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Abstract 

This thesis theoretically tackles a coexistence of competing species problem in 

mathematical ecology， that is，“Even if some species which are competing with 

others are weaker， can they coexist with the stronger species in competiton for 

some reason?" If so， it is called the competitor-mediated coexistence. This is a very 

important ecological problem， because it closely correlates with species diversity. 

The starting point of theoretical research on species diversity could be the law 

of competitive exclusion， which was proposed by the Russian ecologist， G. Gause 

([10]). The law can be summarized錨 follows:“Twospecies strongly competing 

for the same resources cannot coexist if other ecological factors are constant." 

However， the coexistence of strongly competing species can be observed in nature， 

and such coexistence plays an import組 trole in species diversity. Therefore， the 

occurrence of competitor-mediated coexistence would be one of the reasons for 

species diversity. 

From the viewpoint of competitor-mediated coexistence， it is important to 

study the influence of exotic species on other native on田部 exogenouseffect. In 

general， exotic species are not necessarily stronger and may be weaker than native 

ones because they have evolved in a different ecological environment ([17]). But 

even if exotic species is weaker， it might cooperate with weaker native species after 

which the cooperation might reverse competitive relations among native speci田.

This gives us the following question: Whether or not competitor-mediated coexis-

tence can occur by a inv，回ionof weaker exotic species? 

This thesis is to consider the ecological situation where one exotic compet-

ing species invades the native system of two strongly competing species and dis-

cusses this problem theoretically using a three speci田 competition-diffusionsys-



tems which is often used in mathematical ecology. 

This thesis is composed of nine chapters and one appendix. The organization 

of this thesis is部 follows:In Chapter 1， 1 show earlier studies and clarified the 

position of this thesis. 

In Chapter 2， 1 first introduce a three species competition-difIusion system of 

equations of Gause-Lotka-Volterra type， as a macroscopic model. 1 explain earlier 

studies of the two species competition-diffusion system for two native species in 

the absence of one exotic species. Especially， 1 explain the asymptotic behaviors 

of solutions and traveling wave solutions of the system. Next， 1 introduce the 

known results on the three species competition-difIusion system which studied the 

influence of the invasion of one exotic species on two native ones. In addition， 1 

explain the meaning of “weakness" of the exotic species compared with the native 

ones. 

In Chapter 3， 1 numerically show the behaviors of solutions of the model where 

one of the coe血cientsin the system is used踊 a仕eeparameter and investigate 

whether or not the invasion of one exotic species influences two native competing 

species. The numerical result reveals that the resulting behavior is very sensi-

tive to a suitable p町田neterin a sense that three difIerent types of asymptotic 

behaviors arise depending on the param蜘邸 follows: (a) the閃 ticspecies 

fades out， but the competitive relation of native species is reversed so that the 

stronger native species can not survive， (b1) the exotic species SurviVI民 sothat 

competitor-mediated coexistence exhibiting complex spatio-temporal pattern oc-

curs， (b2) the exotic species survives， so that competitor-mediated co国 stence

exhibiting steadily rotating spirals occurs. 

In Chapter 4， 1 introduce the existence of two species-and three species-trav-

eling wave solutions which were obtained in the earlier study on three species 

competition-diffusion systems. In addition， 1 briefly mention the planar stability 

of these traveling wave solutions in two dimensions. 

In Chapter 5， 1 numerically discuss the interaction of two and three species 

traveling wave solutions in two dimensions and find three types of錨戸時totic

behaviors of solutions which are qualitatively similar to the ones shown in Chapter 
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3. 

In Chapter 6， 1 investigate the interaction between two and three species trav-

eling wave solutions in one dimension. 1 observe that the interaction between 

these traveling wave solutions can be cl出 sifiedinto three types， depending on the 

parameter: (a) collision and reflection， (b) collision and fusion， (c) collision and 

annihilation. In addition， 1 show that the three types of槌 ymptoticbehaviors in 

two dimensions can be explained by the interactions between the two and three 

species traveling waves. 

In Chapter 7， 1 numerically investigate the steadily rotating spirals shown in 

Chapter 6. 1 observe that the丘ontand back faces of the spiral arm near the core 

consist of the two species-and three species-traveling wave solutions， respectively， 

and the仕ontface approches to the back one of former spiral arm， and homoclinic 

traveling wave appears. In addition， 1 discuss the parameter dependency of core 

radius on the resulting steadily rotating spirals. 

In Chapter 8， 1 discuss about a newly-discovered two dimensional traveling 

wave solutions which 1 call wedge-shα，ped trlαvelingωαve solutions. Such traveling 

wave solutions are found in some parameter region where the exotic species can 

not survive. 1 explain that this wedge-shaped traveling wave solutions can be 

understood by suitably-angled superposition of two species-and three species-one 

dimensional traveling wave solutions. In addition， 1 show the quantitative relation 

between the velocities of the two one dimensional traveling wave solutions and the 

wedge-shaped traveling wave solution. 

In Chapter 9， 1 summarize this thesis. 1 emphasize that the behavior arising 

in a three species competition-diffusion system is so sensitive to values of some 

parameter in the system. Unfortunately， 1 have not yet fully understood this sen-

sitiveness， although it is caused by the following three factors: (i) planar stability 

of the two species-and three species-traveling wave solutions， (ii) interaction b令

tween the two species-and three species-traveling wave solutions， (iii) difference of 

speeds of the two species-and three species-traveling wave solutions. In addition， 

1 briefly mention my results仕omviewpoint of ecology. 

Finally， in Appendix， 1 show the proof of Proposition used in Chapter 8. 
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Chapter 1 

Introduction 

With the increasing deterioration of the global environment and the resulting loss 

of species diversity， research on species diversity is increasingly gaining importance. 

A good starting point of theoretical research on the i回ueof species diversity is 

the law of competitive exclusion， which w錨 proposedby the Russian ecologist， 

G. Gause [10] who performed experimental studies on two competing species of 

Paramecium， P.αureliαand P. Cαudαtum. The law of competitive exclusion can be 

summarized槌 follows:“Twospecies strongly competing for the same resources 

cannot coexist if other ecological factors are constant." The theore七icalbasis 

for conceptualizing this law quantitatively町 etypically formed using the Lotka-

Volterra ordinary difIerential equations for two competing species: 

(害=(rlー αlU一川山、

t>0， 
ま=(r2 -b21Uー α2V)υ

In (1.1)， u(t) and v(t) denote the population densities of two competing species 

U and V at time t， respectively. The p町 ametersri，αi and bij (i，j = 1，2(i i= 

、‘，，
J

唱
E
4
• 唱
E
4
r
t
、

j)) represent the intrinsic growth rates， intraspecific and interspecific competition 

rates， respectively， which are all positive constants. The equations gi刊 nin (1.1) 

represent a well known fundamental model in mathematical ecology. For this 

model， strongly competing species U and V can be represented by the following 

relationship: 
η唱 T唱 b..，唱
て ム<ニ<二土(1.2)
012 r2 α2 

Under these conditions， any non-negative solution of (1.1) generally tends either to 

(rI/α1，0) or to (0， r2/α2)' This means that competitive exclusion occurs between 
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the two species. 

However， strongly competing species exist in nature. To understand why such 

coexistence appears， many theoretical studies have been performed in the filed of 

mathematical ecology. 

For example， some studies have been undertaken to explore the phenomenon 

of coexistence resulting from spatial segregation. In this approach， a diffusion 

term exhibiting the random walk is introduced into the Lotka-Volterra ordinary 

differential equations (1.1)部 follows:

(ut = d1い 1ー 向叩一uト一日一寸寸b1、

t>O司Zεn， 
Vt = d2ムV+ (r2 - b21U ー α日)V，

(1.3) 

where the parameters d1 and d2 represent diffusion rates， which are positive con-

stants. Let n (c IRM (M = 1，2)) be a bounded domain and consider (1.3) in n 
with N eumann boundary conditions: 

θuθu 
一一=一一=0‘ t>O‘Z εδn. θνθν-

， (1め

We first note that the stable attractor of (1.3) consists only of equilibrium solutions 

(Hirsch [12]). On one hand， Kishimoto and Weinberger [21] showed that if n is 
convex， any nonconstant equilibrium solutions are unstable， even if they exist. This 

means th抗 if(1.3) is satisfied， U and V cannot coexist， no matter if a diffusion 

e旺ectis introduced. On the other hand， if the domain n is not convex， then the 
structure of equilibrium solutions is not so simple but depends on the shape of n. 
For example， Matano and Mimura [25] showed that if n takes a suitable dumb-
bell shape， then there exist stable non-constant equilibrium solutions that exhibit 

spatial segregation of the competing species in the sense that one region is nearly 

occupied by U while the other is occupied by V. 

Another way by which strongly competing species U and V might coexist 

results from the effects of the two species avoiding other species. Shigesada， 

Kawasaki， and Teramoto [31] proposed the following cross-diffusion equations: 

(ut=叫 (d1+…12V川 1- alU -b12V)U 
t>O句XE n. 

Vt =ム{(d2+α21U +α22V)υ} + (r2 -b21U ー αω)V，
(1.5) 
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where the non-negative parametersαii(i = 1，2) andαij(i，j = 1，2(iヂj))represent 

environmental pressures owing to the intraspecies and interspecies interferences， 

respectively. Using local bifurcation theory， Mimura and Kaw剖 aki[28] showed 

that， with boundary conditions (1.4)， (1.5) has stable nonconstant equilibrium 

solutions for a one dimensional problem. Moreover， using singular perturbation 

methods， Mi加町mt附1

the existence of nonconstant equilibrium solutions， and Kar日 on[18] discussed the 

stability of those solutions. 

Another approach exploits the possibility of coexistence when the environment 

changes in time. In this direction， Hutchinson [15] introduced seasonal effects into 

the coe伍centsof the following Lotka-Volterra ordinary differential equations with 

time dependent coe血cients:

(匂叫t=叶向叫州ω(t例仰恥t吟伽恥い)川トuト一
t > 0， 

U叫t= (令r2(tωtの)一b2川tの)U一α句2(t例tの)り) り叫' 
where αi(t) and bij(t) (i，j = 1，2 (iヂj))are periodic functions that represent 

seasonal effects. Cushing [5]， Mottoni and Scl山田no[6] showed that (1.6) h掛

(1.6) 

stable periodic coexistence solutions. 

Similarly， the possibility of coexistence can be considered when the environment 

changes in space. For example， by using two timing methods， Ei and Mimura 

[9] discussed how spatial inhomogeneities in the environment can infl田町ethe 

coexistence of two competing species. 

In addition， theoretical studies have been conducted on competitor-mediated 

coexistence in which the number of species is increased， by using the N -species 

Lotka-Volterra ordinary differential equations: 
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This approach is based on the idea that“the enemy of my enemy is my仕iend;"

In (1.7)， Ui(t) denotes the population density of the i-th species， and ri，αi， and 

bij (i，j 1，2，...N(i手j))represent the intrinsic growth rates， intraspecific 

and interspecific competition rates， respectively. All these parameters are positive 

constants. 
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May and Leonard [26] showed the existence of coexistence solutions with non-

periodic oscillations in (1.7) with N = 3，組dArneodo， Co叫 et，and Tresser [1] 

showed the existence of coexistence solutions with chaotic behavior in (1.7) with 

N = 4. One of the important results of this approach is the theorem by Hirsh [13]， 

which asserts that“all of the dynamics of the attractor of N -species competitive 

Lotka-Volterra ordinary differential equations occur on a manifold of dimension 

N -1." Hirsh's theorem implies 出品limitcycl田 cannotexist in (1.7) with N < 3， 

and chaρs cannot exist in (1.7) with N < 4. Focusing upon (1.7) with N = 3， 

the asymptotic state is either a critical point， a heteroclinic orbit， a combination 

of heteroclinic orbits， or a limit cycle. The occurrence of the first three can be 

easily determined from a geometric analysis of nullclines， but the existence of a 

limit cycle is di伍cu1tto be determined. The following question arrises: In which 

situation would limit cycles exist? Using a geometric analysis of nullclines， Zee-

man [34] cl部 sified(1.7) with N = 3 into 33 possibilities， and van den Driessche 

and Zeem組 [33]showed that 27 of those classes cannot have limit cycles. In the 

remaining six classes， multiple limit cycl白 werefound one after the other ([14]， 

[23]， [24]， [11]， [22])， but there is yet no complete classification theory that predicts 

the long-term behavior of these classes. 

Recently， the N-species Lotka-Volterra reaction-diffusion equations， 

4ヲ正j
… .一す=disUi + (η-αiUi - ) ~切内 t> い εn， (i = 1，'" N) (1.8) 

j=l，・・ ，N 

have been studied. Here， di is the diffusion rate of population densities Ui (i = 

1，2ぃ .N).Ei，肱ota，組dMimura [8] have shown that (1.8) with N = 3 have 

spatiotemporal inhomogeneous solutions when the species are equivalently strong 

and involve a cyclic property in some sense. These solutions occur even if the 

diffusionless system (1.7) has no stable coexistence solutions (槌お exam泊edin 

Chapter 2). Quite recently Chen， Hung， Mimura， Tohma組dUeyama [2] showed 

the existence of spatial inhomogeneous問uilibriumsolutions for (1.8) with N = 3， 

even if only one species is the strongest (This is a1so examined in Chapter 2). 

From the viewpoint of competitor-mediated coexistence， it is important to 

study the influence of exotic species on other native ones as exogenous effect. In 
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general， exotic species is weaker than the native ones because it has evolved in 

a different ecological environment ([1可).But even if exotic species is weaker， it 

might cooperate with weaker native species， after which the cooperation might 

reverse competitive relations among native species. 

From this perspective， the following question is to be addressed: First， consider 

the situation in which there is a two native species system， where one is stronger 

than the other in competition， that is， competitive exclusion occurs between them. 

Second， consider a situation in which a single exotic competing species invades the 

native system. Is it possible for the modified system of two native species and one 

exotic species to coexist， even if the exotic species is relatively weaker than either 

of the native species? In other words， does competitor-mediated coexistence occur 

by the balance of these three species even if the corresponding equation (1.7) h舗

no stable coexistence solution? 

This thesis aims to examine this question from standpoint of (1.8)羽thN= 3. 

The content of this thesis is剖 follows:In Chapter 2， 1 describe the system 

which 1 will use as a model and its underlying assumptions. In Chapter 3， 1 examine 

(1.8) with N = 3 numerically in a squ町edomain with the Neumann boundary 

conditions. By taking b23 as a free parameter and fixing other parameters suitably， 

it will be considered whether or not the invasion of an exotic species (say，W) 

influences the competition of two native speci田 (say，U and V) in the (U， V， W) 

system. In Chapter 4， 1 consider three speci田 travelingwave solutions for U， V， 

and W in order to obtain essential information on the occurrence or nonoccurrence 

of competitor-mediated coexistence of U， V， and W. In Chapter 5， 1 evaluate the 

interaction of two-and three-species traveling wave solutions in two dimensions 

and show the occurrence of dynamic coexistence of U， V， and W for suitable 

values of b23・InChapter 6， to understand the occurrence and nonoccurrence of 

dynamic coexistence of U， V， and W in two dimensions， 1 discuss the interactions 

oftwか andthree-species traveling wave solutions in one dimension. In Chapter 7，1 

examine the spiral coexistence of U， V， and W which exhibits dynamic coexistence 

of the three species and the dependence of the core radius on the p紅白neterb23・

In Chapter 8， 1 discuss the existence of wedge-like traveling wave solutions in two 

5 



dimensions. In Chapter 9，1 provide concluding remarks on the results obtained in 

the previous chapters. Finally in Appendix， 1 prove a proposition used in Chapter 

8. 
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Chapter 2 

Model system and assumptions 

As a simple situation of competitor-mediated coe泊stencein spatiかtemporally

homogeneous environment， 1 consider the interaction of three competing species 

under the situation where one exotic competing species (say， W) moving randomly 

i町 adessystem of two native speci白 (say，U a且dV) which are strongly competing 

and moving randomly. The situation can be theoretically discussed by the following 

three-species reaction-diffusion system of Gause-Lotka-Volterra type: 

(叫=d1ムu+ (rl -附一→寸b1…1U叫t=d必2s必v+(ヤγ2- b21Uー α2V- b23ω)v， 
ωt = d3sω+ (r3 - b31U - b32Vー α3ω)ω，

(2.1) 

where u(t， x)，昨，x)and w(t，x) denote the population densities of U， V佃 dW

叫 timet and position x， respectively. The parameters di， ri，αi and bij (i，j = 

1，2，3(i =1-j)) represent the diffusion rates， int血 sicgrowth rates， intra叩 ecific

and inter-specific competition rates， respectively， which are all positive constants. 

1 consider (2.1) in a bounded domain n in RN (N = 1，2) where the boundary 
conditions are 

θuθυθω 
一一=一一=一一 =0‘ t > o.x εθQ‘ θνθνθν......，-----， (2.2) 

where 11 is the outerward unit normal vector on the boundary δn of n and the 
initial conditions are 

u(O， x) = uo(x)三0，v(O， x) = vo(x)三0，ω(0)=ω'o(x)三0，x εn. (2.3) 
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1 start with a simple two competing species system of (2.1) in the absense of 

ω
 (ut = dIAU+ (TTη1 一向附一uト一川一→叶b1、

， • t > 0‘Z εQ  
叫 =d2ムv+ (r2 -b21 u -α2V)V， 

with the boundary and initial conditions 

(2.4) 

δuθu 
一一=一一=O. t > O.x εθQ 
θνθν 

(2.5) 

and 

u(O， x) = uo(x)三0， V(O， x) = vo(x)三0，x ε0， (2.6) 

respectively. 

1 first note the following two theorems: 

Theorem 2.1 (Hirsch [12]). The stableαttractor of (2.4) -(2.6) consists of equi-

librium solutions. 

Theorem 2.2 (Kishirr川o-Weinberger[21]). 1f 0 is conveιαny non-constαnt 

equilibrium solutions of (2.4) -(2.6)α陀 unstαble，evenザtheyexist. 

These theorems indicate th叫 thestable equilibrium solutions of (2.4) without 

diffusion 

(ま=(r1ーα1Uーい州
t > 0， 

ま=(r2 - b21U ー α2V- b23ω)V， 
give an important information on the部 ymptoticbehavior of (u(t， x)，仰，x))of 

the problem (2.4) -(2.6). 

(2.7) 

1 now impose the following出 sumptionon (2.4): 

(Al) 
α1 rl _ b21 
ァー<ー<一一.
012 r2 α2 

(2.8) 

Then， one finds that stable equilibria of (2.4) and (2.5)町 eonly (rJ/α}， 0) and 

(0， r2/α2) and moreover， any positive solutions (u(t， x)， v(t， x)) generically tends 

to either (rJ/α1，0) or (0， r2/α2)錨 ttends to infinity. This ecologically implies that 

competitive exclusion occurs between U and V錨 shownin Figure 2.1. 

These resu1ts gi刊 anaive question to the problem (2.4)-(2.6): Which species 

becomes dominant under strong competition? 
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Figure 2.1: Numerical simulations of (2.4) -(2.6) in n = (0，200) x (0，200) where 
light and dark gray colors show the areas occupied by U and V， respectively. 

In general， this question is difficult to answer. However， one information to an-

swer it is the existence of one dimensional traveling wave solution (u(z)， v(z))(z = 

x -et) with velocity e. This solution is given by 

(一0伽……u一〕一二寸吋d仇仰1仰川u
、 zεlR， 

。九=d2vzz + (r2 - b21 uー α2v) v， 

with the boundary conditions 

(ttrrlH札叩即i見回叩忠U叩(作u(いz山州川川川)μ川川川U叫仰刷刷(いω附z斗め)リ)ト二 仰
lim (卯u(z斗)，v叫(いωzけ))= (什rI/α向1，0的). 

(2.9) 

(2.10) 

By using a suitable transformation， (2.9) and (2.10) can be rewritten as 

(十川(l-u-cv)u
z εlR， 

-evzニ dvzz+ (α-bu-v)v， 
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with the boundary conditions 

Then (A1) is rewritten部

(rrlH弘叩叩i弘ω引丸U貯(何u(μz川川川)μ川川川U叫仰刷州(μω附z吟め)リ)ト=仰
lim (作u(z吟)，川U叫(z吟))= (ο1，0刈0的). 

1<α< b. 
C 

(2.12) 

(2.13) 

As for traveling wave solutions of (2.11) with (2.13) and (2.12)， the following 

theorems are already known: 

Theorem 2.3 (Kan-non [19]). Under (2.13)， there isα unique e = euv such thαt 
αsolution (匂(z)，v(z)) of (2.11)αnd (2.12) exists. 

Theorem 2.4 (Kan-non and Fang [20]). Under (2.13)， the travelingωαve solution 

(u(z)， v(z)) of (2.11)αηd (2.12) is αsymptotically stαble. 

Theorem 2.5 (Mimura and Rodrigo [30]). Under (2.13)， the unique traveling 

wα切 solutions(u(z)， v(z)) of (2.11)αnd (2.12) cαn be explicitly represented for 

suitable pαrameter regimes of d，α， b，αnd c，αs follows: 

Type-l 

with 

provided thαt 

hold. 

Typeト2

with 

(的)= ! 11 + tanh(手)|
r ーミ2

v(z) = ~ 11一同h(十z)1

。-2土ac
一
..j2ac ' 

d=i，b=2+竺-αc
，jc δ  

f(Z)=i[1+tmh(則
的)= % [トト1トい一→t同伽叫a加叫n凶耐h

。=二竺竺
J6宇石E'

10 

(2.14) 

(2.15) 

(2.16) 

(2.17) 



provided that 

hold. 

Type-3 

with 

provided that 

hold. 

5+6α-
d = -'_ -- --. b = 5 + 5α ー αc
1+αc 

{:ω=i [1叫が)f
v(z) = % [1-tanh(か)]

。一三土竺一
J6 

d=5+6αー ω=;+2α-αc

(2.18) 

(2.19) 

If the velocity Buv < 0， 1 can say that the species U is stronger than V in a sense 

of coupling of diffusion and competition， as shown Figure 2.2 (a)， and if (jω> 0， 

vice versa， as shown in Figure 2.2 (b). 

Hereafter 1 assume 

(A2) Buv < O. 

(2.20) 

Under the assumptions (A1) and (A2)， 1 consider the situation where an exotic 

competing species W invades in the (U， V) system， and discuss the possibility of 

competitor-mediated coexistence of U and V in the presence of W， by using the 

three species competition-diffusion system (2.1) with (2.2) and (2.3). 

For this problem， 1 shou，ld mention the result obtaind by Ei， Ikota and Mimura 

[8]. They first consider the d也if旺fuお凶S討ion由ss system corresponding tωo (2.1) 

and assume that 

(同=(rl-附一寸寸b1…1U叫t= (令r2一b21U一α2V一bがゆ" t> 0， 
ωt = (r3 - b31U - b32Vー α3ω)ω，

11 
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l4 

t t 

x x 

U U 

(a) Ouv = -2.57. . . where di =向=l(i = 1，2)， rl = 28， b12 = 22/21， b21 = 37/21. 

t 

x x 

包 U 

(b)九=2.57. . . where di =向=l(i = 1，2)， rl = 28， b12 = 37/21， b21 = 22/21. 

Figure 2.2: Traveling wave solutions of (2.9) and (2.10). 

(EIM) Pl = (rI/α1，0，0)ヲP2= (O，r2/α2，0) and 乃=(0，0， r3/α3) are asymptotically 

stable and other critical points are all unstable. 

Then it is known that any positive solution of (2.21) generically co町 ergesto 

any one of P1，九 and乃 ([33])，加 shownin Figure 2.3. It ecologically indicates 

that the exotic species W is strong in the (U， V， W) system in a sense th前九 is

stable. This implies the occurrence of competitive exclusion among U， V and W . 

Under this assumption (EIM)， if d1， d2 and d3 all su田cientlysmall， one could 

expect that the domain n is generally divided by U， V and叫Tin a short time as 
shown in Figure 2.4. 

12 
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v 

Figure 2.3:τ同ectoriesof (2.21) in (叩jパv)叩 acewhere ri = 向=1 (i = 1，2，3)， 
b12 = b23 = b31 = 1， b21 = b32 = b13 = 3 . 

Since stable critical points of (2.21)ぽ eonly P1，九 andP3， U and V are 

strongly competing so that (A1) holds， Therefore， Theorem 2.3 indicate that there 

is a stable traveling wave solutions (u(z)，v(z)) (z = x一九vt). Similarly， there 

are stable traveling wave solutions (v(z)，ω(z)) (z = X -(}vwt) of 

-(}v切ら =d2vzz + (r2一 α2V- b23ω)v， 

-(}山ωz= d3ωzz + (r3 - bω-α3ω)ω， 
lim (v(z)，ω(z)) = (0， r3/α3)， 

lim (v(z)，ω(z)) = (r2/α2，0)， 

and (u(z)， w(z)) (z = X - (}山t)of 

-(}叫uUz= d1uzz + (r1ー α1U-b13ω)u， 

-(}凹uωz= d3ωzz + (r3 - b31U ー α3ω)ω?
lim (u(z)刈 (z))= (rdα1，0)， 

lim (匂(z)，ω(z))= (0， r3/α3)， 

z E IR， 

(2.22) 

z εIR， 

(2.23) 

where ()叩 and()叩叫 arethe velocities of the traveling wave solutions of (2.22) and 

(2.23)， respectively. 

Here， in addition to the assumption (EIM)， they assume the parameters ぬ，

ri，αi and bi，j ( i，j = 1，2， 3(iヂj)) to satisfy 

(}v四<0 and (}叩u< O. (2.24) 
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Figure 2.4: Appearance of three phase separation in (2.1)-(2.3) where black， dark 
gray and light gray colors show the areas occupied by U， V and日ヘ respectively.
In addition， it indicates that the darker an area is the more of them are in the area. 
Furthermore， white colors show the areas not monopolized by a certain species. 
di = 0.01， ri =向ニ 1，bij = 3 (i，j二 l，2，3，(iヂj)).(a) t = 0， (b) t = 2.5， (c) 
t = 5. (Figure 1 in [8]). 

(A2) and (2.24) indicate that U， V and W possess the cyclic property in a sense of 

the velocities of traveling wave solutions. Then they demonstrated that spiral-like 

coexistence of U， V and W occurred， as shown in Figure 2.5. 

This result suggests the occurrence of dynamic coexistence among (u( t， x)， 

v(t，x)，ω(t， x))， even if competitive exclusion occurs among (u(t)， v(t)，ω(t)) of 

(2.21). In other words， spatio-temporally inhomogeneous competitor-mediated 

coexistence occurs， even if it can not appear in the diffusion less system. 

1 note that in their assumption， the exotic species W is as strong as two native 

species U and V. But， in general， exotic species are not necessarily stronger and 

may be weaker than native ones because they have evolved in a different ecological 

environment ([17]) 
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Figure 2.5: Appearance of dynamic spirals of (2.1)-(2.3) where di = 0.01， ri = 
向 1，(i 1，2，3)， b12 b23 b31 2， b21 b32 b13 7. Black， dark 
gray and light gray colors show the areas occupied by U， V and日1，respectively. 
Furthermore， white colors show the areas not monopolized by a certain species. 
(a) t = 0， (b) t = 100， (c) t = 200， (d) t = 400. (Figure 4 in [8]) 

From this reason， 1 consider the situation that the exotic species W is relatively 

weak in the (U， V， W) system. Of course， a weak exotic species can not survive 

in the competing native species， in general. But if the weaker competing native 

species behave as “the enemy of my enemy is my friend" ， weaker exotic species may 

survive. Consequently， the following a naive question arise: can a weaker exotic 

species change the competitive relation when the weaker native species behave as 

"the enemy of my enemy is my friend"? Along this direction， 1 mention the result 

for (2.1)-(2.3) in [2]. It is assumed that 

(CHMTU) For (2.21)， P1 = (rI/α1，0，0) is stable and a positive critical point P* 

(uヘυペゲ)is also stable， while other critical points including 九=(0， r2/α2，0) 

are all unstable. 

15 



This assumption implies that W is weak in sense th前九(=(0，0， r3/α3)) is un-

stable. Then it is shown in [2] that there are s叩pa抗tioか凶-i泊n叶1吐hon

solutions exhibiting coexistence of U， V and W， as shown in Figure 2.6. 
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Figure 2.6: Numerical simulation of (2.1)-(2.3) where di = 1(i = 1，2，3)， rl = 576， 
r2 =平 ，r3 半， α1- 572，α2 = 1804，α3 594，b12 308， b13 = 308， 
b21 = 4420， b23 = 308， b31 = 5850， b32 = 2970 (Figure 9 in [2]) 

This says that the weak exotic species can change the competitive relation and 

generates spatially inhomogeneous stable coexistence state. This result seems not 

to be interesting from the viewpoint of competitor-mediated coexistence， because 

it already occurs in (2.21)， since (u*どL*唱本'伝υg

Now， return to the problem stated in Chapter 1: Is it possible for the modポed

system of two nαtive species αnd one exotic species to coexist， evenザtheexotic 

species is relαtively weaker thαn either of the native species? A big difference from 
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the (EIM)組 d(CHMTU) is “W is weaker than either of the native speciesぺ
and this corresponds to pt = (rdα1，0，0) and P2 = (0， r2/α2，0) are stable， whi1e 

九=(0，0， r3/α3) is unstable. More precisely， 1回 sume

a'J b'J<!. r'J 
(A3) H，二三<ベ (2.25) 

032 α3 r3 

which implies that V always survives， while W is always extinct in the absence of 

U and 

α3 _ rl _ 03唱
(A4) :"' <ー<ニー (2.26)。13 r3 α1 
which implies that W and U are strongly competing in the absence of V. 

Furthermore， 1 assume 

(A5) The positive critical point (u*ど1，*喝率*，'1.俳e

stable even i正fi比texists. 

(A1)， (A3)， (A4) and (A5) indicate th抗 anypositive solution (u(t)， v(t)，ω(t) ) 

of (2.21) generically tends to either (rdα1，0，0)姐 d(0， r2/α2，0) ([3])， that is， the 

exotic species W does not influence on the (U， V) system so that competitor-

mediated coexistence never occurs in (2.21). 

Keeping this result in mind， come back to the problem (2.1) -(2.3). 

First， 1 consider the case when di(i = 1，2，3)町elarge enough. Then， the 

following theorem is obtained: 

Theorem 2.6 (Conway-Hoff-Smoller [4]). Suppose thαt the solutions (u( t， x)， 

v(t， x)，ω(t， x)) of (2.1)-(2.3)仰 uniformlybounded in time， Then if di(i = 1，2，3) 

is large enough， (u( t， x)，仰

However， when all of ぬ(i= 1，2，3) are not necessari1y large， the question 

whether inhomogeneous asymptotic states exists or not has not been unclear. The 

aim of this thesis is to answer this question. 

First， 1 note that (2.22) and (2.23) have traveling wave solutions with the 

velocities 。叩 andO却也， respectively.1 should remark that (A3) implies 0ω<  o. 
As for Owu， 1 assume 

(A6) Owu < O. (2.27) 
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U 

Figure 2.7: Trajectories of solutions of (2.21) in (u， v， w)-space with stable critical 
point Pl and P2 and an unstable critical points九 whereri = 28，向=1， b12 = 
22/21， b13 = 4， b21 = 37/21， b31 = 26/21， b32 = 22/21 (i = 1，2，3) 

Because if ewu > 0， then by combining with euv < 0う onecan say that U is 
stronger than both V and W in the coupling of diffusion and competition. There-

fore， competitior-mediated coexistence could not be expected. This is numerically 

confirmed in Figure 2.8 

Under the assumptions (A1) -(A6)， 1 discuss the problem (2.1)-(2.3) to study 

the possibility of competitor-mediated coexistence of U and V in the presence of 

W. 

句ぷ
(a1) t = 0 (a2)t=1 (a3)t=4 (a4) t = 20 

Figure 2.8: Numerical simulations of (2.1)-(2.3) for the case e山>0 where d1 = 2， 
d2 = d3 = 1，αα2  = 1うα3= 1.5， ri = 28(i = 1，2，3)， b12 = 22/21， b13 = 2， b21ニ
37/21，b23 = 0.75，b31 二 26/21，b32 = 22/21. Dark gray， light gray and black 
colors show the areas occupied by U， V and H-ヘrespectively
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Chapter 3 

N umerical simulations 

In this chapter， 1 numerically study the two dimensional problem of (2.1)-(2.3)， 

fixing the parameters in (2.1)部

d1 = 1， d2 = 1， d3 = 1， (3.1a) 

rl = 28， r2 = 28， r3 = 28， (3.1b) 

α1 = 1，α2 = 1，α3 = 1， (3.1c) 

b12 = 22/21， b13 = 4， b21 = 37/21， b31 = 26/21， b32 = 22/21 (3.1d) 

and taking b23 as a free parameter， for which 

0<b23<1 (3.2) 

is required by (A2). 1 note that critical points of (2.21) except for the positive 

one are independent of b23・

In the absence of vl-ヘ 1note that the domain n is eventually occupied by U 
by (A1) and (A2)，出 wasalready shown in Figure 2.1 (a)， that is， competitive 

exclusion occurs between U and V. 1 now consider the situation where an exotic 

species W invades in the (U， V) system at some time (say， t = 3.0)，掛 shownin 

Figure 2.1 (a2). 

When b23 = 0.2， Figures 3.1 (a) and (b) exhibit th叫 whenW invades the 

V-region in n， it immediately fades out， because W is absolutely weaker than V. 
When W invades vicinities of the boundaries of U -and V -regions， it strongly 

interacts with U and V so that U， V and W seem to persist for some time. Here 
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two interesting behaviors can be observed in Figure 3.1: One is the occurrence 

of a traveling wave like behavior of the three species U， V and W 回 shownin 

Figures 3.1 (f) and (g)， and the other is the situation where the domain n is finally 
occ叩 iedby only V， as shown in Figures 3.1 (f)-(h). These clearly indicate that the 

cooperation of V and W reverses the competitive relation with U. When b23 = 0.4， 

the behavior is drastically changed. Figure 3.2 demonstrates the appearance of 

complex spatio-temporal coexistence of the three competing species U， V and 

W. When b23 = 0.6，出 shownin Figure 3.3， one can observe spatial-temporal 

coexistence， too， but the behavior is different from the previous one in a sense 

that there successively occur a pair of rotating spirals of the three species. When 

b23 = 0.8，制 shownin Figure 3.4， the behavior becomes much simpler so that 

only V survives. Consequently， one can see that competitor回mediateddynamic 

coexistence occurs between U and V in the presence of W， sensitively depending 

on values of b23， even if U and V have a relation of competition exclusion in the 

absence of W and W is weaker than the native species. 

In the succeeding chapters， 1 will discuss why the behavior is so sensitive to 

values of b23・
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Figure 3.1: lnvasion of W into (U， V) system where di， T"i， ai and bi，j(i， j 
1，2，3(iヂj))satisfy (3.1) and b23 0.2. Cooperation of V and W reverses 
the competitive relation with U. Dark gray， light gray， and black colors indicate 
the areas occupied by U， V and叫"respectively 
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Figure 3.2: lnvasion of W into (U， V) system where di， T"i， ai and bi，j(i，j 
1，2，3(iヂj))satisか(3.1)and b23 = 0.4. Complex spatio-temporal coexistence 
appears. Dark gray， light gray， and black colors indicate the areas occupied by U， 
V and W， respectively. 
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Figure 3.4: Invasion of W into (U， V) system where di，ri，ai and bi，j(i，j 
1，2，3(i =1-j)) satisfy (3.1) and b23 0.8. Cooperation of V and W reverses 
the competitive relation with U. Dark gray， light gray， and black colors indicate 
the areas occupied by U， V and日r，respectively. 

22 



Chapter 4 

Three species traveling wave 

solutions 

1 first note that Figures 3.1 (f) and (g) suggest the appearance of a three species 

traveling wave which is represented by a solution ofthe form (u(z)， v(z)， w(z))(z = 

x -()t) with velocity () satisちTing

and 

(一伽レ…=寸吋…d仇1
一0りz= d2vzz + (r2 - b21U ー α2V- b23ω)v， 
-()ωz = d3ωzz + (γ3 -b31U - b32Vー α3ω)ω，

( Eh叩叩MM丸υ叩引引別(卯似仰附匂叫仰刷(μωz吟)，v( 吟州川川川…ω叫仰刷州(いω附Z吟ゆ刊)川ト)ド=
J民出誌切(州u叫仰(μz

z εlR， (4.1) 

(4.2) 

For the problem (4.1) and (4.2)， it is already known that there uniquely exists 

a two species traveling wave solution (u( z)， v (z)， 0) with the velocity () = ()uv (< 0)， 

which is shown in Figure 4.3 (a) and that it is locally stable ([16]). 1 call this 

traveling wave solution a trivial one. A natural question arises: do non-trivial 

traveling wave solutions of (4.1) and (4.2) exist? Unfortunately， it has not yet 

proven. However， recently， for some parameter regime， exact non-trivial traveling 

wave solutions have been found: 

Theorem 4.1 (Chen-Hung-Mimura-Ueyama[3]). The problem (4.1)αnd (4.2) 
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αdmit an exact traveling wave solution (的)，v(z)， w(z)) of the form 

( u(Z) = 恭が一(υ糾山…1+山…+付叩t伽釦
U叫(いωz吟)=五急:;(ο1一→t叩 hz吟が)戸2
ω(z)=4d13土日)+円(1+ tanh2 z)， 

with 

provided thαt 

。4α3dl-20b13d3一α3rl+ b13r3‘ -

2(α3-bω ?  

b
12一
α2(8α3dl-4b13d1 -20b13d3 -b13rl + bぱ 3)
一

(α3 -b13)r2 

(4.3) 

(4.4) 

b
21一
α1(-8α3dl+ 16α3d2 -16b13d2 + 40b13d3 + 2α3rl +α3r2 -b13r2ー 2b13r3)
一

(α3 -bl3)rl 

b?~ = -24α3d2 + 24b13d2 +α3r2 -b13r2 -
23 - 4d1 -20d3 -rl + r3 
b
31一一
4α1α3dl+4α1α3d3 + 16αlb13d3十α1α3rl+αlα3r3 -2αlb13r3 

一
(α3 -bl3)rl 

b.'l?ー α2(4α3dl+ 4α3d3 -24b13d3 +α3rl +α3r3) -

~ (α3 -b13)r2 

hold. 

For example， if di， ri， ai and bi，j(i，j = 1，2， 3(i =1= j))紅 especified to satisfy (3.1) 

and b23 = 3/4， the exact solution (u(z)，v(z)，ω(z)) of (4.1) and (4.2) is explicitly 

given by 

which is shown in Figure 4.1. 

u(z) = 14(1 + tanhz)， 
v(z) = 7(1 -tanh Z)2， 

ω(z) = ~(1 + tanh2 z)， 
O=-i， 

(4.5) 

By using the numerical method of AUTO ([7])， they drew the global solu-

tion structure of non-trivial traveling wave solutions of (4.1) and (4.2) when b23 is 

varied， as shown in Figure 4.3， where the upper solution branch is stable， while 

the lower one is unstable. When b23 takes 0.2，0.4，0.6， and 0.8， for instance， the 

corresponding velocity (Juvw of the stable non-trivial traveling wave solution is nu-

merically obtained as (Ju叩=0.69. . . ， 1.30. .. ， 1.97. . . and 2.92. . . ， respectively. 
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Figure 4.1: An exact solution of (4.1) and (4.2)， where di， ri，αi and bi，j(i，j 
1，2， 3(i =f. j)) are specified to satisfy (3.1) and b23 = 3/4. The light gray， dark gray 
and black lines represent u， v and w， respectively. 

For b23 = 0.8， Figures 4.3 (a)， (b) and (c) demonstrate one trivial and stable and 

unstable non-trivial traveling wave solutions. 

1 thus find that (4.1) and (4.2) have tωstable traveling wave solutions. 1 

numerically confirm that these traveling wave solutions are planary stable in two 

dimensional problem as shown in Figures 4.4 and 4.5. 
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Figure 4.2: Global structure of traveling wave solutions when b23 is varied ([3])， 
where di， ri，αi and bi，j(i， j = 1，2， 3(iチj))are specified to satisfy (3.1). Solid black 
and gray lines represent stable and unstable non-trivial traveling wave solutions， 
respectively， while the dashed black line represents a stable trivial traveling wave 
solution， which is independent of b23・Ablack circle indicates the exact non-trivial 
traveling wave solution shown in Figure 4.1. 

l ~I Y 1， ~r Y I; 
(a) Stable trivial 
traveling wave . 

()uv = -2.57. . . 

(b) Unstable non-trivial 
traveling wave 

o問問=-1.36... 

(c) Stable non-trivial 
traveling wave 
丸山=2.92... 

Figure 4.3: Trivial and non-trivial traveling wave solutions of (4.1) ([3])， where 
di， ri，αi and bi，j(i，j = 1，2，3(iチj))are specified to satisちT(3.1) and b23 = 0.8. 
The light gray， dark gray and black lines represent u， v and w， respectively. 
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(a) t = 0 (b) t = 2 (c)t=10 (d) t = 30 

Figure 4.4: Planar stability of two-species traveling wave solution in Figure 4.3 

(a) where di，7"i，αi and bi，j(i， j = 1，2， 3(iチj))are specified to satisfy (3.1) and 
b23 = 0.80. Dark gray and light gray indicate the areas occupied by U and V， 
respectively. 

. 。
(a) t = 0 (b) t = 2 (c) t = 10 (d) t = 30 

Figure 4.5: Planar stability of three-species traveling wave solution in Figure 4.3 

(c) where di，7"i，αi and bi，j (i， j 1， 2， 3( iチj))are specified to satisfy (3.1) and 
b23 = 0.80. Dark gray， light gray， and black colors indicate the areas occupied by 
U， Vand日ヘrespectively.
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Chapter 5 

Interaction of two species-and 

three species-traveling waves in 

two dimensions 

In Chapter 4， 1 numerically showed that there are two stable traveling wave solu-

tions of (4.1) and (4.2)， that is， one trivial traveling wave solution which consists 

of two species and one non-trivial one which consists of three species. In this 

chapter， 1 consider the interaction of these two stable traveling waves in a square 

domain n when the initial functions for (2.3) are suitably specified as shown in 
Figure 5.1. In the upper half region of n， 1 take the stable two species traveling 
wave solution (W三 0)with velocity ()凹=ー2.57...and in the lower half one of 

n， the stable three species traveling wave solution with velocity ()uvw(> 0)， which 
depends on the value of b23・

When b23 = 0.2 (()山由=0.69.. .)，部品ownin Figures 5.2 (a) -(c)， the two 

species traveling wave begins to move to the left direction in the upper region 

and conversely， the three species one begins to move to the right direction. In 

consequence， the町eaof V is surrounded by the one of U， as shown in Figures 5.2 

(c)-(e)， After that， the町eaof V gradually expands and eventually occupies the 

whole domain n， as shown in Figures 5.2 (f)-(h). When b23 = 0.4 (()u叩=1.30. . .)， 
as is shown in Figure 5.3 (a) -(c)， the behavior is quite similar to the case for 

b23 = 0.2 (Figure 5.2 (a) -(c)). However， after that， there occurs very irregular 

complex spatio-temporal pattern which exhibits the dynamic coexistence of U， V 

and W， as shown in Figure 5.3 (h). When b23 = 0.6 (丸山=1.97.. .)，酪 shownin 

29 



Figure 5.4， a steadily rotating spiral of U， V and W can be clearly seen. Finally 

when b23 = 0.8 (丸山 二2.92...)， the behavior is so simple and that Veventually 

occupies the whole domain n as shown in Figure 5.5. 

The numerical simulations above indicate that either appearance or non-appearance 

of competitor-mediated coexistence really depends on values of b23・

200 

150 

100 

50 

Figure 5.1: Initial profile (uo(x， y)， vo(x， y)，ω。(x，y)) of (2.3) in n where dark gray， 
light gray， and black colors indicate the areas occupied by U， V and日ヘrespec-
tively. 
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(a) t = 0 (b) t = 3 

(e) t = 33 (f) t = 65 

(c) t = 8 

(g) t = 130 

. . 

(d) t = 18 

(h) t = 218 

Figure 5.2: Dynamics of a solution of (2.1)-(2.3) where di， Ti， ai and bi，j(i， j 
1，2，3(iヂj))are specified to satisfy (3.1) and b23 = 0.2. Cooperation of V and W 
reverses the competitive relation with U. Dark gray， light grayぅandblack colors 
indicate the areas occupied by U， V and日ヘrespectively.

(a) t = 0 (b) t = 3 (c)t=8 (d) t = 18 

(e) t = 33 (f) t = 65 (g) t = 130 (h) t = 250 

Figure 5.3: Dynamics of a solution of (2.1)-(2.3) where di， Ti，α包 andbi，j(i，j 
1，2，3(iヂj))are specified to satisfy (3.1) and b23 = 0.4. Complex spatio-temporal 
coexistence appears. Dark gray， light gray， and black colors indicate the areas 
occupied by U， V and vl-ヘ respectively.
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(a) t = 0 (b) t = 3 (c) t = 7 (d) t = 10 

(e)t=14 (f) t = 20 (g) t = 33 (h) t = 65 

Figure 5.4: Dynamics of a solution of (2.1)一(2.3)where di， ri，向 andbi，j (i， j 
1，2，3(iヂj))are specified to satisfy (3.1) and b23二 0.6.Steadily rotating spirals 
appear. Dark gray， light gray， and black colors indicate the areas occupied by U， 
V and W， respectively. 

(a) t = 0 (b) t = 3 

(e)t=14 (f) t = 20 

(c) t = 7 

(g) t = 33 
-. 

(d)t=lO 

(h) t = 57 

Figure 5.5: Dynamics of a solution of (2.1)-(2.3) where di， ri， ai and bi，j(i，j 
1，2，3(iチj))訂 especified to satisfy (3.1) and b23 = 0.8. Cooperation of V and W 
reverses the competitive relation with U. Dark gray， light gray， and black colors 
indicate the areas occupied by U， V and W， respectively. 

32 



Chapter 6 

Interaction of two species-and 
three species-traveling waves in 

one dimension 

In Chapter 5， 1 considered the interaction of a two species-and three species-

traveling wave in two dimensions when b23 is varied. When b23 = 0.2 or 0.8， only 

V is dominant， that is， competitive exclusion occurs， while when b23 = 0.4 or 0.6， 

U， V and W dynamically coexist， that is， competitor白mediatedcoexistence occurs. 

In order to understand the mechanism why the behavior of solutions depends so 

sensitively on values of b23， 1 first examine the interaction of the two stable traveling 

waves in one dimension since they are both planary stable in two dimensions，部

shown in Figures 4.4 and 4.5. 1 take the initial front (resp. back) wave by using 

the three (resp. two) species traveling wave， as shown in Figure 6.1 (a)， both of 

which move to the right direction. Here 1 note that the velocity of the back wave 

is ()uv = 2.57. . . which is independent of value of b23， while the velocity of the front 

one ()uvw depends on values of b23・

Take b23 = 0.2. Then the velocity of the front wave is ()山間=0.69 . . .. There-

fore， since the back wave which is rather faster approaches the仕ontone and then， 

instead of colliding， there appears a new three species traveling wave solution 

which moves to the opposite direction with speed () = -0.69. ..， as if it were re-

flecting，邸 shownin Figure 6.1. 1 note that this phenomenon can be observed 

in the two dimensional behavior部 shownin Figures 5.2 (d)，(e) and (f). When 

b23 = 0.4 (()u叩=1.30.. .)， the back wave is still f，剖terthan the仕ontone， so 
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that the behavior after the interaction of the two waves is similar to the one for 

b23 = 0.2，回shownin Figures 5.3 (a)-(c). However， after that， the behavior was 

quite different from the one for b23 = 0.2. It is rather complex，出 exhibitedin 

Figures 5.3 (d)-(h). To examine what happen in Figure 5.3， 1 show Figure 6.3 for 

detail between Figure 5.3 (c) and (d)， and Figure 6.4 for detail after Figure 5.3 

(g). As shown in Figures 6.3 and 6.4， when the three species traveling like wave 

approaches to the two species one， there appears a new three species traveling like 

wave which moves to the opposite direction as if it are reHecting， and when the 

three species ones approaches to each other， they collide and annihilate each other， 

and then， reHection and annihilation generate complex behavior. 

When b23 = 0.6 (丸山=1.97.ー)，the back wave is slightly f，制erthan the front 

one， so that a homoclinic type traveling wave appears， as shown in Figure 6.5. This 

suggests that homoclinic traveling wave solution (u(z)， v(z)，ω(z))(z = x -()t) of 

(4.1) satsちri時 theboundary conditions 

exists. 

l，im (u(z)， v(z)刈 (z))= (~1 ，0，0) 
Izl→∞ ¥α1 J 

(6.1) 

By using this homoclinic traveling wave solution， 1 constract the initial con-

ditions (uo(x， y)， vo(x， y)，ωo(x， y)) in squ訂 edomain n in a way th抗 (rtfα1，0，0)
in the upper half region of n， and the homoclinic traveling wave solution in the 
lower one of n， as shown in Figure 6.6 (a). Then there appe町sa steadily rotating 
spiral pattern as shown in Figure 6.6 (h). Therefore， 1 could suggest th叫 ifa

stable homoclinic traveling wave solutions exist in one dimension， a rotating spiral 

occurs in two dimensions. This scenario is similar to the occurrence of rotating 

spirals arising in the Belousov・Zhabotinskyreaction ([32]) . Here 1 also note that 

this spiral pattern looks almost exactly like the one in Figure 5.4 (h). 

On the other hand， when b23 = 0.8 (()u叩=2.92. . .)， oppositely， the仕ontwave 

is f，槌terthan the back one， so that the仕ontwave is gradually leaving from the 

back one (Figure 6.7). 

For the interaction of the two species-and three species-traveling waves in one 

dimension， 1 can consider another situation where the back (resp.世ont)waves 

are the three-species (resp. two-species) traveling waves， which move to the right 
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direction，部shownin Figure 6.8 (a). When b23 = 0.2，0.4 and 0.6， the台ontwave 

is faster than the back one so that the仕ontwave is gradually leaving仕omthe 

back one (for instance， see Figure 6.8). On the contrary， when b23 = 0.8， the front 

wave is slower than the back one so that two waves approach and then annihilate 

each other in collision (Figure 6.9). 
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Figure 6.1: Interaction of two species-and three-species traveling wave solutions 
of (2.1)-(2.3) in one dimension where the parameters are specified to satisfy (3.1) 
and b23 = 0.2. Dark gray， light gray and black colors indicate the areas occupied 
by U， V and W， respectively. 36 
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Figure 6.2: Interaction of two species-and three-species traveling wave solutions 

of (2.1 )-(2.3) in one dimension where the parameters are specified to satisfy (3.1) 

and b23 = 0.4. Dark gray， light gray and black colors indicate the areas occupied 
by UぅVand W， respectively. 37 



(a) t = 9 (b) t = 10 (c) t= 11 (d)t=12 

(e) t = 13 (f) t = 14 (g) t = 15 (h) t = 16 

Figure 6.3: Dynamics of a solution of (2.1)-(2.3) where parameters are the same 

as in Figure 5.3. Dark gray， light gray， and black colors indicate the areas occupied 
by U， V and W， respectively. 

(a) t = 67 (b) t = 69 (c) t = 71 (d) t = 73 

(e) t = 75 (f) t = 77 (g) t = 79 (h) t = 81 

Figure 6.4: Dynamics of a solution of (2.1)-(2.3) where parameters are the same 

as in Figure 5.3. Dark gray， light gray， and black colors indicate the areas occupied 
by U， Vand日ヘ respectively.
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Figure 6.5: Occurrence of one dimensional homoclinic type traveling wave solution 

of (2.1)-(2.3)， where the parameters are specified to satisfy (3.1) and b23 = 0.6 
Dark gray， light gray and black colors indicate the areas occupied by U， V and W， 
respectively. 39 



(a) t = 0 (b) t = 20 (c) t = 40 (d) t = 60 

(a) t = 80 (b) t = 100 (c)t=120 (d) t = 140 

Figure 6.6: Occurrence of steadily rotating spirals. Here the initial functions where 

the three species homoclinic traveling wave solution locates in lower region of n 
where the parameters are specified to satisfy (3.1) and b23 = 0.6. Dark gray， light 
gray and black colors indicate the areas occupied by U， V and W， respectively. 
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Figure 6.7: Interaction of two species-and three-species traveling wave solutions 
of (2.1)-(2.3) in one dimension where the parameters are specified to satisfy (3.1) 
and b23 = 0.8. Dark gray， light gray and black colors indicate the areas occupied 
by U， Vand叫ヘrespectively. 41 
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Figure 6.8: Interaction of two species-and three-species traveling wave solutions 
of (2.1)-(2.3) in one dimension where the parameters are speci五edto satisfy (3.1) 
and b23 = 0.2. Dark gray， light gray and black colors indicate the areas occupied 
by U， Vand日ヘrespectively. 42 
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Figure 6.9: Interaction of two species-and three-species traveling wave solutions 
of (2.1)-(2.3) in one dimension where the parameters are specified to satisfy (3.1) 
and b23 = 0.8. Dark gray， light gray and black colors indicate the areas occupied 
by U， Vand叫r，respectively. 43 



Chapter 7 

Occurrence of steadily rotating 
spirals 

In the Chapter 6， 1 showed numerically that when one dimensional homoclinic type 

traveling wave solutions of (4.1) and (6.1) exist， steadily rotating spiral pattern 

occurs in two dimensions， as shown in Figure 6.6. Unfortunately， 1 have not yet 

proven the existe恥 eof homoclinic traveli時 wavesolutions of (4.1) and (6.1). How-

ever， 1 can numerically obtain the branch of homoclinic traveling wave solutions 

of (4.1) and (6.1) in some interval of b23 (approximately 0.49. . . < b23 < 0.75 . . .)， 

錨 shownin Figure 7.1. As shown in Figures 6.2姐 d6.7， if b23 is relatively small 

or large， stable homoclinic traveling wave solutions seem not to occur. This 

suggests that homoclinic traveling wave solutions are exist for limited range of b23・

It is numerically shown that such solutions . 

As shown in Figure 6.2， when b23 < 0.49...， if three species traveling wave 

approaches two species one， there appears a new three species traveling wave which 

moves to the opposite direction instead of fusing. This suggests that homoclinic 

traveling wave solutions are unstable even if exist. 

Next， 1 discuss what happen when b23 is near 0.75.... When b23 = 0.7， the 

core radius becomes large as shown in Figure 7.2， and when b23 = 0.735， the core 

radius becomes too large to appear any spiral but a rotating spiral arm remains， 

出 shownin Figure 7.3， where the corresponding core radii are shown in Figures 

7.5 and 7.6， respectively. The dependency of core radius of rotating spiral on b23 
is shown in Figure 7.7. 

45 



4 

3 

2 

。

-1 

-2 
0 。2 0.4 0.6 0.8 I 

b23 

Figure 7.1: Global structure of homoclinic traveling wave solutions when b23 is 

varied where di， ri，向 andbi，j(ω= 1，2，3(iヂj))町 especified to satisち， (3.1). 
Black solid line represents a homoclinic type traveling wave solution of (4.1)叩 d
(6.1). 

1 first note that the spiral arms in Figures 7.4 -7.6 is not the homoclinic 

traveling wave solutions， because the boundary conditions of the traveling wave 

solutions are (6.1)， in other words， the traveling wave is moving in region of U， 

but the spiral arm is moving in region of V as shown in Figure 7.4. In other 

words，仕ontwave of the spiral arm consists of two species which is faster and back 

one consists of three species which is slower. This suggests that the scenario of 

occurrence of the steadily rotating spiral p抗ternin (2.1)-(2.3) is not simil町 to

the scenario of occurrence of rotating spirals of the Belousov-Zhabotinsky reaction 

([32]) . 

To examine the spiral arm， 1 investigate initial stage of b23 = 0.735 in Figure 

7.8， which indicates that two species traveling wave which is faster and three 

species one which is slower are attached to each other and the core is the attached 

point， and the core moves in a circular pattern to absorb the difference of speed. 

Furthermore， it seems that the smaller the velocity di宜erenceis， the larger the core 

radius becomes because the difference to be absorbed becomes small， too. When 

the core radius is large，distance between the spiral arms is also large錨 shownin 
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Figures 7.2 and 7.3. 80， the interaction between the spiral arms can not occur 

near core. But， because the front wave (resp. back wave) of the spiral arm is 

corresponding to the two species (resp. three species) traveling wave， the front 

wave approaches to the back wave of former spiral armうandhomoclinic traveling 

wave like behavior appears as if it is the arm of rotating spiral. 

(a) t = 0 (b) t = 10 (c) t = 20 (d) t = 30 

(e) t = 50 (f) t = 100 (g) t = 150 (h) t = 200 

Figure 7.2: Occurrence of a rotating spiral in (2.1)-(2.3) where di， ri，αi and 
bi，j(i，j = l，2，3(iチj))satisfy (3.1) and b23 = 0.70. Dark gray， light gray， and 
black colors indicate the areas occupied by U， V， and日ヘ respectively.

47 



(a) t = 0 (b) t = 10 (c) t = 20 (d) t = 25 

(e) t = 50 (f) t = 100 (g) t = 150 (h) t = 200 

，園町、
a 。

(i) t = 250 (j) t = 300 (k) t = 350 (1) t = 400 

Figure 7.3: The core radius becomes too large to appear any spiral in (2.1)-(2.3) 
where di， ri，αi and bi，j(i，j l，2，3(iヂj))satisfy (3.1) and b23 = 0.735. Dark 
gray， light gray， and black colors indicate the areas occupied by U， V， and W， 
respectively 
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Core 

Figure 7.4: Relation between core， front wave and back wave. Dark gray， light 
gray， and black colors indicate the areas occupied by U， VうandW， respectively. 
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Figure 7.5: Tragectory of spiral core in Figures 7.2 (b23 = 0.70 ) 
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Figure 7.6: Tragectory of spiral core in Figures 7.3 ( b23 = 0.735 ) 
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Figure 7.7: Dependency of b23 on the core radius of spirals in (2.1) where b23 is 

varied. 
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(a) t = 0 (b) t = 2 (c)t=4 (d) t = 6 

(e) t = 24 (f) t = 30 (g) t = 36 (h) t = 42 

Figure 7.8: Initial stage of(2.1)-(2.3) where parameters are the same in Figure 7.3. 

Dark gray， light gray， and black colors indicate the areas occupied by U， V， and 
W， respectively. 
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Chapter 8 

Wedge-shaped traveling wave 

solutions 

As shown in Figure 5.5， when b23 = 0.8うthefront wave moves rather faster than 

the back one， and spira1 patterns do not occurs any more and it seems that the 

resu1ting pattern is described by a superposition of a p1anar wave of two species 

moving to the 1eft direction and a radially symmetric expanding disk of three 

species. As shown in Figure 8.1， the tip moves to a certain日xeddirection after 

some time. 

a 
e 

(a) t = 0 (b) t = 20 (c) t = 33 (d) t = 53 

Figure 8.1: Interaction of two species-and three species-traveling wave solution 
of (2.1)-(2.3) becomes p1anar wave of two species moving to the 1eft direction and 

the radially symmetric expanding disk of three species. di， ri， ai and bi，j(i， j 
1，2，3(i手j))satisfy (3.1) except b23 0.8. Dark gray， light gray and b1ack 
indicate the area occupied by U， V， and y{，ヘrespective1yand b1ack line indicate 
the trajectory of core. 

Figure 8.1 suggests that if this behavior is considered in the who1e p1ane JR2， a 

superposition of a p1anar traveling wave and a radially symmetric expanding disk 
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tends to a superposition of two planar traveling waves after large time. In other 

words， one can expect that there is a wedge-shaped traveling wave solution which 

consists of a superposition of two planar traveling waves of two and three species. 

To confirm this expectation， 1 take the initial conditions (uo (x， y)， Vo (x， y)，ω。(x，y)) 
in square domain n as a superposition of two planar traveling waves， as shown in 

Figure 8.2 (a) 

-. 
(a) t = 0 

-. 
(b) t = 3 

. . 
(c) t = 33 

-. 
(d) t = 53 

Figure 8.2: Superposition of two and three species traveling plane wave solutions of 

(2.1)-(2.3) where di， 7'i，αi and bi，j(i，j = 1，2， 3(iヂj))satisfy (3.1) except b23 = 0.8 
Dark gray， light gray and black indicate the area occupied by U， V， and W， 
respectively and black line indicate the trajectory of core. 

As shown in Figure 8.2， the numerical simulations suggest that there is a two 

dimensional traveling solutions which are wedge-like shape， of (2.1) and (2.3) in 

JR.2 with boundary condition 

lirp (u(t， x， y)， v(t， x， y)刈 (t，x，ω= ( 0， 7'2，0 )， 
z→工∞ ¥ω2 / 

lim (u(t， x， y)， v(t， x， y)，ω(t，x，y)) = (u(t，x)，'U(t，x)，O)， 

lim (u(い，y)グ(t，x， y)刈 (t，x，y))= (0， ~2 ，0) 
¥ U2 / 

t> 0， (8.1a) 

t > 0， (8.1b) 

t> 0， (8.1c) 

where (u(t， x)， 'U(t， x)， 0) is the one dimensional two species traveling wave solution 

1 named this two dimensional traveling wave solutions ωedge-shα.ped tnαvelingωαve 

solutions. 

The wedge-shaped traveling wave solutions can be understood as follows: As 

shown in Figure 6.9， in one dimensional problem， the back wave which consists 

of three species approaches from behind of the front one which consists of two 
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species， and they annihilate each other when they collide. Consider what happen 

when the three species planar traveling wave approaches from diagonally behind 

to the two species one. One can expect that the annihilation occurs only at the 

intersection of the front and back waves， and superposition of the two species-

and three species-traveling waves forms wedge like shape and moves with fixed 

velocity depends on the plan町 travelingones. 

To understand the superposition of the two species-and three species-traveling 

waves more precisely， 1 show the numerical results with angles of the two planar 

traveling waves are di旺erentin Figure 8.3. 

200 

150 

100 

50 

。。 50 100 150 200 

Figure 8.3: The trajectory of tip when angle between two planar traveling waves 
change. The lines beginning at the top indicate the trajectory which the angle of 
initial state isπ/48，π/24，π/16，π/12，π/6，π/4，π/3， 57r /12， respectively 

Now， 1 conjecture the following: 

Conjecture 8.1. There is some critioαlαngleη'c such such that forαnyηsαtisfying 

0<η<η'c， there isα wedge-like traveling wave solutions (u， v，ω)叫 erethe front 

αnd bαckωαvesαre given by the twoαnd three species plαnαr tT1αvelingωαves where 

ηis the αngle between two tT1αvelingωαves. 

To support Conjecture 8.1， 1 first discuss about a superposition of moving two 

straight lines， which corresponds to a situation without diffusion effect. Along this 
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line of discussion， 1 first state the following proposition about a superposition of 

moving two straight lines: 

Proposition 8.2. Consider two str，αight lines L F αnd L B moving with velocity 

h 均(吟壬均)， respectively，αs shown in Figure 8.4. 1f the angle betωeen LF， LB 
is 'fJ， the αngle between the trajectory of intersectionαnd the direction perpendiculαT 

to L B is given by 

tan-
1 (∞叩r/均) (8.2) 

LB 

均一室
ωw

m
 

Figure 8.4: Relation between LB' LF and ηin Proposition 8.2 

1 show the proof of Proposition 8.2 in Appendix. 

From Proposition 8.2， 1 can show following corollary: 

Corollary 8.3. Suppose ηv is the αngleηwhen the intersection moves inαdirec-

tion perpendiculαr to LB， 

昨=cos(恥)VB. (8.3) 

Proof. The proof is so obvious from (8.2) that 1 omit it. 口
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Next， 1 discuss when the straight lines exhibit the change of species like as the 

two species-and three species-traveling waves. Consider the area passed by LF is 

occupied by U and LB wipes out U. As shown in Figure 8.5 (a)， when 0 <η<ηh 

U occupies the moving wedge shaped area only. On the other handぅasshown in 

Figure 8.5 (b)， when η>ηv， U also remains a triangle shaped area. 

(a)η<ηu (b)η>ηu 

Figure 8.5: Region occupied by U without diffusion e旺ect

From Figure 8.5 (a)， one can expect that when 0 <η<恥 thewedge shape 

traveling wave solution appears even if diffusion e旺"ectexists. In addition， one 

can expect from Figure 8.5 (b) that the tip of wedge bend to absorb the triangle， 

and when the angle to tip become ηv， the bending stops and the tip moves to 

fixed direction. This expectancy is supported by numerical results as shown in 

Figure 8.6. These expectancies have good agreements with Figure 8.3 and support 

Conjecture 8.1 with ηc 恥 =cOS-1(VF/1伝)

In order to confirm the validity of above discussion quantitatively， 1 verify 

whether or not the angle predicted from (8.2) agrees with the actual measured 

value. In Figure 8.2， the speed of front wave 吟 isleuvl = 2.57. . . and the speed of 

back wave 1匂isleu叩 I= 2.92. . .， and the angle between the two planar traveling 
wave solutions isη= 0.20うsothe calculated angle is 

cos(0.20) -(2.57/2.92) 
= 0.51... 

sin(0.20) 
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(a) t = 0 (b) t = 6 

. -
(c)t=11 (d) t = 26 

Figure 8.6: 8uperposition of two species-and three species-traveling wave solutions 

of (2.1)-(2.3) where di， ri，αi and bi，j(i， j = 1，2， 3(iヂj))satisfy (3.1) and b23 = 0.8 
Dark gray， light gray and black indicate the area occupied by U， V， and l{ヘ
respectively and black line indicate the trajectory of core. 

which is a good agreement with to the actual angle 0.54. . . . 

Next， 1 discuss about the situation that back wave is three species radially 

symmetric expanding traveling wave， as shown in Figure 5.5. In this case， if the 

collision angle is small， the angle that allows the tip of the wedge to move in 

the direction perpendicular to back wave so the angle becomes large， whereas if 

the angle is large， the tip moves in the direction of back wave moving， so the 

angle becomes small. 80 one can expect that a五xedangle will be selected as 

a result. From Corollary 8.3， one can expect that the fixed angle is given by 

ηc = cos-1(Buv/Buvw) 

In order to confirm the validity of the expectancy quantitatively， 1 compare the 

angle predicted from (8.3) with the actual measured value in the case of Figure 

5.5. In this case， calculated angle is 

η=  coベ却=0.49 (8.5) 

which is a good agreement with to the actual angle 0.45 . . .. This demonstrates 

the validity of the approximation in this case， too. 
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Chapter 9 

Concluding remarks 

In Chapter 1， 1 stated the problem: First， consider the situation in which there is 

αtwo native species system， where one is stronger thαn the other in competition， 

thαt is， competitive exclusion occurs between them. Second， considerαsituαtion in 

whichαsingle exotic competing species invαdes the nαtive system. Is it possible for 

the modified system of two native speciesαnd one exotic species to coexist， evenザ

the exotic species is relαtively weαker thαn either of the nαtive species? 

By using a three species competition-diffusion system (2.1)-(2.3)， 1 c組 say

“Yes"， for a suitable parameter range in the system. In other words， It has been 

shown that competitor-mediated coexistence can occur by exotic species for a 

suitable parameter range， even if the exotic species is weak. 

However， the behaviors are sensitive to the value of the parameter b23 which 

represents the relation between the exotic species and the weaker native species. 

In Chapter 3， it was demonstrated that three types of asymptotic behaviors arise 

depending on the value of b23， even if the exotic species W can survive only in the 

vicinity of the boundary between the two strongly competing native species. The 

three types of asymptotic behaviors are as follows: (a) the exotic species fades out， 

but the competitive relation of the native species is reversed so that the stronger 

native species can not survive， (b1) the exotic species survives， and competitor-

mediated coexistence exhibiting complex spatio-temporal pattern occurs， (b2) the 

exotic species survives， and competitor-mediated coexistence exhibiting steadily 

rotating spirals occurs. In addition， it was shown that the one dimensional two 

species-and three species-traveling wave solutions provide essential information 
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on the occurrence or non-occurrence of competitor← mediated coexistence. 

In Chapter 4， To examine the behaviors of two species-and three species-

traveling waves， it was shown that the interaction between the traveling waves can 

be cl蹴 ifiedwith respect to the value of the parameter b23 into three types: (1) 

collision and reflection， (11) collision and fusion， (111) collision and annihilation. 

In Chapter 6， it was demonstrated that the three types of asymptotic behav-

ior can be explained仕omthe classification of interactions between the traveling 

waves as follows: (A) when the three species traveling wave solutions are faster 

than the two species ones， competitor-mediated coexistence does not occur， but 

the competitive relation of native species is reversed so that the stronger native 

species can not survive， (Bl) when the three species traveling wave solutions is 

slower than the two species ones and the interaction between these two travel-

ing waves are“collision and fusion"， competitor-mediated coexistence exhibiting 

steadily rotating spirals occurs， (B2) when the three speci田 travelingwave solu-

tions are slower than the two species on田 andthe interaction between the traveling 

waves is“collision and reflection" ， there are two types of asymptotic behaviors. It 

was shown that the two types of asymptotic behaviors given in class (B2) are邸

follows: (B2a) competitive exclusion with reverse of the competitive relation of 

the native species， (B2b) competitor-mediated coexistence with complex spatiか

temporal patterns. The asymptotic behavior (B2a) occurs when the di宜erenceof 

speeds of the two traveling waves is large， while that of (B2b) occurs when the 

difference is small. 

Unfortunately， this sensitivity is not yet fully understood， although it is caused 

by the following three factors: 

(i) planar stability of one dimensional two species traveling wave solutions and 

three species ones， 

(ii) interaction between these two one dimensional traveling wave solutions; and 

(iii) difference of speeds between these two one dimensional traveling wave solu-

tions. 

In Chapter 7， the steadily rotating spirals were investigated. The relation 
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between the spiral arms and fused homoclinic traveling waves， the parameter de-

pendency of core radii in the steadily rotating spirals ， and the reason why the 

core radii become large as the difference speeds of traveling waves tends to 0 were 

discussed. In addition， it was shown steadily rotating spiral can be understood 

from the three abovementioned factors (i)ー(iii). 

In Chapter 8， newly-discovered two dimensional traveling wave solutions which 

were named wedge-shaped traveling wave solutions were discussed. It was shown 

and confirmed quantitatively that these traveling solutions can be understoodω 

a superposition of two planar traveling waves. It was shown that wedge-shaped 

traveling wave solutions can be understood from the three factors (i)ー(iii)，too. 

Finally， the ecological significance of this study is evaluted. The fact that an 

exotic species cannot survive in a diffusionless system implies that such a species 

cannot survive in a small area， such as an experimental farm. However， on the 

basis of the model presented in the studyうanexotic species can alter the conditions 

inherent within a strongly competing two species system even if it can survive only 

in the vicinity of the boundary between the two strongly competing native species， 

and it cannot coexist with the native species in a small area. This suggests that， 

when studying the infl.uence of exotic species， experiments should be conducted 

over a wide area and attention should be paid to the relations between weak 

specles. 
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Appendix Proof of Proposition 
8.2 

In this chapter， 1 show the proof of Proposition 8.2. 

Proof. Without loss of generality， 1 can set that the intersection of LB and Lp at 

the time t = 0 is taken to the origin of the coordinate system and L B to overlap 

the Y axis as shown in Figure A.l. 

LB 

Figure A.l: Initial position of LB and Lp 

First， 1 determine the equation of Lp at the time t = t1・Becausethe angle 

formed by the traveling direction of L p with the X出asto be η， and the speed of L p 

is り， x-intercept and y-intercept at t = t1 will be t1 Vp/ cos(η) and -t1 Vp/ sin(η)， 

respectively. Therefore， the equation of Lp at t = t1 can be described as 

U-z∞s(η) -t1 ¥令
-
sin(η) 

With (A.l)， the intersection of LB and Lp can be described舗

(t1  VB cos(η) -t1り
t1VB， 

sin(η) 
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With (A.2)， the equation of the trajectoηof intersection can be described舗

U一∞s(η)ー吟/均z
-
sin(η) 

(A.3) 

as showin in Figure A.2. 80， 1 can conclude that the angle between trajectory of 

intersection and the direction perpendicular to LB is given by 

ペペJ/ぬ)
IB(t _= 0) IB(tテ tl)

F(t = t1) 

(t
1 
V
B
， !!VB cos(η)-tl VF 

1 V B， sin(η) 

Figure A.2: Positions of the lines and intersection at t = 0 and t = t1 

口
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Refereed papers published in journals or books 

• C.-C. Chen， L.骨C.Hung， M. Mimura， M. Tohma， and D. Ueyama: Semi-

exact equilibrium solutions for three-species competition-diffusion sys-

tems， to appear in Hiroshima Mathematical Journal. 

Un-refereed papers published in local conference proceedings 

• M. Mimura， and M. Tohma : Dynamic spiral coexistence in competing 

species， Annual Conference of The Japan Society for Industrial and 

Applied Mathematics 2012 (in Japanese). 
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