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Abstract 

Computer vision plays a significant role in various areas, and it is a trendy research direction at 

present. In some high-level applications of computer vision, visual tracking is an essential 

component. After discriminative correlation filters are widely used in visual tracking, visual 

tracking has made great progress. Discriminative correlation filter trackers achieve a natural 

balance between excellent performance and real-time, making visual tracking technology easier 

to apply in actual life. However, there are still many challenges in visual tracking, such as 

deformation, illumination variation, occlusion, scale variation, etc. This thesis proposed three 

improved trackers based on a discriminative correlation filter. The first one is based on the most 

straightforward CF framework, which solves some common problems, such as scale variation, 

object rotation, etc. The second CF framework has better robustness and has been further 

improved in many challenges. The last algorithm is aimed at UAV, a popular research direction, 

and can meet video tracking with both low frame rate and high frame rate. The relationship 

among the three is an extension, that is to say, the latter is further improved based on the idea 

of the former. 

The framework of the first tracker is the classic CF framework KCF. KCF is one of the 

representative algorithms to introduce multiple channels feature (HOG feature) to object 

tracking. The cell size of the HOG feature is set to 4, and this leads to a stride of the training 

and detection samples being greater than one pixel. The performance of KCF is seriously 

influenced and the precision of the object location decreases. The proposed method, named as 

CFCA, combines the four highest response scores with the corresponding luminance histogram 

similarity, enhancing the detection accuracy. Besides, CFCA improves the scale estimation 

method to solve scale variation. For occlusion, CFCA relocates the object by the judgment of 

the object state. However, the relocation method only mitigates the negative influence from 

occlusion and does not solve it completely. 
The second tracker (CFASE) adopts a more robust DCF framework. In terms of the framework, 

CFASE increases the precision of temporal regularization. The framework of CFASE can learn 

the correlation filter model information from more frames than the previous frame to improve 

the robustness of the DCF model. For scale variation, CFASE only adopts the HOG feature to 

estimate the object's scale instead of hand-crafted features, and then the obtained scale is used 

to locate the object. This method increases the precision of the scale estimation. CFASE 
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analyzes the object state to enhance the precision of the scale estimation and the location. 

The last tracker (BASTR) is proposed to improve the universality of the tracker. The framework 

of BASTR is complex. For all kinds of challenges, adaptive spatial regularization and temporal 

regularization are introduced to increase the robustness of the tracker. For videos with high 

frame rate, scale pool technology can obtain better performance. In the contrast, DSST is better 

for videos with low frame rate. The generalize of the tracker is enhanced by selecting the scale 

estimation method accurately. 

The evaluation experiments are conducted on different tracking benchmark databases. The 

result of the experiments verifies the validity of the proposed trackers. The advantages and 

disadvantages of each algorithm are also described in detail through experimental results. 
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Chapter 1 

Introduction 

1.1 Introduction and motivation 
Eyes are an important way for human beings to know and perceive the world. Human cognition 

of the world is also a process of visual learning [87]. Through continuous learning of new things, 

human cognition of objects is enriched. Today, if the computer learns to understand and 

automate tasks as the human visual system, human beings will gain great convenience in many 

aspects. Computer vision [48, 81] is the research about the eye of the computer, an 

interdisciplinary scientific field that tries to mimic the human visual system. Computer vision 

involves acquiring, processing, analyzing, and comprehending digital images and extracting 

high-dimensional data from the real world to generate numerical or symbolic information. In 

other words, computer vision transforms visual images (the retina's input) into descriptions of 

the world and can produce appropriate action. In this processing, some scientific fields (physics, 

geometry, and learning theory) achieve useful information from digit image data. Computer 

vision tasks contain sub-domains such as visual tracking [7, 11, 16, 26], object detection [44, 

84], image restoration [15, 42], image segmentation [74, 80], 3D scene modeling [23], motion 

estimation [14], etc. 

It is an arduous task in computer vision systems that accurately recognizes and tracks 

objects as human vision systems. Therefore, visual tracking is one of the interesting researches 

in the field of computer vision. Computer vision aims to perform higher-level tasks, visual 

tracking is an essential component. It involves knowledge of machine learning, image 

processing, pattern recognition, artificial intelligence, etc. With the continuous development of 

target tracking technology, visual tracking has been applied in many everyday scenarios as an 

intelligent surveillance system [62, 69], UAV [95], Intelligent transportation [58], self-driving 

[22, 24], and human-computer [21, 76, 77]. Visual tracking is divided into single-object 

tracking (SOT) [46, 47] and multi-object tracking (MOT) [1,18, 86]. The research content of 

this paper belongs to the field of single object tracking. Single object tracking is regarded as a 
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challenging task in visual tracking, especially in complex scenarios. Given the initial 

information (generally position and size) of the temporally changing object in the first frame of 

a video sequence, generate the tracking model to locate the target object in the remaining image 

sequences. In other words, visual tracking aims to automatically identify objects in a video or 

an image sequence and high accurately estimate the future position of an object tracked. As 

shown in Fig 1.1, the position and size of the object are given, the new location and scale are 

estimated from the search region (yellow box) in the current frame. In general, the target is 

surrounded by a square (red box) to show the user where the object is on the screen [49]. The 

image data of visual tracking can have many forms, such as image sequence or video sequences. 

In the research, video sequences are habitually converted into image sequences for processing. 

 

 

 
 

Figure 1.1 The process of tracking. 

 

In general, each computer vision application employs a range of computer vision tasks [22, 

58, 62]. As a mature technology, visual tracking has been applied to some everyday scenarios 

by combining object detection, image segmentation, and it is an essential part of many 

applications. Visual tracking is often applied in surveillance systems that single background, 

immobile camera, etc. When a target object is a rigid object with a simple background, most 

tracking algorithms [26, 41, 45, 46, 47] can achieve outstanding performance, and even some 

simple algorithms perform better than complex ones. However, for better application in more 

complex scenarios (UAV [95], Self-driving [22, 24]), researchers want to get more robust 

tracking algorithms, so specific objects and simple backgrounds are not limited in the study of 

visual tracking. Visual tracking algorithms are supposed to accurately localize objects of 

interest and do so in the least amount of time possible. A real-time object tracking model must 

enhance tracking speed. Since many challenges make it difficult for visual tracking models to 

perform detection and tracking effectively, it is difficult for trackers to balance outperformance 

and real-time. The main challenges are as follows: 

In the process of moving, the non-rigid object will inevitably be deformed. Object 

deformation not only includes deformation of appearance but also the target rotates in the image 
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plane. In general, slight deformation will not seriously affect the training of the feature model, 

even if the feature does not have deformation invariance. Therefore, most trackers can get a 

significant performance on special occasions. However, with the extension of the evaluation 

benchmark databases, the target object with the intense deformation or rotation becomes more 

and more. On this occasion, the feature model of the target object is hard to keep up with the 

change of the object appearance, thus directly affecting the reliability of the feature model. It is 

difficult for many trackers to maintain excellent experiment results on different benchmarks. 

Many effective methods are adopted to solve object deformation, such as the target being 

divided into several sub-modules for tracking or features with deformation invariance being 

introduced. For the CF framework, object deformation is also a significant challenge.   

On many benchmark databases [68, 93], the videos' scenarios are varied, which leads to 

more challenges in the tracking process. Illumination variation can decrease the robustness of 

the color features [53, 54, 55]. Background clutter makes that the trained model overly learns 

background information, causing over-drifted. Fast motion results in the target object not being 

in the search region, and tracking fails. These challenges affect the robustness and accuracy of 

the visual tracking algorithms. For solving these challenges, many outstanding trackers are 

proposed. However, it remains a great challenge to solve all problems from external 

environments distractions at once. 

In the process of object tracking, the target's location is changing, but also the scale of the 

target is changing. Many trackers ignore scale variation and achieve significant performance 

on a video with high frame rate. However, it is difficult for these trackers to obtain 

outperformance on a video with low frame rate. The main reason is that the range of the scale 

variation is too wide to be ignored for the video with low frame rate [17] [19]. It is difficult for 

a tracker to keep the robustness of the model without accurate scale estimation. The scale 

misestimation seriously impact tracking.  

In addition, some factors influence the performance of trackers, such as out of view, and 

low resolution [93, 94]. 

Visual tracking algorithms are applied in an increasingly wide range of applications, but 

there are still unresolved problems, as mentioned above. Recently, deep learning algorithms 

have been introduced to gain attention for their excellent performance. However, these trackers 

have no way to obtain the real-time performance that relies on a single CPU. For many 

applications, the algorithms not only need to perform excellently but also maintain real-time 

performance. Otherwise, there is no way to achieve practical purposes. This paper mainly 

proposes improvement approaches based on discriminative correlation filter (DCF) for many 

of these reasons. 
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1.2 Earlier research 
In recent ten years, the research of visual tracking has achieved outstanding progress. 

According to the development process, object tracking algorithms can be divided into three 

aspects. Firstly, object trackers are based on support vector machines (SVM) [89, 90]. SVM is 

used in the tracking-by-detection method to learn an online classifier to distinguish a target 

from its local background. Followed by object trackers based on a discriminative correlation 

filter (DCF) [26, 27 ,31, 47]. DCF trackers break the limitation of running speed, achieve the 

balance between the outperformance and real-time. Finally, deep learning is popular in some 

research fields [16, 56]. Object trackers based on deep learning also obtain excellent 

performance. 

1.2.1 Visual tracking based on SVM 

The normal understanding of target tracking is to distinguish the target object from the 

background. That is, to detect the target from the background. Therefore, tracking-by-detection 

[82, 88] is a particularly popular approach to tracking before 2013. This method treats the object 

tracking as a detection task. trackers based on support vector machines (SVM) becomes the 

dominant algorithms in the field of tracking-by-detection [82]. An excellent SVM tracker aims 

to maintain a high robust classifier trained online to distinguish the object from the background. 

These trackers treat the tracking problem as a classification task and use an online learning 

method to update the object model [35, 83]. They need to train a classifier with high robustness 

to distinguish the target object from its surrounding background. The process of trackers is 

separated into two distinct phases: Tracking and Update. During tracking, many samples are 

generated in a local region around the position from the previous frame using a sliding window 

approach, and an obtained classifier estimates new object location by searching for the 

maximum classification score. Using the estimated object position, trackers generate a set of 

training samples to update the classifier online [8, 51, 96].  

Before 2013, there were no excellent tracking benchmark databases [5, 25, 30, 43] to evaluate 

and analyze the strengths and weaknesses of the algorithm. Most of the traditional object 

trackers [4, 33, 41, 52] are based on a specific task to propose a specific solution algorithm so 

that the generalization is not strong. Besides, traditional tracking algorithms cannot fully use 

high dimension features because of the high complexity of optimization and detection processes. 

High dimension features are critical to tracking performance because object appearance with 

high dimensional features is conducive to generating robustness model the object better than 

low dimensional ones. However, traditional tracking algorithms also provided a solid 

foundation for object tracking development, and many outstanding ideas are still used today. 
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1.2.2 Visual tracking based on discriminative correlation filter  

 

 

 
 

Figure 1.2 The process of discriminative correlation filter (DCF). 

 

In 2010, a simple tracking approach was proposed, called the Minimum Output Sum of Squared 

Error (MOSSE) filter [26]. MOSSE is the first algorithm to introduce correlation filtering into 

visual tracking. Although this tracker does not achieve the excellent experiment result, the 

running speed of the tracker was surprisingly fast (operating at 669 frames per second), which 

also indicates that the discriminative correlation filter has a bright future in visual tracking. In 

the 1980's and 1990's, many correlation filters [3, 9, 10] were applied in the image process. For 

target objects with varying appearances and enforced hard constraints, these filters always 

produce peaks of the same height. These researches make a foundation for the application of 

correlation filtering in visual tracking. 

Running speed of several hundred FPS is the highlight of the CF trackers [26, 46, 47], 

which directly opens a new research direction in visual tracking. Followed by trackers obtaining 

significant performance by solving different problems, such as scale variation [63, 65], 

boundary effect [38, 66], multi-channel features [36, 47], etc. As shown in Fig 1.2, the tracking 

process of trackers based on CF is the same as traditional tracking algorithms, including 

detection and updating. CF trackers extract the features from the object surrounding region. For 

calculation operation, CF trackers convert from the spatial domain to the frequency domain 

with FFT and then achieve a confidence map by the obtained CF model and the feature model. 

The peak score of the confidence map corresponds to the object's location. Finally, the CF 

model and the feature model are updated online. Trackers based on DCF regard the samples 

(As a hypothesis rather than an actual sample) generated by a sliding window as a cyclic matrix 
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and use the characteristics of the cyclic matrix to transform the correlation calculation from the 

spatial domain to the frequency domain, thus achieving a significant increase in speed. Indeed, 

the excellent performance of the DCF trackers depends not only on the outstanding framework 

but also on the object feature. The robustness of the object feature can affect the performance 

of trackers. 

1.2.3 Visual tracking based on Deep learning 

 

 

 
 

Figure 1.3 The structure of Siamese trackers 

 

In recent, with the massive advancements in deep learning, deep neural networks [2] have 

achieved impressive accomplishments in some fields, such as object detection [84], object 

segmentation [61, 74, 80], and object tracking [16]. In the early stages, trackers based on deep 

learning introduce CNN features into the DCF framework [27, 50, 92]. The used feature from 

the deeper the network, the better the experimental result for target tracking. While the high 

dimensional feature improves the performance of trackers [60], the running speed of DCF 

trackers is affected by a dozens-fold decrease. DCF trackers also lost their original speed 

advantages.  

At present, most of the object trackers based on deep learning are proposed using an offline 

trained fully-convolutional Siamese network architecture [16, 56, 78]. The architecture is 

shown in Fig 1.3, Siamese architecture is fully convolutional concerning the search image patch. 

The similarity function is used to compute for the feature model and all translated sub-windows 

within the search image patch, generating a scalar-valued score map (The dimension depends 

on the size of the search image). To improve the running speed of trackers based on deep 

learning, the fully connected layer of some trackers adopts the same method as DCF trackers 

to calculate the score map.  
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Trackers based on deep learning are becoming more sophisticated than just object tracking. 

By combining object detection, object segmentation, and object tracking, the performance of 

trackers become more excellent [16, 78]. However, it is difficult for trackers based on deep 

learning to achieve real-time with a single CPU. 

1.3 Structure of this thesis 
In this thesis, I propose three trackers based on the discriminative correlation filter. These 

trackers balance real-time and outperformance in tracking. Firstly, an improved tracker is 

proposed based on the simplest CF framework, which solves some common challenges, such 

as scale variation, object rotation, etc. Based on the improved method of the first algorithm, the 

second CF framework has better robustness and has been further improved in many challenges. 

The performance of the tracker is significantly improved. For a popular search direction UAV 

recently, an algorithm is proposed to meet video tracking with both high frame rate and low 

frame rate. The relationship between the three is an extension. The latter is further improved 

based on the idea of the former. 

The main structure of this thesis is as follows. 

In chapter 2, the classic algorithms based on discriminative correlation filters are reviewed. I 

will illustrate the theory of DCF trackers, and there are still problems. 

In chapter 3, to improve the performance of KCF, Correlation Filter tracker using Confidence 

map and Adaptive model (CFCA) is proposed. Firstly, an improved scale estimation is used to 

deal with scale variation. Besides, KCF locates the object position by the maximum score of 

the confidence map. When the object is occluded, or the object deformation occurs, the 

reliability of the confidence map will decrease. The position corresponding to the maximum 

score is not necessarily the object's location. The proposed tracker combines the multiple high 

scores of the confidence map and the similarity of the luminance histogram to improve the 

precision of detection. And then, CFCA adaptively adjusts the learning rate of the model 

training by estimating the object's state. In the worst case, CFCA tries to relocate the target 

object with the peak of the confidence map.   

In chapter 4, Correlation Filter tracker using a spatial-temporal regularized with Advanced 

Scale Estimation (CFASE) is proposed. In temporal regularization, CFASE trains the 

correlation filter model more precisely using temporal prediction from the previous two filters, 

the robustness of the DCF model is enhanced. CFASE trains the scale estimation model by the 

HOG feature and the localization model by the hand-crafted feature to solve scale variation. In 

tracking, the obtained scale is used to locate the object. This method increases the precision of 

the scale estimation. Average peak-to-correlation energy (APCE) [72] is introduced to evaluate 

the accuracy of scale estimation and object location.  
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In chapter 5, background-aware correlation filter tracker with spatial-temporal regularization 

(BASTR) is proposed. The framework of the proposed tracker (BASTR) is complex. Adaptive 

spatial regularization and temporal regularization are proposed to solve all kinds of challenges. 

For videos with high frame rate, scale pool technology can obtain better performance. In 

contrast, DSST is better for videos with low frame rate. The generalize of the tracker is 

enhanced by selecting the scale estimation method accurately.  

Chapter 6 demonstrates the result of the evaluation experiments. I analyze the advantage and 

the relation of the proposed trackers. The validity of the trackers is further illustrated.  

In the final chapter, Chapter 7 summarizes this paper and analyzes future work. 
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Chapter 2 

Related work 

This section briefly reviews the principle of classic DCF-based algorithms and the problems 

that remain to be solved [47]. Discriminative Correlation Filter is a hot research orientation in 

visual tracking because of its high speed and excellent performance. Many excellent DCF-

based trackers have been proposed, and I demonstrate three significant trackers from these 

trackers which kernelized correlation filter (KCF), background aware correlation filters 

(BACF) [38], and spatial-temporal regularized correlation filter (STRCF) [31]. KCF is the most 

basic CF framework. Because of such a simple framework, KCF can run many times or even 

tens of times faster than other tracking algorithms. However, the periodic assumption of KCF 

produces the boundary effect, which limits the development of CF algorithms. BACF optimal 

the CF framework based on KCF. It does not entirely discard the background information and 

conduct a crop operation on each sample. The main contribution of BACF is that increase the 

number of training samples and improve the quality of training samples. STRCF is the latest of 

the three trackers. STRCF introduces temporal regularization into the CF framework, and this 

improves the robustness of the detection model. 

2.1 Kernelized Correlation Filter  
João F. Henriques proposed a kernelized correlation filter (KCF) [47] tracker in 2014, which is 

the original form of our proposed CF-based tracker [63, 65, 97, 98].  While KCF is not the first 

CF-based tracker, it is the most influential tracker in CF-based trackers because KCF makes a 

new research direction in object tracking. KCF is the baseline tracker of what most CF-based 

trackers are based on today. In prior, João F. Henriques has proposed CSK based on the 

grayscale feature. Compared to CSK [46], the main contribution of KCF is introducing multiple 

channel features (HOG features) [32, 73] to train the CF model. Compared to the single-channel 

feature (Grayscale feature), KCF obtains a significant improvement in performance by the  
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(a)                                                     (b)  

 
Figure 2.1 (a) Base sample (b) Training samples 

 

multiple channel feature. Notwithstanding multiple channels features [40] bringing the 

computation burden, the running speed of KCF is still faster than most trackers. 

The task of most visual tracking algorithms is distinguishing between the object and the 

background [41, 45, 83]. These classifiers are trained with translated and scaled sample patches. 

The extreme challenges for these classifiers are the number of negative samples. If the classifier 

obtains many samples from an image, this operation takes a burden of computation and makes 

samples full of redundancy. Therefore, some classifiers select only a few samples from each 

frame. In contrast, KCF regards the tracking problem as a linear regression task. Based on 

object position from the previous frame, select the image patch to sample and train a linear 

regression model. This regression model can calculate the response of a small window sampling. 

The sample with the strongest response is taken as the new object position. KCF adopts an 

online method to update the regression model. 

It is a great challenge for traditional trackers to produce as many samples as possible and 

keep the computational burden low. The success of KCF is that it solves this problem. As shown 

in Fig 2.1, KCF makes training samples by all possible cyclic shifts of a base sample (vertical 

and horizontal). From a 2D image point of view, all possible cyclic shifts of a base sample form 

a circulant matrix. This method generates a large number of positive samples that benefit from 

improving the appearance model's robustness.  All circulant matrices are made diagonal by the 

Discrete Fourier Transform (DFT). The circulant matrix multiplication vector is equivalent to 

the inverse order of the generated vector and the vector convolution, which can be further 

transformed into the Fourier transform multiplication (the convolution itself includes the 

reverse order operation). The convolution of two signals in the time domain corresponds to the 

dot product of the Fourier transform of two signals in the frequency domain. This is the 

important reason for the high speed of KCF. 
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Since Ridge Regression admits a simple closed-form solution and can achieve 

outperformance, KCF focuses on it. The final goal of KCF is to learn a correlation filter model 

𝒇. In other words, find a function 𝑓(𝑋) = 𝒇2𝑋 (X denotes the image patch, X includes as 

𝑥4 …𝑥6 …𝑥7 , 𝑥6  is the sample of each cyclic shift) that minimizes the squared error over 

samples 𝑥6 and their regression targets 𝑦6 as follows. 

 

                                               𝑚𝑖𝑛𝒇 ∑ ‖𝑥6 ∗ 𝒇 − 𝑦6‖@ + 𝜆7
6 ‖𝒇‖@                                            (2.1) 

 
Here, K is the number of cyclic shifts. ∗ denotes circular convolution. 𝜆  is a regularization 

parameter.  

As mentioned above, the minimizer has a closed-form solution, which is given by 

 
                                                𝒇 = (𝑋2𝑋 + 𝜆𝐼)D4𝑋2𝑦                                                         (2.2) 
 

Where, I denote an identity matrix. 𝑦  is the desired output, following a Gaussian 

function. 

Although Equation 2.2 is neat, KCF is not satisfied and makes further optimal. The kernel 

trick [12, 20, 79] is used to make the non-linear regression function more robust. The 

astonishing factor is that the optimization progress is still linear. KCF adopts the kernel trick to 

optimize Equation 2.2, and the finalize the kernelized version of Ridge Regression is given by 

 

                                                       𝛼 = (𝐾 + 𝜆𝐼)D4𝑦                                                           (2.3) 

 

Where 𝐾 is the kernel matrix and 𝛼 is the vector that represents the solution in the dual 

space. 

At this point, KCF has optimized the formula to the simplest, which significantly reduces 

the calculation burden. 

Since the object has some changes or is influenced by the background and some natural 

variation, KCF adopts online learning to update the feature and CF models. These can be 

express as 

 

                                                𝐹𝑀IJ4 = (1 − 𝜂) ∗ 𝐹𝑀ID4 + 𝜂 ∗ 𝐹𝑀I                                  (2.4) 
 
                                                    𝛼IJ4 = (1 − 𝜂) ∗ 𝛼ID4 + 𝜂 ∗ 𝛼I                                       (2.5) 
 

Where,	𝐹𝑀I is the feature model in the t-th frame, 𝛼I is the correlation filter model in 

the t-th frame. 𝜂 is the learning rate. 

The other reason for the outperformance of KCF is that it extends from a single-channel 
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feature (Grayscale feature) to a multiple-channel feature (Histogram of Oriented Gradients, 

HOG) [73] by simply summing over them in the Fourier domain. High dimensions feature will 

increase the computation. However, high dimensions features have excellent robustness for 

many complex scenarios. 

Although KCF obtains outperformance in visual tracking, it still has some problems. KCF 

updates the feature and CF models online to mitigate the negative influence from occlusion or 

background clutter. However, when long-term occlusion [37] or deformation occurs, the online 

update method causes the model to not keep up with changes in the object's appearance. In 

addition, KCF ignores the influence of scale variation. As mentioned above, the periodic 

assumption of KCF produces the boundary effect, which limits the development of CF 

algorithms. 

2.2 Background Aware Correlation Filter 
 
 

               
 

Figure 2.2 The impact of the window function 

 
The detection and training operation of KCF is converted to the frequency domain by FFT for 

high-speed calculation. However, FFT will cyclically stitch the image signal, resulting in these 

signals not being continuous at the stitching place (it can also be considered that these signals 

are not real). This is the boundary effect. The boundary effect has a severe adverse effect on the 

tracking performance. To mitigate the boundary effect, KCF introduces a Gaussian window on 

the image patch.  As shown in Fig 2.2, the grayscale features (or other features) of the search 

region are extracted, and window functions are added to the grayscale features to keep only the 

central part of the image feature and smooth the surrounding background information. However, 

with the expansion of the search region, the impact of the window function also decreases. The 

search region of KCF is limited to 2.5 times of object size. If the search region is large, the 

boundary effect will destroy the performance of trackers. If the search region is small, it is  
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Figure 2.3 The crop operation of BACF 

 

difficult for the trackers to detect the target object. Therefore, the performance of KCF is 

challenging to get significantly improved. 

The windows function cannot solve the boundary effect. In subsequent research, two solved 

strategies became the mainstream in the field of tracking. BACF [38] is one of them. The main 

reason for the outstanding performance of BACF is to increase the number and quality of 

training samples. BACF improves the quality of the training samples by the crop operation. As 

shown in Fig 2.3, BACF obtains all possible positive and negative patches extracted from the 

search area, then uses a binary matrix P to intercept the central part of each training sample. 

Therefore, a high-quality training sample (positive sample contains little interference 

information) is obtained. A red box surrounds the positive sample, and a yellow box surrounds 

the negative sample. The positive sample contains the information of the target object and a 

small amount of information about the surroundings, and the negative sample contains the 

background information on the entire search area (the background information is directly 

discarded in the traditional DCF trackers). It is these high-quality samples that enable BACF to 

train highly robust models. Although BACF does not aim to solve the boundary effect, the crops 

operation does so indirectly. BACF can enlarge the size of the search region (5 times of object 

size) because of no boundary effect. A more extensive search region naturally leads to more 

training samples in training samples' quantity. For BACF, the thousands of samples used to train 

the correlation filter model have been increased to tens of thousands or even hundreds of 

thousands. The robustness of the trained correlation filter is undoubtedly much better than 

before because of lots of high-quality training samples. Because of the full use of the 

background information, the author named this method the background-aware correlation filter 

method. 

To learns multi-channel background-aware correlation filters, BACF minimizes the 

following objective: 
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              								𝐸(𝒇) = 4
@
N𝑦 − ∑ 𝒇O ∗ (𝑃𝑥O)Q

OR4 N@ + S
@
∑ ‖𝒇O‖@Q
OR4                            (2.6) 

 

Here 𝑦 is the Gaussian-distributed ground-truth. 𝑃 denotes a binary matrix (𝑇 × 𝑇)	which 

crops the mid of 𝑥O (T is the length of 𝑥). The channel number C and the spatial correlation 

operator ∗. 𝛾 denotes the regularization parameter. BACF introduces the fast Fourier transform 

to cast the formula into the frequency domain and proposes an efficient Alternating Direction 

Method of Multipliers (ADMM) [85] optimization algorithm to convert the original problem 

into two sub-problems. The sub-problems can be closed-form solutions. Through intelligent 

optimization and simplification techniques, BACF's performance and speed have reached an 

astonishing level. 

2.3 Spatial-Temporal Regularized Correlation Filter 
 
 

 
 

Figure 2.4 The visualization of spatial regularization 

 
In addition to BACF, another algorithm is SRDCF [66] which was proposed to reduce the 

negative influence from the boundary effect. BACF introduces a binary matrix on the training 

samples. SRDCF adopts a spatial regularization that adds a regular coefficient matrix (w) to the 

correlation filter. The shape of w is shown in Fig 2.4. The purpose of spatial regularization is 

obvious. The center coefficient is lower at the target and the surrounding coefficient is higher 

at the background. The obtained correlation filter can pay more attention to the target object 

information, and the filter response results in the background are as low as possible. Spatial 

regularization can effectively suppress the response of the background area so that the search 

area can be enlarged, and better performance can be obtained in scenes such as the complex 

background. Since SRDCF adopts the Gauss-Seidel method to optimize the equations, SRDCF 

has lost its early real-time tracking capabilities based on DCF trackers. STRCF [31] adopts the 
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same methods as SRDCF to solve the boundary effects. However, STRCF uses the alternating 

direction method of multipliers (ADMM) [85] to efficiently solve the introduction of spatial 

regularization. 

As mentioned above, most of the traditional DCF trackers adopt the online method to 

update the feature model and the correlation filter model. The efficiency of the correlation filter 

relies on the robustness of the feature model. The fixed learning rate cannot meet the 

requirements of the change of scene. For example, occlusion or deformation can reduce the 

robustness of the feature model, so that no effective correlation filter. STRCF introduces 

temporal regularization into the correlation filtering framework to deal with special scenes. The 

detail of the framework is expressed as follow, 

 
               											𝑚𝑖𝑛𝒇

4
@
N∑ 𝑥IWX

WR4 ∗ 𝒇W − 𝑦N
@
+ 4

@
∑ N𝑤 ∙ 𝒇WN

@
+ [

@
‖𝒇 − 𝒇ID4‖@	X

WR4             (2.7) 

 
Here 	𝜇 is a regularization parameter, 𝑑 is the channel of the features. 𝑤 is the spatial 

regularization weight, 𝒇ID4 denotes the correlation filter obtained in the t-1-th frame.  

 
 

 
 

Figure 2.5 The process of temporal regularization 

 
Fig 2.5 shows the process of temporal regularization. When training the correlation filter 

model 𝒇I in the current frame, the correlation filter model 𝒇ID4 in the previous frame is needed. 

The role of temporal regularization is the same as the online update. The goal of DCF trackers 

is that to train an efficient correlation filter model. The traditional DCF trackers update the 

feature model and the correlation filter model with an online method, preventing the corruption 

of the feature model and the correlation filter. To mitigate the negative influence from each 

frame, the fixed learning rate is usually set to relatively small. Temporal regularization of 

STRCF also fulfills this aim and achieves better performance than the online method. The 

meaning of temporal regularization is that it ensures the obtained correlation filter tends to the 

filter in the previous frame. Therefore, STRCF can successfully track the target in the presence 

of occlusion and simultaneously well adapt to larger appearance changes. The parameter of 
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temporal regularization is also fixed. If adaptively adjusts the parameter with the state of the 

object, STRCF can get better performance. 
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Chapter 3 

Correlation Filter-Based Visual Tracking using 
Confidence Map and Adaptive Model 

In this chapter, I proposed Correlation Filter tracker using Confidence map and Adaptive model 

(CFCA) based on the classic CF framework. As mentioned in section 2.1, KCF balances the 

outstanding performance and calculation requirement low. I introduce an improved scale pool 

method into KCF because KCF ignores the impact of scale variation. Since CF trackers [46, 

47] locate the object's position by the maximum score of the confidence map, in general, this 

detection method is robust for common scenarios. However, when occlusion or deformation 

occurs, the confidence map fluctuates wildly. I combine the four high scores of the confidence 

map with the luminance histogram similarity to improve detection accuracy. Finally, judge 

whether to re-location by the object state. The performance of the tracker is excellent in out of 

view, scale variation, and occlusion. 

3.1 Adaptive Scale Pool 
Since KCF adopts a single scale in tracking, when the target object has deformation or occluded, 

the precision of the tracking will decrease. Scale pool is a widely accepted scale estimation 

method for CF trackers. In this section, we briefly review the principle of scale pool [63] and 

propose the adaptive scale pool. 

3.1.1 The principle of Scale Pool 

KCF does not adopt methods to deal with scale variation. In other words, a single scale is used 

to track the object from the initial frame to the end frame. The confidence map is obtained by 

calculating with the current search patch and trained CF model, and the maximum score of the 

confidence map corresponds to the new location. It is a one-pass process. If the object's size 

does not change in tracking, KCF can obtain significant performance. Otherwise, the model of  
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Figure 3.1 The process of scale pool. 

 

KCF will learn too much background information or too little target information, which leads 

to the robustness of the CF model decreasing. It is effective for CF trackers to adopt scale pool 

technology to deal with scale variation. 
As shown in Fig 3.1, tracking is not a one-pass process because of the scale pool. Suppose 

the scale pool has five scales. In the current frame, multiple scales 𝑆 = {𝑆4, 𝑆@, 𝑆a, 𝑆b, 𝑆c} are 

applied on the search region based on the previous position (target: red box, search region: 

yellow box). For the convenience of calculation, the multiple search regions will be resized to 

the same scale. The five response maps are obtained by using the previous CF model. Each 

response map has a maximum score 𝑅𝑀6, and the maximum response value corresponds to the 

object's new location. The target scale 𝑆6 corresponds to the response map where the maximum 

score 𝑅𝑀6 is located. However, the number of the tracking process depends on the number of 

scales. The number of scales directly increases the burden of calculation.  

3.1.2   The improved Scale Pool 

With scale pool technology, CF trackers can locate the object's location meanwhile estimating 

the scale variation. Most CF trackers [31, 63, 66] adopt scale pool technology to solve scale 

variation because of the high precision tracking. However, some CF trackers have a boundary 

effect, so the search region is limited to 2.5 times object size. When a small object is tracked, 

the scale pool becomes valueless because cropped patches have the same scale. Since the scale 

gap of scale pool 𝑆fgh  is set to 0.01, the difference in the patch size is less than 1.0, which 

becomes zero in quantizing it to an integer. For the small object, an improved scale pool is 
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proposed. 

The number of scales is assumed to be five in Fig 3.1, and our method adopts three scales 

𝑆 = {𝑆4, 𝑆@, 𝑆a} to estimate scale variation. On the assumption that the search patch 𝑀2 =

(𝐻,𝑊)	(Here, H and W are the height and width of the image patch), the size of the obtained 

image is patches 𝑀24, 𝑀2@, 𝑀2a. To make significance of the scale pool for the small object, 

the cropped patches should have a different scale (𝑀24 ≠ 𝑀2@ ≠ 𝑀2a). We need to resize the 

search area manually to ensure the difference of the obtained image region. If the minimum of 

𝐻 × 𝑆fgh and 𝑊 × 𝑆fgh is less than 1.0, it is set to 1.0. For the other one, it changes with 

proportional (𝑅𝑎𝑡𝑖𝑜). The resize parameter Ratio can be expressed as follows 

 

                                                             𝑅𝑎𝑡𝑖𝑜 = opq	(r,s)
otu	(r,s)

                                               (3.1) 
 

The adaptive scale estimation can be express as follows 

 

                                 𝑀26 = v
𝐻6 ± 1,𝑊6 ± 𝑅𝑎𝑡𝑖𝑜																												𝑖𝑓	𝐻 = min	(𝐻, 𝑊)	

	
𝐻6 ± 𝑅𝑎𝑡𝑖𝑜,𝑊6 ± 1																												𝑖𝑓	𝑊 = min	(𝐻, 𝑊)

     (3.2) 

 

As shown in Equation 3.2, to estimate the scale of the small object accurately, the minimum 

of (𝐻,𝑊)	 is need to be judged. If H is less than W, the search patch sizes as {H-1.0, W-Ratio}, 
{H, W}, and {H+1.0, W+Ratio} are applied. If W is less than H, the search patch sizes as {H-
Ratio, W-1.0}, {H, W}, and {H+Ratio, W+1} are applied. 

3.2 Utilization of Confidence Map 
 
 

 
 

(a)                                                                         (b) 
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(c)                                                                        (d) 
 

Figure 3.2 (a)(b) The normal object tracking and a corresponding confidence map. (c)(d) The abnormal 
object tracking and a corresponding confidence map. 

 

Fig 3.2 shows the standard tracking and corresponding confidence map and the abnormal 

tracking and corresponding confidence map. In Fig 3.2 (a), the target object is surrounded by a 

red box accurately. The corresponding confidence map (Fig 3.2 (b)) is smooth and has only one 

vertex. In contrast, when the target object is occluded, it is inaccurate for detection (Fig 3.2 (c)). 

The confidence map drastically fluctuates when there are multiple vertexes (Fig 3.2 (d)). 

Therefore, the fluctuation of the confidence map reflects the reliability of the tracking. The 

greater the confidence map fluctuation, the more unreliable the tracking performance.  

When the confidence map drastically fluctuates, it is inaccurate for CF trackers to locate 

the object's location by the maximum score of the confidence map. In addition, the CF tracker 

adopts the HOG feature to train the model, a stride of the training and detection samples being 

greater than one pixel because the cell size of the HOG feature is set to 4. This leads to a 

decrease in the precision of the detection. We propose a novel method to increase the detection 

accuracy, combining the four high scores of the confidence map and the luminance histogram 

similarity. 

Firstly, the HOG feature is a significant textural feature. It plays a vital role in the field of 

the image process. Most CF trackers obtain outstanding performance by using the HOG feature. 

However, the HOG feature has poor robustness in non-rigid object deformation. The confidence 

map of the CF tracker fluctuates dramatically for the non-rigid object. The luminance histogram 

describes the object's gray-level distribution, which can keep robust for the non-rigid object. 

Therefore, the confidence map and the luminance histogram are combined to locate the object 

accurately. The cosine similarity 𝐿𝐻𝑆 of the luminance histogram can be expressed as follows: 

 
                       																															𝐿𝐻𝑆 = ∑ (2|×}|)~

|��

�∑ (2|)�~
|�� ×�∑ (}|)�~

|��

                                               (3.3) 
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where 𝑇6 is the 𝑖 − 𝑡ℎ element in the luminance histogram vector of the initial object, and 

𝑁6 is the i-th element in the luminance histogram vector of the current object in the image patch.  

As mentioned above, it is inaccurate for the CF trackers to locate the object's position by 

the highest score of the confidence map. We select the highest four scores {𝑅6|𝑖 ∈ {1, 2, 3, 4}} 

from the confidence map. The four scores' corresponding location may be four adjacent values 

or four vertices. And then evaluate the value of the products of 𝑅6 and the luminance histogram 

similarity 𝐿𝐻𝑆6   around the four positions 𝑖 ∈{1, 2, 3, 4} as 𝑌 = �(𝑅6 × 𝐿𝐻𝑆6)|𝑖 ∈ {1, 2, 3, 4}�. 

The location of the object is estimated as position 𝑖, which takes the maximum value in 𝑌. The 

proposed method increases the precision of the detection. 

When the object's state is judged to drift, we adopt the relocation method to search the 

object's position. As shown in Fig 3.2 (c, d), there are multiple peaks in the confidence map. 

When the number of vertices increases, any of these vertices could be where the target is. Based 

on these vertices' locations, multiple research regions are cropped to relocate the object's 

location. Since the selection of the vertices will produce a computation burden, we only 

consider the confidence scores, which are higher than half of the largest score in the original 

confidence map. 

3.3 Adaptive model update 
 

 

 
 

Figure 3.3 The maximum score and luminance-histogram similarity at each frame for the video 
“jogging”. 
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Figure 3.4 The maximum score and luminance-histogram similarity at each frame for the video “car2”. 

 
Most CF trackers update the feature model and the detection model online. Since the CF 

trackers aim to locate the target object accurately, trackers need to maintain the robustness of 

the detection model. In the process of tracking, the scenario of the object constantly changes. 

The fixed learning rate causes the model to learn too much error information in the current 

frame or not learn the change information of the target object. The novel method is proposed 

to increase the robustness of the feature model and the CF model by adaptive adjusting the 

learning rate. 

The HOG feature's CF trackers are susceptible to an object's state change, such as occlusion, 

rotation, and deformation. The maximum score of the confidence map reflects the object's state 

to some extent. When abnormal tracking occurs, the confidence map's maximum score will 

change dramatically. As shown in Fig 3.3, the initial response score is the highest because of 

the most reliable model. However, with the change of the CF model, the tracking performance 

decreases until an equilibrium score is reached. The highest score decreases drastically around 

the 0-10’th frame in image sequence "jogging" because of deformation. When the CF model 

learns enough deformation information, the maximum score changes gently. However, in the 

same case, since the luminance histogram keeps robust to deformation, the similarity of the 

luminance histogram keeps steady. Combining the maximum score with the luminance 

histogram similarity increases the accuracy of the judgment about the object's state. 

In our tracker, we divide the target object into four states. The highest score of the 

confidence map decreases dramatically, and the luminance histogram similarity keeps high. 

The object's state is to be recognized as deformation. In this scenario, we increase the learning 

rate to meet the requirement of the appearance change of the object. In Fig 3.3, both the 

maximum score of the confidence map and the luminance histogram similarity drop in the 65-

80’th frame in “jogging”, the object is judged to be drifted. The learning rate is adjusted to zero, 

preventing the feature model and the CF model contamination by the error information. Since 
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the luminance-histogram cannot keep robust on illumination various, the luminance-histogram 

similarity decreases drastically in the 110-140’th frames in image sequence “car2”. At the same 

time, the highest score also becomes smaller. The learning rate of the model is reduced to 

mitigate the negative influence of illumination variation. Combining Fig 3.3 and Fig 3.4, the 

luminance histogram similarity of the object is greater than 0.7, the maximum score varies a 

little, the object's state is judged to be normal. 

We are combining the maximum score and the luminance-histogram similarity to judge the 

object's state. Here, a judgment coefficient σ is introduced to adjust the learning rate, and the 

formulation can be expressed as follows. 

 

                                        													𝜎 = �

	0					∆𝑅 > 𝑎,				𝐿𝐻𝑆 < 𝑏	
𝑥						∆𝑅 ≤ 𝑎,				𝐿𝐻𝑆 < 𝑏	
1					∆𝑅 ≤ 𝑎,				𝐿𝐻𝑆 ≥ 𝑏
𝑦					∆𝑅 > 𝑎,				𝐿𝐻𝑆 ≥ 𝑏

                                         (3.4) 

 

Here, ∆𝑅 is the change of the maximum score in adjacent frame and 𝐿𝐻𝑆 is the value of 

the luminance histogram similarity. The parameters 𝑎, 𝑏, 𝑥 and 𝑦 are controlled to update the 

model adaptively, where 𝑥 takes a value from 0 to 1 and y greater than 1.  

When 𝜎 = 0, the object is supposed to be drifted, the object’s location should be relocated. 

The judgment coefficient 𝜎 is applied to the feature model and the CF model update as follows 

 

                                                  𝑋I = (1 − 𝜎𝜂)𝑋ID4 + 𝜎𝜂𝑋		                                            (3.5) 
 

                                                  𝑤I = (1 − 𝜎𝜂)𝑤ID4 + 𝜎𝜂𝑤                                            (3.6) 
 

3.4  Experiments 
In this section, the analysis experiments of the proposed tracker are conducted. Firstly, I 

introduce the evaluation database and analysis metric. Next, the comparison of nine CF trackers 

(KCF [47], CSK [46], DSST [65], SAMF [63], SRDCF [66], CFHA [98], KCFAMSR [97], 

Staple [57], CN [70]) to analyze the strength and weaknesses of the tracker. 

3.4.1   OTB Benchmark Database 
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Figure 3.5 The partial image sequences of the OTB benchmark database. 

 

We conduct the evaluation experiments on the OTB-2013 and OTB-2015 benchmark databases 

to evaluate the performance of the proposed CFCA tracker. OTB benchmark dataset [93, 94] is 

a widely recognized visual tracking database of a single target. As shown in Fig 3.5, it contains 

color image sequences and grayscale image sequences.  OTB database can be divided into two 

parts as OTB-2013 and OTB-2015. OTB-2013 contains 51 annotated challenging image 

sequences, and OTB-2015 is the extended version of OTB-2013, which includes 100 annotated 

image sequences. There are no standard visual tracking benchmark databases before the OTB 

benchmark database. To better evaluate tracking algorithms and analyze the trackers' strengths 

and weaknesses, the OTB benchmark database categorizes the image sequences by annotating 

with the 11 attributes. An image sequence can have multiple attributes. The 11 attributes are 

shown as follows, 

SV (Scale Variation): The ratio of the bounding boxes of the first frame and the current frame 

is out of the range. 

MB (Motion Blur): The target region is blurred because of the motion of the target or camera. 

OCC (Occlusion): The target object is partially or fully occluded. 

IV (Illumination Variation): The illumination in the target region is significantly changed. 

DEF (Deformation): The deformation of a non-rigid object. 

FM (Fast Motion): The motion of the ground truth is larger than the threshold (20 pixels). 

IPR (In-Plane Rotation): The target object rotates in the image plane. 

OPR (Out-of-Plane Rotation): The target object rotates out of the image plane. 

OV (Out-of-View): Some portion of the target object leaves the view. 
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BC (Background Clutters): The background near the target has a similar color or texture. 

LR (Low Resolution): The number of pixels inside the ground-truth bounding box is less than 

a threshold (threshold=400). 

OPE (One-Pass Evaluation) is the conventional method that evaluates the tracking 

algorithms. Initialize the first frame with the target's position in the ground-truth, and then run 

the tracking algorithm to get the average accuracy and success rate. The OTB benchmark 

database adopts the same method to analyze the trackers. Besides, we also analyze the running 

speed of the trackers to verify their feasibility of the trackers.  

The meanings of the three-evaluation metrics are introduced as follows. 

Precision Plot: The center point of the object position (bounding box) is estimated by the 

tracking algorithm and the center point of the artificially labeled (ground-truth) target, the 

distance between the two is less than the percentage of the video frame of the given threshold 

(Generally, the threshold is set to 20 pixels). Different thresholds result in different percentages, 

so a curve can be obtained. The disadvantage of this evaluation method is that it cannot reflect 

the changes in the size and scale of the target object. 

Success Plot: First, define the overlap score (OS) , the bounding box obtained by the tracking 

algorithm (denoted as a), and the bounding box given by ground-truth (denoted as b), the 

overlap ratio is defined as: 𝑂𝑆 = |g∩�|
|g∪�|

. When the OS of a frame is greater than the set threshold, 

the result of the frame is regarded as successful, and the percentage of the total successful 

frames in all frames is the success rate. The threshold value range of OS is 0~1(Generally, the 

threshold is set to 0.5), so a curve can be drawn. 

FPS (Frame Per Second): The tracking results of how many pictures are given by the tracking 

algorithm per second. In general, FPS>=25 means real-time performance. The higher the fps, 

the higher the efficiency. 

Some trackers only pursue success rate [67], ignoring FPS. An excellent algorithm can keep 

the balance between success rate and real-time. 

3.4.2   Parameter Setting 

The parameter adjustment is essential for the algorithms. In this section, I introduce the tracker's 

parameters and analyze the influence of the parameters. 

Firstly, the regular parameter of the tracker is introduced. All the evaluation experiments 

are conducted on the Matlab-R2020a platform and a PC machine with an Intel (R) Core (TM) 

i7-9700F CPU (3.00GHZ), 16GB memory. In traditional CF trackers, since an image sequence 

has many frames, the learning rate setting is small, the learning rate η is set to 0.015 in CFCA. 

The cell size of the HOG feature is set to 4. The search region is set to 2.5 times the target 

object's size because of the boundary effect. The scale gap 𝑆fgh is set to 0.05. 
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Table 3.1 Success of CFCA with non-adaptive model update on the OTB-2013 with different 𝑆fgh. 

 

𝑆fgh 0.025 0.05 0.075 0.1 

Success 0.606 0.619 0.586 0.586 

 
 

Table 3.2 Success of CFCA on the OTB-2013 with different a, b, x, y. 

 
a 0.05 0.10 0.15 
b 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9 

x=0.25 
y=1 

0.60 0.60 0.58 0.61 0.59 0.60 0.61 0.59 0.59 

x=0.25 
y=2 

0.59 0.59 0.61 0.60 0.59 0.61 0.60 0.60 0.60 

x=0.25 
y=3 

0.58 0.58 0.58 0.59 0.59 0.60 0.60 0.59 0.60 

x=0.5 
y=1 

0.58 0.60 0.58 0.61 0.61 0.59 0.61 0.57 0.59 

x=0.5 
y=2 

0.59 0.59 0.58 0.60 0.63 0.60 0.59 0.57 0.59 

x=0.5 
y=3 

0.59 0.58 0.59 0.60 0.61 0.59 0.59 0.57 0.59 

x=0.75 
y=1 

0.61 0.61 0.59 0.62 0.61 0.62 0.62 0.61 0.61 

x=0.75 
y=2 

0.59 0.60 0.59 0.60 0.61 0.61 0.60 0.61 0.62 

x=0.75 
y=3 

0.59 0.59 0.59 0.62 0.60 0.62 0.61 0.60 0.62 

 
 
 

Table 3.3 Success of CFCA with adaptive model update on the OTB-2013 with different 𝑆fgh. 

 
 
 
 
 
 
 

Secondly, we conduct the setting experiments of the parameters. From the result of the experiment, 

we select the most appropriate parameter. As mentioned in section 3.1, scale pool is used to estimate 

scale variation in CFCA. The scaling step is the main impact factor in scale pool. Generally, the scale 

step is set to 0.01 in the CF trackers. Since CFCA estimates scale in every two frames instead of each 

frame, the scale step is set to 0.05 in CFCA. Table 3.1 and Table 3.3 show the experiments that success 

of CFCA without an adaptive model update on the OTB-2013 with different 𝑆fgh, the success of CFCA 

with an adaptive model update on the OTB-2013 with different 𝑆fgh, respectively. The experiment 

𝑆fgh 0.025 0.05 0.075 0.1 

Success 0.565 0.631 0.595 0.578 
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results are obtained by adjusting δ as 0.025, 0.05, 0.075, and 0.1. The best result is shown in Table 3.1 

and Table 3.3. When 𝑆fgh is set to 0.05, CFCA obtains the best performance. 

CFCA adaptively adjusts the learning rate with the object’s state. Equation 3.4 shows the 

parameters a, b, x, and y. CFCA conducts the valuation experiments on OTB2013 to determine the 

parameters. As shown in Fig 3.3 and Fig 3.4, b is set around 0.7, because the threshold of the luminance 

histogram similarity is about 0.7, the value range of b is 0.5, 0.7, 0.9. The value a is also considered to 

be around 0.1, by analyzing the data in Fig 3.3, the value range of a is 0.05, 0.10, 0.15. Since the value 

x is between 0 and one, x is set to 0.25, 0.5, and 0.75 in this experiment. The value y should be greater 

than or equal to 1, so that y is set as y ≥1, the value range of y is 1, 2, 3. Table 3.2 shows the success 

score of CFCA on the OTB-2013 with different a, b, x, y. The best success scores are shown on red 

font. From the experiment results, when a=0.10, b=0.7, x=0.50, y=2, CFCA obtains the highest success 

score.  

3.4.3    Analysis of OTB 

 
 

 
 

Figure 3.6 The precision plot of different CF trackers on OTB-2013. 
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Figure 3.7 The success plot of different CF trackers on OTB-2013. 

 

The evaluation experiments are performed on the OTB-2013 benchmark dataset. As shown in Fig 

3.6 and Fig 3.7, CFCA achieves a precision score of 84.2% and a success score of 63.1%, respectively. 

Compared to the baseline tracker KCF, CFCA improves 14% and 23% on precision and success scores. 

The result of the experiment shows the validity of CFCA in tracking. SRDCF aims to mitigate the 

negative influence from the boundary effect and enlarge the search region to locate the target object. 

Since CFCA adopts reasonable methods to improve the performance in tracking, CFCA still obtains 

outperformance than SRDCF. SRDCF and SAMF adopt the scale pool to solve the scale variation and 

use the more robust feature to train the CF model. However, these trackers do not consider the state 

change of the object and the adaptive update model. Therefore, the performance of CFCA is better than 

these CF trackers. Moreover, the performances of CN and CSK are lower because they use the common 

robust feature to train the CF model and do not consider scale change, as well as a state change.   
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Figure 3.8 The precision plot of different CF trackers on OTB-2015. 

 

 
 

Figure 3.9 The success plot of different CF trackers on OTB-2015. 

 

Fig 3.8 and Fig 3.9 show the tracking performance of CFCA on the OTB-2015 benchmark database. 

OTB-2015 extends OTB-2013 to have more image sequences. Since the parameters of CFCA are 
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trained on OTB-2013, the experiment result of OTB-2015 has more persuasive. In OTB-2015, CFCA 

gets precision scores of 80.3% and success scores of 59.3%, respectively. In contrast to OTB2013, the 

success score of CFCA is slightly lower than SRDCF. Besides, CFCA achieves a gain of 10.7% and 

11.6% on precision and success score than baseline KCF. Compared with other algorithms, CFCA 

obtains different degrees of improvement. The performance of CFCA on the OTB-2015 shows that the 

proposed method in CFCA can validity improve the performance of KCF in tracking. 

 
Table 3.4 Precision and Success and speed of top-5 trackers on the OTB-2015. The best two results are shown 

in red and blue fonts, respectively. 
 

     SRDCF   Staple   CFHA   SAMF   CFCA 
Precision      0.788      0.784     0.776     0.746     0.803 
Success        0.596      0.579     0.571     0.547     0.593 
FPS               10.4       105.5     115.1      17.9      114.1 

 

Table 3.4 shows the precision and success score and the running speed of the top-5 trackers on the 

OTB-2015 benchmark database. The best two results are shown in red and blue fonts, respectively. 

CFCA obtains the highest precision score, 80.3%. Although SRDCF achieves a better performance than 

CFCA in success score, the running speed of CFCA is 11 times faster than SRDCF. It is difficult for 

SRDCF to achieve real-time because of the low running speed. However, CFCA achieves the balance 

between performance and real-time. 
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Figure 3.10 The precision plots are shown for nine attributes on the OTB-2015. 

 

 

 
 

 
 

 
 

Figure 3.11 The success plots are shown for nine attributes on the OTB-2015. 

 

Fig 3.10 and Fig 3.11 show the performance of CFCA on nine attributes on the OTB2015 

benchmark database. Since CFCA accurately estimates the scale variation of a small object by 

improving the scale pool, CFCA gets the outperformance on the SV attribute, 77.6% and 56.6% on the 

precision score and the success score. In the LR attribute, CFCA obtains a precision score of 84.5% and 

a success score of 59.0%, respectively. Compared to KCF, it obtains a gain of 27.4% and 30.0% on 

precision and success, respectively. Moreover, CFCA obtains a significant performance on IPR and  
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Couple 
 

 
 

Board 
 

   
 

Tiger1 
 

Figure 3.12 Qualitative evaluation on the three image sequences (Couple, Board and Tiger1).  

 
OPR attributes because of the response map and luminance-histogram combination. The 
re-location method is used to improve the OCC and OV attributes. The best performance 
on other attributes shows the validity of CFCA. 

We conduct a qualitative evaluation of different trackers on the three image sequences (Couple, 

Board and Tiger1). CFCA, SAMF, Staple, SRDCF, KCF and CFHA with different colors are showed, 

respectively. 

In the initial frame, six trackers all keep significant performance in tracking. However, some 

trackers make some errors in the remaining sequences. For example, SAMF, Staple, and KCF lost the 

target object in Couple. In Board, Staple cannot accurately estimate the scale variation of the object and 

has drifted. CFCA achieves robust performance on the different image sequences.
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Chapter 4 

Visual Tracking via Adaptive Spatial-Temporal 
Regularized Correlation Filters 

In chapter 3, the object's state estimation is used to adjust the learning rate of the model update. Based 

on the discriminative correlation filter, chapter 4 introduces advanced state estimates to increase the 

scale estimation and location accuracy. Correlation Filter tracker using a spatial-temporal regularized 

with Advanced Scale Estimation (CFASE) is proposed to achieve more significant tracking 

performance. 

In terms of the DCF model, we propose a new method to estimate correlation filters more precisely 

using predictions from the previous two filters, considering the drift during the tracking process. 

Besides, we train two correlation filters models to obtain scale estimation and object location, 

respectively. The separated two correlation filter models help to reduce the adverse effects of scale 

changes on object location. Finally, our tracker introduces average peak-to-correlation energy (APCE) 

[72] to evaluate the accuracy of scale estimation and object location. The effectiveness of CFASE is 

verified with the experiment on different benchmark databases [75, 93, 94]. 

4.1 Adaptive Spatial-Temporal regularized 

As mentioned in section 2.3, STRCF [31] mitigates the negative influence from the boundary effect by 

introducing spatial regularization. Moreover, STRCF introduces temporal regularization instead of the 

online update model method. STRCF adopts the same method as SRDCF to reduce the boundary effect, 

introducing a spatial regularization weight function to penalize the magnitude of the correlation filter 

coefficients 𝑤 in learning. The value of the weight depends on the spatial locations. The closer to the 

center, the lower the coefficient, and the closer to the surrounding, the higher the coefficient. However, 

STRCF uses alternating direction multipliers (ADMM) to optimize formulation instead of the iterative 

Gauss-Seidel method efficiently. This strategy ensures the real-time of STRCF. Furthermore, STRCF 

introduces temporal regularization to discard the online update model. The online update model method 
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is over-reliant on the fixed learning rate and simultaneously has to learn both the feature model and the 

correlation filter model. These strategies limit the performance of tracking algorithms. The advantage 

of temporal regularization is that it uses the target object feature model of the current frame to train the 

correlation filter model. There is no need to consider too much about the adverse effects of the error 

feature model on training. 
 
 

 
 

Figure 4.1 The process of CFASE’s model update. 

 

As mentioned above, temporal regularization makes sure that the obtained 𝒇 is as similar as possible 

to the correlation filter in th-1 frame, to prevent the corruption of the correlation filter, and it can also 

play a good role to against occlusion. However, STRCF only considers the correlation filter of two 

adjacent frames, the correlation filter of previous frame has excessive influence on the current 

correlation filter. When an error occurs during tracking, STRCF is difficult to keep the robustness of 

the correlation filter in learning. As shown in Fig 4.1, an adaptive spatial-temporal regularization is 

proposed to alleviate the negative influence of abnormal conditions during tracking. We make use of 

more discriminative correlation filter model information to train new DCF model 𝒇I.  𝒇ID4 denotes the 

correlation filter in th-1 frame. We adopt 𝒇∗		to replace 𝒇ID4. The expression of 𝒇∗ as follows: 

 

                                                  �		𝒇∗ = 𝒇I + 𝛼(𝒇ID4 − 𝒇ID@)							𝑖𝑓	𝑓𝑟𝑎𝑚𝑒 ≥ 3
		𝒇∗ = 𝒇I																																																	𝑒𝑙𝑠𝑒											

                             (4.1) 

 
 

CFASE aims to minimize the following formulation to obtain the optimum discriminative 

correlation filter model 𝒇, 

 
                                    𝑚𝑖𝑛𝒇

4
@
N∑ 𝑥IWX

WR4 ∗ 𝒇W − 𝑦N
@
+ 4

@
∑ N𝑤 ∙ 𝒇WN

@
+ [

@
‖𝒇 − 𝒇∗‖@	X

WR4                  (4.2) 

 
 

Here, 𝛼 is a parameter. 𝒇ID4 denotes the correlation filter in t-1 th frame.	𝜇 is the parameter of 

temporal regularization.  



 35 

 

 
 

Figure 4.2 The process of the proposed method. The process of the tracker can be divided into three parts: Scale 
Estimation, Location, and Training. 

 

The optimization function has not much changed, improving temporal regularization without 

calculation burden. 
In general, the process of the tracking algorithms contains two parts which location and training. 

Location and scale estimation are one component in STRCF. In other words, the scale estimation is 

conducted meanwhile the position of the target object is obtained.  As shown in Fig 4.2, the scale 

estimation and location are separated in the proposed method. CFASE adopts the HOG feature to 

estimate the scale of the target object. The best scale is directly used to locate the position of the object. 

The training model is conducted in the end. It looks very complicated to distinguish between the scale 

estimation model and the CF location model. It takes full advantage of the characteristics of the HOG 

feature. The high precision scale estimation makes for locating the position of the object. 

4.2 State Estimation  
The tracking algorithms aim to obtain the position of the target object accurately. Moreover, the scale 

is a significant factor affecting the performance of the tracking. However, the common DCF trackers 

[31, 38, 63] train the model directly after obtaining the object location and scale, completely ignoring 

the accuracy of the target location and scale. In CFASE, we judge the accuracy of the location and scale 

of the object. 
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Figure 4.3 The process of judgment about scale estimation and location. 

 

Fig 4.3 shows the process of judgment about scale estimation and location. 𝑆 and 𝑆I  are the optimal 

scale and the obtained scale in the 𝑡 − 𝑡ℎ frame. 𝑃𝑜𝑠 and post are the final locations and the obtained 

location in the 𝑡 − 𝑡ℎ frame. Suppose the target object's state is normal. In that case, the obtained scale 

and location are updated (𝑆 = 𝑆I , and	𝑃𝑜𝑠 = 𝑃𝑜𝑠I). Otherwise, the optimal scale and location are not 

updated, which assigns the value of the optimal scale and location in the previous frame (𝑆 = 𝑆ID4, 

and	𝑃𝑜𝑠 = 𝑃𝑜𝑠ID4). In the process of judgment about scale estimation and location, the target object's 

state is the important factor. 

As discussed in chapter 3, the confidence map of the DCF trackers reflects the performance of 

tracking. We introduce an evaluation metric (Average Peak-to Correlation Energy: APCE) [72], to 

enhance the accuracy of the state estimation. The fluctuation of the response map can reflect the 

confidence degree about the tracking performance. The ideal response map should be similar to the 

Gaussian distribution, have only one peak. In this case, the fluctuation of the response map is low. 

However, the response map will fluctuate when the detected target does not match the CF model. APCE 

takes full advantage of every value of the response map, reflects the fluctuated degree of response maps 

and the confidence level of the detected targets. The formulation of APCE can be expressed as follows: 

 

                                                         𝐴𝑃𝐶𝐸 = ‖ ¡¢£D ¡|~‖�

¤¥g¦(∑ ( |,§D ¡|~)�|,§ )
                                              (4.3) 
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Where 𝑹𝒎𝒂𝒙, 𝑹𝒎𝒊𝒏, and 𝑹𝒊,𝒋 denotes the maximum, minimum and the i row h column elements of 

response map.  

To increase the accuracy of APCE's judgment, we select the ratio between APCE in the current 

frame and the average of APCE to estimate the object's state. The judgment ratio can be expressed as 

follows,   
 
                                                           𝐴𝑃𝐶𝐸 gI6¯ =

°±Q²³
¤¥g¦(∑ °±Q²³³ )

                                                 (4.4) 
 

A single metric cannot judge the target object's state accurately. As shown in Fig 4.2, the scale 

estimation and the object location are distinguished into two parts in CFASE. Scale pool is adopted to 

estimate the object's scale which calculates scale and location by producing the multiple research 

regions. CFASE can obtain the object scale 𝑆r´µ  and the object position 𝑃𝑜𝑠r´µ  in the scale 

estimation.	𝑃𝑜𝑠r´µ is not the final object position in the current frame, and does not participate in the 

model update process. 𝑆r´µ  is used to the object location filter model to obtain the object position as 

𝑃𝑜𝑠rg¦WDQ¶g·I¥W . So, we can get two object positions with different models. Under normal conditions, 

𝑃𝑜𝑠r´µ and 𝑃𝑜𝑠rg¦WDQ¶g·I¥W  should be similar. While obtaining the best object position, we can use 

the distance Dist between the two positions to judge the reliability of the scale [28]. The distance Dist 

can be defined as: 

 

                                                 𝐷𝑖𝑠𝑡 = ¹(𝑃𝑜𝑠r´µ − 𝑃𝑜𝑠r´µJQ})@                                             (4.5) 
 

Object tracking is a continuous process, and objects in two adjacent frames are more closely related. 

We take full use of the continuous of the object state. When the object state is normal in the previous 

frame, we use 𝐴𝑃𝐶𝐸 gI6¯ and 𝐷𝑖𝑠𝑡 to estimate the object state because 𝐴𝑃𝐶𝐸 gI6¯ alone cannot meet 

the requirements of the judgment. As shown in Fig 4.3, when 𝐴𝑃𝐶𝐸 gI6¯ is small, and 𝐷𝑖𝑠𝑡 is large, 

the object's state is considered abnormal. It means that the estimated scale is not reliable. The scale 𝑆I  

should not be updated in the current frame. When the object state is abnormal in the previous frame, we 

adopt 𝐴𝑃𝐶𝐸 gI6¯  to estimate the object's state because 𝐷𝑖𝑠𝑡  has already become unreliable. If 

𝐴𝑃𝐶𝐸 gI6¯ is small, the object's state is considered abnormal, S is not updated. In Fig 4.3, when the 

state is normal, the factor is defined as 1. When the state is abnormal, the factor is 0. 

Moreover, once the change degree of object location in two adjacent frames is far greater than the 

historical position change, object location should not be updated and maintain the position of the 

previous frame Post-1. The evaluation criterion (Dist_Ratio) is expressed as follows. 

 
                                                           𝐷𝑖𝑠𝑡_𝑅𝑎𝑡𝑖𝑜 = X6»I(±¯»³,	±¯»³¼�)

X6»I(±¯»³¼�,	±¯»³¼�)	
                                            (4.6) 

 
𝐷𝑖𝑠𝑡 denotes the distance between two positions. t denotes the t-th frame, Post denotes the object 
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position in the t-th frame. 

4.3 Evaluation Experiments 
The evaluation experiments of the proposed tracker are introduced in this section. Firstly, the evaluation 

benchmark database and analysis metric are introduced. Next, the comparison of different trackers 

(STRCF [31], SRDCF [66], BACF [38], CFHA [98], AutoTrack [95], KCF [47], SAMF [63], DSST 

[65], Staple [57], CSK [46]) to analyze the strength and weaknesses of the tracker. 

4.3.1   Temple Color Benchmark Databases 

 

 

 

 

 
  

Figure 4.4 The partial image sequence of the Temple Color 128 benchmark database. 

 

OTB benchmark database is the classic evaluation database for the tracking algorithms. The 

analysis experiments of CFASE are conducted on the OTB benchmark database. Since CFASE not only 

adopts the HOG feature but also uses the color name feature and grayscale feature to locate the object 

and train the CF model, the Temple Color 128 (TC-128) [75] benchmark database is used to evaluate 

the trackers (As shown in Fig 4.4). Temple color 128 benchmark database includes a large set of 128 

color sequences that annotate with ground truth. Since color information can provide rich discriminative 

clues for visual tracking, the Temple color 128 database aims to thoroughly evaluate the trackers with 

the color feature. The trackers do not limit themselves to the grayscale image sequence. 
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The evaluation metrics still adopt precision scores, success scores, and FPS. The detailed 

introduction about these evaluation metrics is shown in section 3.4.1. 

4.3.2   Parameter Setting 

All the analysis experiments are conducted on the Matlab2019b platform and a PC machine with an 

Intel (R) Core (TM) i7-9700F CPU (3.00GHZ), 16GB memory. The shape of the search region is 

defined as square, the size = √5𝑊𝐻, (𝑊 is the object's width, 𝐻 is the height of the object). The cell 

size of the HOG features is set to 4. The regularization parameter µ is set to 15 and 13 for the location 

filter and scale estimation filter, respectively. α is set to 0.5 and 0.2 for location filter and scale 

estimation filter, respectively. The scaling step is set to 1.01. The three parameters in Fig 4.3 are decided 

with experiments. 

 
Table 4.1 Success score of CFASE on OTB-2013 with different thr2. thr1 is set to 0.30. The best result is shown 

in red font.   

thr2 5 10 15 20 25 30 

Success 0.693 0.693 0.705 0.706 0.705 0.699 

 

Table 4.2 Success score of CFASE on OTB2013 with different thr1. thr2 is set to 20. The best result is shown in 
red font. 

thr1 0.15 0.20 0.25 0.30 0.35 0.40 

Success 0.692 0.699 0.706 0.706 0.693 0.691 

 

Table 4.3 Success score of CFASE on OTB2013 with different thr3. thr1 is set to 0.25, thr2 is set to 20. The best 
result is shown in red font. 

thr3 1.4 1.7 2.0 2.3 2.6 3.0 

Success 0.704 0.706 0.705 0.705 0.704 0.704 

  

Table 4.4 Success score of CFASE on OTB2013 with different thr3. thr1 is set to 0.3, thr2 is set to 20. The best 
result is shown in red font. 

thr3 1.4 1.7 2.0 2.3 2.6 3.0 

Success 0.705 0.706 0.705 0.705 0.705 0.705 
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Table 4.1, Table 4.2, Table 4.3, and Table 4.4 show the success score with various values of the 

thresholds thr1, thr2, and thr3 for 𝐴𝑃𝐶𝐸 gI6¯, 𝐷𝑖𝑠𝑡, and 𝐷𝑖𝑠𝑡_𝑅𝑎𝑡𝑖𝑜. It is careful for trackers to estimate 

the object's abnormal. Therefore, thr1 and thr2 are used simultaneously when the target transitions from 

normal to abnormal. Too large thr1 or too small thr2 denote that the tracking performance is not reliable. 

As shown in Table 4.1, the proposed tracker achieves the best performance when thr2 is set to 20. 

However, the change of thr2 has little influence on the tracking performance. In Table 4.2, when thr1 

is 0.30 or 0.25, the tracker performs the same result. The result of Table 4.2 also explains that our 

method is not so sensitive to the parameters.  The parameters are relatively independent. For two thr1, 

we conduct more experiments to get the optimal threshold. In the results of Table 4.3 and Table 4.4, 

thr3 is only effective under terrible conditions. The influence of thr3 is little.  Finally, thr1, thr2, and 

thr3 are set to 0.30, 20, and 1.7 in our tracker in all the experiments. From the results, three thresholds 

have little effect on tracking performance. 

 

Table 4.5 Success score of CFASE on OTB-2013 with the temporal regularization parameters 𝜇1 and 𝜇2. The 
best result is shown in red font. 

 𝜇1 = 12 𝜇1 = 13 𝜇1 = 14 𝜇1 = 15 𝜇1 = 16 

𝜇2 = 12 0.675 0.665 0.688 0.681 0.681 

𝜇2 = 13 0.679 0.668 0.688 0.706 0.681 

𝜇2 = 14 0.674 0.657 0.679 0.675 0.685 

𝜇2 = 15 0.660 0.653 0.672 0.679 0.687 

𝜇2 = 16 0.678 0.661 0.683 0.689 0.678 

 

 
Table 4.6 Success score of CFASE on OTB-2013 with the parameters 𝛼1 and 𝛼2. The best result is shown in red 

font. 

 𝛼1 = 0.1 𝛼1 = 0.2 𝛼1 = 0.3 𝛼1 = 0.4 𝛼1 = 0.5 𝛼1 = 0.6 

𝛼2 = 0.1 0.688 0.689 0.688 0.691 0.696 0.687 

𝛼2 = 0.2 0.688 0.689 0.689 0.691 0.706 0.694 

𝛼2 = 0.3 0.688 0.694 0.687 0.689 0.700 0.699 

𝛼2 = 0.4 0.687 0.687 0.687 0.687 0.700 0.701 

𝛼2 = 0.5 0.684 0.697 0.694 0.695 0.682 0.683 

𝛼2 = 0.6 0.684 0.698 0.696 0.684 0.670 0.669 

 

As shown in Equation 4.1 and Equation 4.2, the learning rate 𝛼 and the temporal regularization 

parameters 𝜇 affect the performance of the tracking model. Since CAFSE trains the location CF model 
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and scale estimation CF model, there are four parameters (location CF model: 𝜇1, 𝛼1; scale estimation 

CF model: 𝜇2, 𝛼2) that need to train. Table 4.5 and Table 4.6 illustrate the success score of the tracker 

on the OTB-2013 benchmark with different parameters, respectively. Tracker is influenced by the 

temporal regularization parameters 𝜇. When 𝜇1 and 𝜇2 are set to 15 and 13, respectively, the tracker 

achieves the best performance. The performance of the tracker is less affected by parameter 𝛼 . The 

performance of the tracker is not significantly degraded, even if the value of 𝛼 is a little changed from 

the best value. When 𝛼1 and	𝛼2  are set to 0.5 and 0.2, respectively, the tracker achieves the best 

performance. In the experiment for the data OTB 2013, 2015 and TC-128, the values of all the 

parameters are set to the best ones presented in this section. 

4.3.3    Analysis of OTB Benchmark Database 

In this section, we offer comprehensive assessments to evaluate the performance of the proposed 

CFASE on the OTB-2013, OTB-2015 benchmark database. The compared state-of-the-art trackers 

including STRCF [31], SRDCF [66], BACF [38], CFHA [98], AutoTrack [95], KCF [47], SAMF [63], 

DSST [65], Staple [57], CSK [46] show that our tracker obtained the best performance.  

  

 

 
 

Figure 4.5 Comparisons with state-of-the-art DCF trackers on OTB-2013 benchmark in terms of precision plot. 
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Figure 4.6 Comparisons with state-of-the-art DCF trackers on OTB-2013 benchmark in terms of success plot. 

 

 

 
 

Figure 4.7 Comparisons with state-of-the-art DCF trackers on OTB-2015 benchmark in terms of precision plot. 
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Figure 4.8 Comparisons with state-of-the-art DCF trackers on OTB-2015 benchmark in terms of success plot. 

 
From the experiment result on OTB-2013 (Fig 4.5 and Fig 4.6), CFASE achieves the significant 

performance in tracking, obtains a precision score of 90.7% and a success score of 70.6%, respectively. 

Compared to the baseline STRCF, CFASE gains 1.8% and 2.8% on the precision and success scores, 

respectively. On OTB-2015 (Fig 4.7 and Fig 4.8), CFASE achieves a precision score of 88.2% and a 

success score of 68.1%, respectively. With the increase of the image sequences, the experimental data 

decreased. However, CFASE improvement to STRCF is unchanged, and it is still 1.8% and 2.7%. 

 
Table 4.7 Success and speed of top-5 trackers on the OTB-2015. The best two results are shown in red and blue 

fonts, respectively. 

     SRDCF     BACF    AutoTrack   STRCF   CFASE 

Success     0.597        0.615         0.591         0.654      0.681 

FPS           10.4            45.0          37.5            33.3        31.1 

 

The DCF trackers with top-5 success scores on the OTB-2015 are selected to analyze the 

performance of the trackers. As shown in Table 4.7, although the running speed of CFASE is not the 

fastest, the performance of CFASE is best excellent on the OTB-2015. 
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Figure 4.9 Attribute-based analysis of different trackers on the OTB-2015 dataset with 100 videos. The precision 
plots are shown for eleven attributes. 
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Figure 4.5 Attribute-based analysis of different trackers on the OTB-2015 dataset with 100 videos. The success 

plots are shown for eleven attributes. 

 
The evaluation of the different DCF trackers by all attributes of OTB-2015. From the precision plot 

(as shown in Fig 4.9), compared to STRCF, CFASE obtains the improvement of 2.8%, 2.1%, 2.5%, 

1.0%,2.1%, 3.2%, 0.3%, 3.4%, 2.4%, 3.7%, 2.2% on the 11 attributes (FM, BC, MB, DEF, ILL, IPR, 

LR, OCC, OPR, OV, and SV), respectively. Although CFASE does not significantly improve DEF and 

LR, it gets at least a 2.0% raise on the other attributes, especially CFASE obtains bigger than 3.0% on 
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IPR, OCC, and OV. This experiment results illustrate the validity of the accuracy estimation about the 

object position. 

Fig 4.10 shows the success scores of the evaluated trackers on the 11 attributes. Compared to 

STRCF, CFASE obtains a gain of 2.0%, 3.7%, 2.3%, 3.4%, 3.3%, 3.1%, 2.9%, 4.1%, 3.6%, 3.7%, 2.9% 

on the 11 attributes (FM, BC, MB, DEF, ILL, IPR, LR, OCC, OPR, OV, and SV), respectively. CFASE 

gets the improvement is even more pronounced on success rates, even if DEF and LR. The improvement 

of CFASE gets a 3.0% or more increase on the most attributes. The proposed scale estimation is 

beneficial to increase the overlap ratio. 

 

 

 

 

 
 

CFASE                                                  STRCF 
 

Figure 4.6 Qualitative evaluation of CFASE and STRCF on the four video sequences (Girl2, DragonBaby, 
Human9, Tiger2) with occlusion, fast motion, illumination variation, and deformation, respectively. CFASE 

obtains outperformance than STRCF on different conditions 
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In Fig 4.11, qualitative evaluation of CFASE and STRCF are shown on the four video sequences 

(Girl2, DragonBaby, Human9, Tiger2). From the tracking performance, CFASE is better than STRCF. 

As shown in Girl2, when occlusion occurs, CFASE is more accurate tracks the object without drifting. 

DragonBaby, with the attribute as fast motion, CFASE still locates the target object accurately. In 

Human9, Tiger2, CFASE more precision estimate scale than STRCF. 

 

 

 
 

Figure 4.7 Success plots of STRCF, STRCF with adaptive model and Scale estimation filter on OTB-2013 
dataset. 

 
As shown in Fig 4.12, we illustrate the success scores of STRCF, STRCF with adaptive temporal 

regularization, and STRCF with scale estimation filter on OTB-2013. Adaptive temporal regularization 

improves, and scales estimation filters both get a gain of 1.2% than STRCF in success scores. The 

burden of calculation has not increased. 

4.3.4    Analysis of Temple color 128 

 Most modern trackers employ color information to train the location model. OTB benchmarks contain 

some of the grayscale image sequences. It is not enough for some state-of-the-art trackers with color 

features to get the best evaluation, so we conduct our method on Temple color 128 benchmarks with 

STRCF [31], MEEM [45], Struck [83], ASLA [91], VTD [41], CN2 [70], DFT [59], CSK [46], KCF 

[47]. 
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Figure 4.8 Comparisons with state-of-the-art trackers on TC-128 dataset in terms of precision plot. 

 
 

 
 

Figure 4.9 Comparisons with state-of-the-art trackers on TC-128 dataset in terms of success plot. 

   
Our method obtains the outperformance both in precision plot and success plot on TC128 
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benchmark database. As shown in Fig 4.13 and Fig 4.14, our method achieves the best performance 

on the TC-128 benchmark. Compared to STRCF, CFASE obtains a gain of 2.1% and 2.9% in 

precision scores and success scores, respectively. 
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Chapter 5 

Visual Tracking via Robust and Efficient Temporal 
Regularized Correlation Filters  

In this section, background-aware correlation filter tracker with spatial-temporal regularization 

(BASTR) is proposed to achieve robustness and efficient performance in visual tracking. The 

background-Aware Correlation Filter (BACF) model [38] takes full advantage of the background 

information to enhance the robustness of the DCF model. However, BACF adopts the fixed learning 

rate to update the feature and DCF models. This method is not suitable for the state of the object changes. 

We introduce temporal regularization to mitigate the adverse effects of online updates. Besides, the 

DCF model coefficients are adjusted with adaptive spatial regularization. Thus, a discriminative 

correlation filters model becomes more robust. In terms of that, two different scale estimation methods 

are selected to obtain the object's scale adaptively. The proposed tracker can get the outperformance on 

different tracking databases. 

5.1 Robust and Efficient Temporal Regularized Correlation 
Filters model 

The efficiency of the standard DCF trackers benefits from the periodic assumption at both training and 

detection. However, the periodic assumption generates needless boundary effects. Boundary effects 

lead to the inaccurate representation of the image patch content since the training patches contain 

periodic repetitions. These inaccurate negative training patches reduce the discriminative power of the 

DCF model. Moreover, the response value near the center of the response map is reliable, and the 

boundary effect heavily influences the response values of other parts. Traditional CF trackers mitigate 

the negative influence of the boundary effect by restricting the search region size (be restricted to a 2.5 

times target size). Although this method has some effect, it also limits the performance of the DCF 

trackers. 
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BACF introduces a binary matrix to crop all training samples to reduce the influence from the 

inaccurate negative training patches. Therefore, the center of each training sample is retained, the border 

is discarded. Since this method mitigates the boundary effects' influence, the search region of BACF is 

set to 5 times the object size. The crop operation enhances the quality of each training sample, and the 

larger research region leads to increase training samples. Therefore, the discriminative power of the 

DCF model is enhanced. 

Although the obtained DCF model of BACF has robustness for the boundary effects, BACF adopts 

the online method to update the appearance model and the detection model. The online update method 

can meet up the variation of the environment and the change of the object to a certain extent. However, 

that does not mean it is the best one. Concerning deformation and full occlusion, the online update 

method cannot obtain a robust appearance model. We introduce the temporal regularization into BACF, 

the performance of the obtained model will be better. Besides, most object trackers do not consider the 

variation of the correlation filter center. When deformation or rotation occurs, it is easy for trackers to 

produce drift because the detection model does not keep up with the change of the object. We introduce 

an adaptive weight into regularization. The spatial regularization is updated as the same as the temporal 

regularization. The weight of the current frame keeps similar to the weight of the previous frame. A 

spatial-temporal regularized correlation filters (BASTR) model can be expressed as follows. 
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Here, 𝑦 is the desired response which is expressed as Gaussian distribution.  𝑃 is a binary matrix 

which crops the center of the classifier.	𝑐 is the channel number and ∗ denotes circular convolution.	𝑇 

denotes matrix transpose. 𝒇OI  denotes the classifier in the t-th frame, and 𝒇OID4 is the classifier in the (t - 

1)-th frame. 𝑤 is the weight of the spatial regularization. 	𝑤ID4 is the spatial weight in the t-th frame. 𝜇 

and 𝑢 denotes a regularization parameter. 

Eq. (5.1) can be efficiently solved via Alternating Direction Method of Multipliers (ADMM). 

Firstly, the correlation filter model of Eq. (5.1) is transformed into the frequency domain, to efficiently 

obtain the local optimal solution. Thus, the Augmented Lagrangian form of Eq. (5.1) can be expressed 

as 
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Where 𝑔ÌÍ = √𝐿𝐹𝑃2𝒇Ì is an auxiliary variable matrix, ∧ denotes the discrete Fourier transform, 𝜁 

is the Lagrange Multiplier, 𝜁È is the corresponding Fourier transform, and F is the orthonormal 𝐿 × 𝐿 
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matrix of complex basis vectors, any 𝐿 dimensional vectorized signal is transformed into the Fourier 

domain (such as 𝑄Ó = √𝐿𝐹𝑄). 𝜆 is the step size parameter. 

Then, the following subproblems are alternatingly solved: 

Subproblem 𝑔Æ: The optimal 𝑔Æ can be formulated as 
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Where 𝑥Æ = {𝑥4,Í 𝑥@,Í … , 𝑥ÌÍ}. 𝑃 is a binary matrix (For 𝑃,			𝑃2𝑃 = 𝑃), and 𝑓Ì =

4
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Subproblem 𝒇Ó: If the other variable is given, the optimal 𝒇Ó can be express as 
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4
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Subproblem 𝑤: If 𝒇 is given, the closed-form solution about 𝑤 can be express as: 
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Update the Lagrange Multiplier 𝜁È: The Lagrange Multiplier is update as 

 
																																																																𝜁È6J4 = 𝜁È6 + 𝜆Ä𝑔Æ6J4 − 𝒇Ó6J4É																						                                            (5.6)    

  

																																																																					𝜆6J4 = min(𝜆¤gØ, 𝛽𝜆6)																																																																													(5.7) 
 

Where 𝜁È6 is the Fourier transform of the Lagrange Multiplier in the previous state, 𝜆¤gØ denotes 

the maximum of 𝜆 and 𝛽 is the parameter. 
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5.2  Adaptive Scale Estimation 
 
 

 
Figure 5.1 The process of the DSST. 

 

There are two widely used scale estimations in the correlation filter tracking field: Scale Pool and 

DSST [63, 65]. Scale Pool has been discussed in section 3.1.2. DSST is an efficient method for 

estimating the target scale by training a scale estimation classifier on a scale pyramid. Scale Pool 

calculates the location of the object while estimating the object scale. However, DSST separates scale 

estimation and detection objects into two independent parts. The detection classifier and scale 

estimation classifier are trained, respectively. As shown in Fig 5.1, DSST extracts image patches of 

varying sizes (general 33 scales) based on the obtained object location from the detection process and 

produces the appearance model. The multiple feature models will be resized to the same size and 

transformed into multiple channel vectors. The obtained scale estimation classifier is combined to 

generate a confidence map; the maximum value of the confidence map corresponds to the optimal scale 

in the current frame. The advantages of DSST are that it can be introduced into any tracking framework, 

and the computation burden is small. Moreover, DSST meets the scale variation requirement of a large 

object. The disadvantage of DSST is that the precision of scale estimation is lower than Scale Pool. 

From the result of the experiment, scale pool method is suitable for image sequences where the size of 

the target is small. DSST is better suited to deal with a large object. 

In recent years, different tracking evaluation benchmark databases have been proposed. The scale 

variation does significant works in the tracking. Most trackers obtain the outperformance on one 

tracking database and poorly on another. In this work, we take full advantage of Scale Pool and DSST 

to estimate scale. The proposed tracker is better applied to different databases. OTB and UAV 

benchmarks are different tracking databases. The size and aspect ratio of the target object in an image 

sequence of the OTB benchmark does not change much. In contrast, the target object's size and aspect 

ratio in an image sequence of the UAV benchmark changes much. Since DSST performs scale 

estimation based on the obtained location, the precision of scale estimation relies on the accuracy of the 

location. Therefore, the big scale gap of DSST is beneficial to enhance the accuracy of scale estimation. 
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However, since scale pool is used in the process of locating, the bigger scale gap will affect the accuracy 

of the location. So, the scale gap of scale pool is set to small. The smaller scale gap meets the 

requirement of the small object's scale variation. Accurate scale estimation is more suitable for small 

target objects. Moreover, the body of humans (In general, the aspect ratio of humans is bigger than 2) 

is more complex in the tracking process. When DSST performs scale estimation for humans, it is more 

inclined to the larger direction, leading the model to contain more background information. In this case, 

scale pool is selected to estimate scale. Selecting the accurate scale estimation method according to the 

target size and aspect ratio in an image sequence will improve the algorithm's performance. As shown 

in Eq.5.8, the scale pool method is selected when the small object or the object with a large aspect ratio 

is tracked. Otherwise, select DSST to estimate scale. 

 

                   𝑆𝑐𝑎𝑙𝑒 = �
𝑆𝑐𝑎𝑙𝑒	𝑃𝑜𝑜𝑙,																	𝑊𝑖𝑑𝑡ℎ ∗ 𝐻𝑒𝑖𝑔ℎ𝑡 ≤ 𝑡ℎ𝑟1, 𝑜𝑟 s6WIÚ

r¥6fÚI
> 𝑡ℎ𝑟2

𝐷𝑆𝑆𝑇,																																																												𝑒𝑙𝑠𝑒																														
                               (5.8) 

 
Here, 𝑊𝑖𝑑𝑡ℎ and 𝐻𝑒𝑖𝑔ℎ𝑡 are the width and the height of the target. 𝑡ℎ𝑟1 and 𝑡ℎ𝑟2 are the scale 

estimation selecting thresholds.  

5.3 Experiments 
The evaluation experiments of the proposed tracker are introduced in this section. Firstly, the evaluation 

benchmark database and analysis metric are introduced. Next, the comparison of different trackers to 

analyze the strength and weaknesses of the tracker. In addition to OTB and TC128 benchmarks, 

UAV123 [71] is introduced to evaluate the trackers. 

5.3.1   Parameter Setting 

All the analysis experiments are conducted on the Matlab2019b platform and a PC machine with an 

Intel (R) Core (TM) i7-9700F CPU (3.00GHZ), 16GB memory. The shape of the search region is 

defined as square, the size = √5𝑊𝐻, (𝑊 is the object's width, 𝐻 is the height of the object). The cell 

size of the HOG features is set to 4. The regularization parameters µ, 𝑢 and γ are set to 14, 0.1 and 0.01. 

The scaling step of Scale Pool and DSST are set to 1.01, 1.03, respectively.  
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Table 5.1 Success score of BASTR on OTB-2013 with the scale method selecting thresholds 𝑡ℎ𝑟1 and 𝑡ℎ𝑟2. 

The best result is shown in red font. 

 𝑡ℎ𝑟1 = 400 𝑡ℎ𝑟1 = 500 𝑡ℎ𝑟1 = 600 𝑡ℎ𝑟1 = 700 

𝑡ℎ𝑟2 = 2 0.690 0.692 0.693 0.694 

𝑡ℎ𝑟2 = 2.5 0.696 0.698 0.701 0.700 

𝑡ℎ𝑟2 = 3 0.696 0.698 0.700 0.700 

𝑡ℎ𝑟2 = 3.5 0.695 0.697 0.699 0.699 

 

Table 5.1 illustrates the impact of the scale method selecting thresholds 𝑡ℎ𝑟1 and 𝑡ℎ𝑟2. Overall, 

the value of 𝑡ℎ𝑟1 and 𝑡ℎ𝑟2 do not affect the performance of the tracker significantly. When 𝑡ℎ𝑟1=600, 

𝑡ℎ𝑟2=2.5, BASTR achieves outstanding performance. 

5.3.2   UAV123 Benchmark Databases 

 

 
 

Figure 5.2 The image sequence of UAV123 dataset. 

 
UAV benchmark database is an aerial video dataset and benchmark for low altitude UAV target 

tracking. UAV123 dataset is the second-largest object tracking that contains 123 video sequences and 

more than 110K frames. The total number of frames of OTB and TC is only around 90K. 

UAV123_10fps (All image sequences are recorded at frame rate 10 FPS) datasets is the subset of the 

UAV123. All image sequences are recorded at the frame rate 10FPS. UAV123_10fps is more 
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challenging because the amplitude of the target object motion in two adjacent frames is large, closer to 

the real scenario. In this thesis, we select UAV123_10fps to evaluate our tracker. Twelve attributes are 

used to annotate each sequence, such as ARC (Aspect Ratio Change), BC (Background Clutter), CM 

(Camera Motion), FM (Fast Motion), FOC (Full Occlusion), IV (Illumination Variation), LR (Low 

Resolution), OV (Out-of-View), POC (Partial Occlusion), SOB (Similar Object), SV (Scale Variation), 

VC (Viewpoint Change). 

The evaluation metrics still adopt precision scores, success scores, and FPS. The detailed introduction 

about these evaluation metrics is shown in section 3.4.1. 

5.3.3    Analysis of OTB Benchmark Database 

In this section, we offer comprehensive assessments to evaluate the performance of the 

proposed BASTR on the OTB-2013, OTB-2015 benchmark databases. The compared tracking 

methods include STRCF [31], SRDCF [66], BACF [38], CFHA [98], AutoTrack [95], KCF [47], 

SAMF [63], DSST [65], Staple [57], CSK [46], ASRCF [27] (with Hand-crafted feature). 

 

 
 

Figure 5.3 Comparisons with state-of-the-art DCF trackers on OTB-2013 benchmark in terms of precision plot. 
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Figure 5.4 Comparisons with state-of-the-art DCF trackers on OTB-2013 benchmark in terms of success plot. 

 

 

 

Figure 5.5 Comparisons with state-of-the-art DCF trackers on OTB-2015 benchmark in terms of precision plot. 
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Figure 5.6 Comparisons with state-of-the-art DCF trackers on OTB-2015 benchmark in terms of success plot. 

 

As shown in Fig 5.3 and Fig 5.4, BASTR achieves the excellent performance on OTB-2013, obtains 

a precision score of 89.8% and a success score of 70.1%, respectively. Compared to the baseline BACF, 

BASTR gets a gain of 4.9% and 5.6% on the precision and success scores, respectively. On OTB-2015 

(Fig 5.5 and Fig 5.6), BASTR achieves a precision score of 86.3% and a success score of 65.7%, 

respectively. With the increase of the image sequences, the experimental data decreased. However, 

BASTR improvement to BACF is unchanged, and it is 4.8% and 4.2%. 
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Figure 5.7 Attribute-based analysis of different trackers on the OTB-2015 dataset with 100 videos. The precision 
plots are shown for eleven attributes. 
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Figure 5.8 Attribute-based analysis of different trackers on the OTB-2015 dataset with 100 videos. The success 
plots are shown for eleven attributes. 

 
The evaluation of the different DCF trackers by all attributes of OTB-2015. As shown in Fig 5.7, 

compared to BACF, BASTR obtains the greater improvement of 1.1%, 6.1%, 8.2%, 7.0%, 3.9%, 2.1%, 

0.8%, 7.5%, 7.4%, 0.5%, 6.5% on the 11 attributes (FM, BC, MB, DEF, ILL, IPR, LR, OCC, OPR, OV, 

and SV), respectively. On FM, LR, and OV, the obtained improvement of BASTR is poor, however, it 

gets the significant improvement on the other attributes, especially BASTR obtains bigger than 6.0% 

on BC, MB, DEF, OCC, OPR, and SV. This experiment results illustrate the validity of the accuracy 

estimation about the object position. 

Fig 5.8 shows the success scores of the evaluated trackers on the 11 attributes. Compared to BACF, 

BASTR obtains a gain of 2.4%, 5.9%, 7.3%, 4.2%, 4.8%, 1.9%, 5.7%, 5.9%, 5.8%, 2.9%, 5.4% on the 

11 attributes (FM, BC, MB, DEF, ILL, IPR, LR, OCC, OPR, OV, and SV), respectively. On the success 

scores, BASTR gets the improvement is not more pronounced than the precision rates. The 

improvement of BASTR gets a 2.0% or more increase on the most attributes. The scale variation of the 

OTB benchmark is slow, the precision of the proposed scale estimation is not very high. However, 

BASTR still achieves the best performance than other trackers. 

 
Table 5.2 Success and speed of top-5 trackers on the OTB-2015. The best two results are shown in red and blue 

fonts, respectively. 

     SRDCF     BACF      ASRCF     STRCF   BASTR 

Success     0.597        0.615         0.604         0.654      0.657 

FPS           10.4            45.0          40.6           33.3        38.1 
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The DCF trackers with top-5 success scores on the OTB-2015 are selected to analyze the 

performance of the trackers. As shown in Table 5.2, BASTR obtains the best performance, and achieves 

the real-time. 

5.3.4    Analysis of TC128 Benchmark Database 

Most modern trackers employ color information to train the location model. OTB benchmarks contain 

some of the grayscale image sequences. It is not enough for some state-of-the-art trackers with color 

features to get the best evaluation, so we conduct our method on Temple color 128 benchmarks with 

STRCF [31], MEEM [45], Struck [83], BACF [38], ASLA [91], KCF [47]. 

 

 
 

Figure 5.9 Comparisons with state-of-the-art DCF trackers on TC-128 dataset in terms of precision plot. 
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Figure 5.10 Comparisons with state-of-the-art DCF trackers on TC-128 benchmark in terms of success plot. 

   
Our method obtains the outperformance both in precision plot and success plot on TC128. As 

shown in Fig 5.9 and Fig 5.10, our method achieves the best performance on the TC-128 benchmark. 

Compared to BACF, BASTR obtains a gain of 10.4% and 6.4% in precision scores and success 

scores, respectively. 

5.3.5    Analysis of UAV123 Benchmark Database 

In this section, we offer comprehensive assessments to evaluate the performance of the proposed 

BASTR on UAV123_10fps benchmark database. The compared tracking methods include STRCF 

[31], BACF [38], AutoTrack [95], KCF [47], SAMF [63], DSST [65]. 

As shown in Fig 5.2, some target objects are small in the initial frame. However, this does not mean the 

target remains the same scale in the rest of the image sequence. The objects of the UAV123 benchmark 

have scale variation significantly. Selecting an appropriate scale estimation method can improve the 

accuracy of the algorithm. 
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Figure 5.11 Comparisons with state-of-the-art DCF trackers on UAV123_10fps benchmark in terms of precision 
plot. 

 

 

 

Figure 5.12 Comparisons with state-of-the-art DCF trackers on UAV123_10fps benchmark in terms of success 
plot. 
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As shown in Fig 5.11 and Fig 5.12, BASTR achieves the best performance on UAV123_10fps, 

obtains a precision score of 68.1% and a success score of 49.3%, respectively. Compared to the result 

of OTB, the precision scores and the success scores of all trackers are decreased. This also illustrates 

the difficulty of the UAV123 dataset. Since AutoTrack [95] is proposed to be applied in UAV 

localization, the performance is worse on the OTB benchmark. However, BASTR obtains better 

performance than AutoTrack of UVA123 datasets. STRCF and BASTR achieve nearly performance on 

the OTB benchmark, BASTR gets an improvement of 5.4% and 3.6% better than STRCF in precision 

score and success score on UAV123, respectively. The result demonstrates that the adaptive scale 

estimation makes the tracker suitable for different databases.  

 

  
 

 
 

 
 

 
 

Figure 5.13 Attribute-based analysis of different trackers on the UAV123 dataset. The precision plots are shown 
for twelve attributes. 
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Figure 5.14 Attribute-based analysis of different trackers on the UAV123 dataset. The success plots are shown 
for twelve attributes. 

 
Fig 5.13 and Fig 5.14 illustrate the evaluation of the different DCF trackers by all attributes of 

UAV123_10fps. STRCF and BASTR get almost the same tracking performance on the OTB benchmark 

and TC-128 benchmark. However, as shown in Fig 5.13, BASTR obtains a greater improvement on 

STRCF and gets bigger than 4.0% improvement on all attributes of UAV123 benchmark, especially 

BASTR obtains bigger than 6.0% on ARC, IV, POC, SOB, SV, and VC. Compared to baseline BACF, 

BASTR obtains a gain of 13.2%, 10.8%, 12.6%, 13.8%, 13.0%, 12.4%, 12.0%, 14.8%, 15.6%, 9.4%, 

11.6%, 11.0% on the 12 attributes (ARC, BC, CM, FM, FOC, IV, LR, OV, POC, SOB, SV, and VC), 
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respectively. This experiment results illustrate the validity of the accuracy estimation about the object 

position. 

Fig 5.14 shows the success scores of the evaluated trackers on the 12 attributes. 
BASTR also gets better performance than STRCF. On the success scores, BASTR gets the 
improvement is not more pronounced than the precision scores. The improvement of 
BASTR gets a 4.0% or more increase on the most attributes. Compared to BACF, BASTR 
gets a great improvement of 9.9%, 8.3%, 7.7%, 8.6%, 8.9%, 9.0%, 8.2%, 9.5%, 10.7%, 7.2%, 
8.6%, 8.2% on the 12 attributes (ARC, BC, CM, FM, FOC, IV, LR, OV, POC, SOB, SV, and 
VC), respectively. 
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Chapter 6 

Experiments 

This section combines the core of the three algorithms mentioned above and analyzes and discusses the 

algorithms in depth. Based on the results of the experiment, we elaborate on the connections and 

differences between the three algorithms.  
In section 3.2, CFCA proposes a robust method to improve detection accuracy, combining the four 

maximum scores of the confidence map with the luminance histogram similarity. CFASE and BASTR 

adopt the same method as SRDCF to increase the location estimation accuracy. In section 6.1, I 

demonstrate the influence of location estimation by analyzing these two location estimation methods. 

Scale is an essential factor for visual tracking algorithms. It is impossible for tracking objects to 

maintain the same scale in many scenarios. If trackers ignore scale variation in tracking, the 

performance of trackers cannot get robust performance. We attach great importance to scale estimation 

in the proposed three trackers. In section 6.2, we analyze the influence of scale estimation for visual 

tracking. The qualitative analysis experiments are conducted on different benchmark databases to 

evaluate the reliability of the proposed scale estimation methods. 

In section 6.3, I demonstrate the connection among the mathematical model of the three proposed 

trackers. The three trackers are proposed based on discriminative correlation filters. With the 

development of research, the mathematical models of CFCA, CFASE, and BASTR become more and 

more complex, and the calculation burden becomes heavy. To comprehensively assess three trackers, 

we evaluate our trackers against the state-of-the-art trackers on different benchmark databases. 

6.1 The influence of location 
From chapters 3 to 5, we illustrate the details of CFCA, CFASE, and BASTR. CFCA is proposed based 

on the traditional CF tracker KCF. Like KCF, most CF trackers detect the target object's location by the 

maximum value of the confidence map, and this method produces a certain degree of errors. For 
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example, when the target's appearance changes drastically or similar objects in the background, the 

confidence map fluctuates more, with multiple peaks. Therefore, it is not accurate to use only the 

maximum value position as the target's position. In addition to this, most CF trackers carry out the HOG 

feature to train samples and detect the target object. The search region will be narrowed down because 

the cell size of the HOG feature is set to 4. In other words, the training and detection samples are 

constructed using a grid strategy with a stride greater than one pixel. The accuracy of the location 

estimation is decreased because of these two reasons. 

CFCA improves the detection accuracy by combining the four highest response scores of the 

confidence map and luminance histogram similarity. From the result of the experiments in chapter 3, 

the validity of this method is demonstrated. To address the negative influence of the HOG feature in 

detection, some DCF trackers [31, 66] obtain the optimization location using Newton’s method. This 

method is first proposed in SRDCF. Since the research region is narrowed down, the obtained 

confidence map also is narrowed down. SRDCF re-construct a pixel-dense confidence map by 

employing an interpolation approach and locating the best optimization location using Newton’s 

method. The computation burden of this process is low because only a few iterations are sufficient for 

convergence. CFASE and BASTR also adopts Newton’s method to detect the object's location. 

This section mainly analysis the difference between the two methods. Firstly, we replace Newton’s 

method of CFASE with the proposed method of CFCA (called ASECA). CFASE adopts the maximum 

score to detect the object location instead of Newton’s method (called ASEN). Based on the OTB 

benchmark database, the evaluation experiments are conducted between CFCA, ASECA, CFASE, and 

ASEN. The remaining parts of the tracker do not change, including parameters. 
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Figure 6.1 Comparisons with state-of-the-art DCF trackers on OTB-2013 benchmark in terms of precision plot. 

 

 
 

Figure 6.2 Comparisons with state-of-the-art DCF trackers on OTB-2013 benchmark in terms of success plot. 
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Figure 6.3 Comparisons with state-of-the-art DCF trackers on OTB-2015 benchmark in terms of precision plot. 

 

 
 

Figure 6.4 Comparisons with state-of-the-art DCF trackers on OTB-2015 benchmark in terms of success plot. 

 

The precision and success plots of the four trackers (CFCA, ASECA, CFASE, and ASEN) are 

shown in Fig 6.1 and Fig 6.2. CFASE obtains the highest scores on both the precision plot and the 

success plot. If CFASE does not adopt Newton’s method to improve the accuracy of the location 

estimation, instead, directly use the maximum score of the confidence map to detect the location 

(ASEN). The performance of CFASE has a significant loss, falling 6.4% in precision scores and 6.2% 

in success rate on OTB-2013 benchmark database. This result illustrates the importance of location 

estimation accuracy. The location estimation of CFCA is introduced into ASEN (ASECA), the 

performance of the tracker is improved, obtains the improvement of 3.5% and 3.0% in the precision 

score and the success scores, respectively. The location estimation of CFCA is further verified.  

From the result of OTB-2015 (see Fig 6.3 and Fig 6.4), compared to ASEN, CFASE achieves a gain 

of 4.0% and 4.4% on precision scores and success scores, respectively. ASECA only gets an 

improvement of 0.8% and 1.1% on precision scores and success scores, respectively. The location 

estimation of CFASE is more robust than CFCA. The main reason is that CFCA combines the luminance 

histogram similarity and the confidence map to improve the performance of the tracker. When 

background clutter or illumination variation occurs, the negative influence from the luminance 

histogram becomes more. 

CFCA is proposed based on the traditional CF tracker KCF, and CFASE is proposed based on 
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STRCF. Although both KCF and STRCF belong to the correlation filter tracker, some differences exist 

between the two frameworks. For feature extraction, CFCA only uses the HOG feature to train the CF 

model. CFASE trains the DCF model with hand-crafted features (HOG feature + CN feature + Gray 

feature). To better evaluate our tracker, we extract all gray image sequences (26 image sequences) from 

the OTB-2015 benchmark database.   

 

 
Figure 6.5 Precision plot of different DCF trackers on Gray image sequences. 
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Figure 6.6 Precision plot of different DCF trackers on Gray image sequences. 

Fig 6.5 and Fig 6.6 show the precision scores and the success scores of the gray image sequences. 

In contrast to the OTB-2013 database and the OTB-2015 database, CFCA unexpectedly achieves the 

best performance. The precision score of CFCA is as high as 95.2%, and the success rate is 72.4%. 

Compared to CFASE, CFCA obtains a gain of 2.5% and 1.0% on the precision score and the success 

score, respectively. This result shows the robustness of CFCA in tracking on the low-dimensional 

feature. ASECA obtains a precision score similar to CFASE and achieves a gain of 4.8% compared to 

ASEN. From the success score point of view, CFASE still gets better performance than ASECA. 

However, ASECA obtains an improvement of 3.3% on ASEN. Based on the same DCF framework, our 

proposed location estimation method can get a robust performance in low-dimensional features.    

6.2 The importance of scale estimation 
In this section, I demonstrate the influence of scale estimation by conducting evaluation experiments 

on databases. So far, many scale estimation methods have been proposed in visual tracking. In prior 

traditional trackers, scale-invariant key points [6, 13, 39] are used to estimate the scale variation, such 

as the Harris Corner Detector, scale-invariant feature transform (SIFT) [64], and speeded up robust 

features (SURF) [13]. However, the computation burden of key points-based scale estimation is severe. 

Scale pool uses the scale pyramid principle [29] to solve the scale variation of correlation filtering 

algorithms. Although the inaccurate scale estimation will affect the performance of the tracking detector, 

the multi-scale search can naturally promote each other with the detector positioning. So the mutual 

combination is relatively stable, and it is not easy to cause the scale estimation offset to be too large 

unless the detector completely takes the target. The computation burden of the scale pool depends on 
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the positioning cost of the detector, N-1 times the positioning cost of the detector (N is the number of 

pyramid levels). Scale pool is a widely adopted scale estimation method in correlation filter tracking. 

DSST is a novel and innovative scale estimation method. Since it estimates the object's scale based on 

the obtained location, DSST requires high location accuracy of the detector. DSST is the best choice 

for low frame-rate tracking. Besides, there is a scale estimation method (bboxRR) [34] that be used in 

deep learning tracking. As the same as DSST, bboxRR estimates the scale based on the obtained location. 

However, it is much more robust to target changes than DSST, and the accuracy requirements of the 

detector are not as high as DSST. Since there is no good update strategy, few people study bboxRR in 

target tracking for the time being. We adopt scale pool and DSST to adaptive estimate scale in tracking. 

Since the three proposed trackers adopt different frameworks to train the CF models, the scale 

estimation methods cannot be introduced into each other. However, the scale selection of BASTR can 

be introduced into CFASE. To evaluate the influence of the scale estimation method, we conduct the 

analysis experiments with eight trackers, such as CFCA, CFCANS (CFCA without scale estimation), 

CFASE, CFASENS (CFASE without scale estimation), CFASESE (CFASE with scale election), 

BASTR, BASTRNS (BASTR without scale estimation), BASTRS (BASTR with scale pool). 

 

 
 

Figure 6.7 Precision plot of different DCF trackers on OTB-2013. 
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Figure 6.8 Success plot of different DCF trackers on OTB-2013. 

 

Fig 6.7 and Fig 6.8 illustrate the precision and success scores of the proposed trackers on the OTB-

2013 benchmark. CFASE gets the best performance on the OTB-2013 benchmark. However, if CFASE 

does not adopt the scale estimation to solve the scale variation, the performance dramatically decreases. 

Compared to CFASE, CFASENS achieves a decrease of 7.2% and 11.2% on precision score and success 

score, respectively. When CFASE adopts the same scale selection method as BASTR to estimate scale, 

the performance of CFASESE has decreased. However, BASTR adopts the scale pool to estimate scale, 

BASTRS keep the same performance as BASTR on the precision score. BASTR gets better 

performance than BASTRS on the success score. The performance of BASTRNS also obtains a worse 

performance than BASTR, decreasing 6.0% and 10.1% on precision score and success score, 

respectively. In six trackers, CFCANS achieves the worst result. Compared to CFCANS, CFCA gets a 

gain of 8.6% and 9.5% on precision and success score, respectively. From the results of experiments, 

scale estimation is a significant factor for trackers. Even if CFASE and BASTR adopt robust 

frameworks, the performance of CFASE and BASTR without scale estimation is worse than CFCA. 

 



 75 

 
 

Figure 6.9 Precision plot of different DCF trackers on OTB-2015. 

 
Figure 6.10 Success plot of different DCF trackers on OTB-2015. 

 

Fig 6.9 and Fig 6.10 illustrate the proposed trackers' precision and success scores on the OTB-2015 

benchmark. CFASE still gets the best performance on the OTB-2015 benchmark. The gap between 

CFASESE and CFASE is closing. This result denotes the scale selection of BASTR can also achieve 

great performance in the high FPS video. However, since CFASENS does not adopt the scale estimation 
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to solve the scale variation, compared to CFASE, CFASENS achieves a decrease of 6.9% and 11.4% 

on precision and success scores, respectively. The negative influence of no scale estimation is not 

improved with the database increasing. The performance of BASTRNS still obtains a worse 

performance than BASTR, decreasing 4.1% and 8.0% on precision score and success score, respectively. 

However, BASTRS obtains better performance than BASTR, achieving a 1.0% increase on precision 

score and success score, respectively. Finally, CFCANS achieves the worst result. Compared to 

CFCANS, CFCA gets a gain of 6.2% and 8.3% on precision and success score, respectively. Although 

CFASENS and BASTRNS perform better than CFCA on the precision score, the success score is worse 

than CFCA. Scale estimation is more critical for success score. 

 
Figure 6.11 Precision plot of different DCF trackers on scale variation attributes on OTB-2015. 
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Figure 6.12 Success plot of different DCF trackers on scale variation attributes on OTB-2015. 

 

We demonstrate the experiment results of the scale variation attributes on the OTB-2015 benchmark 

database (As Fig 6.11, Fig 6.12). For 64 image sequences of the OTB-2015 benchmark with scale 

variation, trackers which use the scale estimation method obtain better performance than trackers 

without scale estimation. Compared to CFASENS, BASTRNS, and CFCANS, CFASE, BASTR, and 

CFCA get an improvement of 10.2%, 7.1%, and 7.2% on the precision score, respectively, 17.5%, 

13.5%, and 12.5% on the success score, respectively. For different trackers, scale estimation can 

significantly improve performance. 
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Figure 6.13 Precision plot of different DCF trackers on UAV123_10fps. 

 

 
Figure 6.14 Success plot of different DCF trackers on UAV123_10fps. 

Fig 6.13 and Fig 6.14 illustrate the proposed trackers' precision and success scores on the UAV-123 

benchmark. In contrast to the OTB benchmark, BASTR gets the best performance on the UAV-123 

benchmark. As shown in the OTB benchmark database, BASTRS achieves better than BASTR. On the 

UAV benchmark database, BASTR obtains better performance. Compared to BASTRS, BASTR gains 

4.0% and 2.8% on the precision and success scores, respectively. Although the performance of 
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CFASESE is imperfect CFASE on the OTB benchmark, CFASESE achieves better performance than 

CFASE on the UAV benchmark. This result also illustrates the validity of BASTR's scale estimation 

method. 

Moreover, CFASESE achieves better performance than BASTR on the OTB benchmark. However, 

if the temporal regularization parameters and the learning rate of CFASESE are adjusted on the UAV 

benchmark, CFASESE also obtains better performance. When 𝜇1 = 13, 𝛼1 = 0.3; 𝜇2 = 9, 𝛼2 = 0.5, 

CFASESE can achieve 67.8% and 49.9% on precision score and success score, respectively. In this case, 

CFASESE gets better performance than BASTR. BASTR obtains significant performance on the OTB 

and UAV benchmarks without parameters adjustment. Overall, BASTR's performance will be more 

consistent. UAV benchmark contains more complex scenarios and rigid targets than the OTB 

benchmark. The adaptive spatial regularization is suitable to improve the location precision. Therefore, 

the performance of BASTR achieves the best precision score on the UAV benchmark. Fig 6.13 and Fig 

6.14 illustrate the proposed trackers' precision and success scores on the UAV-123 benchmark. In 

contrast to the OTB benchmark, BASTR gets the best performance on the UAV-123 benchmark. And, 

CFASESE achieves better performance than CFASE.  This result denotes the scale selection of BASTR 

is suitable for long-term low frame-rate tracking. 

 
Table 6.1 Running speed of six trackers on OTB-2015. 

Trackers  CFASE     BASTR     CFCA     CFASENS     BASTRNS     CFCANS     CFASESE    BASTRS 

FPS             31.1            38.1          114.1          43.6              54.9               166.7              27.5            34.1 

 

Table 6.1 shows the running speed of six proposed trackers on the OTB-2015 benchmark database. 

The best result is shown in red font. Although trackers without scale estimation perform worse results 

than trackers using scale estimation, the running speed of trackers without scale estimation is faster than 

trackers using scale estimation. For example, CFCANS gets 166.7 FPS, 52 FPS faster than CFCA. If 

the target object’s scale has not significantly changed in some applications, the scale estimation can be 

considered discarded. 

6.3 The importance of framework 
Discriminative correlation filters trackers regard object tracking to a regression task. Based-DCF 

trackers aim to construct a robust correlation filter model based on the ridge regression model. As shown 

in Equation 2.1, CFCA adopts the simplest ridge regression model to improve the tracking performance. 

The excellent performance and real-time illustrate the effectiveness of CFCA. CFASE is proposed on 

STRCF. Compared to the L2 regularization of CFCA, STRCF adds spatial weight into the second term 

of regularization, and introduces a temporal regularization to maintain the consistency of the DCF 

model. CFASE proposes an improved method of temporal regularization so that the trained DCF model 
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can maintain more useful appearance information. Since the complications of the framework, the 

calculations burden of CFASE is heavy than CFCA. Compared to CFASE, the mathematical model of 

BASTR becomes more complex. To improve the robustness of BACF's framework, BASTR introduces 

temporal regularization and adaptive spatial regularization. This leads to the framework of BASTR can 

adapt to more scenarios. 

To analyze the effectiveness of the proposed trackers, we conduct evaluation experiments between 

the proposed trackers (CFCA, CFASE, and BASTR) and the baseline trackers (KCF, STRCF, and 

BACF) on different benchmark databases (OTB benchmark [93, 94], Temple Color benchmark [75], 

UAV benchmark [71]). 

 

 
 

Figure 6.15 Precision plot of the proposed trackers and baseline on OTB-2013. 
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Figure 6.16 Success plot of the proposed trackers and baseline on OTB-2013. 

 

Firstly, we analyze the performance of proposed trackers on the OTB-2013 benchmark database 

(As Fig 6.15 and Fig 6.16). Compared to baseline KCF, CFCA obtains a gain of 10.2% on the precision 

score and 11.7% on the success score, respectively. Since BACF enlarges the research region by solving 

the boundary effect, this leads to the performance of BACF being better than CFCA. BASTR gets better 

performance than BACF, increasing 4.9% and 6.1% on precision and success score, respectively. 

CFASE achieves the best performance on the OTB-2013. The experiment results of the OTB-2013 

illustrate the importance of the mathematical model in visual tracking. 
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Figure 6.17 Precision plot of the proposed trackers and baseline on OTB-2015. 

 
 

 
Figure 6.18 Success plot of the proposed trackers and baseline on OTB-2015. 

 

Fig 6.17 and Fig 6.18 show the precision score and the success score on the OTB-2015 benchmark 

database. Compared to baselines, the proposed trackers obtain a certain degree of improvement. CFCA 

obtains a gain of 10.7% on the precision score and 11.6% on the success score, respectively. Compared 

to STRCF, CFASE obtains a gain of 1.8% on the precision score and 2.7% on the success score, 
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respectively. As discussed in chapter 4, CFASE achieves remarkable improvement in some scenarios. 

BASTR obtains a gain of 4.7% on the precision score and 4.2% on the success score, respectively. 

 

 
Figure 6.19 Precision plot of the proposed trackers and baseline on TC128. 

 
 

 
Figure 6.20 Success plot of the proposed trackers and baseline on TC128. 

 

Since the TC128 benchmark only contains color image sequences, CFCA and KCF do not achieve 
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significant performance. However, CFCA improves 6.3% and 6.4% on the precision score and the 

success score, respectively. CFASE still maintains the best performance in six trackers and obtains a 

gain of 2.2% and 2.8% on the precision score and the success score, respectively. In contrast to the OTB 

benchmark, BASTR obtains more greatly improvement than BACF on the TC128 benchmark and gains 

10.4% and 6.4% on the precision score and the success score, respectively. 

 

 
Figure 6.21 Precision plot of the proposed trackers and baseline on UAV123-10fps. 

 

 
Figure 6.22 Success plot of the proposed trackers and baseline on UAV123-10fps. 
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In six trackers, BASTR is proposed with consideration of UAV. As shown in Fig 6.21 and Fig 6.22, 

BASTR achieves great success on the UAV database. Compared to BACF, BASTR obtains a gain of 

10.9% on the precision score and 8.0% on the success score, respectively. The performance of CFASE 

which gets the best performance on the OTB benchmark and TC128 benchmark worse than STRCF on 

the UAV123 benchmark. Since a high precision scale pool cannot meet the scale requirement of the 

UAV database, the performance of the tracker will be impaired. The framework of CFCA and KCF is 

the simplest, and the performance is the worst on the UAV123 benchmark. The results of the UAV 

benchmark demonstrate that it is vital for trackers to construct a robust mathematical model. 

 
Table 6.2 Running speed of DCF trackers on OTB-2015. 

Trackers  CFASE     BASTR     CFCA     STRCF     BACF     KCF 

FPS             31.1            38.1          114.1       33.4          45.0      168.7 

 
The experiment results of different benchmarks show the effectiveness of the proposed trackers. 

Table 6.2 shows the running speed of the six trackers on the OTB-2015 benchmark database. The best 

result is shown in red font. Although the performance of CFCA and KCF is worse than other DCF 

trackers, the running speed is faster than others. The slowest trackers also meet the requirement of real-

time. 
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Chapter 7 

Conclusion 

In this chapter, we summarize the most significant results and analysis discussed in this thesis. The 

present study demonstrates the importance of the high precision location, scale estimation, and the 

mathematical model by analyzing the proposed object tracking algorithms based on a discriminative 

correlation filter. As an integral part of computer vision, object tracking has been a hot research topic. 

However, object tracking still has some unsolved problems. Blindly pursuing significant performance 

and ignoring real-time algorithms cannot be considered an excellent algorithm. The proposed three 

trackers maintain the balance between outperformance and real-time. 

In chapter 3, I proposed an improved strategy CFCA based on the most straightforward correlation 

filter framework. CFCA adopts the novel scale pool to solve scale variation and increases scale 

estimation precision by adaptively adjusting the research region's size. At the same time, I combine the 

four highest scores and luminance histogram similarity to improve the detection accuracy. In the model 

update, I analyze the target object's state to determine whether update the appearance model and the 

correlation filter model. Certainly, when an object has drifted, the re-detection occurs by the peak 

location of the confidence map. The evaluation experiments demonstrate the effectiveness of the 

proposed tracker, and CFCA gets a high running speed (114.1FPS) with a single CPU. 

I proposed a robust tracker CFASE based on the complex DCF model in chapter 4. Although the 

temporal regularization improves the performance of the tracker, the trained DCF model only tends to 

the obtained DCF model in the previous frame. I improve the temporal regularization to learn more 

information from the previous few frames. For scale variation, I train the detection model and scale 

estimation model, respectively. I adopt a more effective method to determine the target object's state in 

CFASE. The judgment of the object's state is not used to update the model instead of determining the 

accuracy of scale estimation and location. The experiment results show the effectiveness of CFASE. 

In chapter 5, a robust DCF model BASTR is proposed. BASTR adaptive selects the scale estimation 

method to meet the requirement of more scenarios. Based on background awareness, I introduce 

adaptive spatial regularization and temporal regularization to increase the robustness of the DCF model. 
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I demonstrate the influence of detection location, the importance of scale estimation, and the importance 

of the mathematical model. By the experiment results of different benchmarks, I illustrate the 

effectiveness of the proposed trackers. 

In the future, there will be several works for improvement in the proposed trackers. Firstly, the 

proposed trackers perform many parameters to obtain outstanding performance. Although these 

parameters enhance the robustness of the model, they also reduce the stability of the trackers. The 

tracker will get a significant improvement with adaptive parameters. In addition, the complexity of the 

model improves the performance of the trackers. It also dramatically reduces the speed of the trackers. 

Simplification of the model is also essential to work in the future. 
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