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Abstract

This thesis theoretically tackles a coexistence of competing species problem in
mathematical ecology, that is, “Even if some species which are competing with
others are weaker, can they coexist with the stronger species in competiton for
some reason?” If so, it is called the competitor-mediated coexistence. This is a very
important ecological problem, because it closely correlates with species diversity.
The starting point of theoretical research on species diversity could be the law
of competitive exclusion, which was proposed by the Russian ecologist, G. Gause
([10]). The law can be summarized as follows: “Two species strongly competing
for the same resources cannot coexist if other ecological factors are constant.”
However, the coexistence of strongly competing species can be observed in nature,
and such coexistence plays an important role in species diversity. Therefore, the
occurrence of competitor-mediated coexistence would be one of the reasons for

species diversity.

From the viewpoint of competitor-mediated coexistence, it is important to
study the influence of exotic species on other native ones as exogenous effect. In
general, exotic species are not necessarily stronger and may be weaker than native
ones because they have evolved in a different ecological environment ([17]). But
even if exotic species is weaker, it might cooperate with weaker native species after
which the cooperation might reverse competitive relations among native species.
This gives us the following question: Whether or not competitor-mediated coexis-

tence can occur by a invasion of weaker exotic species?

This thesis is to consider the ecological situation where one exotic compet-
ing species invades the native system of two strongly competing species and dis-

cusses this problem theoretically using a three species competition-diffusion sys-



tems which is often used in mathematical ecology.

This thesis is composed of nine chapters and one appendix. The organization
of this thesis is as follows: In Chapter 1, I show earlier studies and clarified the

position of this thesis.

In Chapter 2, I first introduce a three species competition—diffusion system of
equations of Gause-Lotka—Volterra type, as a macroscopic model. I explain earlier
studies of the two species competition-diffusion system for two native species in
the absence of one exotic species. Especially, I explain the asymptotic behaviors
of solutions and traveling wave solutions of the system. Next, I introduce the
known results on the three species competition-diffusion system which studied the
influence of the invasion of one exotic species on two native ones. In addition, I
explain the meaning of “weakness” of the exotic species compared with the native

ones.

In Chapter 3, I numerically show the behaviors of solutions of the model where
one of the coefficients in the system is used as a free parameter and investigate
whether or not the invasion of one exotic species influences two native competing
species. The numerical result reveals that the resulting behavior is very sensi-
tive to a suitable parameter in a sense that three different types of asymptotic
behaviors arise depending on the parameter as follows: (a) the exotic species
fades out, but the competitive relation of native species is reversed so that the
stronger native species can not survive, (bl) the exotic species survives, so that
competitor-mediated coexistence exhibiting complex spatio-temporal pattern oc-
curs, (b2) the exotic species survives, so that competitor-mediated coexistence

exhibiting steadily rotating spirals occurs.

In Chapter 4, I introduce the existence of two species- and three species- trav-
eling wave solutions which were obtained in the earlier study on three species
competition-diffusion systems. In addition, I briefly mention the planar stability

of these traveling wave solutions in two dimensions.

In Chapter 5, I numerically discuss the interaction of two and three species
traveling wave solutions in two dimensions and find three types of asymptotic

behaviors of solutions which are qualitatively similar to the ones shown in Chapter

il



In Chapter 6, I investigate the interaction between two and three species trav-
eling wave solutions in one dimension. I observe that the interaction between
these traveling wave solutions can be classified into three types, depending on the
parameter: (a) collision and reflection, (b) collision and fusion, (c) collision and
annihilation. In addition, I show that the three types of asymptotic behaviors in
two dimensions can be explained by the interactions between the two and three
species traveling waves.

In Chapter 7, I numerically investigate the steadily rotating spirals shown in
Chapter 6. I observe that the front and back faces of the spiral arm near the core
consist of the two species- and three species- traveling wave solutions, respectively,
and the front face approches to the back one of former spiral arm, and homoclinic
traveling wave appears. In addition, I discuss the parameter dependency of core
radius on the resulting steadily rotating spirals.

In Chapter 8, I discuss about a newly-discovered two dimensional traveling
wave solutions which I call wedge—shaped traveling wave solutions. Such traveling
wave solutions are found in some parameter region where the exotic species can
not survive. I explain that this wedge-shaped traveling wave solutions can be
understood by suitably-angled superposition of two species- and three species- one
dimensional traveling wave solutions. In addition, I show the quantitative relation
between the velocities of the two one dimensional traveling wave solutions and the
wedge-shaped traveling wave solution.

In Chapter 9, I summarize this thesis. I emphasize that the behavior arising
in a three species competition-diffusion system is so sensitive to values of some
parameter in the system. Unfortunately, I have not yet fully understood this sen-
sitiveness, although it is caused by the following three factors: (i) planar stability
of the two species- and three species- traveling wave solutions, (ii) interaction be-
tween the two species- and three species- traveling wave solutions, (iii) difference of
speeds of the two species- and three species- traveling wave solutions. In addition,
I briefly mention my results from viewpoint of ecology.

Finally, in Appendix, I show the proof of Proposition used in Chapter 8.
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Chapter 1

Introduction

With the increasing deterioration of the global environment and the resulting loss
of species diversity, research on species diversity is increasingly gaining importance.
A good starting point of theoretical research on the issue of species diversity is
the law of competitive exclusion, which was proposed by the Russian ecologist,
G. Gause [10] who performed experimental studies on two competing species of
Paramecium, P. gqurelia and P. caudatum. The law of competitive exclusion can be
summarized as follows: “Two species strongly competing for the same resources
cannot coexist if other ecological factors are constant.” The theoretical basis
for conceptualizing this law quantitatively are typically formed using the Lotka-
Volterra, ordinary differential equations for two competing species:
(10t »
= (re — bau — agv)v.
In (1.1), u(t) and v(¢) denote the population densities of two competing species
U and V at time ¢, respectively. The parameters 7;, a; and b;; (5,7 = 1,2(i #
j)) represent the intrinsic growth rates, intraspecific and interspecific competition
rates, respectively, which are all positive constants. The equations given in (1.1)
represent a well known fundamental model in mathematical ecology. For this
model, strongly competing species U and V can be represented by the following
relationship:
L W

(1.2)

E T2 ay’
Under these conditions, any non-negative solution of (1.1) generally tends either to

(r1/a1,0) or to (0,72/as). This means that competitive exclusion occurs between
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the two species.

However, strongly competing species exist in nature. To understand why such
coexistence appears, many theoretical studies have been performed in the filed of
mathematical ecology.

For example, some studies have been undertaken to explore the phenomenon
of coexistence resulting from spatial segregation. In this approach, a diffusion
term exhibiting the random walk is introduced into the Lotka—Volterra ordinary

differential equations (1.1) as follows:

u; = diAu + (r; — a1u — bypv)u,
{t but (r — o = bv) t>0,zeQ, (1.3)

vy = doAv + (13 — byt — agv)v,

where the parameters d; and d; represent diffusion rates, which are positive con-
stants. Let  (C RM(M = 1,2)) be a bounded domain and consider (1.3) in £
with Neumann boundary conditions:
%=g§=0, t>0,z € 0N (1.4)
We first note that the stable attractor of (1.3) consists only of equilibrium solutions
(Hirsch [12]). On one hand, Kishimoto and Weinberger [21] showed that if  is
convex, any nonconstant equilibrium solutions are unstable, even if they exist. This
means that if (1.3) is satisfied, U and V cannot coexist, no matter if a diffusion
effect is introduced. On the other hand, if the domain (? is not convex, then the
structure of equilibrium solutions is not so simple but depends on the shape of .
For example, Matano and Mimura [25] showed that if Q takes a suitable dumb-
bell shape, then there exist stable non-constant equilibrium solutions that exhibit
spatial segregation of the competing species in the sense that one region is nearly
occupied by U while the other is occupied by V.
Another way by which strongly competing species U and V might coexist
results from the effects of the two species avoiding other species. Shigesada,

Kawasaki, and Teramoto [31] proposed the following cross—diffusion equations:

{ut = A{(d1 + anu + arzv)u} + (r1 — a1u — biov)y, t>0,z €, (1.5)

vy = A {(ds + ag1u + agu)v} + (12 — boju — agv)v,

2



where the non-negative parameters o;;(¢ = 1,2) and «;;(¢, 7 = 1, 2(¢ # j)) represent
environmental pressures owing to the intraspecies and interspecies interferences,
respectively. Using local bifurcation theory, Mimura and Kawasaki [28] showed
that, with boundary conditions (1.4), (1.5) has stable nonconstant equilibrium
solutions for a one dimensional problem. Moreover, using singular perturbation
methods, Mimura [27] and Mimura, Nishiura, Tesei, and Tsujikawa [29] showed
the existence of nonconstant equilibrium solutions, and Kan-non [18] discussed the
stability of those solutions.

Another approach exploits the possibility of coexistence when the environment
changes in time. In this direction, Hutchinson [15] introduced seasonal effects into
the coefficents of the following Lotka—Volterra ordinary differential equations with

time dependent coefficients:

{ut = (r1(t) — a1 (t)u — bya(t)v)u,

vy = (r2(t) — by (t)u — az(t)v)v, t>0, (16)

where a;(t) and b;;(t) (¢,5 = 1,2 (i # j)) are periodic functions that represent
seasonal effects. Cushing [5], Mottoni and Schiaffino [6] showed that (1.6) has
stable periodic coexistence solutions.

Similarly, the possibility of coexistence can be considered when the environment
changes in space. For example, by using two timing methods, Ei and Mimura
[9] discussed how spatial inhomogeneities in the environment can influence the
coexistence of two competing species.

In addition, theoretical studies have been conducted on competitor-mediated
coexistence in which the number of species is increased, by using the N-species
Lotka—Volterra ordinary differential equations:

du: Gl
d—; = (’I"i — a;U; — Z bz-juj)u,-, t> 0, (7, = 1, s N) (17)
N

=T,
This approach is based on the idea that “the enemy of my enemy is my friend;”
In (1.7), u;(t) denotes the population density of the i-th species, and r;, a;, and
bij (1,7 = 1,2,...N(¢ # j)) represent the intrinsic growth rates, intraspecific
and interspecific competition rates, respectively. All these parameters are positive

constants.



May and Leonard [26] showed the existence of coexistence solutions with non-
periodic oscillations in (1.7) with N = 3, and Arneodo, Coullet, and Tresser [1]
showed the existence of coexistence solutions with chaotic behavior in (1.7) with
N = 4. One of the important results of this approach is the theorem by Hirsh [13],
which asserts that “all of the dynamics of the attractor of N-species competitive
Lotka—Volterra ordinary differential equations occur on a manifold of dimension
N —1.” Hirsh’s theorem implies that limit cycles cannot exist in (1.7) with N < 3,
and chaos cannot exist in (1.7) with N < 4. Focusing upon (1.7) with N = 3,
the asymptotic state is either a critical point, a heteroclinic orbit, a combination
of heteroclinic orbits, or a limit cycle. The occurrence of the first three can be
easily determined from a geometric analysis of nullclines, but the existence of a
limit cycle is difficult to be determined. The following question arrises: In which
situation would limit cycles exist? Using a geometric analysis of nullclines, Zee-
man [34] classified (1.7) with N = 3 into 33 possibilities, and van den Driessche
and Zeeman [33] showed that 27 of those classes cannot have limit cycles. In the
remaining six classes, multiple limit cycles were found one after the other ([14],
[23], [24], [11], [22]), but there is yet no complete classification theory that predicts
the long-term behavior of these classes.

Recently, the N-species Lotka—Volterra reaction-diffusion equations,

du; i#j .
5 = d;Au; + (r; — au; — Z bijuj)u;, t>0,z€Q, (i=1,---N) (1.8)

j=1,-,N

have been studied. Here, d; is the diffusion rate of population densities u; (i =
1,2,...N). Ei, Ikota, and Mimura (8] have shown that (1.8) with N = 3 have
spatiotemporal inhomogeneous solutions when the species are equivalently strong
and involve a cyclic property in some sense. These solutions occur even if the
diffusionless system (1.7) has no stable coexistence solutions (as is examined in
Chapter 2). Quite recently Chen, Hung, Mimura, Tohma and Ueyama (2] showed
the existence of spatial inhomogeneous equilibrium solutions for (1.8) with N = 3,
even if only one species is the strongest (This is also examined in Chapter 2).
From the viewpoint of competitor-mediated coexistence, it is important to

study the influence of exotic species on other native ones as exogenous effect. In

4



general, exotic species is weaker than the native ones because it has evolved in
a different ecological environment ([17]). But even if exotic species is weaker, it
might cooperate with weaker native species, after which the cooperation might

reverse competitive relations among native species.

From this perspective, the following question is to be addressed: First, consider
the situation in which there is a two native species system, where one is stronger
than the other in competition, that is, competitive exclusion occurs between them.
Second, consider a situation in which a single exotic competing species invades the
native system. Is it possible for the modified system of two native species and one
exotic species to coexist, even if the exotic species is relatively weaker than either
of the native species? In other words, does competitor-mediated coexistence occur
by the balance of these three species even if the corresponding equation (1.7) has

no stable coexistence solution?
This thesis aims to examine this question from standpoint of (1.8) with N = 3.

The content of this thesis is as follows: In Chapter 2, I describe the system
which I will use as a model and its underlying assumptions. In Chapter 3, I examine
(1.8) with N = 3 numerically in a square domain with the Neumann boundary
conditions. By taking b,z as a free parameter and fixing other parameters suitably,
it will be considered whether or not the invasion of an exotic species (say,W)
influences the competition of two native species (say, U and V) in the (U, V, W)
system. In Chapter 4, I consider three species traveling wave solutions for U, V,
and W in order to obtain essential information on the occurrence or nonoccurrence
of competitor-mediated coexistence of U, V, and W. In Chapter 5, I evaluate the
interaction of two— and three— species traveling wave solutions in two dimensions
and show the occurrence of dynamic coexistence of U, V, and W for suitable
values of bo3. In Chapter 6, to understand the occurrence and nonoccurrence of
dynamic coexistence of U, V, and W in two dimensions, I discuss the interactions
of two- and three-species traveling wave solutions in one dimension. In Chapter 7, 1
examine the spiral coexistence of U, V, and W which exhibits dynamic coexistence
of the three species and the dependence of the core radius on the parameter bys.

In Chapter 8, I discuss the existence of wedge-like traveling wave solutions in two

5



dimensions. In Chapter 9, I provide concluding remarks on the results obtained in
the previous chapters. Finally in Appendix, I prove a proposition used in Chapter
8.



Chapter 2

Model system and assumptions

As a simple situation of competitor-mediated coexistence in spatio-temporally

homogeneous environment, I consider the interaction of three competing species
under the situation where one exotic competing species (say, W) moving randomly
invades system of two native species (say, U and V') which are strongly competing
and moving randomly. The situation can be theoretically discussed by the following

three-species reaction-diffusion system of Gause-Lotka—Volterra type:

Uy = dlAU + (7'1 — AU — b12’U - b13’U))’U,,
vy = daAv + (13 — byyu — agv — bygw)v, (2.1)
Wy = d3A’LU + (7"3 - b31u - b32’U — agw)w,

where u(t, z), v(t,z) and w(t,z) denote the population densities of U, V and W
at time t and position z, respectively. The parameters d;, 7;, a; and b;; (3,5 =
1,2,3(i # j)) represent the diffusion rates, intrinsic growth rates, intra-specific
and inter-specific competition rates, respectively, which are all positive constants.
I consider (2.1) in a bounded domain €2 in R¥(N = 1,2) where the boundary

conditions are
ou_dv_du_
ov Oov Ov
where v is the outerward unit normal vector on the boundary 0Q of 2 and the

0, t>0,z€dQ, (2.2)

initial conditions are

w(0,2) = uo(z) > 0, (0,z) = vo(x) >0, w(0)=wo(z) >0, z€Q (2.3)



I start with a simple two competing species system of (2.1) in the absense of

w’
ug = diAu + (r; — ayu — b1av)u,
o (rn-o 12) t>0,zeN (2.4)
vy = doAv + (13 — bo1u — agv)v,
with the boundary and initial conditions
ou Ov
= 0 2.
3~ 3 0, t>0,z€d (2.5)
and
u(0,z) = up(z) > 0, v(0,z) = vo(z) 20, =z €, (2.6)
respectively.

I first note the following two theorems:

Theorem 2.1 (Hirsch [12]). The stable attractor of (2.4) - (2.6) consists of equi-

librium solutions.

Theorem 2.2 (Kishimoto—Weinberger [21]). If 2 is convex, any non-constant

equilibrium solutions of (2.4) - (2.6) are unstable, even if they exist.

These theorems indicate that the stable equilibrium solutions of (2.4) without

diffusion

{% = (r1 — a1u — byv — bzw)u, s 0 27)

% = (7‘2 — b21u — Q¥ — b23’U))U,
give an important information on the asymptotic behavior of (u(t, z),v(t,z)) of
the problem (2.4) — (2.6).

I now impose the following assumption on (2.4):

a _n_ba

(A1) (2.8)

E T2 az’
Then, one finds that stable equilibria of (2.4) and (2.5) are only (r;/a;,0) and
(0,75/az) and moreover, any positive solutions (u(t,z),v(t,z)) generically tends
to either (r;/a;,0) or (0,72/a2) as t tends to infinity. This ecologically implies that
competitive exclusion occurs between U and V' as shown in Figure 2.1.

These results give a naive question to the problem (2.4)—(2.6): Which species

becomes dominant under strong competition?
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(a) U is dominant where d; = a; = 1(1 = 1,2), r1 = 28, bjs = 22/21, by; = 37/21.
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Figure 2.1: Numerical simulations of (2.4) — (2.6) in Q = (0,200) x (0,200) where
light and dark gray colors show the areas occupied by U and V, respectively.

In general, this question is difficult to answer. However, one information to an-
swer it is the existence of one dimensional traveling wave solution (u(z),v(z2))(z =

x — 6t) with velocity . This solution is given by

—Quz = dluzz + (T'l — a1 u— b12 'U) u,
z €R, (2.9)
—0v, = dav,, + (r2 — by u — azv) v,
with the boundary conditions
lim (u(z2),v(z)) = (0,72/az),
g=r=as (2.10)

lim (u(2), (2)) = (r1/a1,0).

By using a suitable transformation, (2.9) and (2.10) can be rewritten as

—0u, = u,, + (1 —u—cv)u,
z € R, (2.11)

—0v, = dv,, + (a — bu — v) v,

9



with the boundary conditions

i (u(z),0(2)) = (0,a), o1
lim (u(2), v(2)) = (1,0). |
Then (A1) is rewritten as
-i— <a<b. (2.13)

As for traveling wave solutions of (2.11) with (2.13) and (2.12), the following

theorems are already known:

Theorem 2.3 (Kan-non [19]). Under (2.13), there is a unique 0 = 0, such that
a solution (u(z),v(z)) of (2.11) and (2.12) exists.

Theorem 2.4 (Kan-non and Fang [20]). Under (2.13), the traveling wave solution
(u(z),v(2)) of (2.11) and (2.12) is asymptotically stable.

Theorem 2.5 (Mimura and Rodrigo [30]). Under (2.13), the unique traveling
wave solutions (u(z),v(2)) of (2.11) and (2.12) can be explicitly represented for

suitable parameter regimes of d, a, b, and c, as follows:

Type-1
u(z) = 1 [1 + tanh(¥2 )] , 21
2 .
v(z) =2 [1 — tanh(¥2 )]
with
—2+4ac
6= , 2.15
Vv 2ac ( )
provided that
1 5a
d= 30 ,b=2+ 3 ac
hold.
Type-2 \
u()—i[l—l—tanh("\/- )] , 2.16)
v(z) = 2 [1 — tanh (Y2 )| '
4 2v6
with
—-5+ac
= ——— 2.17
V6 + 6ac’ ( )

10



provided that

5+ 6a — ac
d_—1+ac ,b=5+5a—ac
hold.
Type-3
1 1 2
u(z) = 1 [1 + tanh(; 12 )] 218)
v(z) =% [1 — tanh (—1—\/— )]
with
g = —2+3ac (2.19)

V6

provided that
d=5+6a—3ac,b=g+2a—ac

hold.

If the velocity 6., < 0, I can say that the species U is stronger than V in a sense
of coupling of diffusion and competition, as shown Figure 2.2 (a), and if 8, > 0,
vice versa, as shown in Figure 2.2 (b).

Hereafter I assume

(A2) fuv < 0.
(2.20)
Under the assumptions (A1) and (A2), I consider the situation where an exotic
competing species W invades in the (U, V) system, and discuss the possibility of
competitor-mediated coexistence of U and V in the presence of W, by using the
three species competition—diffusion system (2.1) with (2.2) and (2.3).
For this problem, I should mention the result obtaind by Ei, Ikota and Mimura
[8]. They first consider the diffusionless system corresponding to (2.1)

U = (’f'l —a1u — b12’U - b13’LU)u,
v = (’1"2 — bo1u — av — b23w)v, t >0, (221)
wy = (3 — bg1u — byav — azw)w,

and assume that
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(b) 01“, = 2.57... where dz = Q; = 1(1 = 1,2), ™ = 28, b12 = 37/21, b21 = 22/21

Figure 2.2: Traveling wave solutions of (2.9) and (2.10).

(EIM) P = (r1/a1,0,0), P, = (0,72/a2,0) and P; = (0,0,73/a3) are asymptotically

stable and other critical points are all unstable.

Then it is known that any positive solution of (2.21) generically converges to
any one of P;, P, and P; ([33]), as shown in Figure 2.3. It ecologically indicates
that the exotic species W is strong in the (U, V, W) system in a sense that P; is
stable. This implies the occurrence of competitive exclusion among U, V and W .

Under this assumption (EIM), if di, d2 and d3 all sufficiently small, one could
expect that the domain (2 is generally divided by U, V and W in a short time as

shown in Figure 2.4.
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Ps

P2
u P:

Figure 2.3: Trajectories of (2.21) in (u, v, w)-space where r; = a; =1 (i = 1,2, 3),
biz =ba3 =bg1 =1, by1 = bz =b13=3.

Since stable critical points of (2.21) are only P, P, and P;, U and V are

strongly competing so that (A1) holds, Therefore, Theorem 2.3 indicate that there

is a stable traveling wave solutions (u(z),v(2)) (z = £ — Oy,t) . Similarly, there

are stable traveling wave solutions (v(z),w(2)) (z = £ — Oyut) of

p
_vavz = dZUzz + ('rZ — QU — b23w)v,

and (u(z2),w(z)) (z =z — Oy, t) of

z€R,
—Opw, = dsw,, + (Ts — bgov — asw)u% 99
\ lim (v(2),w(z)) = (0,73/as), (222)
k}i_.rf,lo(v(z)’w(z)) = (T2/a’270)’
(— wullz = dluzz + (Tl —a1u — b13’IU)U,
z €R,
_ewuwz = d3wzz + (T3 - b31U - a3’LU)'LU, (223)

 lim (u(z), w(2)) = (r1/ax,0),

\zlggo(u(z%w(z)) = (077‘3/0’3),

where 0,,, and 6,,, are the velocities of the traveling wave solutions of (2.22) and

(2.23), respectively.

Here, in addition to the assumption (EIM), they assume the parameters d;,
i, a; and b;; (4,5 =1,2,3(i # j) ) to satisfy

Opw <0 and 6, < 0. (2.24)
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(a)

Figure 2.4: Appearance of three phase separation in (2.1)—(2.3) where black, dark
gray and light gray colors show the areas occupied by U, V and W, respectively.
In addition, it indicates that the darker an area is the more of them are in the area.
Furthermore, white colors show the areas not monopolized by a certain species.
di = 00]., T = a; = 1, bij =3 (’L,] = 1,2,3, (l 75 ])) (a) t = 0, (b) t = 25, (C)
t = 5. (Figure 1 in [8]).

(A2) and (2.24) indicate that U, V and W possess the cyclic property in a sense of
the velocities of traveling wave solutions. Then they demonstrated that spiral-like

coexistence of U, V and W occurred, as shown in Figure 2.5.

This result suggests the occurrence of dynamic coexistence among (u(t,z),
v(t,x), w(t,z)), even if competitive exclusion occurs among (u(t),v(t),w(t)) of
(2.21). In other words, spatio—temporally inhomogeneous competitor-mediated
coexistence occurs, even if it can not appear in the diffusion less system.

I note that in their assumption, the exotic species W is as strong as two native
species U and V. But, in general, exotic species are not necessarily stronger and
may be weaker than native ones because they have evolved in a different ecological

environment ([17]).
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Figure 2.5: Appearance of dynamic spirals of (2.1)—(2.3) where d; = 0.01, r; =
a; = 1, (Z = 1,2,3), b12 = b23 = b31 = 2, b21 = b32 = b13 — Black, dark
gray and light gray colors show the areas occupied by U, V and W, respectively.
Furthermore, white colors show the areas not monopolized by a certain species.
(a) t =0, (b) t =100, (c) t = 200, (d) ¢t = 400. (Figure 4 in [8])

From this reason, I consider the situation that the exotic species W is relatively
weak in the (U, V,W) system. Of course, a weak exotic species can not survive
in the competing native species, in general. But if the weaker competing native
species behave as “the enemy of my enemy is my friend”, weaker exotic species may
survive. Consequently, the following a naive question arise: can a weaker exotic
species change the competitive relation when the weaker native species behave as

“the enemy of my enemy is my friend”? Along this direction, I mention the result
for (2.1)—(2.3) in [2]. It is assumed that

(CHMTU) For (2.21), P, = (r1/a1,0,0) is stable and a positive critical point P* =
(u*,v*,w*) is also stable, while other critical points including P, = (0, 72/as, 0)

are all unstable.
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This assumption implies that W is weak in sense that P3 (= (0,0,73/a3)) is un-
stable. Then it is shown in [2] that there are spatio-inhomogeneous equilibrium

solutions exhibiting coexistence of U,V and W, as shown in Figure 2.6.

Figure 2.6: Numerical simulation of (2.1)-(2.3) where d; = 1(i = 1, 2, 3), r; = 576,
ro = B py = B4, = 572, ap = 1804, a3 = 594,b; = 308, bz = 308,
by = 4420, byz = 308, by, = 5850, bsy = 2970 (Figure 9 in [2])

This says that the weak exotic species can change the competitive relation and
generates spatially inhomogeneous stable coexistence state. This result seems not
to be interesting from the viewpoint of competitor—mediated coexistence, because
it already occurs in (2.21), since (u*,v*,w*) is assumed to be stable.

Now, return to the problem stated in Chapter 1: Is it possible for the modified
system of two native species and one exotic species to coezxist, even if the exotic

species 1s relatively weaker than either of the native species? A big difference from
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the (EIM) and (CHMTU) is “ W is weaker than either of the native species”,
and this corresponds to P; = (r1/a;,0,0) and P, = (0,72/a2,0) are stable, while

P3 = (0,0,73/a3) is unstable. More precisely, I assume

az bos T2
A3 —_—— < —, 2.25
(A3) bsa as T3 (2.25)

which implies that V' always survives, while W is always extinct in the absence of
U and

a3 1T by
A4 — < =< =, 2.26
( ) bis T3 ay ( )

which implies that W and U are strongly competing in the absence of V.

Furthermore, I assume

(A5) The positive critical point (u*,v*,w*) of (2.21) does not exist or is un-

stable even if it exists.

(A1), (A3), (A4) and (A5) indicate that any positive solution (u(t), v(t), w(t))
of (2.21) generically tends to either (r1/a1,0,0) and (0,73/az,0) ([3]), that is, the
exotic species W does not influence on the (U,V) system so that competitor-
mediated coexistence never occurs in (2.21).

Keeping this result in mind, come back to the problem (2.1) - (2.3).

First, I consider the case when d;(i = 1,2,3) are large enough. Then, the

following theorem is obtained:

Theorem 2.6 (Conway-Hoff-Smoller [4]). Suppose that the solutions (u(t,z),
v(t, z), w(t, z)) of (2.1)—(2.3) are uniformly bounded in time, Then if d;(i = 1,2, 3)

is large enough, (u(t,z),v(t,z), w(t,x)) are asymptotically spatially homogeneous.

However, when all of d; (i = 1,2,3) are not necessarily large, the question
whether inhomogeneous asymptotic states exists or not has not been unclear. The
aim of this thesis is to answer this question.

First, I note that (2.22) and (2.23) have traveling wave solutions with the
velocities 6y, and 0,,, respectively. I should remark that (A3) implies 6,, < O.

As for 0,,,, I assume
(A6) Oue < 0. (2.27)
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Figure 2.7: Trajectories of solutions of (2.21) in (u, v, w)-space with stable critical
point P; and P, and an unstable critical points P; where r; = 28, a; = 1, bjs =
22/21, bis = 4, byy = 37/21, by = 26/21, bsp = 22/21 (i = 1,2, 3).

Because if ,, > 0, then by combining with 6,, < 0, one can say that U is
stronger than both V' and W in the coupling of diffusion and competition. There-
fore, competitior-mediated coexistence could not be expected. This is numerically
confirmed in Figure 2.8.

Under the assumptions (A1) — (A6), I discuss the problem (2.1)—(2.3) to study
the possibility of competitor-mediated coexistence of U and V in the presence of
w.

(3
°
-

s s

(al) t =0 w@®t=1

% 00 150 00

(a3) t=4

% P

Figure 2.8: Numerical simulations of (2.1)—(2.3) for the case 6,,, > 0 where d; = 2,
d2 = d3 = 1, a) = ay = 1, as = 15, r; = 28(Z = 1,2,3), b12 = 22/21,b13 = 2,b21 =
37/21,by3 = 0.75,b3; = 26/21,b3p = 22/21. Dark  gray, light gray and black
colors show the areas occupied by U, V and W, respectively.
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Chapter 3

Numerical simulations

In this chapter, I numerically study the two dimensional problem of (2.1)—(2.3),

fixing the parameters in (2.1) as

dl = 1,d2 = 1,d3 = 1, (318,)
ry = 28,7, = 28,13 = 28, (3.1b)
a; = ].,Cl2 = 1,a3 = 1, (31C)

b12 = 22/21, b13 = 4, b21 = 37/21, b31 = 26/21, b32 = 22/2]. (31d)

and taking bo3 as a free parameter, for which
0<by <l (32)

is required by (A2). I note that critical points of (2.21) except for the positive
one are independent of bog.

In the absence of W, I note that the domain 2 is eventually occupied by U
by (Al) and (A2), as was already shown in Figure 2.1 (a), that is, competitive
exclusion occurs between U and V. I now consider the situation where an exotic
species W invades in the (U, V) system at some time (say, ¢ = 3.0), as shown in
Figure 2.1 (a2).

When by = 0.2, Figures 3.1 (a) and (b) exhibit that when W invades the
V-region in §), it immediately fades out, because W is absolutely weaker than V.
When W invades vicinities of the boundaries of U- and V-regions, it strongly

interacts with U and V so that U, V and W seem to persist for some time. Here
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two interesting behaviors can be observed in Figure 3.1: One is the occurrence
of a traveling wave like behavior of the three species U, V and W as shown in
Figures 3.1 (f) and (g), and the other is the situation where the domain € is finally
occupied by only V, as shown in Figures 3.1 (f)—(h). These clearly indicate that the
cooperation of V and W reverses the competitive relation with U. When byz = 0.4,
the behavior is drastically changed. Figure 3.2 demonstrates the appearance of
complex spatio-temporal coexistence of the three competing species U, V and
W. When b3 = 0.6, as shown in Figure 3.3, one can observe spatial-temporal
coexistence, too, but the behavior is different from the previous one in a sense
that there successively occur a pair of rotating spirals of the three species. When
b3 = 0.8, as shown in Figure 3.4, the behavior becomes much simpler so that
only V survives. Consequently, one can see that competitor-mediated dynamic
coexistence occurs between U and V in the presence of W, sensitively depending
on values of bo3, even if U and V have a relation of competition exclusion in the
absence of W and W is weaker than the native species.

In the succeeding chapters, I will discuss why the behavior is so sensitive to

values of by3.
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Time=
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(g) t = 130 (h) t = 200

Figure 3.1: Invasion of W into (U,V) system where d;,7;,a; and b;;(i,j =
1,2,3(i # j)) satisfy (3.1) and bes = 0.2. Cooperation of V and W reverses
the competitive relation with U. Dark gray, light gray, and black colors indicate
the areas occupied by U, V and W, respectively.
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Figure 3.2: Invasion of W into (U,V) system where d;,7;,a; and b;;(i,j =
1,2,3(i # 7)) satisfy (3.1) and byg = 0.4. Complex spatio-temporal coexistence
appears. Dark gray, light gray, and black colors indicate the areas occupied by U,
V and W, respectively.
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Time=

Figure 3.3: Invasion of W into (U,V) system where d;,7;,a; and b;;(i,j =
1,2,3(i # 7)) satisfy (3.1) and beg = 0.6. Steadily rotating spirals appear. Dark
gray, light gray, and black colors indicate the areas occupied by U, V and W,
respectively.
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Figure 3.4: Invasion of W into (U,V) system where d;,7;,a; and b;;(i,j =
1,2,3(i # j)) satisfy (3.1) and bys = 0.8. Cooperation of V and W reverses
the competitive relation with U. Dark gray, light gray, and black colors indicate
the areas occupied by U, V' and W, respectively.
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Chapter 4

Three species traveling wave
solutions

I first note that Figures 3.1 (f) and (g) suggest the appearance of a three species
traveling wave which is represented by a solution of the form (u(z), v(2), w(2))(z =

x — 0t) with velocity 0 satisfying

—0u, = diu,, + (11 — a1u — bi2v — bysw)u,
—0v, = dav,, + (12 — ba1u — agv — bogw)v, z € R, (4.1)
—0wz = d3wzz —+ (7"3 — b31u - b32’U — a3w)w,

and
T30

. (4.2)
lim (u(2),v(2),w(z)) = (51—,0,0) .

—00

lim (u(z),v(2),w(z)) = (o, 2,0) ,

For the problem (4.1) and (4.2), it is already known that there uniquely exists
a two species traveling wave solution (u(z), v(z),0) with the velocity 8 = 6,,(< 0),
which is shown in Figure 4.3 (a) and that it is locally stable ([16]). I call this
traveling wave solution a trivial one. A natural question arises: do non-trivial
traveling wave solutions of (4.1) and (4.2) exist? Unfortunately, it has not yet
proven. However, recently, for some parameter regime, exact non—trivial traveling

wave solutions have been found:

Theorem 4.1 (Chen-Hung-Mimura—-Ueyama(3]). The problem (4.1) and (4.2)
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admit an ezact traveling wave solution (u(z),v(2),w(z)) of the form

u(2) = 32-(1 + tanh z),
v(z) = ££(1 — tanh 2)?, (4.3)
d1—20d3—r1+T:; 2
w(z) = iiz(%fr—ab—ml)i—a(l + tanh” 2),
with
g = 4a3d1 - 20b13d3 — agr + b137‘3, (44)
2(a3 —_ b13)
provided that
b . a2(8a3d1 et 4b13d1 —_ 20b13d3 ot b137‘1 + b137"3)
2 = )
' (ag — bia)ra
b N al(—8a3d1 + 16a3d2 — 16b13d2 —+ 40b13d3 + 2&37’1 + azrqg — b13’l"2 - 2b137‘3)
2 (a3 - b13)7‘ 1 ’
bon = —24a3d2 + 24b13d2 + asro — b137‘2
B 4d; — 20ds — 11 + T3
bar — —4aya3d; + 4a1a3d3 + 16a1b13ds + arasry + a1a3rs — 2a1b1373
3 (aa - 513)7‘1 ’
b _ as (4a3d1 + 4a3d3 — 24b13d3 + asri -+ a3r3)
% (as - b13)7” 2
hold.

For example, if d;, r;, a; and b; (3,5 = 1,2, 3(: # j)) are specified to satisfy (3.1)
and byz = 3/4, the exact solution (u(z),v(z),w(z)) of (4.1) and (4.2) is explicitly
given by

u(z) = 14(1 + tanh z),
v(2) = 7(1 — tanh 2)?,
( ) B 4( 2) (4.5)
w(z) = 3(1+ tanh® 2),
o=-1,

which is shown in Figure 4.1.

By using the numerical method of AUTO ([7]), they drew the global solu-
tion structure of non-trivial traveling wave solutions of (4.1) and (4.2) when by3 is
varied, as shown in Figure 4.3, where the upper solution branch is stable, while
the lower one is unstable. When by3 takes 0.2,0.4,0.6, and 0.8, for instance, the
corresponding velocity 8., of the stable non-trivial traveling wave solution is nu-

merically obtained as 6, =0.69...,1.30...,1.97... and 2.92. .., respectively.
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Figure 4.1: An exact solution of (4.1) and (4.2), where d;, 7, a; and b;;(i,j =
1,2,3(i # 7)) are specified to satisfy (3.1) and by = 3/4. The light gray, dark gray
and black lines represent u, v and w, respectively.

For by3 = 0.8, Figures 4.3 (a), (b) and (c) demonstrate one trivial and stable and
unstable non-trivial traveling wave solutions.

I thus find that (4.1) and (4.2) have two stable traveling wave solutions. I
numerically confirm that these traveling wave solutions are planary stable in two

dimensional problem as shown in Figures 4.4 and 4.5.
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Figure 4.2: Global structure of traveling wave solutions when by is varied ([3]),
where d;, r;, a; and b; (3, § = 1,2, 3(% # j)) are specified to satisfy (3.1). Solid black
and gray lines represent stable and unstable non-trivial traveling wave solutions,
respectively, while the dashed black line represents a stable trivial traveling wave
solution, which is independent of bs3. A black circle indicates the exact non—trivial
traveling wave solution shown in Figure 4.1.

9 [ 0 —
=16 -3 [ 5 10 -0 -5 o 5 0 -i¢ -5 [ 5 10

(a) Stable trivial (b) Unstable non-trivial (c) Stable non-trivial
traveling wave . traveling wave traveling wave
Oy = —2.57... Ouow = —1.36. .. O = 2.92. ..

Figure 4.3: Trivial and non-trivial traveling wave solutions of (4.1) ([3]), where
d;,ri,0; and b; (5,7 = 1,2,3(¢ # j))are specified to satisfy (3.1) and bys = 0.8.
The light gray, dark gray and black lines represent u, v and w, respectively.
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Figure 4.4: Planar stability of two—species traveling wave solution in Figure 4.3
(a) where d;,7;,a; and b; ;(¢,7 = 1,2,3(i # j)) are specified to satisfy (3.1) and
b3 = 0.80. Dark gray and light gray indicate the areas occupied by U and V,

respectively.
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Figure 4.5: Planar stability of three—species traveling wave solution in Figure 4.3
(c) where d;,r;,a; and b; (3,5 = 1,2,3(¢ # j)) are specified to satisfy (3.1) and
bys = 0.80. Dark gray, light gray, and black colors indicate the areas occupied by

U, V and W, respectively.
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Chapter 5

Interaction of two species- and
three species- traveling waves in
two dimensions

In Chapter 4, I numerically showed that there are two stable traveling wave solu-
tions of (4.1) and (4.2), that is, one trivial traveling wave solution which consists
of two species and one non—trivial one which consists of three species. In this
chapter, I consider the interaction of these two stable traveling waves in a square
domain Q when the initial functions for (2.3) are suitably specified as shown in
Figure 5.1. In the upper half region of €2, I take the stable two species traveling
wave solution (W = 0) with velocity 6,, = —2.57... and in the lower half one of
(1, the stable three species traveling wave solution with velocity 6y, (> 0), which

depends on the value of by3.

When b3 = 0.2 (040 = 0.69...), as shown in Figures 5.2 (a) — (c), the two
species traveling wave begins to move to the left direction in the upper region
and conversely, the three species one begins to move to the right direction. In
consequence, the area of V' is surrounded by the one of U, as shown in Figures 5.2
(c)—(e), After that, the area of V gradually expands and eventually occupies the
whole domain 2, as shown in Figures 5.2 (f)—(h). When by3 = 0.4 (840 = 1.30...),
as is shown in Figure 5.3 (a) — (c), the behavior is quite similar to the case for
bos = 0.2 (Figure 5.2 (a) — (c)). However, after that, there occurs very irregular
complex spatio—temporal pattern which exhibits the dynamic coexistence of U, V'
and W, as shown in Figure 5.3 (h). When by = 0.6 (Oyyy = 1.97...), as shown in
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Figure 5.4, a steadily rotating spiral of U, V and W can be clearly seen. Finally
when by3 = 0.8 (Qypw = 2.92...), the behavior is so simple and that V' eventually
occupies the whole domain (2 as shown in Figure 5.5.

The numerical simulations above indicate that either appearance or non-appearance

of competitor-mediated coexistence really depends on values of bas.

200

150

100 4

50 4

Figure 5.1: Initial profile (uo(z,y), vo(x,y), wo(z,y)) of (2.3) in 2 where dark gray,
light gray, and black colors indicate the areas occupied by U, V and W, respec-
tively.
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(g) t =130 (h) ¢ = 218

Figure 5.2: Dynamics of a solution of (2.1)—(2.3) where d;,r;,a; and b;;(i,j =
1,2,3(: # 7)) are specified to satisfy (3.1) and by3 = 0.2. Cooperation of V and W
reverses the competitive relation with U. Dark gray, light gray, and black colors
indicate the areas occupied by U, V and W, respectively.

Figure 5.3: Dynamics of a solution of (2.1)—(2.3) where d;,7;,a; and b; ;(i,7 =
1,2,3(i # 7)) are specified to satisfy (3.1) and by3 = 0.4. Complex spatio-temporal
coexistence appears. Dark gray, light gray, and black colors indicate the areas
occupied by U, V and W, respectively.
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Figure 5.4: Dynamics of a solution of (2.1)—(2.3) where d;,7;,a; and b;;(i,j =
1,2,3(i # 7)) are specified to satisfy (3.1) and by3 = 0.6. Steadily rotating spirals
appear. Dark gray, light gray, and black colors indicate the areas occupied by U,

V and W, respectively.
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Figure 5.5: Dynamics of a solution of (2.1)—(2.3) where d;,7;,a; and b; ;(i,j =
1,2,3(i # j)) are specified to satisfy (3.1) and bog = 0.8. Cooperation of V and W
reverses the competitive relation with U. Dark gray, light gray, and black colors

indicate the areas occupied by U, V' and W, respectively.



Chapter 6

Interaction of two species- and
three species- traveling waves in
one dimension

In Chapter 5, I considered the interaction of a two species- and three species-
traveling wave in two dimensions when by3 is varied. When be3 = 0.2 or 0.8, only
V is dominant, that is, competitive exclusion occurs, while when bs3 = 0.4 or 0.6,
U, V and W dynamically coexist, that is, competitor-mediated coexistence occurs.
In order to understand the mechanism why the behavior of solutions depends so
sensitively on values of bys, I first examine the interaction of the two stable traveling
waves in one dimension since they are both planary stable in two dimensions, as
shown in Figures 4.4 and 4.5. I take the initial front (resp. back) wave by using
the three (resp. two) species traveling wave, as shown in Figure 6.1 (a), both of
which move to the right direction. Here I note that the velocity of the back wave
is By, = 2.57 ... which is independent of value of bo3, while the velocity of the front

one 6,,,, depends on values of bqs.

Take b3 = 0.2. Then the velocity of the front wave is 6., = 0.69.... There-
fore, since the back wave which is rather faster approaches the front one and then,
instead of colliding, there appears a new three species traveling wave solution
which moves to the opposite direction with speed 8 = —0.69.. ., as if it were re-
flecting, as shown in Figure 6.1. I note that this phenomenon can be observed
in the two dimensional behavior as shown in Figures 5.2 (d),(e) and (f). When
bes = 0.4 (Bupw = 1.30...), the back wave is still faster than the front one, so
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that the behavior after the interaction of the two waves is similar to the one for
bas = 0.2, as shown in Figures 5.3 (a)—(c). However, after that, the behavior was
quite different from the one for by3 = 0.2. It is rather complex, as exhibited in
Figures 5.3 (d)—(h). To examine what happen in Figure 5.3, I show Figure 6.3 for
detail between Figure 5.3 (c) and (d), and Figure 6.4 for detail after Figure 5.3
(g). As shown in Figures 6.3 and 6.4, when the three species traveling like wave
approaches to the two species one, there appears a new three species traveling like
wave which moves to the opposite direction as if it are reflecting, and when the
three species ones approaches to each other, they collide and annihilate each other,
and then, reflection and annihilation generate complex behavior.

When bgg = 0.6 (fuwe = 1.97...), the back wave is slightly faster than the front
one, so that a homoclinic type traveling wave appears, as shown in Figure 6.5. This
suggests that homoclinic traveling wave solution (u(z),v(2),w(z))(z = z — 6t) of
(4.1) satsfying the boundary conditions

im (u(2), v(2), w(2) = (:—1,0,0) (6.1)
exists.

By using this homoclinic traveling wave solution, I constract the initial con-
ditions (uo(z,y), ve(z,y), wo(z,y)) in square domain 2 in a way that (ry/a;,0,0)
in the upper half region of {2, and the homoclinic traveling wave solution in the
lower one of €2, as shown in Figure 6.6 (a). Then there appears a steadily rotating
spiral pattern as shown in Figure 6.6 (h). Therefore, I could suggest that if a
stable homoclinic traveling wave solutions exist in one dimension, a rotating spiral
occurs in two dimensions. This scenario is similar to the occurrence of rotating
spirals arising in the Belousov-Zhabotinsky reaction ([32]) . Here I also note that
this spiral pattern looks almost exactly like the one in Figure 5.4 (h).

On the other hand, when by3 = 0.8 (0 = 2.92. . .), oppositely, the front wave
is faster than the back one, so that the front wave is gradually leaving from the
back one (Figure 6.7).

For the interaction of the two species- and three species- traveling waves in one
dimension, I can consider another situation where the back (resp. front) waves

are the three-species (resp. two—species) traveling waves, which move to the right
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direction, as shown in Figure 6.8 (a). When by3 = 0.2,0.4 and 0.6, the front wave
is faster than the back one so that the front wave is gradually leaving from the
back one (for instance, see Figure 6.8). On the contrary, when by3 = 0.8, the front
wave is slower than the back one so that two waves approach and then annihilate

each other in collision (Figure 6.9).
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by U, V and W, respectively.
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Figure 6.4: Dynamics of a solution of (2.1)—(2.3) where parameters are the same
as in Figure 5.3. Dark gray, light gray, and black colors indicate the areas occupied
by U, V and W, respectively.
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Chapter 7

Occurrence of steadily rotating
spirals

In the Chapter 6, I showed numerically that when one dimensional homoclinic type
traveling wave solutions of (4.1) and (6.1) exist, steadily rotating spiral pattern
occurs in two dimensions, as shown in Figure 6.6. Unfortunately, I have not yet
proven the existence of homoclinic traveling wave solutions of (4.1) and (6.1). How-
ever, I can numerically obtain the branch of homoclinic traveling wave solutions
of (4.1) and (6.1) in some interval of by3 (approximately 0.49... < by3 < 0.75...),
as shown in Figure 7.1. As shown in Figures 6.2 and 6.7, if bog is relatively small
or large, stable homoclinic traveling wave solutions seem not to occur. This
suggests that homoclinic traveling wave solutions are exist for limited range of bos.

It is numerically shown that such solutions .

As shown in Figure 6.2, when bys < 0.49..., if three species traveling wave
approaches two species one, there appears a new three species traveling wave which
moves to the opposite direction instead of fusing. This suggests that homoclinic

traveling wave solutions are unstable even if exist.

Next, I discuss what happen when by3 is near 0.75.... When by3 = 0.7, the
core radius becomes large as shown in Figure 7.2, and when by3 = 0.735, the core
radius becomes too large to appear any spiral but a rotating spiral arm remains,
as shown in Figure 7.3, where the corresponding core radii are shown in Figures
7.5 and 7.6, respectively. The dependency of core radius of rotating spiral on bgg

is shown in Figure 7.7.
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Figure 7.1: Global structure of homoclinic traveling wave solutions when bss is
varied where d;,r;,a; and b;;(¢,5 = 1,2,3(¢ # j)) are specified to satisfy (3.1).
Black solid line represents a homoclinic type traveling wave solution of (4.1) and
(6.1).

I first note that the spiral arms in Figures 7.4 — 7.6 is not the homoclinic
traveling wave solutions, because the boundary conditions of the traveling wave
solutions are (6.1), in other words, the traveling wave is moving in region of U,
but the spiral arm is moving in region of V as shown in Figure 7.4. In other
words, front wave of the spiral arm consists of two species which is faster and back
one consists of three species which is slower. This suggests that the scenario of
occurrence of the steadily rotating spiral pattern in (2.1)—(2.3) is not similar to

the scenario of occurrence of rotating spirals of the Belousov-Zhabotinsky reaction
(132]) -

To examine the spiral arm, I investigate initial stage of be3 = 0.735 in Figure
7.8, which indicates that two species traveling wave which is faster and three
species one which is slower are attached to each other and the core is the attached
point, and the core moves in a circular pattern to absorb the difference of speed.
Furthermore, it seems that the smaller the velocity difference is, the larger the core
radius becomes because the difference to be absorbed becomes small, too. When

the core radius is large,distance between the spiral arms is also large as shown in
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Figures 7.2 and 7.3. So, the interaction between the spiral arms can not occur
near core. But, because the front wave (resp. back wave) of the spiral arm is
corresponding to the two species (resp. three species) traveling wave, the front
wave approaches to the back wave of former spiral arm, and homoclinic traveling

wave like behavior appears as if it is the arm of rotating spiral.

(g) t =150 (h) t =20

‘i

Py %0 %o 200

(f) t = 100

=

Figure 7.2: Occurrence of a rotating spiral in (2.1)—(2.3) where d;,r;,a; and
b;;(i,5 = 1,2,3(i # j)) satisfy (3.1) and bys = 0.70. Dark gray, light gray, and
black colors indicate the areas occupied by U, V', and W, respectively.
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Figure 7.3: The core radius becomes too large to appear any spiral in (2.1)—(2.3)
where d;,r;,a; and b;;(i,j = 1,2,3(1 # j)) satisfy (3.1) and by = 0.735. Dark
gray, light gray, and black colors indicate the areas occupied by U, V, and W,
respectively.
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Figure 7.4: Relation between core, front wave and back wave. Dark gray, light
gray, and black colors indicate the areas occupied by U, V, and W, respectively.

N\

Figure 7.5: Tragectory of spiral core in Figures 7.2 (by3 = 0.70 )
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Figure 7.7: Dependency of by3 on the core radius of spirals in (2.1) where bog is
varied.
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Figure 7.8: Initial stage of(2.1)—(2.3) where parameters are the same in Figure 7.3.
Dark gray, light gray, and black colors indicate the areas occupied by U, V, and
W, respectively.
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Chapter 8

Wedge—shaped traveling wave
solutions

As shown in Figure 5.5, when by3 = 0.8, the front wave moves rather faster than
the back one, and spiral patterns do not occurs any more and it seems that the
resulting pattern is described by a superposition of a planar wave of two species
moving to the left direction and a radially symmetric expanding disk of three
species. As shown in Figure 8.1, the tip moves to a certain fixed direction after

some time.

Figure 8.1: Interaction of two species- and three species- traveling wave solution
of (2.1)—(2.3) becomes planar wave of two species moving to the left direction and
the radially symmetric expanding disk of three species. d;,7;,a; and b;;(i,j =
1,2,3(i # j)) satisfy (3.1) except by3 = 0.8. Dark gray, light gray and black
indicate the area occupied by U, V', and W, respectively and black line indicate
the trajectory of core.

Figure 8.1 suggests that if this behavior is considered in the whole plane R?, a

superposition of a planar traveling wave and a radially symmetric expanding disk
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tends to a superposition of two planar traveling waves after large time. In other
words, one can expect that there is a wedge—shaped traveling wave solution which
consists of a superposition of two planar traveling waves of two and three species.

To confirm this expectation, I take the initial conditions (ug(z, y), vo(z,y), wo(z,y))
in square domain ) as a superposition of two planar traveling waves, as shown in

Figure 8.2 (a).

% % 20 0 Py 1% e x0 ° P 1% 150 20 o o 190

. (z;)t:o (b)t=3 (c) t=33 (d)t:S?:

Figure 8.2: Superposition of two and three species traveling plane wave solutions of
(2.1)-(2.3) where d;, r;, a; and b; (i, 7 = 1,2, 3(i # j)) satisfy (3.1) except bes = 0.8.
Dark gray, light gray and black indicate the area occupied by U, V, and W,
respectively and black line indicate the trajectory of core.

As shown in Figure 8.2, the numerical simulations suggest that there is a two
dimensional traveling solutions which are wedge-like shape, of (2.1) and (2.3) in

R? with boundary condition

z—+o0 D)

lim (u(t,z,y),v(t, z,y), w(t, z,y)) = (0,2,o> . t>0, (8.1a)
E}Lr&(u(t,x,y),v(t,x,y),w(t,x,y)) = (ii{t, &), 8t 2). 0], 510, (8.1b)

lim (u(t,z,y),v(t,z,y), w(t, z,y) = (0,E

y——00

,0) x £ 50, (8.1c)
az

where (4(t, z),v(t, z),0) is the one dimensional two species traveling wave solution.
I named this two dimensional traveling wave solutions wedge—shaped traveling wave
solutions.

The wedge—shaped traveling wave solutions can be understood as follows: As
shown in Figure 6.9, in one dimensional problem, the back wave which consists

of three species approaches from behind of the front one which consists of two
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species, and they annihilate each other when they collide. Consider what happen
when the three species planar traveling wave approaches from diagonally behind
to the two species one. One can expect that the annihilation occurs only at the
intersection of the front and back waves, and superposition of the two species-
and three species- traveling waves forms wedge like shape and moves with fixed
velocity depends on the planar traveling ones.

To understand the superposition of the two species- and three species- traveling
waves more precisely, I show the numerical results with angles of the two planar

traveling waves are different in Figure 8.3.

200 T T T

150

100

50

0 50 100 150 200

Figure 8.3: The trajectory of tip when angle between two planar traveling waves
change. The lines beginning at the top indicate the trajectory which the angle of
initial state is w/48,7/24,7/16,7/12,7/6, 7 /4,7 /3,57 /12, respectively

Now, I conjecture the following:

Conjecture 8.1. There is some critical angle 1. such such that for any n satisfying
0 < 1 < 1., there is a wedge-like traveling wave solutions (u,v,w) where the front
and back waves are given by the two and three species planar traveling waves where

n s the angle between two traveling waves.

To support Conjecture 8.1, I first discuss about a superposition of moving two

straight lines, which corresponds to a situation without diffusion effect. Along this
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line of discussion, I first state the following proposition about a superposition of

moving two straight lines:

Proposition 8.2. Consider two straight lines L and Lp moving with velocity
Vi, Ve(Vr < Vp), respectively, as shown in Figure 8.4. If the angle between Lp, Lg

is 1, the angle between the trajectory of intersection and the direction perpendicular

tan~! (COS(") — Ve/Ve ) . (8.2)

to Ly is given by

sin(n)

Lp

sin(7)

tan_l (cos!n!—foVB)

Figure 8.4: Relation between Lg, L and 7 in Proposition 8.2

I show the proof of Proposition 8.2 in Appendix.

From Proposition 8.2, I can show following corollary:

Corollary 8.3. Suppose n, is the angle n when the intersection moves in a direc-
tion perpendicular to Lpg,

Ve = cos(n,) Vp. (8.3)
Proof. The proof is so obvious from (8.2) that I omit it. O
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Next, I discuss when the straight lines exhibit the change of species like as the
two species- and three species- traveling waves. Consider the area passed by Lp is
occupied by U and L wipes out U. As shown in Figure 8.5 (a), when 0 < n < n,,
U occupies the moving wedge shaped area only. On the other hand, as shown in

Figure 8.5 (b), when n > n,, U also remains a triangle shaped area.

(a) m <y (b) n >y
Figure 8.5: Region occupied by U without diffusion effect

From Figure 8.5 (a), one can expect that when 0 < n < 7,, the wedge shape
traveling wave solution appears even if diffusion effect exists. In addition, one
can expect from Figure 8.5 (b) that the tip of wedge bend to absorb the triangle,
and when the angle to tip become 7,, the bending stops and the tip moves to
fixed direction. This expectancy is supported by numerical results as shown in
Figure 8.6. These expectancies have good agreements with Figure 8.3 and support
Conjecture 8.1 with 7. = n, = cos™ (V¢ /V3p).

In order to confirm the validity of above discussion quantitatively, I verify
whether or not the angle predicted from (8.2) agrees with the actual measured
value. In Figure 8.2, the speed of front wave Vp is |0,,| = 2.57 ... and the speed of
back wave Vg is |Ouuw| = 2.92. .., and the angle between the two planar traveling
wave solutions is n = 0.20, so the calculated angle is

c0s(0.20) — (2.57/2.92)
sin(0.20)

=0.51... (8.4)
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Figure 8.6: Superposition of two species- and three species- traveling wave solutions
of (2.1)-(2.3) where d;, r;,a; and b; ;(i,j = 1,2,3(i # j)) satisfy (3.1) and be3 = 0.8.
Dark gray, light gray and black indicate the area occupied by U, V, and W,
respectively and black line indicate the trajectory of core.

which is a good agreement with to the actual angle 0.54. ...

Next, I discuss about the situation that back wave is three species radially
symmetric expanding traveling wave, as shown in Figure 5.5. In this case, if the
collision angle is small, the angle that allows the tip of the wedge to move in
the direction perpendicular to back wave so the angle becomes large, whereas if
the angle is large, the tip moves in the direction of back wave moving, so the
angle becomes small. So one can expect that a fixed angle will be selected as
a result. From Corollary 8.3, one can expect that the fixed angle is given by
Ne = €08~ Oy /Ouvw)-

In order to confirm the validity of the expectancy quantitatively, I compare the
angle predicted from (8.3) with the actual measured value in the case of Figure

5.5. In this case, calculated angle is

n = cos ™ (:M > =0.49 (8.5)

uvw

which is a good agreement with to the actual angle 0.45.... This demonstrates

the validity of the approximation in this case, too.
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Chapter 9

Concluding remarks

In Chapter 1, I stated the problem: First, consider the situation in which there is
a two native species system, where one is stronger than the other in competition,
that is, competitive exclusion occurs between them. Second, consider a situation in
which a single exotic competing species invades the native system. Is it possible for
the modified system of two native species and one exotic species to coexist, even if
the exotic species is relatively weaker than either of the native species?

By using a three species competition—diffusion system (2.1)—(2.3), I can say
“Yes”, for a suitable parameter range in the system. In other words, It has been
shown that competitor-mediated coexistence can occur by exotic species for a
suitable parameter range, even if the exotic species is weak.

However, the behaviors are sensitive to the value of the parameter by3 which
represents the relation between the exotic species and the weaker native species.
In Chapter 3, it was demonstrated that three types of asymptotic behaviors arise
depending on the value of bs3, even if the exotic species W can survive only in the
vicinity of the boundary between the two strongly competing native species. The
three types of asymptotic behaviors are as follows: (a) the exotic species fades out,
but the competitive relation of the native species is reversed so that the stronger
native species can not survive, (bl) the exotic species survives, and competitor—
mediated coexistence exhibiting complex spatio-temporal pattern occurs, (b2) the
exotic species survives, and competitor-mediated coexistence exhibiting steadily
rotating spirals occurs. In addition, it was shown that the one dimensional two

species- and three species- traveling wave solutions provide essential information
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on the occurrence or non-occurrence of competitor-mediated coexistence.

In Chapter 4, To examine the behaviors of two species- and three species-
traveling waves, it was shown that the interaction between the traveling waves can
be classified with respect to the value of the parameter by3 into three types: (I)
collision and reflection, (II) collision and fusion, (III) collision and annihilation.

In Chapter 6, it was demonstrated that the three types of asymptotic behav-
ior can be explained from the classification of interactions between the traveling
waves as follows: (A) when the three species traveling wave solutions are faster
than the two species ones, competitor-mediated coexistence does not occur, but
the competitive relation of native species is reversed so that the stronger native
species can not survive, (B1) when the three species traveling wave solutions is
slower than the two species ones and the interaction between these two travel-
ing waves are “collision and fusion”, competitor-mediated coexistence exhibiting
steadily rotating spirals occurs, (B2) when the three species traveling wave solu-
tions are slower than the two species ones and the interaction between the traveling
waves is “collision and reflection”, there are two types of asymptotic behaviors. It
was shown that the two types of asymptotic behaviors given in class (B2) are as
follows: (B2a) competitive exclusion with reverse of the competitive relation of
the native species, (B2b) competitor-mediated coexistence with complex spatio-
temporal patterns. The asymptotic behavior (B2a) occurs when the difference of
speeds of the two traveling waves is large, while that of (B2b) occurs when the
difference is small.

Unfortunately, this sensitivity is not yet fully understood, although it is caused
by the following three factors:

(i) planar stability of one dimensional two species traveling wave solutions and

three species ones,
(ii) interaction between these two one dimensional traveling wave solutions; and

(iii) difference of speeds between these two one dimensional traveling wave solu-

tions.
In Chapter 7, the steadily rotating spirals were investigated. The relation
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between the spiral arms and fused homoclinic traveling waves, the parameter de-
pendency of core radii in the steadily rotating spirals , and the reason why the
core radii become large as the difference speeds of traveling waves tends to 0 were
discussed. In addition, it was shown steadily rotating spiral can be understood
from the three abovementioned factors (i)-(iii).

In Chapter 8, newly-discovered two dimensional traveling wave solutions which
were named wedge—shaped traveling wave solutions were discussed. It was shown
and confirmed quantitatively that these traveling solutions can be understood as
a superposition of two planar traveling waves. It was shown that wedge-shaped
traveling wave solutions can be understood from the three factors (i)-(iii), too.

Finally, the ecological significance of this study is evaluted. The fact that an
exotic species cannot survive in a diffusionless system implies that such a species
cannot survive in a small area, such as an experimental farm. However, on the
basis of the model presented in the study, an exotic species can alter the conditions
inherent within a strongly competing two species system even if it can survive only
in the vicinity of the boundary between the two strongly competing native species,
and it cannot coexist with the native species in a small area. This suggests that,
when studying the influence of exotic species, experiments should be conducted
over a wide area and attention should be paid to the relations between weak

species.
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Appendix Proof of Proposition
8.2

In this chapter, I show the proof of Proposition 8.2.

Proof. Without loss of generality, I can set that the intersection of Lg and Lp at
the time ¢ = 0 is taken to the origin of the coordinate system and Lp to overlap

the Y axis as shown in Figure A.1.

L V;
B Vg
Lp
Vr

Figure A.1: Initial position of Lg and Lg

First, I determine the equation of Ly at the time ¢ = ¢;. Because the angle
formed by the traveling direction of Ly with the X axis to be n, and the speed of Lg
is Vr, z-intercept and y-intercept at ¢ = ¢; will be t;Vr/ cos(n) and —t;Vr/ sin(n),

respectively. Therefore, the equation of Lg at ¢t = ¢; can be described as

_zcos(n) —tVr

Al
sin(7) (A1)
With (A.1), the intersection of Lg and Lr can be described as
t1Vp cos(n) — t1V]
(taVp, VB OS(D) = tiVey (A.2)

sin(n)
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With (A.2), the equation of the trajectory of intersection can be described as

_ cos(n) — Ve/Vs
sin()

z, (A.3)

as showin in Figure A.2. So, I can conclude that the angle between trajectory of
intersection and the direction perpendicular to Lg is given by

(%)

Ip(t =0) Ig(t =1t1)
t1Vpg >

(tIVB t1Vp cos(n)—41 Vr )

sin(n)

t1 Vg

(s 0)

_h Vg )
sin(n)

(07

Figure A.2: Positions of the lines and intersection at £ =0 and ¢t = ¢,
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Publications

Refereed papers published in journals or books

e C.-C. Chen, L.-C. Hung, M. Mimura, M. Tohma, and D. Ueyama: Semi-
exact equilibrium solutions for three-species competition-diffusion sys-

tems, to appear in Hiroshima Mathematical Journal.
Un-refereed papers published in local conference proceedings

e M. Mimura, and M. Tohma : Dynamic spiral coexistence in competing
species, Annual Conference of The Japan Society for Industrial and

Applied Mathematics 2012 (in Japanese).
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