10.4. Conversely, suppose that S is an almost Gorenstein graded ring. Let L =
{(o,q0,...,04) | 0 < oy € Z}. Weput |o] = 3¢ a; and X = []%, X% for each
a=(o,a,...,aq4) € L. Let s = min{s € Z | sn > ¢} where ¢ = (n — 1)(d — 1) and
put a = (X7, X7, ..., X}). We then have

a:S. =a+ (X*X?|a,B € Lsuchthat |a| =q, |8 =sn—q),

which shows the homogeneous Cohen-Macaulay ring S is a level ring with a(S) = 1—d.
Therefore, because Hg () = [H‘Ii%+(R)](”) and because [H%, (R)]; # (0) if and only if
i < —d, we have —n(d — 1) < —d < —n(d — 2), which forces n = 2 and d = 3, because
n > 2 (remember that n { d). O

Example 1.10.9. Let n > 1 be an integer and let A be a simplicial complex with
vertex set [n] = {1,2,...,n}. Let R = k[A] denote the Stanley-Reisner ring of A over
an infinite field k. Then e, (R) is equal to the number of facets of A. If R is Cohen-
Macaulay and n = eOR+ (R) +dim R — 1, then R is an almost Gorenstein graded ring.

For example, look at the simplicial complex A:

with n = 6. Then R = k[A] is an almost Gorenstein graded ring of dimension 3. Note
that Rp is not a Gorenstein local ring for P = (X3, X3, X4, X5, X6) R
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1.11 Two-dimensional rational singularities are al-
most Gorenstein

Throughout this section let (R, m) denote a Cohen-Macaulay local ring of dimension
d > 0, admitting the canonical module Kz. We assume that R/m is infinite. Let v(R) =
pr(m) and e(R) = €2 (R). We set G = gr,,(R) = @ m"/m""! be the associated graded
ring of m and put 9 = G;. The purpose of this section is to study the question of when
GG is an almost Gorenstein graded ring, in connection with the almost Gorensteinness
of the base local ring R. Remember that, thanks to [62], v(R) = e(R) + d — 1 if and
only if m? = Qm for some (and hence any) minimal reduction @ of m. When this is the
case, G is a Cohen-Macaulay ring and a(G) = 1 — d, provided R is not a regular local
ring.

Our result is stated as follows.
Theorem 1.11.1. The following assertions hold true.

(1) Suppose that R is an almost Gorenstein local ring with v(R) = e(R)+d — 1. Then

G is an almost Gorenstein level graded ring.

(2) Suppose that G is an almost Gorenstein level graded ring. Then R is an almost

Gorenstein local ring.

Proof. (1) If R is a Gorenstein ring, then e(R) < 2 and R is an abstract hypersurface,
since m? = Qm for some minimal reduction @ of m. Therefore G is also a hypersurface
and hence a Gorenstein ring.

Assume that R is not a Gorenstein local ring. Hence d > 0 and a(G) = 1 — d.
We show that G is an almost Gorenstein graded ring by induction on d. First we
consider the case d = 1. Let R denote the integral closure of R in Q(R). Choose an
R-submodule K of R so that R C K C R and K = Ky as an R-module (this choice is
possible; see [26, Corollary 2.8]). We have mK C R by [26, Theorem 3.11] as R is an
almost Gorenstein local ring. Hence mK = m (see Corollary 1.3.10), and m"K = m”
for all n > 1. Let C' = K/R and consider the m-adic filtrations of R, K, and C. We

then have the exact sequence
0— G —gr (K)—gr,(C)—0 (1)
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of graded G-modules induced from the canonical exact sequence 0 -+ R — K — C — 0
of filtered R-modules. Notice that gr, (C) = [gr,(C)]o, since mC' = (0). Thanks to
exact sequence (f) above, the following claim yields that G is an almost Gorenstein

graded ring.

Claim 1.11.2. gr (K) = K¢ as a graded G-module.

Proof of Claim 1.11.2. Since a(G) = 0 and G is a graded submodule of gr,(K), it
suffices to show that depth, gr, (K) > 0 and rg(gr,(K)) = 1. Choose a € m so
that m? = am and let f = @ (€ m/m?) denotes the image of a in G. Let z € m"K

2= am" we

(n > 0) and assume that az € m"™2K = m"*2 Then, since m
readily get x € m" ™ = m"™ K. Thus f is gr,,(K)-regular, [gr,,(K)/fer,(K)]lo = K/m,
lgro(K)/fero(K)]1 = m/aK, and gr, (K)/fer,(K) = K/m®m/aK. Let z € K\ m
and assume that Mz C fgr, (K), where T (€ K/m) denotes the image of = in gr, (K).
Then, since mz C aK and rg(K) = 1 (remember that K = Kg as an R-module), we get
aK :x m =akK + Rx. Therefore m(K/aK) = (0); otherwise m(K/aK) D [(0) :x/ax M|
and hence x € mK = m. Consequently, because K/aK = Eg/4)(R/m) (the injective
envelope of the R/(a)-module R/m; see [43, Korollar 6.4]) is a faithful R/(a)-module,
we have m = (a). This is, however, impossible, because R is not a discrete valuation
ring. Let z € m\ aK and assume that Mz C fgr, (K), where T (€ mK/m?K) denotes
the image of z in gr,(K). Then mz C aK and hence aK :x m = aK + Rx, which
proves {r/m((0) :gr (x)/rgr () M) = 1. Thus re(gr,(K)) = 1, so that gr,(K) = Kg
as a graded G-module. ]

Assume now that d > 1 and that our assertion holds true for d — 1. Let 0 - R —
Kr — C — 0 be an exact sequence of R-modules such that pr(C) = €2 (C). Choose
a € m so that a is a part of a minimal reduction of m and a is superficial for C' with
respect to m. Let f =@ (€ m/m?) denote the image of a in G = gr,,(R). We then have
G/fG =grn(R/(a)) and v(R/(a)) = e(R/(a)) +d — 2. By the hypothesis of induction,
G/fG is an almost Gorenstein graded ring, because R/(a) is an almost Gorenstein
local ring (see Proof of Theorem 1.3.9). Choose an exact sequence 0 — G/fG —
Kaypa(d —2) — X — 0 of graded G/fG-modules so that pgyic(X) = e ;q, (X)-
Recall that K¢/ ra(d — 2) = Kg sk, (d — 1) as a graded G-module and we get an exact
sequence 0 - G — Kg(d — 1) — Y — 0 of graded G-modules, similarly as in Proof
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of Theorem 1.3.7, such that ug(Y) = e)(Y). Hence G is an almost Gorenstein graded
ring.
(2) We may assume G is not a Gorenstein ring. Hence d > 0 and a = 1 —d (Lemma

1.10.2). Suppose that d = 1 and choose an exact sequence
0—>G—Kg(—a)—C—=0 (1)

of graded G-modules so that MC = (0), where a = a(G).

We now take the canonical m-filtration w = {wy,}nez of Kg so that w, = Kg if
n < —a and Kg = gr (Kg) (see, e.g., [23] for the existence of canonical filtrations).
Let f € Kg = w_, such that p(1) = f, where f (€ Kg/w_,41) denotes the image of
f in Kg(—a). Let a be the R-linear map R — Kg defined by a(1) = f and consider
R to be filtered with filtration F = {m"*%}, 5. Then the homomorphism « : R — Kg
preserves filtrations and G(a) = gry(R) as an graded G-module. Consequently, exact
sequence (#) turns into 0 — grg(R)(—a) — gr,(Kg)(—a) = C — 0 with ¢(1) = f.
We now notice that C' = Cj, because G is a level ring. Hence w, = m"™*f + w,
for n > —a. Therefore w_,11 C mf 4 wy for all ¢ € Z and hence w_,,1 = mf. Thus
W_gr1 = mf = mKg, because mKrp = mw_, C w_,y;. Consequently, in the exact
sequence R = Kp — X — 0, we have mX = (0). Thus R is an almost Gorenstein local
ring (see Lemma 1.3.1).

Now suppose that d > 1 and that our assertion holds true for d — 1. Look at the
exact sequence 0 - G — Kg(d — 1) — C — 0 of graded G-modules with ug(C) =
eg(C). Choose f € Gy so that f is G-regular and MC = (f, fo, ..., fa_1)C for some
fo, f3,- -+, fae1 € Gy (Proposition 1.2.2 (2)). We then have the exact sequence 0 —
G/fG — (Kg/fKg)(d—1) = C/fC — 0 of graded G/ fG-modules, which guarantees
that G/fG is an almost Gorenstein graded ring (remember that (K¢g/fKg)(d — 1) =
Kg/pa(d — 2)). Consequently, thanks to the hypothesis of induction, the local ring
R/(a) (here a € m such that f =@ in m/m? = [gr,,(R)];) is an almost Gorenstein local
ring and therefore by Theorem 1.3.7, R is an almost Gorenstein local ring, because a

is R-regular. ]

When v(R) = e(R) + d — 1, the almost Gorensteinness of R is equivalent to the

Gorensteinness of Q(G), as we show in the following.
Corollary 1.11.3. Suppose that v(R) = e(R)+d—1. Then the following are equivalent.
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(1) R is an almost Gorenstein local ring,
(2) G is an almost Gorenstein graded ring,

(3) Q(G) is a Gorenstein ring.

Proof. Since G is a Cohen-Macaulay level graded ring (Proposition 1.10.1 and [62]), the
equivalence (1) < (2) follows from Theorem 1.11.1. See Theorem 1.10.4 (resp. Lemma
1.3.1 (1)) for the implication (3) = (2) (resp. (2) = (3)). O

We say that m is a normal ideal, if m” is an integrally closed ideal for all n > 1.

Corollary 1.11.4. Suppose that v(R) = e(R) +d — 1 and that R is a normal ring. If

m s a normal ideal, then R is an almost Gorenstein local ring.

Proof. Let R = R'(m) = R[mt,¢"!] be the extended Rees algebra of m, where ¢ is an
indeterminate. Then R’ is a normal ring, because R is a normal local ring and m is a
normal ideal. Hence the total ring of fractions of G = R'/t" 'R’ is a Gorenstein ring,
so that R is almost Gorenstein by Corollary 1.11.3. [

We now reach the goal of this section.

Corollary 1.11.5. FEvery 2-dimensional rational singularity is an almost Gorenstein

local ring.

Auslander’s theorem [3] says that every two-dimensional Cohen-Macaulay complete
local ring R of finite Cohen-Macaulay representation type is a rational singularity,
provided R contains a field of characteristic 0. Hence by Corollary 1.11.5 we get the

following.

Corollary 1.11.6. Fvery two-dimensional Cohen-Macaulay complete local ring R of
finite Cohen-Macaulay representation type is an almost Gorenstein local ring, provided

R contains a field of characteristic 0.

1.12 Omne-dimensional Cohen-Macaulay local rings
of finite CM-representation type are almost
Gorenstein

The purpose of this section is to prove the following.
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Theorem 1.12.1. Let A be a Cohen-Macaulay complete local ring of dimension one
and assume that the residue class field of A is algebraically closed of characterisic 0. If
A has finite Cohen-Macaulay representation type, then A is an almost Gorenstein local

TIng.

Let A be a Cohen-Macaulay complete local ring of dimension one with algebraically
closed residue class field k of characterisic 0. Assume that A has finite Cohen-Macaulay
representation type. Then by [79, (9.2)] one obtains a simple singularity R so that
R C A C R, where R denotes the integral closure of R in the total ring Q(R) of
fractions. We remember that R = S/(F), where S = k[[X,Y]] is the formal power

series ring over k and F' is one of the following polynomials ([79, (8.5)]).
(A,) X2—Y"tl (n>1)

(D,) X?2Y —Y"1 (n>4)

(Eg) X*—Y*

(E;) X?— XY?

(Eg) X3 —Y5.

Our purpose is, therefore, to show that all the intermediate local rings R C A C R are

almost Gorenstein.

Let us begin with the analysis of overrings of local rings with multiplicity 2.

Lemma 1.12.2. Let (R,m) be a Cohen-Macaulay local ring with dimR = 1 and
e (R) = 2. Let R C S C Q(R) be an intermediate ring such that S is a finitely

generated R-module. Then the following assertions hold true.

(1) If S is a local ring with mazimal ideal n, then €2(S) < 2. We have €2(S) = 2 and
R/m=S/n, if SC R.

(2) Suppose that S is not a local ring. Then R®p S = Vi x Vo with discrete valuation
rings Vi and Vs, where R denotes the m-adic completion of R. Hence S is a

reqular ring and S = R.

(3) Let A=R:min Q(R). Then A=m:mand if RC S, then ACS.
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Proof. (1), (2) We have m? = fm for some f € m, since e’ (R) = 2 (see [64, Theorem
3.4]). Let @ = (f). Then

2= (R) = &(Q, R) = eo(Q,S) = (r(S/fS) = ts(S/ fS) = ur(S),

because (r(S/R) < oo. Therefore assertion (1) follows, since ¢5(S/fS) > €2(S). We
have R/m = S/n, if €2(S) = 2 (remember that (r(S/fS) = [S/n : R/m]-Ls(S/[fS)).
Assume now that S is not a local ring. To see assertion (2), passing to ﬁ, we may assume
that R is complete. Then ug(S) = 2. Hence S contains exactly two maximal ideals ny
and ng, so that S = S, X Sy, with ugr(S,,) =1 for ¢ = 1,2. Because (g(S/fS) = 2, we
get {r(Sy,/fSn;) = 1, whence the local rings S, are discrete valuation rings. Therefore
S is regular.

(3) Because R is not a discrete valuation ring, we get A = m : m. We also have
lr(A/R) = 1 ([43, Satz 1.46]), since R is a Gorenstein ring. Therefore A C S, if
RCS. O

Proposition 1.12.3. Let (R, m) be a Cohen-Macaulay local ring with dim R = 1 and
e (R) = 2. Let R € S C Q(R) be an intermediate Ting such that S is a finitely
generated R-module. Let n = (r(S/R). We then have the following.

(1) There exists a unique chain of intermediate rings

(2) Every intermediate ring R C A C S appears as one of {A; }o<i<n-

Proof. Let Ay = R :m. Then by Lemma 1.12.2 (3) A; C A for every intermediate ring
R C A C S, which enables us to assume that n > 1 and that the assertion holds true
forn—1. As R C A; € S, by Lemma 1.12.2 A, is a local ring with €} (4;) = 2 and
R/m = A;/ny, where ny is the maximal ideal of A;. Hence (4, (S/A1) = (r(S/A1) =

n — 1, so that the assertion follows from the hypothesis of induction on n. ]

Corollary 1.12.4. Let (R,m) be a Cohen-Macaulay local ring with dim R = 1 and
O (R) = 2 and let R C A, B C Q(R) be intermediate rings such that A and B are
finitely generated R-modules. Then A C B or B C A.

Proof. Let S = R[A, B]. Then R C S C Q(R) and S is a finitely generated R-module.

Hence assertion follows from Proposition 1.12.3. ]
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For a Cohen-Macaulay local ring R of dimension one, let Xy denote the set of
intermediate rings R C A C Q(R) such that A is a finitely generated R-module.

Corollary 1.12.5. The following assertions hold true.

(1) Let V = K[[t]] be the formal power series ring over a field k and R = k[[t?, t***]]
where € > 0. Then Xp = {k[[t?,t*77]] | 0 < g < (}.

(2) Let S = E[[X,Y]] be the formal power series ring over a field k of chk # 2
and R = S/(X% — Y%) with { > 0. Let z,y denote the images of X,Y in R,
respectively. Then Xp = {R[;5] | 0 < ¢ < (}.

Proof. (1) Let R, = K[[t?,t*1*1]] for 0 < ¢ < £. Then we have the tower
R:RggRgflg...gRozv

of intermediate rings. Hence the result follows from Proposition 1.12.3.
(2) Let R, = R[] for 0 < ¢ < {. We then have a tower

R=RyCRiC...CR,CR

of intermediate rings. Since (r(R/R) = ¢ (remember that R = S/(X+Y*)®S/(X-Y?),
because chk # 2), the assertion follows Proposition 1.12.3. ]

We need one more result.

Proposition 1.12.6. Let (R, m) be a Gorenstein local ring with dim R = 1 and assume
that there is an element f € m such that fR is a reduction of m. Let R C A C Q(R)
be an intermediate ring and assume that {r(A/R) =1 and that A is a local ring with

maximal ideal n. Then the following assertions hold.

(1) If A has mazimal embedding dimension and fA is a reduction of n, then A is an

almost Gorenstein local ring.

(2) If 2 (R) = 3, then A is an almost Gorenstein local ring.

Proof. (1) We get A = R :m, since RC A C R:m and (g([R: m]/R) = 1. Hence
Ki=R:A=R:(R:m)=m ([43, 5.19, Definition 2.4]). Since fA is a reduction of
n and A has maximal embedding dimension, we get n? = fn, so that n-(m/fA) = (0),

because m/fA C n/fA. Hence A is an almost Gorenstein local ring (Lemma 1.3.1 (1)).
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(2) We may assume v(A) > 3, where v(A) denotes the embedding dimension of A.

Remember

_ 0
3=e,

(R) = eo(fR, A) = lr(A/fA) > La(A/fA) = ey(A) > v(A) > 3,

so that £4(A/fA) = eX(A) = v(A) = 3. Hence fA is a reduction of n by a theorem of
Rees [59] and the assertion follows from assertion (1), because A has maximal embedding

dimension. H

We shall now check, for the five cases from (A,) to (D,) separately, that all the
intermediate local rings R C A C R are almost Gorenstein.

(1) The case (A,). Let R C A C R be an intermediate local ring such that A is
a finitely generated R-module. Let n be the maximal ideal of A. Then eJ(A) < 2 by
Lemma 1.12.2 (2), so that A is Gorenstein.

(2) The cases (Eg) and (Es). Let V' = k[[t]] be the formal power series ring over
k. We then have S/(X3 —Y*) = k[[t3,t1]] and S/(X?3 —Y5) = k[[t3,°]]. We begin with
the following.

Proposition 1.12.7. The following assertions hold true.
(1) Xigges a0 = {K[[°, £, £°]), K [[£2, £°]], V'}.
(2) Xy = {RI[, 10, K[, ¢4, 1], K2, €], V)
(3) s oy = (KL%, €1, K[, 22, 2710, K8, ¢4, 2°], (82, £°T), V-

Proof. (1) Let A = K[[t?,t*,°]] and let B € X4 such that B # A. We choose f € B\ A
and write
f=at+at’+g

with ¢1,¢0 € k and g € A. If ¢; # 0, then fV =tV so that V = k[[f]] C B. Suppose
c1 = 0. Then f = ct? + g and ¢y # 0, so that t* € B. Hence k[[t?,¢3]] C B, which
shows B = E[[t?,t*]] or B =V, because ly2 31 (V/E[[t*, t*]]) = 1.
(2) Let A = E[[t?,t*]] and let B € X4 such that B # A. We choose f € B\ A and
write
f=ct+cet? +est’ +g

with ¢; € k and g € A. If ¢; # 0, then V = k[[f]] € B. Suppose ¢; = 0 but ¢ # 0.
Then, rechoosing f so that c; = 1,we get t>+c5t® € B. Hence t3(t*+c5t°) = t°+c5t® € B.
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Therefore t° € B, because (3,4) 2 n for all n > 8 (here (3,4) denotes the numerical
semigroup generated by 3,4). Thus k[[t3,t*,t°]] € B, whence B = k[[t?,t3]] or B = V.
Suppose that ¢; = ¢y = 0 for any choice of f € B\ A. We then have t° € B since
cs # 0, so that B = k[[¢3,t*,¢°]].

(3) Let A = K[[t?,15]] and let B € X4 such that B # A. We choose f € B\ A and
write

f=cat+cet> +et* +ct’ +g

with ¢; € k and g € A. If ¢; # 0, then B = V. Suppose ¢; = 0 but ¢y # 0, say co = 1.
Then, since t°f = t7 + 4t + c7t'? + t5g € B, we get t” € B (remember that (3,5) > n
for all n > 8). Hence (t? + c4t*)? € B, so that t* € B. Therefore k[[t?,¢*]] C B. If
c1 = cy = 0 but ¢y = 1, then t* + ¢;t7 € B, so that t” € B because t3(t* + ¢;t7) € B.
Hence k[[t?,t']] € B. Suppose that ¢; = ¢; = ¢; = 0 for any choice of f € B\ A. We
then have t” € B, whence B = k[[t3,¢5,t7]]. O

It is standard to check that k[[t3, %, ¢°]] and k[[t3,15,¢7]] are almost Gorenstein local
rings, which proves the case (Eg) or (Eg).

(3) The case (E;). We consider F' = X? — XY?. Let f = X? —Y3. Then X, f is
a system of parameters of S = k[[X,Y]]. Therefore (F') = (X) N (f). Let k[[t]] be the

formal power series ring and we get a tower

R=8/(F) € S/(X)eS/(f) =kl[Y]| @ k[[£*,#°]] C k[[Y]] @ k]l = R

of rings, where we naturally identify S/(X) = k[[Y]] and S/(f) = k[[t?, t3]] C k[[t]]. Let
R C A C R = K[[Y]] @ K[[t]] be an intermediate local ring. Let po : k[[Y]] @ Kk[[t]] —
k[[t]], (a,b) — b be the projection and set C = py(A). Then k[[t?,¢*]] € C C V, whence

C = K[[t*,#3]] or C =V (Corollary 1.12.5).
We firstly consider the case where C' = V. Let n denote the maximal ideal of A.

Claim 1.12.8. There ezists an element z € A such that z = (0,1)

Proof of Claim 1.12.8. Since t € C, there exists z € A such that z = (g,t) with g €
E[[Y]]. Then z € n. Suppose g # 0 and write g = Y"e, where n > 0 and ¢ € U(k[[Y]]).
Let g denotes the image of g € S = K[[X,Y]] in A. Then since § = (g,9(t?)) in
S/(X) @ k[[t]], we have z — g = (0, — g(t?)) and t — g(t?) = t — t>"e(t?) = tu, with

uy = 1 — t*""1.g(t?). Hence because uy is a unit of C' = k[[t]], we may choose a unit

63



u € A so that py(u) = us. We then have (0,¢) =u='(z —g) € A. Thus 2/ = u"(z — g)

is a required element of A. ]

Let z = (0,t). Let x = X and y = Y denote the images of X,Y in A, respectively.
Hence z = (0,t%), y = (Y, #?), and therefore x = 2® and z(y — 2%) = 0. We consider the
k-algebra map 1 : k[[Y, Z]] — A defined by ¢(Y) =y, ¥(Z) = z. Then Z(Y — Z?) €

Kery. We now consider the following commutative diagram

0 A R=K[Y]]®V R/A 0
7 T:
K2 HY.2Z]] o KY.Z] HY.Z]
0 -2 @ P -2 v.2) 0,

where the rows are canonical exact sequences and 1 : k[[Y, Z]] — A is the homomor-
phism derived from 9. Then the induced homomorphism p : k[[Y, Z]]/(Y, Z) — R/A
has to be bijective, because R/A # (0) (remember that A is a local ring) and p is
surjective. Consequently, v : k[[Y, Z]]/(Z(Y — Z?)) — A is an isomorphism, so that A
is a Gorenstein ring.

Next we consider the case where C' = k[[t?,t%]]. Hence R C A C k[[Y]] @ k[[¢?, t?]].
We set B = k[[t?,t3]] and T = k[[Y]] ® B. Remember that {(T/R) = 3, whence
(r(A/R) = 1 or 2. If g(A/R) = 1, then by Proposition 1.12.6 (2) A is an almost
Gorenstein local ring.

Suppose that (r(A/R) = 2. Hence {g(T/A) = 1. Therefore as
(r(T/A) =[A/n: R/m|-L4(T/A),

we get R/m = A/n and (4(T/A) = 1, whence n = (0) :4 T/A is an ideal of T'. Let J

denote the Jacobson radical of 7" and consider the exact sequence
0—=Amn—->T/mn—>T/A—0

of A-modules. We then have £4(T'/n) = 2, so that n = J, because n C J and 4(T/J) =
(r(T/J)=2. Hence A =k+J and n = ((0,¢%), (Y,0), (0,£?)). Let ¥ : k[[X,Y,Z]] — A
be the k-algebra map defined by (X) = (0,t3), »(Y) = (Y,0), ¥(Z) = (0,t*). Then
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X% - 73, XY,YZ € Kerv and we get the following commutative diagram

0 A T = k[[Y]] @ k[[¢?,¢%]] T/A 0
; ’

0 k[[X,Y,Z] BIXY.Z]) g BIX.Y.Z] k(XY 7] 0

(X,2)N(X2-23)) (X,2) (X2-23Y) (X)Y,Z) :

For the same reason as above, the induced homomorphism k[[X,Y, Z]|/(X,Y, Z) — T/A
has to be bijective, so that A = k[[X,Y, Z]]/(X, Z) N (X? — Z3)Y). Notice now that

(X,Z)Q(X2—Z3,Y) :IQ(§(2)Z(§6) 212(X~Zk2ZQ X§Z§)'

Then thanks to the theorem of Hilbert-Burch and Theorem 1.7.8, A is an almost
Gorenstein local ring, because X + Z2 X + Z,Y is a regular system of parameters
of k[[X,Y, Z]]. This completes the proof of the case (E7).

(4) The case (D,,).

(i) The case where n = 2( + 1 with ¢ > 1. We consider F' = Y (X? — Y2/*1),
Let f = X2 —Y#*L Then X, f is a system of parameters of S = k[[X,Y]]. Therefore
(F)=(Y)N(f) and we get a tower

R=5/(F) € S/(Y)® S/(f) = kl[X]] & k[[¢*,#*]] C K[[X]] & k[[t] = R

of rings, where we naturally identify S/(Y) = k[[X]] and S/(f) = k[[t?, t**1]] C k[[t]].
Let R C A C R be an intermediate ring and assume that (A,n) is a local ring. Let
p2 : R — V be the projection and set B = py(A). Then since k[[t?,£**!]] C B C V, by
Corollary 1.12.5 (1) B = k[[t?,t?7"!]] for some 0 < g < . We choose an element z € A
so that z = (g,t%") in R = k[[X]] @ k[[t] with g € k[[X]]. Suppose g # 0 and write
g=X"e (n>0,e € UK[[X]]). Denote by g the image of g € S = k[[X,Y]] in A. We

have

- g - 5 (g’ (t%H)"@(t%H))
(0, t2q+1(1 . t(2£+1)n_(2q+1)'6(t2€+1))).

Here we notice that (2¢ 4+ 1)n — (2¢ + 1) > 0 and that (2¢ + 1)n — (2¢+ 1) = 0 if and
only if n =1 and ¢ = q.

If (20+1)n—(2¢+1) > 0, we set uy = 1 — tZFIn=Ca+).c(1241) Then uy € U(B).
We choose an element u € U(A) so that uy = pa(u). Then

7 =u"(z—7) = (0,27).
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Therefore, replacing z with 2/, we may assume without loss of generality that z € A
such that z = (0,#277!). Let 2 = X and y = Y, where X,Y respectively denote the
images of X,Y € S =k[[X,Y]] in A. Then z = (X, #**") and y = (0,¢?), so that

Yyt =22 y(r—y"92) =0, and z(x—y"92) =0.

Let ¢ : K[[X,Y,Z]] - A be the k-algebra map defined by ¢¥(X) = z, ¥(Y) = v,
Y(Z) = 2. Then Kerv) D (Y, Z)N (22 = Y%+L X —Y*97). Therefore, considering the

commutative diagram

0 A T = K[[X]] & k[[t?, t*7T1]] T/A 0
E -
0 K[[X,Y,Z]] KIXYZ]) o K[[X,Y,Z]] K[[X.Y,Z]] 0
Y, 2)N(Z22—Y2 T X_Yl-a7) Y.2) (Z2—Y20F1 X_Y-a7) (XY, 2) ]
we see that

A o k:[[X,Y, ZH/(Y, Z) N (X _ Yé—qZ’ 72 _ Y2q+1),

because T'/A # (0). Notice now that

2 3 2q _yt-a Y2 7z X-Yyt-aig
(X, Z)n(X"=2°Y) =1 (YZ vy ) =L <ny2q Y-2 YZ—4Z7X> :

Then by Theorem 1.7.8 A is an almost Gorenstein local ring, because Z — Y2 Y —
Z,Y* 17 — X is a regular system of parameters of k[[X,Y, Z]].

If n=1and ¢ = q, then R C A C k[[X]] @ k[[t?,t**"]], so that (r(A/R) = 1
(remember that ¢p((k[[X]] @ K[[t2,t3**1]])/R) = 2). Hence A is an almost Gorenstein
local ring by Proposition 1.12.6 (2).

(ii) The case where n = 2¢ with £ > 1. Let f = X?-Y* = (X+Y*) (X -Y"*) and
T = S/(f). Since chk # 2, X +Y* X —Y* is a system of parameters of S = k[[X, Y]],

so we get the exact sequence
0T -5 S/(X+Y)@s/(X -Y) L 5/(X, 7" = 0.
Hence (7(T/T) = ¢. We look at the tower
RCk[X]|eT Ck[X]]eT =R

of rings and consider an intermediate ring R C A C R such that (A4,n) is a local
ring. Let py : k[[X]]® T — T be the projection and set B = po(A). We denote
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by z,y the images of X,Y in T = S/(f), respectively. Then by Corollary 1.12.5 (2)
B = T[y%] for some 0 < ¢ < ¢. Here we notice that ¢ < /, since A # R. We choose
an element z € A so that z = (g,.7), where g € k[[X]]. If g # 0, then we write
g=X"e (n>0,e € U[[X]]). Let g be the image of g € S in A. We then have

Z—g= (97 E) - (g,l’nﬁ(l’» = (O’ E(l - (E

)" y"e(@)).

Suppose now that 1 — (y—”;)”’l)y”qs(m) € U(B) (this is the caseif n > 1 orif n =1
and ¢ > 0). We then have (0, .7) € A for the same reason as above. Let z1,y; be the

images of X, Y € S in A, respectively. Hence x; = (X, z) and y; = (0,y), so that

2=y e —yfz) =0, and 2wy —yfz) = 0.
Let ¢ : k[[X,Y,Z]] — A be the k-algebra map defined by ¥(X) = x1, ¥(Y) = y,
Y(Z) = z. Then Keryp D (Y, Z)N (2% — Y29 X —Y9Z), and by the commutative

diagram

0 A k[[X]]® B D 0
; !
0 E[[X,Y,Z]] E[[X,Y,Z]] o E[[X,Y,Z]] E[[X,Y,Z]] 0
(Y,Z2)N(Z22-Y2(t-d) X -Y4Z) (v,2) (Z2-Y2Ut=a) X-Y4Z) (X,Y,Z)
we get

A KXY, Z)))(Y,Z2) N (X —Y9Z, 2% — Yy2(-9),
Notice that

(Y, Z)n (22 VX ViZ) =1, (; Y”*Zﬂ*l X—())/‘IZ) =L (ZIY Z+Y2€7"”’1 X—(;"ZZ) :

If { —q =1, then Z,Y* 97! X — Y%7 is a regular system of parameters of k[[X,Y, Z||
and if ¢ — ¢ > 2, then Z+Y,Y29-1 4 7 X — Y97 is a regular system of parameters
of k[[X,Y, Z]], so that A is an almost Gorenstein local ring in any case.

If n=1and ¢ =0, then R C A C Ek[[X]] ® T, so that /r(A/R) = 1, because
(r((k[[X]]®T)/R) = 2. Therefore A is an almost Gorenstein local ring by Proposition
1.12.6 (2). This completes the proof of Theorem 1.12.1 as well as the proof of the case
(D).
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CHAPTER 2

THE ALMOST GORENSTEIN REES ALGEBRAS OF
PARAMETERS

2.1 Introduction

This chapter purposes to study the question of when the Rees algebras of given ideals
are almost Gorenstein rings. Almost Gorenstein rings are newcomers, which form a class
of Cohen-Macaulay rings that are not necessarily Gorenstein but still good, hopefully
next to the Gorenstein rings. The notion of this kind of local rings dates back to the
article [8] of V. Barucci and R. Fréberg in 1997. They introduced almost Gorenstein
rings in the case where the local rings are of dimension one and analytically unramified.
One can refer to [8] for a beautiful theory of almost symmetric numerical semigroups.
Nevertheless, since the notion given by [8] was not flexible for the analysis of analytically
ramified case, in 2013 S. Goto, N. Matsuoka and T. T. Phuong [26] extended the notion
over arbitrary (but still of dimension one) Cohen-Macaulay local rings. The reader may
consult [26] for concrete examples of analytically ramified almost Gorenstein local rings
as well as generalizations/repairs of results given in [8]. It was 2015 when S. Goto,
R. Takahashi and N. Taniguchi [36] finally gave the definition of almost Gorenstein
graded/local rings of higher dimension. We recall here the precise definitions which we

need throughout this chapter.

Definition 2.1.1. Let (R, m) be a Cohen-Macaulay local ring possessing the canonical
module Ki. Then we say that R is an almost Gorenstein local ring, if there exists an

exact sequence

0—-R—-Kr—C—=0
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of R-modules such that pur(C) = €2(C), where up(C) (resp. €2(C)) stands for the
number of elements in a minimal system of generators for C' (resp. the multiplicity of

C with respect to m).

Definition 2.1.2. Let R = @nzo R,, be a Cohen-Macaulay graded ring with Ry a local
ring. Suppose that R possesses the graded canonical module Kg. Then R is called an

almost Gorenstein graded ring, if there exists an exact sequence
0= R—Kg(—a) = C —0

of graded R-modules such that ug(C') = e§;(C'), where 9 is the unique graded maximal
ideal of R and a = a(R) denotes the a-invariant of R. Remember that Kz(—a) stands
for the graded R-module whose underlying R-module is the same as that of Kz and
whose grading is given by [Kr(—a)], = [Kg|n_q for all n € Z.

Definition 2.1.2 means that if R is an almost Gorenstein graded ring, then even
though R is not a Gorenstein ring, R can be embedded into the graded R-module
Kgr(—a), so that the difference Kg(—a)/R is a graded Ulrich R-module (see [10], [36,
Section 2]) and behaves well. The reader may consult [36] about a basic theory of almost
Gorenstein graded /local rings and the relation between the graded theory and the local
theory. For instance, it is shown in [36] that certain Cohen-Macaulay local rings of finite
Cohen-Macaulay representation type, including two-dimensional rational singularities,
are almost Gorenstein local rings. The almost Gorenstein local rings which are not
Gorenstein are G-regular ([36, Corollary 4.5]) in the sense of [71] and they are now
getting revealed to enjoy good properties. However, in order to develop a more theory,
it is still required to find more examples of almost Gorenstein graded/local rings. This
observation has strongly motivated the present research.

On the other hand, as for the Rees algebras we nowadays have a satisfactorily de-
veloped theory about the Cohen-Macaulay property (see, e.g., [33, 46, 55, 66]). Among
them Gorenstein Rees algebras are rather rare ([49]). Nevertheless, as is shown in [34],
some of the non-Gorenstein Cohen-Macaulay Rees algebras can be almost Gorenstein
graded rings, which we are eager to report also in this chapter.

Let us now state our results, explaining how this chapter is organized. Throughout
this chapter let (R, m) be a Gorenstein local ring with d = dim R. For each ideal I in
R let R(I) = R[It] (t denotes an indeterminate over R) be the Rees algebra of I. We
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set R = R(I) and M = mR + R,. We are mainly interested in the almost Gorenstein
property of R and Rgy in the following two cases. The first one is the case where I = @)
is generated by a part ai,as, ..., a, of a system of parameters for R. The second one is
the case where I = @) : m, that is [ is the socle ideal of a full parameter ideal @) of R.
In Section 2.2 we study the first case. We will show that Ry is an almost Gorenstein
local ring if and only if R is a regular local ring, provided @ = (as,as,...,a,) with
r = pr(Q) > 3 (Theorem 2.2.7). The result on the almost Gorensteinness in the ring

R is stated as follows, which is a generalization of [36, Theorem 8.3].

Theorem 2.1.3 (Theorem 2.2.8). Let R be a Gorenstein local ring, a1, as, ..., a, (r >
3) a subsystem of parameters for R and set Q) = (ay,as,...,a.). Then the following

conditions are equivalent.

(1) R(Q) is an almost Gorenstein graded ring.

(2) R is a regular local ring and ay, as, . . ., a, form a part of a reqular system of param-
eters for R.

In Section 2.3 we shall study the second case where I = () : m is the socle ideal of
a parameter ideal ) in a regular local ring R. The reader may consult [34] for the case
where dim R = 2 and in the present chapter we focus our attention on the case where

dim R > 3. Then somewhat surprisingly we have the following.

Theorem 2.1.4 (Theorem 2.3.6). Let (R, m) be a regular local ring with d = dim R > 3
and nfinite residue class field. Let () be a parameter ideal of R such that Q) # m and

set I = @Q :m. Then the following conditions are equivalent.

(1) R(I) is an almost Gorenstein graded ring.

(2) Either I =m, ord=3 and I = (z) + m? for some x € m\ m%.

Theorems 2.1.3 and 2.1.4 might suggest that when dim R > 3, except the case where
I = @) the Rees algebras which are almost Gorenstein graded rings are rather rare. We
shall continue the quest also in the future to get more evidence.

In what follows, unless otherwise specified, let R stand for a Noetherian local ring
with maximal ideal m. For each finitely generated R-module M let ugr(M) (resp.
Cr(M)) denote the number of elements in a minimal system of generators of M (resp.
the length of M). We denote by e2 (M) the multiplicity of M with respect to m. Let

Kp denote the canonical module of R.
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2.2 The case where the ideals are generated by a
subsystem of parameters

Let (R, m) be a Gorenstein local ring with d = dim R > 3 and let ay,as,...,a, (r > 3)

be a subsystem of parameters for R. We set Q) = (ay,as,...,a,). Let
R =R(Q) = R[Qt] € R[]

denote the Rees algebra of ) and set 91 = mR + R, where ¢ is an indeterminate
over R. Remember that a(R) = —1. In this section we study the almost Gorenstein
property of R and Rgy. To do this we need some machinery.

Let S = R[X1, Xs,...,X,] be the polynomial ring over R. We consider S as a
graded ring with deg X; = 1foreach 1 <i <randset MM =mS+S5,. Let ¥ : 5 —R
be the R-algebra map defined byW( X;) = a;t for 1 <i < r. We set

A:(Xl Xy --- Xr)’
ay a9 e a,
Then Ker V¥ is generated by 2 x 2 minors of the matrix A, that is
Ker \D: I2 (Xl X2 RIS XT‘) ’
ay a9 e Qap

which is a perfect ideal of S with grade r — 1. Let
Ce : O-)Crfldr—;l CT,Q%“'—)Cl%CO

be the Eagon-Northcott complex associated with the matrix A ([17]). Since we are
strongly interested in the form of the matrix corresponding to the differentiation
Cr_1q d:>1 C,_9, let us briefly remind the reader about the construction of the com-
plex.

Now let L be a finitely generated free S-module of rank r with basis {7} }1<i<,. We
denote by K = AL the exterior algebra of L over S and let Kq( X7, Xo, ..., X;;5) (resp.
Ke(ai,as,...,a.;5)) be the Koszul complex of S generated by X, Xs,..., X, (resp.
ai, as, . ..,a,) with differentiations 9y (resp. dy). Let U = S[Y1,Y3] be the polynomial
ring with two indeterminates Y7, Y5 over S. We set Cyp = S and C,, = K,,;1 ®g U,,_; for

each 1 <n <r — 1. Hence C, is a finitely generated free S-module with free basis

{7}17}2-~-7}n+1®Yf’1YQ”2\1§i1<i2<---<in+1§7’,y 1+V2:n—1}.
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We consider ), to be a graded S-module so that
deg(T;, 15, ... T, @Y'YS?) =1 + 1.
Then the Eagon-Northcott complex

Ce : 0C,1—-Crg—-—C;—>Cy—0

associated with A is defined to be a complex of graded free S-modules with differenti-

ations
vy V2 V1 vi—1 )
(T, Ty T @YY = Y (T T ) ®Y YY)
j=1,2 and v;>0
for n > 2 and

i1 a”LQ
Hence d;(Cy) = Io(A) C S. The complex C, is acyclic and gives rise to a graded minimal
S-free resolution of R, since I5(A) is perfect of grade r — 1 and X;,a; € M =mS + S
forall 1 <i <r (cf. [17]).
Let M denote the matrix of the differentiation Cr 1 drj> C,._o with respect to the free
basis {111y T, @YYy > "}ocicr_o and {T} - - T, @YFY; k}1<j<7' o<k<r—3 Of

C,_1 and C,_,, respectively. Then a standard computatlon gives the following.

Proposition 2.2.1.

a1 —az - (=1)"*Ha, 0
X1 —Xo---(=1D)"™1X, a3 —az--- (71)T+1ar

tM:

X1 —Xo--- (=1)™1X, a1 —ag---(=1)"Tla,
0 X1 — Xo---(=1)"T1X,

We take the S(—r)-dual of the resolution C, to get the following presentation of the
graded canonical module Kz of R, where @/_2 S (—(i + 1))*" and @@]_; S(—i) con-
sist of column vectors, say @)_, S(—i) = *[S(—(r — 1))@ ---® S(-2) ® S(~1)] and
DS+ )T =[S (~r=1)T @ S (=3)T @5 (-2)7].

Corollary 2.2.2.



Hence r(R) = r — 1 > 2, where r(R) denotes the Cohen-Macaulay type of R.

For each graded S-module M and ¢ € Z we denote by M@ = Y nez Mnq the
Veronesean submodule of M with degree ¢. Remember that M@ is a graded S@-
module whose grading is given by [M (@], = M,,, for n € Z. We then have the following.

This might be known (see, e.g., [24]). Let us note a brief proof in our context.
Proposition 2.2.3. R(Q"') is a Gorenstein ring.

Proof. Notice that R(Q™!) = R(”_l)l. Let n = &(f) € [Kg],—1 in the presentation
given by Corollary 2.2.2 where f = ? € @.-} S(—i), and set D = Kg/R#n. Then

0
Dy = (0), since [Kg],—1 = Rn and we get by Proposition 2.2.1 the isomorphism

D/mD = P15/ (i)

of graded S-modules, which shows that dimg,, Doy < d and that D=1 = (0), because
DU /mD=Y = [D/mD]"Y = (0).

We now consider the exact sequence
(E,-1) RSKg(r—1)—=D—0

of graded R-modules, where 1)(1) = n. Then the homomorphism 1 is injective by [36,
Lemma 3.1 (1)], so that applying the functor [ * |~ to sequence (E,_;), we get the
isomorphism

RO 2 K (-1)

of graded RU"V-modules. Thus R(Q"!) = RV is a Gorenstein ring, because
[Kr]" ™" = Kgoy (cf. [40]). O

Before going ahead, let us discuss a little bit more about the presentation
@S (i+1)) 697“—>695 ) = Kgr — 0

in Corollary 2.2.2 of the graded canonical module Kz of R. We set £ = ¢(e) € [Kz]y
0
where e = <0> € @] S(—i), whence [Kg]; = RE. We set C = Kg/RE. Hence

1
r—2 r—1
C' = Coker [@ S(—(i+ 1)) — P S(~i
=1 =2
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where N denotes the matrix obtained from ‘M by deleting the bottom row, so that
Proposition 2.2.1 gives the following.

Lemma 2.2.4.

C/S:C = 5/(S:+Q5) ®s

G_BSH)]

= Pir/Q)(-)

=2

as graded S-modules, where R = S/Sy is considered trivially to be a graded S-module.

In particular dimg,, Con < d. Therefore by [36, Lemma 3.1 (1)] dimgr C' = d and
the homomorphism ¢ : R — Kgz(1) defined by ¢(1) = £ is injective, so that we get the

following.
Corollary 2.2.5. The sequence
0 =R -5 Kg(l) = C—0
of graded R-modules is exact and dimgr C' = d.
We need the following result to prove Theorem 2.2.7 below.

Proposition 2.2.6. Let a be an ideal in a Gorenstein local ring B and suppose that
A = B/a is an almost Gorenstein local Ting. If A is not a Gorenstein ring but pdg A <

00, then B is a reqular local ring.

Proof. Enlarging it if necessary, we may assume the residue class field of B to be infinite.

We choose an exact sequence
0—-A—-Ky—C—=0

of A-modules so that C' # (0) and C' is an Ulrich A-module. Then pdy K4 < oo,
because B is a Gorenstein ring and pdz A < oco. Hence pdz; C < oo. We take an
A-regular sequence f1, fo,..., fa_1 € n (d = dim A) such that nC' = (fy, fo,..., f4_1)C
(this choice is possible; see [36, Proposition 2.2 (2)]) and set b = (f1, fa, ..., fa—1). Then

by [36, Proof of Theorem 3.7] we get an exact sequence
0— A/BA — K,4/6K4 — C/6C — 0,

whence B is a regular local ring, because pdz C/bC < oo and C/bC (# (0)) is a vector

space over B/n. H
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Theorem 2.2.7. The following conditions are equivalent.
(1) Ron is an almost Gorenstein local ring.
(2) R is a regular local ring.

Proof. (1) = (2) This readily follows from Proposition 2.2.6. Remember that R is a
perfect S-module.

(2) = (1) We maintain the same notaion as in Lemma 2.2.4. Then
C/mC = (S/9M)—2

by Lemma 2.2.4, whence 2MC' = m(C'. Therefore C'is a graded Ulrich R-module, because
dimg C' = d (cf. Corollary 2.2.5) and m is generated by d elements. Thus the exact
sequence

derived from the sequence in Corollary 2.2.5 guarantees that Ry is an almost Gorenstein

local ring, because Kg,, = [Kz|m- O]

We are now in a position to study the question of when the Rees algebra R(Q) is

an almost Gorenstein graded ring. Our answer is the following.
Theorem 2.2.8. The following conditions are equivalent.
(1) R is an almost Gorenstein graded ring.

(2) R is a regular local ring and ay, as, ..., a, form a part of a reqular system of param-
eters for R.

Proof. (2) = (1) We maintain the same notation as in Lemma 2.2.4. Firstly choose
elements y1, Yo, . .., Ya—r € m so that m = @ + a, where a = (y1, 92, ..., Ya—r). We then

have by Lemma 2.2.4
r—1

C/(Ss +aS)C = PIR/m](—i),

i=2
so that M- [(C/(Sy 4+ aS)C] = (0). Therefore C' is a graded Ulrich R-module, whence
R is an almost Gorenstein graded ring by Corollary 2.2.5.
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(1) = (2) Suppose that R is an almost Gorenstein graded ring and consider the
exact sequence

0—R -2 Ke(l) — C —0

of graded R-modules such that uz(C) = e3;(C). We set p = ¢(1). Then since r(R) =
r—1> 2 we have p = ¢(1) € m-[Kg]; by [36, Corporally 3.10]. Hence [Kz]; = Rp
(remember that [Kg]; = R; see Corollary 2.2.2). Thus C # (0), dimg C' = d, and
C,, = (0) for every n < 1. Therefore C' = Z:;; S¢; with & € C; by Corollary 2.2.2 and
hence Q"2C' = (0), because Q(C/S.C) = (0) by Lemma 2.2.4. We set a = (0) :5 C
and b =aNR. Hence Q"2 C b C Q (see Proposition 2.2.4).

Claim. ey, (C) = (r — 2)-e o (R/Q).

Proof of Claim. We may assume the field R/m to be infinite. We set S = S/a, A =
[S]o (= R/b), and n the maximal ideal of A. Notice that dim A = d — r, since Q"2 C
b C Q. Let B = Alz,29,...,2] be the standard graded polynomial ring and let
Y : B — S be the A-algebra map defined by 1(z;) = X; for each 1 < i < r, where X;
denotes the image of X; in S. We regard C to be a graded B-module via 1. Notice that
dimp C' = dim B = d. Let us choose elements vy, ys, ..., ys_ of m so that their images
{¥i}1<i<a—r in A = R/b generate a reduction of n. Then (y; | 1 <i < d—r)B+ By
is a reduction of the unique graded maximal ideal nB + By of B, while the images of
{yihi<i<a—r in R/Q generate a reduction of the maximal ideal m/Q of R/Q, since R/Q
is a homomorphic image of A = R/b. Hence setting Mp = nB + B, we get

em(C) = ,(C)

= (5(C/|(mi|1<i<d—r)B+B.]C)

= (s(C/ (g |1<i<d—r)S+54]0)

= (r—=2)4r(R/[Q+ (y; |1 <i<d-r)]) (by Lemma 2.2.4)
(r —2)%0(R/Q)

as claimed. 0

Since R is an almost Gorenstein graded ring with r(R) = r — 1 > 2, we have
eqn(C) = r—2 by [36, Corollary 3.10], so that e}, ,,(R/Q) = 1 by the above claim. Thus
R is a regular local ring and ay, as, . . ., a, form a part of a regular system of parameters
for R. ]
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Remark 2.2.9. Let R = ®n20 R,, be a Cohen-Macaulay graded ring such that Ry is a
local ring. Assume that R possesses the graded canonical module Kz and let 9T denote
the graded maximal ideal of R. Then because Kg,, = [Kg|m, R is by definition an
almost Gorenstein local ring, once R is an almost Gorenstein graded ring. Theorems
2.2.7 and 2.2.8 show that the converse is not true in general. This phenomenon is
already recognized by [36, Example 8.8]. See [36, Section 11] for the interplay between
the graded theory and the local theory.

Before closing this section, let us discuss a bit about the case where r = 2.

Proposition 2.2.10. Let (R,m) be a Cohen-Macaulay local ring and let a,b be a sub-
system of parameters for R. We set QQ = (a,b), R = R(Q), and M = mR + Ry. If
Rop ts an almost Gorenstein local ring, then R is a Gorenstein ring, so that R is a

Gorenstein ring.

Proof. Let S = Rz, y] be the polynomial ring over R and consider the R-algebra map
U : S — R defined by¥( x) = at, ¥ ) = bt. Then Ker ¥ = (bx —ay) and bx —ay € N?,
where 91 = mS + S;. Therefore since Roy = Syn/(bx — ay) Sy is an almost Gorenstein

local ring, by [36, Theorem 3.7 (1)] Sy must be a Gorenstein local ring, whence so is
R. ]

Remark 2.2.11. Let (R, m) be a Cohen-Macaulay local ring and let @) be an ideal of
R generated by a subsystem ay, as, . .., a, of parameters for R. We set R = R(Q) and
M =mR + R.. With this setting the authors do not know whether R is necessarily a
Gorenstein ring and hence a regular local ring, if R (resp. Rgy) is an almost Gorenstein

graded (resp. local) ring, provided r > 3.

2.3 The case where the ideals are socle ideals of
parameters

In this section we explore the question of when the Rees algebras of socle ideals are
almost Gorenstein. In what follows, let (R, m) be a Gorenstein local ring of dimension
d > 3 with infinite residue class field. Let I be an m-primary ideal of R. We assume
that our ideal I contains a parameter ideal Q = (ay, as, . ..,aq) of R such that I? = QI.
We set J =Q : 1, R = R[It] C R[t] (t an indeterminate over R), and 9t = mR + R,.
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Notice that R is a Cohen-Macaulay ring ([33]) and a(R) = —1. We are interested in
the question of when R (resp. Rop) is an almost Gorenstein graded (resp. local) ring.

Let us note the following.

Theorem 2.3.1 ([75, Theorem 2.7]).

d—3
Kr(l) =) Rt + R-Jt2

=0

as a graded R-module.
As a direct consequence we get the following.
Corollary 2.3.2. r(R) = (d — 2) + pugr(J/I).

Here r(R) denotes the Cohen-Macaulay type of R. Consequently, R is a Gorenstein
ring if and only if d = 3 and I = J, that is [ is a good ideal in the sense of [25].
Let us begin with the following.

Lemma 2.3.3. Suppose that Q C m?. Then up(mQ) = d-pugr(m).

Proof. Let 0 : m @z Q@ — mQ be the R-linear map defined by o(x ® y) = xy for all
remandy € Q. To see pr(mQ) = d-ur(m), it is enough to show that

Kero Cm- [m®pg Q).

Let x € Kero and write x = Zle fi ® a; with f; € m. Then since Zle a;if;i =
0 and aq,as,...,aq form an R-regular sequence, for each 1 < ¢ < d we have f;

S
(ay,..., Ji, ...,aq) Cm?% Hence r € m- [m ®p Q] as required. ]

Theorem 2.3.4. If J = m and I C m?, then Roy is not an almost Gorenstein local

Ting.

Proof of Theorem 2.3.4. We set A = Rgy and suppose that A is an almost Gorenstein
local ring. Notice that A is not a Gorenstein ring, since J # I (Corollary 2.3.2). We

choose an exact sequence

05 AB3Ks—>C—0

79



of A-modules with C' # (0) and C' an Ulrich A-module. Let n denote the maximal
ideal of A and choose elements fi, fa,..., f4 € n so that nC' = (f1, fo,..., fa)C. Let
€ = ¢(1). Then because £ ¢ nK,4 by [36, Corollary 3.10], we get

,uA(nC') S d(?” — 1),

where r = r(A) = (d — 2) + pr(J/I) (Corollary 2.3.2). As & ¢ nK 4, we also have the

exact sequence

0—né —>nKy —nC —0.

Therefore because K4 = [Kgyy, we get the estimation

pR(MKR) = pa(nKa) < pa(nC) + pa(n)
< d[(d—=2) + pr(J/T) = 1] + [pr(m) + pr(D)] .

d—3

On the other hand, since 9 = (m, [t)R and K (1) = ZR# + R-Jt*"? by Theorem
=0

2.3.1), it is straightforward to check that

pR(MKR) = (d — 2)-pr(m) + pr(l +mJ) + pr(1J/1?).
Therefore
[r(I +mJ) + pr(1J/1?)] = [pr(1) + d-pr(J/1)] < (d = 3)-[d — pr(m)] <0,

whence
(*)  pr(I +mJ) + pr(IT/1?) < pr(I) + d-pr(J/1).

We now use the hypothesis that J = m and I C m? Notice that m/ = mQ, since

I =@ :mand @ is a minimal reduction of I. Then by the above estimation (%) we get

pr(m?) + pr(m@Q) < pr(l) + d-pr(m),

whence pir(m?) < pgr(I) by Lemma 2.3.3. Therefore

(d—;— 1) < pr(W?) < pp(l) =d+1,

which is impossible, because d > 3. O]
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Corollary 2.3.5. Let Q be a parameter ideal of R such that Q C m2. Then Rey is not
an almost Gorenstein local ring, where R = R(Q : m) and M = mR + R .

Proof. Let I = @Q : m. Then I? = QI and I C m? by [78, Theorem 1.1, while
Q:1=Q:(Q:m)=m,since R is a Gorenstein ring,. ]

Let us study the case where R is a regular local ring. The goal is the following.

Theorem 2.3.6. Let (R, m) be a regular local ring of dimension d > 3 with infinite
residue class field. Let Q) be a parameter ideal of R. Assume that () # m and set

I =@ :m. Then the following conditions are equivalent.
(1) R(I) is an almost Gorenstein graded ring.
(2) Either I =m, ord=3 and I = () + m? for some r € m\ m?.

We divide the proof of Theorem 2.3.6 into several steps. Let us begin with the case
where @ € m?. Our setting is the following.

Setting 2.3.7. Let (R,m) be a reqular local ring of dimension d > 3 with infinite
residue class field. We write m = (x1,xs,...,2q). Let Q be a parameter ideal of R and

let 1 <i<d—2 be an integer. For the ideal ) and the integer i we assume that
(2 [1<j<)CQC (1j]1<j<i)+m’

Weseta=(z; |1 <j<i),b=(z;]i+1<j<d),and ] = :m Hence
Q=a+(a; |i+1<j<d) with a; € b, so that we have the presentation

T 1 T
T2 )
' 0
Qi+1 Tit+1
0 Oéjk
Qaq Tq

with o, € b for every i +1 < j,k < d. Let A = det(cx). ThenA €b?and Q: A=m
by [42, Theorem 3.1}, whence I = @ + (A). Consequently we have the following. See
Corollary 2.3.2 for assertion (4).
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Proposition 2.3.8. The following assertions hold true.

(1) I’ =0QI.
(2) Q:1=m.
(3) I Ca+b”

(4) pr(m/I) =d—i andt(R) = 2d — (i + 2).
Proposition 2.3.9. uz(mQ/I2) = d(d — i).
Proof. Since m = a+ b and a C Q, we get

mQ/[I? + m*Q] = bQ/[bQ N (Q* + mbQ)],

while QNb C mb, since Q = a+(a; | i+1<j <d)anda; € b?forevery i+1<j <d.
Hence Q%2 N bQ C mbQ, so that

bQ N (Q* + mbQ) = mbQ.

Therefore pr(mQ/1?) = ur(bQ). The method in the proof of Lemma 2.3.3 works to
get pur(bQ) = pr(b ®r Q) = d(d — ) as claimed. O

The following is the heart of the proof.

Proposition 2.3.10. Suppose that R(I) is an almost Gorenstein graded ring. Then
d=3and I = (1) + m?,

Proof. Since r(R) = 2d — (i + 2) > 3 by Proposition 2.3.8 (4), R is not a Gorenstein

ring. We take an exact sequence
0>RIKg(1)=C—=0

of graded R-modules so that C' # (0) and ur(C) = e(C). Since Kzl = R (see
Corollary 2.3.2) and & = (1) ¢ M- [Kx(1)], £ is a unit of R. Therefore the isomorphism
of Theorem 2.3.1 shows

d-3
C = [Z R+ R-mtd2] /R,
i=1
from which by a direct computation we get the following.
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Fact 2.3.11.

_ pr(m? /TN m?) 4 pr(mQ/I?) (d=3),
pr(MC) = { (d— i)+ d(d — 4) + pr(l +m?) + pr(mQ/I?) (d > 4).

On the other hand we have pgr,, (Cor) =1(R)—1=2d— (i+3) by [36, Corollary 3.10].
Consequently
U (MC) = iy (MCag) < d- (2 — (i +3))

because Coy is an Ulrich Rop-module with dimg,, Con = d ([36, Proposition 2.2 (2)]).
Assume now that d > 4. Then by Fact 2.3.11 and Proposition 2.3.9 we have

(d—1i)+d(d—4) + pr(I +m*) +d(d —i) < d(2d — (i + 3)),

so that pg(I +m?) <. This is impossible, because

d—i+1
MR(IerQ):,uR(aerQ):z’Jr( ;+ )>i.

Therefore we get d = 3 and ¢« = 1, whence
pr(m? /[T Om?]) + pp(mQ/I?) <6,

so that we have m? = I Nm? C I, because ur(m@Q/I?) = 6 by Proposition 2.3.9. Thus
I = (x1) +m? by Proposition 2.3.8 (3). O

We are now in a position to finish the proof of Theorem 2.3.6.

Proof of Theorem 2.3.6. (1) = (2) If Q is integrally closed in R, then by [21, Theorem
3.1 Q = (z1, @9, ..., x4-1, %) for some regular system {z; }1<;<q of parameters of R and

for some integer ¢ > 1. Therefore
I=Q:m=Q:25= (:Ul,x27...,xd_1,;1:fl_l),

so that we have ¢ = 2 by Theorem 2.2.8, that is I = m. Suppose that () is not integrally
closed in R. Then Q@ ¢ m? by Corollary 2.3.5. Let {z;}1<j<q4 be a regular system of
parameters for R and take the integer 1 < i < d—2so that (z; | 1 <j <i) CQ C
(z; | 1 <j<i)+m? (cf. [21, Theorem 3.1]). We then have d = 3 and I = (z1) + m?
by Proposition 2.3.10.

(2) = (1) This follows from Theorem 2.2.8 and the following proposition. O
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Proposition 2.3.12. Let (R, m) be a Gorenstein local ring with dim R = 3 and infinite
residue class field. Let @) be a parameter ideal of R. Assume that () # m and set
I=Q:m. IfI?=QI and m* C I, then R(I) is an almost Gorenstein graded ring.

Proof. We have Kz (1) = R + R-mt. Consider the exact sequence
0->REL5Kr(l) = C—0

of graded R-modules with (1) = 1. Then since m? C I and mI = m@), we readily see
M [R-mt] C R+ Qt [R-mt]

which shows C' is a graded Ulrich R-module (see [36, Proposition 2.2 (2)]. Thus R is

an almost Gorenstein graded ring. ]

Let us note one example.

Example 2.3.13. Let R = k[[z,y, z]] be the formal power series ring over an infinite
field k. We set m = (z,y,2), Q@ = (z,9%2") withn > 2 and I = Q : m. Then
I=(z,9%yz""1 2" and I* = QI.

(1) If n =2, then I = (z) +m?, so that R([) is an almost Gorenstein graded ring.

(2) Suppose n > 3. Then I #m, Q #m, and [ # (f) + m? for any f € m \ m?. Hence

R(I) is not an almost Gorenstein graded ring.
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CHAPTER 3

THE ALMOST (GORENSTEIN REES ALGEBRAS
OVER TWO-DIMENSIONAL REGULAR LOCAL
RINGS

3.1 Introduction

The purpose of this chapter is to study the problem of when the Rees algebras of ide-
als and modules over two-dimensional regular local rings (R, m) are almost Gorenstein
graded rings. Almost Gorenstein rings in our sense are newcomers and different from
those rings studied in [47]. They form a new class of Cohen-Macaulay rings, which are
not necessarily Gorenstein, but still good, possibly next to the Gorenstein rings. The
notion of these local rings dates back to the paper [8] of V. Barucci and R. Froberg
in 1997, where they dealt with one-dimensional analytically unramified local rings and
developed a beautiful theory. Because their notion is not flexible enough to analyze
analytically ramified rings, in 2013 S. Goto, N. Matsuoka, and T. T. Phuong [26] ex-
tended the notion to arbitrary (but still of dimension one) Cohen-Macaulay local rings.
The reader may consult [26] for examples of analytically ramified almost Gorenstein
local rings. S. Goto, R. Takahashi, and N. Taniguchi [36] finally gave the definition of
almost Gorenstein local/graded rings in our sense. Here let us recall it, which we shall

utilize throughout this chapter.

Definition 3.1.1 ([36, Definition 3.3]). Let (R, m) be a Cohen-Macaulay local ring
which possesses the canonical module Kg. Then we say that R is an almost Gorenstein

local ring, if there exists an exact sequence

0—-R—-Kr—C—=0
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of R-modules such that pug(C) = e (C), where ur(C) denotes the number of elements
in a minimal system of generators of C' and 2 (C) is the multiplicity of C' with respect

to m.

Definition 3.1.2 ([36, Definition 8.1]). Let R = P, 5, In be a Cohen-Macaulay graded
ring such that Ry is a local ring. Suppose that R possesses the graded canonical module
Kpg. Let 9t be the unique graded maximal ideal of R and a = a(R) the a-invariant of
R. Then we say that R is an almost Gorenstein graded ring, if there exists an exact

sequence

0= R—Kg(—a) = C —0

of graded R-modules such that ur(C) = e3;(C), where pur(C') denotes the number of
elements in a minimal system of generators of C' and e;(C') is the multiplicity of C
with respect to 9. Here Kg(—a) stands for the graded R-module whose underlying
R-module is the same as that of Kg and whose grading is given by [Kg(—a)], = [Kgr]n_a
for all n € Z.

Definition 3.1.1 (resp. Definition 3.1.2) means that if R is an almost Gorenstein
local (resp. graded) ring, then even though R is not a Gorenstein ring, R can be
embedded into the canonical module Kg (resp. Kg(—a)), so that the difference Kr/R
(resp. Kg(—a)/R) is an Ulrich R-module ([10]) and behaves well. The reader may
consult [36] about the basic theory of almost Gorenstein local/graded rings and the
relation between the graded theory and the local theory, as well.

It is shown in [36] that every two-dimensional rational singularity is an almost
Gorenstein local ring and all the known examples of Cohen-Macaulay local rings of finite
Cohen-Macaulay representation type are almost Gorenstein local rings. The almost
Gorenstein local rings which are not Gorenstein are G-regular ([36, Corollary 4.5]) in
the sense of [71], that is every totally reflexive module is free, so that the Gorenstein
dimension of a finitely generated module is equal to its projective dimension, while over
Gorenstein local rings the totally reflexive modules are exactly the maximal Cohen-
Macaulay modules. The local rings R, (p € Spec R) of almost Gorenstein local rings
R are not necessarily almost Gorenstein (see [36, Remark 9.12] for a counterexample).
These are particular discrepancies between Gorenstein local rings and almost Gorenstein

local rings.
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In this chapter we are interested in the almost Gorenstein property of Rees algebras

and our main result is sated as follows.

Theorem 3.1.3. Let (R, m) be a two-dimensional reqular local ring with infinite residue
class field and I an m-primary integrally closed ideal in R. Then the Rees algebra
R(I) = D,o " of I is an almost Gorenstein graded ring.

As a direct consequence we have the following.

Corollary 3.1.4. Let (R, m) be a two-dimensional reqular local ring with infinite residue

class field. Then R(m’) is an almost Gorenstein graded ring for every integer £ > 0.

The proof of Theorem 3.1.3 depends on a result of J. Verma [76] which guarantees the
existence of joint reductions with joint reduction number zero. Therefore our method
of proof works also for two-dimensional rational singularities, which we shall discuss in
the forthcoming paper [39].

Possessing in [33] one of its roots, the theory of Rees algebras has been satisfactorily
developed and nowadays one knows many Cohen-Macaulay Rees algebras (see, e.g.
[46, 55, 66]). Among them Gorenstein Rees algebras are rather rare ([49]). Nevertheless,
although they are not Gorenstein, some of Cohen-Macaulay Rees algebras are still good
and could be almost Gorenstein graded rings, which we would like to report in this
chapter and also in the forthcoming papers [34, 35]. Except [36, Theorems 8.2, 8.3] our
Theorem 3.1.3 is the first attempt to answer the question of when the Rees algebras
are almost Gorenstein graded rings.

We now briefly explain how this chapter is organized. The proof of Theorem 3.1.3
shall be given in Section 3.2. For the Rees algebras of modules over two-dimensional
regular local rings we have a similar result, which we give in Section 3.2 (Corollary
3.2.7). In Section 3.3 we explore the case where the ideals are linearly presented over
power series rings. The result (Theorem 3.3.1) seems to suggest that almost Gorenstein
Rees algebras are still rather rare, when the dimension of base rings is greater than two,
which we shall discuss also in the forthcoming paper [35]. In Section 3.4 we explore
the Rees algebra of the socle ideal I = () : m, where () is a parameter ideal in a two-
dimensional regular local ring (R, m), and show that the Rees algebra R(I) is an almost
Gorenstein graded ring if and only if the order of @ is at most two (Theorem 3.4.1).

We should note here that for every almost Gorenstein graded ring R with graded

maximal ideal 91 the local ring Ryy of R at 91 is by definition an almost Gorenstein
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local ring, because [Kg|m = Kg,,. The converse is not true in general. The typical
examples are the Rees algebras R(Q) of parameter ideals @) in a regular local ring
(R,m) with dim R > 3. For this algebra R = R(Q) the local ring Ry is always an
almost Gorenstein local ring ([35, Theorem 2.7]) but R is an almost Gorenstein graded
ring if and only if @ = m ([36, Theorem 8.3]). On the other hand the converse is also
true in certain special cases like Theorems 3.3.1 and 3.4.1 of the present chapter. These
facts seem to suggest the property of being an almost Gorenstein graded ring is a rather
rigid condition for Rees algebras.

In what follows, unless otherwise specified, let (R, m) denote a Cohen-Macaulay
local ring. For each finitely generated R-module M let pugr(M) (resp. €2 (M)) denote
the number of elements in a minimal system of generators for M (resp. the multiplicity

of M with respect to m). Let Ky stand for the canonical module of R.

3.2 Proof of Theorem 3.1.3

The purpose of this section is to prove Theorem 3.1.3. Let (R, m) be a Gorenstein local
ring with dim R = 2 and let I € R be an m-primary ideal of R. Assume that I contains
a parameter ideal Q = (a,b) of R such that I = QI. We set J =Q : I. Let

R = R[It] C R[t] and T = R[Qt] C RIt],

where ¢ stands for an indeterminate over R. Remember that the Rees algebra R of I
is a Cohen-Macaulay ring ([33]) with a(R) = —1 and R = T+ T-It, while the Rees
algebra T of @) is a Gorenstein ring of dimension 3 and a(7) = —1 (remember that
T = Rlz,y]/(bx — ay)). Hence Kr(1) = T as a graded T-module, where K7 denotes
the graded canonical module of T'.

Let us begin with the following, which is a special case of [75, Theorem 2.7 (a)]. We

note a brief proof.
Proposition 3.2.1. Kz(1) = JR as a graded R-module.

Proof. Since R is a module-finite extension of T, we get
KR(l) = I‘IOHIT(,R,7 KT)(]_> = HOHIT<R, T) =T F R

as graded R-modules, where F' = Q(7T") = Q(R) is the total ring of fractions. Therefore
T:pR=T:p It, since R = T + T-It. Because Q" N [Q"™ : I] = Q"[Q : I] for
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all n > 0, we have T :p It = JT. Hence T :p R = JT, so that JT = JR. Thus
Kz (1) 2 JR as a graded R-module. O

Corollary 3.2.2. The ideal J = Q : I in R is integrally closed, if R is a normal ring.

Proof. Since JR = Kx(1), the ideal JR of R is unmixed and of height one. Therefore,
if R is a normal ring, JR must be integrally closed in R, whence J is integrally closed
in R because J C JR, where J denotes the integral closure of J. ]

Let us give the following criterion for R to be a special kind of almost Gorenstein
graded rings. Notice that Condition (2) in Theorem ?7 requires the existence of joint

reductions of m, I, and J with reduction number zero (cf. [76]).

Theorem 3.2.3. With the same notation as above, set M = mR + R, the graded

mazimal ideal of R. Then the following conditions are equivalent.

(1) There exists an exact sequence
0—>R—=>Kg(l) >C—=0

of graded R-modules such that MC = (&£,n)C for some homogeneous elements ,n
of M.

(2) There exist elements f € m, g € I, and h € J such that

I1J=gJ+1Ih and wmJ= fJ+mh.

When this is the case, R is an almost Gorenstein graded ring.

Proof. (2) = (1) Notice that M-JR C (f,gt)-JR + Rh, since I.J = gJ + Ih and
mJ = fJ + mh. Consider the exact sequence

R JR—=C—0

of graded R-modules where p(1) = h. We then have MC = (f,gt)C, so that
dimg,, Cor < 2. Hence by [36, Lemma 3.1] the homomorphism ¢ is injective and
R is an almost Gorenstein graded ring.

(1) = (2) Suppose that R is a Gorenstein ring. Then pg(J) = 1, since Kx(1) = JR.
Hence J = R as m C v/J, so that choosing h =1 and f = g = 0, we get IJ = ¢gJ + Ih
and mJ = fJ 4+ mh.
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Suppose that R is not a Gorenstein ring and consider the exact sequence
0=R-ZS5JR—C =0

of graded R-modules with C' # (0) and IMC = (£,n7)C for some homogeneous elements
&,m of M. Hence Roy is an almost Gorenstein local ring in the sense of [36, Definition
3.3]. Weset h = (1) € J, m = degé&, and n = degn; hence C' = JR/Rh. Remem-
ber that h ¢ mJ, since Roy is not a regular local ring (see [36, Corollary 3.10]). If
min{m,n} > 0, then MC C R, C, whence mCy = (0) (notice that [R,C]y = (0), as
C = RCy). Therefore mJ C (h), so that we have J = (h) = R. Thus Rh = JR and
R is a Gorenstein ring, which is impossible. Assume m = 0. If n = 0, then IMC' = mC
since £, € m, so that
C; CR.iCH) CTmC

and therefore C; = (0) by Nakayama’s lemma. Hence IJ = Ih as [JR]; = p(R1),
which shows (h) is a reduction of J, so that (h) = R = J. Therefore R is a Gorenstein

ring, which is impossible. If n > 2, then because
M-JR CEJR+n-JR + Rh,

we get IJ C £1J + Th, whence IJ = Ih. This is impossible as we have shown above.
Hence n = 1. Let us write n = gt with g € I and take f = £. We then have

M-JR C (f,gt)-JR + Rh,

whence mJ C fJ+ Rh. Because h ¢ mJ, we get mJ C fJ+mh, so that mJ = fJ+mh,
while IJ = gJ+1h, because I.J C fIJ+gJ+Ih. This completes the proof of Theorem
3.2.3. O

Let us explore two examples to show how Theorem 3.2.3 works.

Example 3.2.4. Let S = kl[x,y, z]] be the formal power series ring over an infinite
field k. Let n = (z,y,2) and choose f € n*\ n®. We set R = S/(f) and m = n/(f).
Then for every integer ¢ > 0 the Rees algebra R(m) of m is an almost Gorenstein
graded ring and r(R) = 2¢ + 1, where r(R) denotes the Cohen-Macaulay type of R.

9(R) = 2, we have m? = (a,b)m for some elements a,b € m. Let £ > 0

be an integer and set I = m’ and Q = (a*,b). We then have I? = QI and Q : [ = I,

Proof. Since e
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so that R = R(I) is a Cohen-Macaulay ring and Kg(1) = I'R by Proposition 3.2.1,
whence 1(R) = pugr(I) = 20 + 1. Because m**! = am® + b'm and Q : [ = [ = m’, by

Theorem 3.2.3 R is an almost Gorenstein graded ring. ]

Example 3.2.5. Let (R,m) be a two-dimensional regular local ring with m = (z,y).
Let 1 <m < n be integers and set I = (2™) 4+ m™. Then R(I) is an almost Gorenstein
graded ring.

Proof. We may assume m > 1. We set @ = (z™,y") and J =@ : I. Then @ C I and
I’ =QI. Since I = (™) + (2'y"* | 0<i<m — 1), we get

J=Q:(xy" " |0<i<m—1) = (] [@™y"):a'y""]
=1

Take f=x€m,g=a" € l,and h=y™ ! € J=m™ L. We then have m.J = fJ+mh
and IJ = Ih + gJ, so that by Theorem 3.2.3 R(I) is an almost Gorenstein graded
ring. O]

To prove Theorem 3.1.3 we need a result of J. Verma [76] about joint reductions of
integrally closed ideals. Let (R, m) be a Noetherian local ring. Let I and J be ideals
of R and let « € I and b € J. Then we say that a,b are a joint reduction of I,J if
aJ + Ib is a reduction of I.J. Joint reductions always exist (see, e.g., [?]) if the residue

class field of R is infinite. We furthermore have the following.

Theorem 3.2.6 ([76, Theorem 2.1)). Let (R, m) be a two-dimensional regular local
ring. Let I and J be m-primary ideals of R. Assume that a,b are a joint reduction of
I, J. Then IJ =aJ + Ib, if I and J are integrally closed.

We are now ready to prove Theorem 3.1.3.

Proof of Theorem 3.1.3. Let (R, m) be a two-dimensional regular local ring with infinite
residue class field and let I be an m-primary integrally closed ideal in R. We choose
a parameter ideal Q of R so that Q@ C I and I? = QI (this choice is possible; see [81,
Appendix 5] or [45]). Therefore the Rees algebra R = R([I) is a Cohen-Macaulay ring
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([33]). Because R is a normal ring ([81]), by Corollary 3.2.2 J = @ : I is an integrally
closed ideal in R. Consequently, choosing three elements f € m, g € I, and h € J so
that f,h are a joint reduction of m,J and g, h are a joint reduction of I, J, we readily

get by Theorem 3.2.6 the equalities
mJ=fJ+mg and IJ=gJ+ Ih

stated in Condition (2) of Theorem 3.2.3. Thus R = R(I) is an almost Gorenstein
graded ring. [

We now explore the almost Gorenstein property of the Rees algebras of modules.
To state the result we need additional notation. For the rest of this section let (R, m)
be a two-dimensional regular local ring with infinite residue class field. Let M # (0)
be a finitely generated torsion-free R-module and assume that M is non-free. Let
(=) = Hompg(—, R). Then F = M** is a finitely generated free R-module and we get

a canonical exact sequence
0=-M-25F 500

of R-modules with C' # (0) and (x(C) < oco. Let Sym(M) and Sym(F') denote the
symmetric algebras of M and F respectively and let Sym(¢p) : Sym(M) — Sym(F') be
the homomorphism induced from ¢ : M — F. Then the Rees algebra R(M) of M is
defined by

Sym(

R(M) =Im [Sym(M) Syml@), Sym(F)

([66]). Hence R(M) = Sym(M)/T where T = t(Sym(M)) denotes the R-torsion part
of Sym(M), so that M = [R(M)]; is an R-submodule of R(M). Let x € F. Then we

say that x is integral over M, if it satisfies an integral equation
" e e, =0

in the symmetric algebra Sym(F) with n > 0 and ¢; € M* for each 1 <i < n. Let M
be the set of elements of F which are integral over M. Then M forms an R-submodule
of F'; which is called the integral closure of M. We say that M is integrally closed, if
M =M.

With this notation we have the following.
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Corollary 3.2.7. Let M = mR(M) + R(M) be the unique graded mazimal ideal of
R(M) and suppose that M is integrally closed. Then R(M ) is an almost Gorenstein
local ring in the sense of [36, Definition 3.5].

Proof. Let U = R[xy,xs,...,2,| be the polynomial ring with sufficiently large n > 0
and set S = Uyy. We denote by n the maximal ideal of S. Then thanks to [66,
Theorem 3.5] and [44, Theorem 3.6], we can find some elements fi, fo,..., f,_1 € SQrM
(r = rankgF') and an n-primary integrally closed ideal [ in S, so that fi, fo,..., fro1

form a regular sequence in R(S ®r M) and

R(S@rM)/(f1, fo,--- fre1) 2 RU)

as a graded S-algebra. Therefore, because R(I) is an almost Gorenstein graded ring
by Theorem 3.1.3, S ®p R(M) = R(S ®r M) is an almost Gorenstein graded ring (cf.
[36, Theorem 3.7 (1)]). Consequently R(M )oy is an almost Gorenstein local ring by [36,
Theorem 3.9]. O

3.3 Almost Gorenstein property in Rees algebras of
ideals with linear presentation matrices

Let R = k[[z1,xa,...,x4]] (d > 2) be the formal power series ring over an infinite field
k. Let I be a perfect ideal of R with gradep I = 2, possessing a linear presentation
matrix ¢

0— R®D £ RO T 0,

that is each entry of the matrix ¢ is contained in Z?Zl kx;. We set n = ug(I) and

=1 if d = 2. In what follows we assume that n > d

m = (z1,%9,...,24); hence [ = m
and that our ideal I satisfies the condition (Gg) of [4], that is pg,(IR,) < dim R, for
every p € V(I) \ {m}. Then thanks to [55, Theorem 1.3] and [46, Proposition 2.3|, the

Rees algebra R = R(I) of I is a Cohen-Macaulay ring with a(R) = —1 and

as a graded R-module.
We are interested in the question of when R is an almost Gorenstein graded ring.
Our answer is the following, which suggests that almost Gorenstein Rees algebras might

be rare in dimension greater than two.
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Theorem 3.3.1. With the same notation as above, set M = mR + R, the graded

maximal ideal of R. Then the following conditions are equivalent.
(1) R is an almost Gorenstein graded ring
(2) Ron is an almost Gorenstein local ring
(3) d=2.

Proof. (1) = (2) This follows from the definition, since [Kg]m = Kgy,.

(3) = (1) We have I = m" ! since d = 2 and so R is an almost Gorenstein graded
ring (Corollary 3.1.4).

(2) = (3) LetA ; = (—1)"'detp; for each 1 < i < n, where ¢; stands for the
(n — 1) x (n — 1) matrix which is obtained from ¢ by deleting the i-th row. Hence
I=(A,A,,...,A,) and the ideal I has a presentation

A1 A2 An]
—_

(P) 0 RO £, gon | I 0.

Notice that R is not a Gorenstein ring, since r(R) = pr(m™ %) = (27]) > 1. We set

A = Rgn and n = MA; hence K4 = [Kr]m. We take an exact sequence
0 A-Ki5C—=0

of A-modules such that C' # (0) and C' is an Ulrich A-module. Let f = ¢(1). Then
f & nK 4 by [36, Corollary 3.10] and we get the exact sequence

(F) 0—=nf—>uKy—nC—0.

Because nC' = (f1, fa, ..., fa)C for some fi, fo,..., f4 € n ([36, Proposition 2.2]) and
pa(n) =d+ n, we get by the exact sequence (F) that

pr(MKR) = pa(nKy) < (d+n) +d-(r(A) — 1) = d(Z : i) +n,

while

pR(MKR) = pr(m"= ) 4 pp(m=11) = (dﬁ 1) + pup(m" 1)

since M = (m, [t)R and Kz (1) = m""¢R. Consequently we have

() pa(mtD) < d(gj) oo (dﬁ 1).
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To estimate the number pr(m™ ?I) from below, we consider the homomorphism
vm" i@l — m" T

defined by z ®y — zy and set X = Ker. Let € X and write x = Zle r; ® A; with
x; € m" % Then since Zle x;A; = 0 in R and since every entry of the matrix ¢ is
linear, the presentation (P) of I guarantees the existence of elements y; € m"~ 41 (1 <
Jj <mn—1) such that

x n

T Y2
= ()0 .

T Yn—1

n=d=116(=1) Therefore in the exact sequence

Hence X is a homomorphic image of [m
0> X ->m" @] 5>m" 1 -0

we get
) < -1 (7).

Consequently

It R (A B UES] (g

so that combining the estimations (x) and (++), we get

L ) R O | ey B
ol Gl VYRR Vi IR Y]

- n_(dﬁl)'

Hence d = 2, because n < (dﬁl) ifn>d>3. ]

Before closing this section, let us note one concrete example.

Example 3.3.2. Let R = k[[x,y, z]] be the formal power series ring over an infinite
field k. We set I = (22y, 9%z, 2%z, zyz) and Q = (2%y,y*z, 2%x). Then @Q is a minimal
reduction of I with redg(l) = 2. The ideal I has a presentation of the form

0 R*® 2 R™ 5T 0
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with ¢ = (

Theorem 3.3.1. Hence Theorem 3.3.1 shows that R(/) cannot be an almost Gorenstein

00
g 2) and it is direct to check that I satisfies all the conditions required for

<O o8

graded ring, while @ is not a perfect ideal of R but its Rees algebra R(Q) is an almost
Gorenstein graded ring with r(R) = 2; see [50].

3.4 The Rees algebras of socle ideals I = (a,b) : m

Throughout this section let (R, m) denote a two-dimensional regular local ring with
infinite residue class field. Let @ = (a,b) be a parameter ideal of R. We set [ =@ : m
and R = R([). For each ideal a in R we set o(a) = sup{n € Z | a C m"}. We are
interested in the question of when R is an almost Gorenstein graded ring. Our answer

is the following. Notice that the implication (1) = (2) follows from the definition.

Theorem 3.4.1. With the same notation as above assume that Q # m. Then the

following conditions are equivalent.
(1) R is an almost Gorenstein graded ring.

(2) Ron is an almost Gorenstein local ring

(3) o(@) < 2.

Proof of the implication (3) = (1). If o(Q) = 1, then @ = (x,y9) (¢ > 2) for some
regular system z,y of parameters of R. Hence I = (z,y? ') and R is a Gorenstein
ring. Suppose that o(Q) = 2. Then o(I) = o(Q) = 2 since I? = QI ([78]). Because
pr(I) = 3 = o(I) + 1, there exists an element x € m \ m? such that I : z = I : m (cf.
[45], [81, App. 5]). We set R = R/(z). Then QR = IR, since Q is a reduction of I and
R is a DVR. We may assume aR = IR, whence I C (a,z). Let us write b = af + xg
with f,g € R. Then @ = (a,xg). Therefore Im = Qm = (gm)z + am (remember that
Im = Qm; see, e.g. [78]). Notice that gm C I, because g € Q : x C T :x =1 : m.
Therefore I'm = Iz + am, whence R is an almost Gorenstein graded ring by Theorem
3.2.3. O]

To prove the implication (2) = (3) we need Theorem 3.4.2 below. From now we
write m = (z,y) and let Q) = (a, b) be a parameter ideal of R such that o(Q) > 2. Hence
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I? = QI with ug(l) = 3. Let I = (a,b,c). Then since zc, yc € Q, we get equations
fia+ fob+xc=0 and gia+ g2b+yc=0

Theorem 3.4.2. With the notation above, if (fi, f2,91,92) € m?, then Ron is not an

almost Gorenstein local ring.

We divide the proof of Theorem 3.4.2 into three steps. Let us begin with the

following.

Lemma 3.4.3. Let Ml = (gl 52 Z) Then R/I has a minimal free resolution
1 92

0 R®? M ges lebel p L pir 0.

fi g1
Proof. Let f = | fo| and g = [ g2 |. Then f,g € m-R®3. As f,g mod m?-R®? are
x y

linearly independent over R/m, the complex
0 ge2 M ges lebel p L R/IT 0
is exact and gives rise to a minimal free resolution of R/1I. [

Let S = R[X,Y, Z] be the polynomial ring and let ¢ : S — R = R[] (t an
indeterminate) be the R-algebra map defined by ¢(X) = at, p(Y') = bt, and p(Z) = ct.
Let K = Ker ¢. Since ¢ € QI, we have a relation of the form

¢ = a’f + b%g + abh + bci + caj
with f,qg,h,i,7 € R. We set

F = 22— (fX*+gY*+hXY +iYZ + jZX),
G = le+f2Y+$Z7
H = gX+g¢Y +yZ

Notice that F' € S; and G, H € S;.
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Proposition 3.4.4. R has a minimal graded free resolution of the form

05 S(-2)d8(-2) % (—2as-)as-1) L s L rs 0

so that the graded canonical module Kr of R has a presentation

N,

S(-1) ®S(-2) ®8(-2) % (—1) @B S(—1) = Kg — 0.

Proof. We have K = SK; + (F) (cf., e.g. [54, Theorem 4.1]; use the fact that I? = QI

and ¢® € QI). Hence R has a minimal graded free resolution of the form
(6) 0= 8S(—m)®S(—0) -8 (—2)as(-)osS(-1) L s s Rrs 0

with m,¢ > 1. We take the S(—3)-dual of the resolution (x). Then as Kg = S(—3), we

get the presentation

S(-1)BS(-2)BS(-2) =8 (m—-3)&S(l—3)—>Kr—0

of the canonical module Kz of R. Hence m,¢ < 2 because a(R) = —1. Assume that
0 b
m = 1. Then the matrix 'N has the form ‘N = [ ap (o | with ag, a3 € R. We have
as s
fi g1
asG + azH = 0, or equivalently as | fo | + a3 | g2 | = 0, whence ay = a3 = 0 by
Zz Y

Lemma 3.4.3. This is impossible, whence m = 2. We similarly have ¢/ = 2 and the

assertion follows. ]
We are ready to prove Theorem 3.4.2.

Proof of Theorem 3.4.2. Let N be the matrix given by Proposition 3.4.4 and write N =

(g gll 522) Then Proposition 3.4.4 shows that F;,G; € §; (i = 1,2) and a,5 € m.
We write F; = an X + Y + a;32 and G; = Bn X + BioY + BisZ with «yj, Bi; € R. Let
A, denote the determinant of the matrix obtained by deleting the j-th column from N.
Then by the theorem of Hilbert-Burch we have G = —eA,; and H = A3 for some unit

¢ of R, so that

f1 Qg1 521 g1 511 11
fo]l = (55) Qoo | — (804) Ba2 and g2 | = (5&) Biz | — (55) 12
z 023 Ba3 Y B3 Q3
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Hence
T = (ef)a — (ca)fs and y = (ea)Biz — (¢f)aus,
which shows (z,y) = (ea,e8 ) = m because (z,y) C (ea,eff) C m.
Since f; = (ef)ag; — () P21 and ea,ef is a regular system of parameters of R, we
get agy, for € mif f; € m?. Therefore if (fi, f2, g1,92) C m?, then ayj, B;; € m for all

1,7 = 1,2, whence

_ (o oz3Z osZ 2
N = dm
(6 BisZ 6232) o

where 91 = mS + &, denotes the graded maximal ideal of S. We set B = Sy. Then
it is clear that after any elementary row and column operations the matrix N over the

regular local ring B of dimension 5 is not equivalent to a matrix of the form

a1 Qo Q3
Bi B2 Bs
with aq, ae, g a part of a regular system of parameters of B. Hence by [36, Theorem

7.8] Ron cannot be an almost Gorenstein local ring. ]
We are now in a position to finish the proof of Theorem 3.4.1.

Proof of the implication (2) = (3) in Theorem 3.4.1. It suffices to show that Ry is not

an almost Gorenstein local ring if o(Q) > 3. We write oy _ (fu i) (@ with
b far f2) \Y

fij € m? (i,j = 1,2) and set ¢ = det <:];11 :];12>' Then Q :c=mand Q :m=Q + (¢).
21 Jf22
We have
(—fa)a+ fisb+cx =0 and fora+ (—fi11)b+cy=0.

Hence by Theorem 3.4.2 Rgy is not an almost Gorenstein local ring, which completes
the proof of Theorem 3.4.1. O
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CHAPTER 4

ULRICH IDEALS AND ALMOST (GORENSTEIN
RINGS

4.1 Introduction

This chapter studies Ulrich ideals of Cohen—Macaulay local rings and almost Gorenstein
local rings.

Ulrich ideals are newcomers. They were introduced by [30] in 2014. Typical exam-
ples of Ulrich ideals are the maximal ideal of a Cohen—Macaulay local ring with minimal
multiplicity. The syzygy modules of Ulrich ideals are known to be well-behaved [30].
We refer the reader to [30] for a basic theory of Ulrich ideals and [31] for the results
about the ubiquity of Ulrich ideals of two-dimensional rational singularities and the
representation-theoretic aspects of Ulrich ideals.

Almost Gorenstein rings are also newcomers. They form a class of Cohen—Macaulay
rings, which are not necessarily Gorenstein but still good, hopefully next to the Goren-
stein rings. The notion of almost Gorenstein local rings dates back to the article [§]
of Barucci and Froberg in 1997. They introduced almost Gorenstein rings in the case
where the local rings are of dimension one and analytically unramified. We refer the
reader to [8] for a well-developed theory of almost symmetric numerical semigroups.
The notion of almost Gorenstein local rings in the present chapter is, however, based
on the definition given by the authors [36] in 2015 for Cohen-Macaulay local rings of
arbitrary dimension. See [26] for a basic theory of almost Gorenstein local rings of
dimension one which might be analytically ramified.

One of the purposes of this chapter is to clarify the structure of Ulrich ideals of almost

Gorenstein local rings. The motivation for the research comes from a recent result of
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Kei-ichi Watanabe, which asserts that non-Gorenstein almost Gorenstein numerical
semigroup rings possess no Ulrich monomial ideals except the maximal ideal. This
result essentially says that there should be some restriction of the distribution of Ulrich
ideals of an almost Gorenstein but non-Gorenstein local ring. Our research started
from the attempt to understand this phenomenon. Along the way, we recognized that
his result holds true for every one-dimensional almost Gorenstein non-Gorenstein local
ring, and finally reached new knowledge about the behavior of Ulrich ideals, which is
reported in this chapter.

Let us state the results of this chapter, explaining how this chapter is orga-
nized. In Section 4.2 we shall prove the following structure theorem of the complex

RHompg(R/I, R) for an Ulrich ideal I.

Theorem 4.1.1. Let R be a Cohen—Macaulay local ring of dimension d > 0. Let I be
a non-parameter Ulrich ideal of R containing a parameter ideal of R as a reduction.
Denote by v(I) the minimal number of generators of I, and put t = v(I) —d. Then

there is an isomorphism

RHompg(R/I, R) = @(R/1)*"[~i]

1EL

in the derived category of R, where

£
Il
=+ O
—~
<. e,
A
QU X

(=Dt (i

V
Sy

In particular, one has Ext,(R/I, R) = (R/I)®% for each integer i.

This theorem actually yields a lot of consequences and applications. Let us state
some of them. The Bass numbers of R are described in terms of those of R/I and the
u;, which recovers a result in [30]. Finiteness of the G-dimension of [ is characterized in
terms of v(/), which implies that if R is G-regular in the sense of [?] (e.g., R is a non-
Gorenstein ring with minimal multiplicity, or is a non-Gorenstein almost Gorenstein
ring), then one must have v(I) > d + 2. For a non-Gorenstein almost Gorenstein ring
with prime Cohen—Macaulay type, all the Ulrich ideals have the same minimal number
of generators. For every one-dimensional non-Gorenstein almost Gorenstein local ring

the only non-parameter Ulrich ideal is the maximal ideal. This recovers the result of
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Watanabe mentioned above, and thus our original aim of the research stated above is
achieved.

Now we naturally get interested in whether or not the minimal numbers of gen-
erators of Ulrich ideals of an almost Gorenstein non-Gorenstein local ring are always
constant. We will explore this in Section 4.3 to obtain some supporting evidence for
the affirmativity. By the way, it turns out to be no longer true if the base local ring
is not almost Gorenstein. In Section 4.4 we will give a method of constructing Ulrich

ideals which possesses different numbers of generators.

Notation 4.1.2. In what follows, unless otherwise specified, R stands for a d-
dimensional Cohen—Macaulay local ring with maximal ideal m and residue field k. For a
finitely generated R-module M, denote by £r(M), vgr(M), rr(M) and €% (M) the length
of M, the minimal number of generators of M, the Cohen—Macaulay type of M and the
multiplicity of M with respect to m. Let v(R) denote the embedding dimension of R,
i.e., v(R) = vr(m). For each integer i we denote by p;(R) the i-th Bass number of R,
namely, p;(R) = dimy, Ext}z(k, R). Note that ug(R) = 7(R). The subscript indicating

the base ring is often omitted.

4.2 The structure of RHomp(R/I,R) for an Ulrich
ideal I

In this section, we establish a structure theorem of RHompg(R/I, R) for an Ulrich
ideal I of a Cohen—Macaulay local ring, and derive from it a lot of consequences and
applications. First of all, we fix our notation and assumptions on which all the results

in this section are based.

Setup 4.2.1. Throughout this section, let I be a non-parameter m-primary ideal of R
containing a parameter ideal () of R as a reduction. Suppose that I is an Ulrich ideal,
that is, I* = QI and I/I* is R/I-free. Put t = v(I) —d > 0 and
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Remark 4.2.2. (1) The condition that I contains a parameter ideal @ of R as a
reduction is automatically satisfied if & is infinite.

(2) The condition I? = QI is independent of the choice of minimal reductions Q of 1.
The following is the main result of this section.

Theorem 4.2.3. There is an isomorphism
RHomp(R/I, R) = @(R/1)®"[~i]
i€z
in the derived category of R. Hence for each integer i one has an isomorphism
Extiy(R/I, R) = (R/1)™"
of R-modules. In particular, Ext,(R/I, R) is a free R/I-module.
Proof. Let us first show that Ext’(R/I, R) = (R/I)®% for each i. We do it by making
three steps.
Step 1. As I is an m-primary ideal, R/I has finite length as an R-module. Hence we
have Ext3*(R/I, R) = 0.

Step 2. There is a natural exact sequence 0 — 1/Q) ER R/Q % R/I — 0, which induces

an exact sequence

Ext4(R/I,R) — Ext4%(R/Q,R) — Ext%(I/Q,R)
— ExtYYR/I,R) — Ext4T(R/Q,R).

Since @ is generated by an R-sequence, we have Ext4™(R/Q,R) = 0. There is a

commutative diagram

Ext®(R/I, R) Ext®(R/Q, R) Ext®(1/Q, R)

lg ig i%

0 —— Homp o(R/I, R/Q) —<= Homp,o(R/Q, R/Q) 1~ Hompzo(I/Q, R/Q)

l% ig

@:1)/Q i R/Q

with exact rows, where the vertical maps are natural isomorphisms and A is an inclusion

0

map. Thus we get an exact sequence
0= (Q:1)/Q % R/Q — Hompo(I/Q, R/Q) — Ext:(R/I, R) — 0.
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Note here that 7/Q = (R/I)® and @ : I = I hold; see [30, Lemma 2.3 and Corollary
2.6. Hence Exth(R/I,R) = (Q : 1)/Q = I/Q = (R/I)®. We have isomorphisms
Homp,o(I/Q, R/Q) = Hompo(R/I, R/Q)® = (I/Q)®' = (R/I)®", and therefore we

obtain an exact sequence
0 — R/I — (R/1)®" — Ext% Y (R/I, R) — 0.

This exact sequence especially says that Extjl;rl(R/ I, R) has finite projective dimension
as an R/I-module. Since R/I is an Artinian ring, it must be free, and we see that
Ext4(R/I,R) = (R/I)®" ",

Step 3. Tt follows from [30, Corollary 7.4] that Syz’,(R/I) = Syz&(R/I)®" ™" for each

7 > d. Hence we have

Ext'(R/I, R) = Extk(Syz(R/I), R) = ExtL(Syz(R/T)®"*, R)
~ Ext&(R/I,R)® " = (R/I)®E D"

for all 7 > d.

Combining the observations in Steps 1, 2 and 3 yields that Ext’(R/I, R) = (R/I)®%
for all 7 € Z.

Take an injective resolution E of R. Then note that C' := Homg(R/I, F) is a
complex of R/I-modules with H'(C) = Exth(R/I,R) = (R/I)®% for every i € Z.
Hence each homology H*(C') is a projective R/I-module. Applying [1, Lemma 3.1] to the
abelian category ModR/I, the category of (all) R/I-modules, we obtain isomorphisms
RHomp(R/I,R) = C = @, , H(C)[—i] = B,.,(R/I)®"[—i] in the derived category
of R/I. This completes the proof of the theorem. [

The remainder of this section is devoted to producing consequences and applications

of the above theorem. First, we investigate vanishing of Ext modules.

Corollary 4.2.4. Let M be a (possibly infinitely generated) R/I-module. There is an
isomorphism

Extiy(M, R) = P Exty ) (M, R/T)®"

JEZ

for each integer i. In particular, if Ext3°(M, R) = 0, then Extf/OI(M, R/I)=0.
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Proof. There are isomorphisms
RHomp(M, R) = RHomp,; (M, RHompg(R/I, R)) = @) RHomp, (M, R/T)®"[—j],
JEZ

where the first isomorphism holds by adjointness (see [13, (A.4.21)]) and the second
one follows from Theorem 4.2.3. Taking the ¢th homologies, we get an isomorphism
Ext’ (M, R) = D,z Ext;_/j](M, R/I)®% for all integers i. Since ug =t > 0, the module
Extg/‘ﬁ(]\/[ ,R/I) is a direct summand of Ext (M, R). Therefore, when Ext3°(M, R) =
0, one has Ext7; (M, R/I) = 0. O

Now we can calculate the Bass numbers of R in terms of those of R/I.

Theorem 4.2.5. There are equalities

~—

9

pi(R) ]Ze; iti—j(R/1) {Z;:dujm_j(z%/f) (i > d).

In particular, one has

t-r(R/T) = r(I/Q) = r(R).

Proof. Applying Corollary 4.2.4 to the R/I-module k gives rise to an isomorphism
Ext’(k, R) & Dz Extgj'](k,R/I)@“j for each integer i. Compaing the k-dimension
of both sides, we get 1;(R) = 35 ujpi—;(R/I). Hence we have r(R) = pq(R) =
ugpo(R/I) =t-r(R/I) =r(I/Q), where the last equality comes from the isomorphism
I/Q = (R/I)%" (see [30, Lemma 2.3]). Thus all the assertions follow. O

The above theorem recovers a result of Goto, Ozeki, Takahashi, Watanabe and
Yoshida.

Corollary 4.2.6. [30, Corollary 2.6(b)] The following are equivalent.
(1) R is Gorenstein.
(2) R/I is Gorenstein and v(I) =d + 1.

Proof. Theorem 4.2.5 implies ¢ - r(R/I) = r(R). Hence r(R) = 1 if and only if t =
r(R/I) = 1. This shows the assertion. O
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To state our next results, let us recall some notions.

A totally reflexive R-module is by definition a finitely generated reflexive R-module
G such that Ext7%(G, R) = 0 = Ext;’(Homg(G, R), R). Note that every finitely gen-
erated free R-module is totally reflexive. The Gorenstein dimension (G-dimension for
short) of a finitely generated R-module M, denoted by Gdimpg M, is defined as the

infimum of integers n > 0 such that there exists an exact sequence
0—-G,—>Gp 14— —>Gy—M—=0

of R-modules with each G; totally reflexive.

A Noetherian local ring R is called G-regular if every totally reflexive R-module is
free. This is equivalent to saying that the equality Gdimr M = pdp M holds for all
finitely generated R-modules M.

Remark 4.2.7. The following local rings are G-regular.
e Regular local rings.
e Non-Gorenstein Cohen-Macaulay local rings with minimal multiplicity.
e Non-Gorenstein almost Gorenstein local rings.

For the proofs, we refer to [71, Proposition 1.8], [5, Examples 3.5] (see also [80, Corollary
2.5]) and [36, Corollary 4.5], respectively.

Suppose that R admits a canonical module Kg. We say that R is almost Gorenstein

if there exists an exact sequence
0—->R—->Kr—>C—=0

of R-modules such that C'is an Ulrich R-module, i.e., C'is a Cohen—-Macaulay R-module
(of dimension d — 1) with €2 (C) = vg(C).
Using our Theorem 4.2.3, we establish a characterization of finiteness of the G-

dimension of R/I in terms of the minimal number of generator of I.

Theorem 4.2.8. One has
v(I)=d+1 < Gdimg R/I < 0.
In particular, if R is G-reqular, then v(I) > d + 2.
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Proof. As to the first assertion, it suffices to show that ¢ = 1 if and only if R/I has
finite G-dimension as an R-module.

The ‘if” part: As R/I has depth 0, it has G-dimension d by [13, (1.4.8)], and hence
Extz?(R/I, R) = 0 by [13, (1.2.7)]. It follows from Theorem 4.2.3 that u; = 0 for all
i > d. In particular, we have t*> — 1 = ug4y; = 0, which implies ¢t = 1.

The ‘only if’ part: By Theorem 4.2.3 we have RHompg(R/I, R) = R/I[—d]. It is
observed from this that the homothety morphism R/I — RHomg(RHomg(R/I, R), R)
is an isomorphism. It follows from [13, (2.2.3)] that the R-module R/I has finite G-
dimension.

Thus the first assertion of the theorem follows. As for the second assertion, suppose
that ¢t = 1. Then R/I has finite G-dimension, and so does I by [13, (1.2.9)]. Since
R is G-regular, I has finite projective dimension. As I is an Ulrich ideal, I/I? is a
free R/I-module. Hence we see from [11, Theorem 2.2.8] that I is generated by an
R-sequence, which contradicts the assumption that [ is a non-parameter m-primary
ideal. Therefore we have ¢t > 2, which means v(I) > d + 2. O

As a consequence of the above theorem, we have a characterization of Gorenstein

local rings.

Corollary 4.2.9. The following are equivalent.

(1) R is Gorenstein.

(2) There is an Ulrich ideal I of R with finite G-dimension such that R/I is Gorenstein.

Proof. (1) = (2): Any parameter ideal  of R is such an ideal as in the condition (2).

(2) = (1): It is trivial if I is a parameter ideal, so suppose that I is not so. The
Gorensteinness of R/I implies po(R/I) = 1 and p~o(R/I) = 0, and hence u;(R) = u;
for all ¢ > d by Theorem 4.2.5. Since R/I has finite G-dimension, we have ¢ = 1 by
Theorem 4.2.8, whence ug = 1 and u~4 = 0. Thus we get pys(R) = 1 and p~4(R) = 0,
which shows that R is Gorenstein. O

Remark 4.2.10. Corollary 4.2.9 is a special case of [70, Theorem 2.3], which implies
that a (not necessarily Cohen—Macaulay) local ring R is Gorenstein if and only if it
possesses a (not necessarily Ulrich) ideal I of finite G-dimension such that R/I is

Gorenstein.
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Using our theorems, we observe that the minimal numbers of generators of Ulrich

ideals are constant for certain almost Gorenstein rings.

Corollary 4.2.11. Let R be a non-Gorenstein almost Gorenstein local ring such that

r(R) is a prime number. Then R/I is a Gorenstein ring and v(I) = r(R) + d.

Proof. 1t follows from Theorem 4.2.5 that ¢ - r(R/I) = r(R). Since t > 1 by Theorem
4.2.8 and Remark 4.2.7, we must have that r(R/I) =1and r(R) =t=v(I) —d. O

Corollary 4.2.12. Let R be a two-dimensional rational singularity. Then v(I) =
r(R) + 2.

Proof. Because r(R/I) = 1 by [31, Corollary 6.5, the equality follows from Theorem
4.2.5. [

The following corollary is another consequence of Theorem 4.2.3. Note that such an

exact sequence as in the corollary exists for every almost Gorenstein ring.

Corollary 4.2.13. Suppose that R admits a canonical module Kg, and that there is
an ezact sequence 0 — R — Kr — C — 0 of R-modules. If v(I) > d + 2, then
AnnpC C 1.

Proof. We set a = AnngC and M = Syz%(R/I). Then M is a maximal Cohen—
Macaulay R-module. Hence Ext7’(M,Kz) = 0, and in particular there is a surjection
Hompg(M,C) — Exth(M, R). Since Extp(M, R) = Extt™(R/I, R) and t > 1, the ideal
a annihilates R/I by Theorem 4.2.3, whence I contains a. O

Now we state the last theorem in this section, whose first assertion is proved by
Kei-ichi Watanabe in the case where R is a numerical semigroup ring over a field and

all ideals considered are monomial.

Theorem 4.2.14. Let R be a non-Gorenstein local ring of dimension d. Assume that
R is almost Gorenstein, that is, there exists an exact sequence 0 - R — Kr — C' — 0
such that C' is Ulrich.

(1) Ifd=1, then I =m.

(2) Suppose that k is infinite. If mC = IC', then [ = m.
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Proof. (1) As C'# 0 = mC, we have v([) > d + 2 by Theorem 4.2.8 and Remark 4.2.7.
Hence I = m by Corollary 4.2.13.

(2) We may assume by (1) that d > 1 and that our assertion holds true for d — 1.
We set a = Anng C and S = R/a. Then mS is integral over .S, because mC = IC.
Therefore, without loss of generality, we may assume that a = a; (a part of a minimal
basis of a reduction @ = (a1, as,...,aq) of I) is a superficial element of C' with respect
tom. Let R = R/(a), I = I/(a), and C = C/aC. Then R is a non-Gorenstein
almost Gorenstein ring, C is an Ulrich R-module, and we have an exact sequence
0 - R — Kz — C — 0 of R-modules ([36, Proof of Theorem 3.7 (2)]), because
Ki = Kgr/aKg ([43, Korollar 6.3]). Consequently, since mC = IC, we get IR = mR
by the hypothesis of induction, so that I = m. [

4.3 The expected core of Ulrich ideals

In this section let (R, m, k) be a d-dimensional Cohen-Macaulay local ring with canonical
module Ki. We denote by Xi the set of non-parameter Ulrich ideals of R. Let

a= > (RS :r K],

fE€KR such that 0:zf=0

which is the expected core of Ulrich ideals in the case where R is an almost Gorenstein

but non-Gorenstein ring. In fact we have the following.

Theorem 4.3.1. Suppose that R is a non-Gorenstein almost Gorenstein local domain.

Then the following assertions hold true.
(1) If I € Xg, thena C 1.
(2) Suppose that Ry, is a Gorenstein ring for every p € Spec R\ {m}. Then y/a = m.

(3) Suppose that dim R = 2 and r(R) = 2. If R, is a Gorenstein ring for every
p € Spec R\ {m}, then Xy is a finite set and every I € Xr is minimally generated

by four elements.
Proof. (1) For each f € Kg such that 0 :x f = 0 we have an exact sequence
0R-S5Kpr—>C—0
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with ¢(1) = f and applying Corollary 4.2.13 to the sequence, we get a C I by Theorem
4.2.8.

(2) Let p € Spec R\ {m}. Then [Kg|, = Kgr, = R,, since R, is a Gorenstein ring.
Choose an element f € Kp so that [Kg|, = Rp{. Then 0 :g f =0and Rf :g Kr € p.
Hence a Z p and therefore v/a = m.

(3) We have an exact sequence
0—-R—-Kr—C—=0

of R-modules such that C' = R/p is a DVR ([36, Corollary 3.10]). Then p C a by the
definition of a. Since a # p by assertion (2), we have a = p + 2" R for some n > 0 where
x € m such that m = p + (z). Let I € Xg. Then because a C I by assertion (1), we
get I = p + 'R with 1 < /¢ < n. Hence the set X is finite. By Corollary 4.2.11 every

I € Xg is minimally generated by four elements. ]

Corollary 4.3.2. Let R be a two-dimensional normal local ring. Assume that R is a
non-Gorenstein almost Gorenstein ring with r(R) = 2. Then Xg is a finite set and

every I € Xr is minimally generated by four elements.

Remark 4.3.3. We know no examples of non-Gorenstein almost Greenstein local rings

in which Ulrich ideals do not possess a common number of generators.

We explore a few examples. Let S = k[X,Y, Z, W] be the polynomial ring over

a field k. Let n > 1 be an integer and consider the matrix M = (%" ¥ Z). We set

T = S/1o(M) where Io(M) denotes the ideal of S generated by two by two minors of
M. Let z,y, z,w denote the images of X,Y, Z W in T respectively. We set R = T},
where M = (z,y,z,w)T.

Theorem 4.3.4. We have the following.
(1) R is a non-Gorenstein almost Gorenstein local integral domain with r(R) = 2.
(2) Xp={(z"y,z,w)R |1 << n}.
(3) R is a normal ring if and only if n = 1.

Proof. We regard S as a Z-graded ring so that deg X = 1,degY =n+1,deg Z = n+2,

and degW = n + 3. Then T = k[s, s"t, s"t?, s"t3] where s, are indeterminates over k.
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Hence T is an integral domain, and 7" is a normal ring if and only if n = 1. The graded
canonical module K of T has the presentation of the form
(Y% %)

Y Z

S(—(n+3)DS(—(n+4))®S(—(n+5)) S(=3)®S(—2) = K — 0. (4.1)

Since
Kp/T-2(er) = [S/(Y, Z,W))(=2) and Kp/T-e(es) = [S/(X"™,Y, Z)](~3)

where eq, e is the standard basis of S(—3) @ S(—2), R is an almost Gorenstein local
ring with r(R) = 2. By Theorem 4.3.1 (1) every I € X contains (2", y, z,w)R, so that
I = (2%y,2z,w)R with 1 < ¢ < n. It is straightforward to check that (z°,y, z, w)R is
actually an Ulrich ideal of R for every 1 < ¢ < n. [

Let k be a field and let 7' = k[X™, X"71Y, ..., XY 1 Y] be the Veronesean subring
of the polynomial ring S = k[X,Y] of degree n > 3. Let R = Ty and m = MT),,
where M denotes the graded maximal ideal of T. Then R is a non-Gorenstein almost
Gorenstein normal local ring ([36, Example 10.8]) and we have the following. Let us

note a brief proof in our context.
Example 4.3.5 (cf. [31, Example 7.3]). Xr = {m}.
Proof. Since M?* = (X", Y™")M, we have m € Xp. Because
Kp= (X"'Y, X" 2Y? .. X?Y" 2 XY" HR,

it is direct to check that M C Z?:_ll [R- XY™ :p Kg]. Hence Xr = {m} by Theorem
4.3.1 (1). 0

Let S = k[[X,Y, Z]] be the formal power series ring over an infinite field k. We
choose an element f € (X,Y,Z)?\ (X,Y,Z)% and set R = S/(f). Then R is a two-
dimensional Cohen—Macaulay local ring of multiplicity 2. Let m denote the maximal
ideal of R and consider the Rees algebra R = R(m’) of m* with £ > 1. Hence

R = R[m‘t] C R[t]

where t is an indeterminate over R. Let 91 = m+R, and set A = Ry, n = MRon. Then
A is not a Gorenstein ring but almost Gorenstein ([34, Example 2.4]). We furthermore

have the following.
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Theorem 4.3.6. X4 = {n}.

Proof. We have m?> = (a,b)m with a,b € m. Let Q = (a,b — a’t,b’). Then Q C M
and 9?2 = QIMN, so that n € X4. Conversely, let J € X4 and set K = JNR. We put
I = m* and choose elements x1,Ty,...,2, € I (¢ := v(I) = 20 + 1) so that the ideal
(w;,z;) of R is a reduction of I for each pair (i,7) with 1 <7 < j < ¢. (Hence z;,z;
form a super-regular sequence with respect to I, because gr;(R) = ®n20 "/ s a
Cohen-Macaulay ring.) Then
q

> R r IR] C K

i=1
by Corollary 4.2.13, since Kg(1) = IR ([34, Proposition 2.1]). We have for each
1 <1 < g that

TR IR =Y (xI"')t",
n>0

because each pair z;,x; (i # j) forms a super-regular sequence with respect to I.

Consequently,

(s, z;t)R C K forall 1 <17 <gq.

Thus I +R, C K and hence K = b+ R, for some m-primary ideal b of R. Notice that
[K/K?]; = 1/bI is R/b-free, since K/K?is R/K- free and R/K = [R/K], = R/b. We
then have b = m. In fact, let us write m = (a, b, ¢) so that each two of a, b, c generate a
reduction of m. Set q = (a,b). Then since q is a minimal reduction of m, the elements
{a*~"b'}o<i<p form a part of a minimal basis, say {a*~"0'}o<i<¢ and {c¢;}1<i<p, of I = m’.

Let {e;}o<i<a¢ be the standard basis of R+ and let
2
o RECH) @Rei et
=0

be the R-linear map defined by o(e;) = a’~'b for 0 < i < £ and p(e; ) = ¢; for 1 <i <
b

—a

¢. Then setting Z = Ker ¢, we get £ = (_) € Z and € € mZ because £ & m?. RO(H+1)

0
Hence b, —a € b, because /bl is R/b-free. We similarly have ¢, —a € b. Hence b = m,
so that K =m+ R, =M. Thus J =n. ]

113



4.4 A method of constructing Ulrich ideals with dif-
ferent number of generators

This section purposes to show that in general the numbers of generators of Ulrich ideals

are not necessarily constant. To begin with, we note the following.

Lemma 4.4.1. Let ¢ : (A,n) — (R,m) be a flat local homomorphism of Cohen—
Macaulay local rings of the same dimension. Let q be a parameter ideal of A and
assume that n?> = qn. Then J = nR is an Ulrich ideal of R.

Proof. We set () = qR. Then
J/Q=R®a (n/q) = R @4 (A/n)¥
where t = v(A) — dim A > 0. Hence J is an Ulrich ideal of R, as J? = Q.J. O

When dim R = 0 and R contains a field, every Ulrich ideal of R is obtained as in
Lemma 4.4.1.

Proposition 4.4.2. Let (R,m) be an Artinian local ring which contains a coefficient
filed k. Let I = (x1,29,...,2,) (n = v(I)) be an Ulrich ideal of R. We set A =
klxy,z9,...,2,] € R and n = (xq,29,...,2,)A. Then n is the mazimal ideal of A,

I =nR, and R is a finitely generated free A-module.

Proof. Let r = dimy R/I. Hence r = v4(R), as I = nR. Let ¢ : A% — R be an
epimorphism of A-modules. Then (A/n) ®4 ¢ : (A/n)®" — R/I is an isomorphism, so
that the induced epimorphism ¢ : n®” — I must be an isomorphism, because dimy, n®" =
nr (remember that v4(n) = n) and dimy I = dimg(R/I1)®" = nr. Hence ¢ : A" — R

is an isomorphism. O
When dim R > 0, the situation is more complicated, as we see in the following.

Example 4.4.3. Let V' = k[[t]] be the formal power series ring over a field £ and
set R = k[[t*,t°]] in V. Then (¢,t'9), (¢%,¢'°) are Ulrich ideals of R. We set A =
k[[t*,t'°]] and B = K[[t®,#°,¢'2 t!4]]. Let m4 and mp be the maximal ideals of A and
B, respectively. Then A and B are of minimal multiplicity with (¢*,¢°) = ms,R and
(t%,#1%) = mpR. Notice that R = A%? as an A-module, while R is not a free B-module.

We actually have rankg R = 2 and vp(R) = 4.
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Let (A,n) be a Noetherian local ring and S = A[X;, Xo, ..., X,] (¢ > 0) the poly-

nomial ring. We choose elements ay,as,...,a, € A and set
c=(X?—a;|1<i<l)+(X;X;|1<i,j</{such that i # j).

We put R = S/c. Then R is a finitely generated free A-module of rankqaR = ¢+ 1. We
get R = A1+ Zle A-x;, where x; denotes the image of X; in R. With this notation
we readily get the following. We note a brief proof.

Lemma 4.4.4. Suppose that ai,as,...,ap € n. Then R is a local ring with maximal
idealm =nR+ (z; | 1 <i < 0).

Proof. Let M € MaxR and 1 < ¢ < ¢. Then a; € M since a; € n = M N A, while
z; € M since 2? = a;. Thus nR+ (z; | 1 < < ¢) C M. Hence we get the result,
because nR + (z; | 1 < i < /() € Max R. n

The following Theorem 4.4.5 and Lemma 4.4.1 give a simple method of constructing
of Ulrich ideals with different numbers of generators. In fact, suppose that A has
maximal embedding dimension and let q be a parameter ideal of A such that n? = qn.
Then the ideals I in Theorem 4.4.5 and J in Lemma 4.4.1 are both Ulrich ideals of
R but the numbers of generators are different, if one takes the integer ¢ > 1 so that

0#e(A) —1.

Theorem 4.4.5. Let q be a parameter ideal of A and assume that

(1) A is a Cohen—Macaulay ring of dimension d and

(2) a; € q* forall 1 <i < /.

Let I = qR+ (x; | 1 <i</{). Then I is an Ulrich ideal of R with v(I) = d + (.

Proof. We set Q = qR, a = (a; | 1 <i<{),and b = (z; | 1 <i </{). Then Q is
a parameter ideal of R and I = @Q + b. Therefore I? = QI since b> = a C g?. We
set m = €4(A/q). Hence (o(R/I) < m, as R/I is a homomorphic image of A/q. We

consider the epimorphism

(R/D® 25 1/Q —0
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of R-modules defined by ¢(e;) = 7; for each 1 < i < ¢, where {e;}1<;<¢ denotes
the standard basis of (R/I)®* and 7; denotes the image of x; in I/Q. Then ¢ is an

isomorphism, since

(A(I/Q) = lA(R/Q) — L4(R/I) > (£ + 1)m —m = fm > L4((R/1)®").

Thus [ is an Ulrich ideal of R with v(I) =d + ¢. O
Example 4.4.6. Let 0 < a; < az < -+ < a, (n > 3) be integers such that
ged(aq, ag, ... a,) = 1. Let L = (aj,as,...,a,) be the numerical semigroup gener-

ated by ay, as, ..., a,. Then ¢(L) = a, —a; + 1, where ¢(L) denotes the conductor of L.
We set A = k[[t | 1 <i < n]] (k a field) and assume that v(A) = €2(A) = n, where n

denotes the maximal ideal of A (hence a; = n). We choose an odd integer b € L so that

b > a,+a;+ 1 and consider the semigroup ring R = k[[{t**},<i<n, t]] of the numerical
semigroup H = 2L+ (b). Let ¢ : A — R be the homomorphism of k-algebras such that
@(t%) = t2% for each 1 <i <n. We set f =t°. Then f2 = ¢(f) € p(A) but f & p(A),
since b € L is odd. Therefore R is a finitely generated free A-module with rank, R = 2
and R = A-1+ A-f. Since f € t*® A by the choice of the integer b, we get by Theorem
4.4.5 and Lemma 4.4.1 that I = (t*,¢*) and J = (t*¥ | 1 < i < n) are both Ulrich
ideals of R with v(I) =2 and v(J) =n > 2.
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