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Introduction

This thesis deals with the Stanley–Reisner ring over a field. In particular, we

investigate the Stanley–Reisner ring defined by the edge ideals. First of all, we

state necessary notations. Let S = K[X1, . . . , Xn] be the polynomial ring of n

variables over a field K. Let G be a simple graph with the set of vertices V (G) =

{1, . . . , n}. We denote by E(G) the set of edges of G, where we describe each edge

as a two-element subset {i, j} of V (G). The square-free monomial ideal I(G) =

(XiXj | {i, j} ∈ E(G)) of S is called the edge ideal of G. We say that G is Cohen–

Macaulay (or sequentially Cohen–Macaulay) if S/I(G) is a Cohen–Macaulay ring

(or a sequentially Cohen–Macaulay ring, respectively).

The study of edge ideals was started by Villarreal in [30]. Estrada and Villarreal

gave the characterization of Cohen–Macaulay bipartite graphs in terms of simplicial

complexes ([7]). Herzog and Hibi gave the characterization for bipartite graphs to

be Cohen–Macaulay in terms of the edges ([12]). After that, Van Tuyl and Villarreal

gave the characterization of sequentially Cohen–Macaulay bipartite graphs in terms

of simplicial complexes ([28]) and studied the behavior of the edges of sequentially

Cohen–Macaulay bipartite graphs that have a perfect matching ([28], cf.[25]). In

the case of complete multipartite graphs, Kiani and Seyyedi studied the Cohen–

Macaulayness and the sequential Cohen–Macaulayness of G ([21], cf.[26]).

The main purpose of this thesis is to detect a characterization for graphs to be
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sequentially Cohen–Macaulay in terms of the behavior of the edges. In this thesis, we

introduce the almost complete multipartite graph whose class contains the bipartite

graph and the complete multipartite graph, and we describe a sufficient condition for

the graphs to be sequentially Cohen–Macaulay in terms of the edges. Moreover, we

give a characterization for the graphs to be sequentially Cohen–Macaulay in terms

of the simplicial complex.

The Castelnuovo–Mumford regularity is one of the most important invariants in

the commutative ring theory. We denote by reg(S/I(G)) the Castelnuovo–Mumford

regularity of S/I(G) and we call reg(S/I(G)) the regularity of G. Finding the

estimate of reg(S/I(G)) in terms of G is an interesting problem. In particular, we

are interested in a characterization for reg(S/I(G)) in terms of the induced matching

number of G (denoted by im(G)). Katzman showed in [17] that the inequality

reg(G) ≥ im(G) holds in general. Several classes of graphs satisfying the equality

reg(G) = im(G) have been found by researchers. One of the purposes of this thesis

is to give new classes satisfying the equality reg(G) = im(G). For example, we

will show that the equality reg(G) = im(G) holds if G belongs to the sequentially

Cohen–Macaulay almost complete multipartite graph.

In the rest, we discuss the organization of this thesis.

Chapter 1 is a preliminary for the later argument. We first state notations and

terminologies of the graph and the simplicial complex. Next, we recall the definition

of sequential Cohen–Macaulayness. Then, we give properties related to not only the

sequential Cohen–Macaulayness, purity, shellability, vertex decomposability and so

on. We will list the results about such properties. The definitions of some invariants

(the Castelnuovo–Mumford regularity and the induced matching number) are stated.

Chapter 2 is based on [15]. We study sequentially Cohen–Macaulay graphs which

contain cycles. We extend the concept of cycles in order to give a characterization for

bipartite graphs to be sequentially Cohen–Macaulay. We also study the shellability
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of graphs intersecting with cyclic graph at one vertex.

Chapter 3 is based on [16]. We introduce the concept of almost complete multi-

partite graphs. We study the purity, vertex decomposability, Cohen–Macaulayness,

and sequential Cohen–Macaulayness of almost complete multipartite graphs. The

main result of Chapter 3 is a characterization of sequentially Cohen–Macaulay al-

most complete multipartite graphs. As an application, we compute the regularity

of the graphs.

In Chapter 4, we introduce the semi-unmixed graph. We explore a relation

between of the purity of almost complete multipartite graphs and semi-unmixed

graphs. Then, we give a characterization of sequentially Cohen–Macaulay semi-

unmixed graphs. Moreover, from such an argument, we obtain a sufficient condition

for bipartite graphs to be sequentially Cohen–Macaulay in terms of the edges. As

applications, an alternative proof of the characterization of Herzog–Hibi ([12]) is

given. Besides, we obtain a sufficient condition for almost complete multipartite

graphs to be sequentially Cohen–Macaulay in terms of the edges.
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Chapter 1

Preliminaries

In this chapter, we state notations and basic properties which are needed af-

terward in our arguments. In Section 1, we present the notations and terminolo-

gies of graphs and simplicial complexes. After, we state the operations of graphs

corresponding to the operations (link, star and deletion) of simplicial complexes.

In Section 2, we recall the basic conditions (vertex decomposable, shellable, and

sequentially Cohen–Macaulay) of the simplicial complex. Several results on these

conditions are listed. In Section 3, we recall two invariants. One is the Castelnuovo–

Mumford regularity for commutative algebras. The other is the induced matching

number for graphs. We state the relations between the two invariants.

1.1 Notations of graphs and simplicial complexes

We first state notations of the graph. For more details of graph concepts, we

refer the reader to [4]. Let G be a simple graph. A simple graph means that it

has no loops and no multiple edges. In this thesis, G is simply called a graph. We

denote by V (G) the set of vertices of G and by E(G) the set of edges of G. Let

V be a subset of V (G). The subgraph induced of G by V , denoted by GV , means

the graph whose V (GV ) coincides with V and E(GV ) consists of {x, y} ∈ E(G),

where x, y ∈ V . We denote by G \ V the subgraph of G induced by V (G) \ V .

Let H1, . . . , Hr be induced subgraphs of G. If V (G) = V (H1) ⊔ · · · ⊔ V (Hr) and
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E(G) = E(H1) ⊔ · · · ⊔ E(Hr), we write G = H1 ⊔ · · · ⊔Hr.

The set of neighbors of a vertex v in G is denoted by NG(v). We set NG[v] =

NG(v) ∪ {v}. Generally, for a subset V ⊆ V (G), the intersection of V (G) \ V and

the union of neighbors of vertices in V is called the neighbors of V , which is denoted

by NG(V ). Similarly, NG[V ] is defined as NG(V ) ∪ V . For the induced subgraph H

of G, we put NG(H) = NG(V (H)) and NG[H] = NG[V (H)]. The degree of v in G

is the number of elements of NG(v), which is denoted by degG(v). A vertex v in G

with degG(v) = 0 is called an isolated vertex. The set of isolated vertices is denoted

by iso(G).

A subset V of V (G) is called independent if E ⊈ V for any E ∈ E(G). Let

c ≥ 1 be an integer. G is called a c-partite graph, if there exist independent sets

V1, . . . , Vc of G such that V (G) coincides with the disjoint union V1⊔· · ·⊔Vc. When

G is a c-partite graph with the partition V1, . . . , Vc, we denote it by (G ; V1, . . . , Vc).

In particular, (G ;V1, V2) means a bipartite graph with the partitions V1 and V2. A

bipartite graph (H ; X,Y ) is called complete if {x, y} ∈ E(H) for all x ∈ X and all

y ∈ Y . Let (G ; V1, . . . , Vc) be a c-partite graph; then, the induced subgraph GVi⊔Vj

is a bipartite graph for any i, j with i < j. A c-partite graph (G ; V1, . . . , Vc) is

called a complete c-partite graph if every GVi⊔Vj
is a complete bipartite graph for

all i, j with i < j. When we do not specify the number c, G = (G ; V1, . . . , Vc) is

simply called a complete multipartite graph.

We denote by ∆(G) the set of independent sets of G and by F(G) the set of

maximal independent sets among ∆(G). We regard ∅ as an independent set. The

number of maximum size of independent sets of G is denoted by dim(G). It easily

follows that ∆(G) forms a simplicial complex on V (G). In the rest of this section, we

recall some definitions and fundamental properties of simplicial complexes, which

we will need later. A simplicial complex ∆ on [n] = {1, . . . , n} is a collection of

the subsets of [n] such that F ∈ ∆ whenever F ⊆ F ′ for some F ′ ∈ ∆ and such
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that {i} ∈ ∆ for all i ∈ [n]. The element of ∆ is called a face, and the dimension,

dimF , of a face F is the number |F | − 1. Note that ∅ is a face of dimension −1 for

any nonempty simplicial complex. Faces of dimensions 0 and 1 are called a vertex

and an edge, respectively. A maximal face of ∆ is called a facet of ∆. Let F(∆)

stand for the set of facets of ∆. The dimension of ∆ is the maximum number of

dimH for all H ∈ F(∆), which is denoted by dim∆. Note that dim∆ = −1 if

∆ = {∅}. For each graph G, it follows that F(∆(G)) = F(G). We say that ∆ is

pure if dimF = dim∆ for all F ∈ F(∆). We denote the minimum number of dimH

for all H ∈ F(∆) by min-dim∆. Therefore, one can say that ∆ is pure if and only if

min-dim∆ = dim∆. Let N (∆) be the set of minimal elements among the subsets

F ⊆ [n] with F /∈ ∆. We note that N (∆(G)) = E(G) for any graph G.

Let P be a collection of subsets of [n]. Then, there exists the smallest simplicial

complex, say ⟨P⟩, which contains P . ⟨P⟩ is called the simplicial complex generated

by P , whose vertex set consists of {i ; i ∈ X ∈ P}. Under this notation, obviously

∆ = ⟨F(∆)⟩. ∆ is called a simplex if |F(∆)| = 1. Let ∆ be a simplicial complex

and ∆′ be a subset of ∆. ∆′ is called a subcomplex of ∆ if ∆′ = ⟨∆′⟩. For F ∈ ∆,

we recall the definitions of the star of F , the deletion of F and the link of F , which

are subcomplexes of ∆:

star∆ F = {H ∈ ∆ ; F ∪H ∈ ∆},

del∆ F = {H ∈ ∆ ; F ∩H = ∅},

link∆ F = star∆ F ∩ del∆ F.

For 0 ≤ i ≤ dim∆, let ∆(i) denote the simplicial complex generated by the faces

of ∆ of dimension i. Then, ∆(i) is the pure subcomplex of ∆ and called the i-th

pure skeleton of ∆. We say that ∆ is a flag complex if |V | = 2 for any V ∈ N (∆).

Let ∆(G) be the simplicial complex associated with a graph G. Then ∆(G) is a

flag complex. For F ∈ ∆(G), the star, deletion, and link of F in ∆(G) are flag

complexes associated with certain induced subgraphs of G. Namely, we have the
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following relations:

star∆(G) F = ∆(G \NG(F )),

del∆(G) F = ∆(G \ F ),

link∆(G) F = ∆(G \NG[F ]).

1.2 Sequential Cohen–Macaulayness and proper-

ties of simplicial complexes

Firstly, we define the sequential Cohen–Macaulayness. Let K be a field and

S = K[X1, . . . , Xn] be the polynomial ring with the variables X1, . . . , Xn over K.

Throughout this thesis, we always consider properties of a Stanley–Reisner ring over

a fixed fieldK. The concept of sequential Cohen–Macaulayness is defined by Stanley

as follows:

Definition 1.1. ([27]) Let M be a finite generated Z-graded S-module. We say that

M is sequentially Cohen–Macaulay if there exists a finite filtration

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mr = M

of M by graded submodules Mi satisfying the following two conditions:

(1) Each quotient Mi/Mi−1 is Cohen–Macaulay.

(2) dim(M1/M0) < dim(M2/M1) < · · · < dim(Mr/Mr−1).

Let Σ be a simplicial complex on [n]. For F ∈ [n], we set XF =
∏

i∈F Xi. IΣ is

an ideal generated by all monomials XF , where F /∈ Σ and is called the Stanley–

Reisner ideal of Σ. The residue class ring S/IΣ is also called the Stanley–Reisner

ring of Σ. It is known that dimS/IΣ = dimΣ + 1. We say that Σ is sequentially

Cohen–Macaulay if S/IΣ is a sequentially Cohen–Macaulay ring. We also say that

Σ is called Cohen–Macaulay if S/IΣ is a Cohen–Macaulay ring. In [6], Duval gave

another characterization for Σ to be sequentially Cohen–Macaulay as follows:
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Theorem 1.2. ([6]) Σ is sequentially Cohen–Macaulay if and only if the i-th pure

skeleton Σ(i) is Cohen–Macaulay for all 0 ≤ i ≤ dimΣ.

By Theorem 1.2, we obtain the following two results. For more details we refer

the reader to [13].

Proposition 1.3. Σ is Cohen–Macaulay if and only if Σ is pure and sequentially

Cohen–Macaulay.

Proposition 1.4. (cf.[28, Theorem 3.3.]) If Σ is sequentially Cohen–Macaulay,

then linkΣ F is sequentially Cohen–Macaulay for all F ∈ Σ.

Secondly, we recall several properties of simplicial complexes that are related

to sequentially Cohen–Macaulay algebras. Let Σ be a simplicial complex. The

shellability of simplicial complex, which is not necessarily pure, is defined in [1]

as follows: A simplicial complex Σ is shellable if Σ is a simplex, or there exists a

numbering of F(Σ) = {F1, . . . , Ft} such that ⟨F1, . . . , Fi−1⟩∩⟨Fi⟩ is a pure simplicial

complex of dimension dimFi − 1 for all 2 ≤ i ≤ t. A numbering of F(Σ) satisfying

the above conditions is called a shelling of Σ. When Σ is shellable, it is known

that the i-th pure skeleton Σ(i) is also shellable for all 0 ≤ i ≤ dimΣ (cf.[1, 2.9.

Theorem.]). Combining the above facts and Theorem 1.2, we have the following

well-known result.

Proposition 1.5. If Σ is shellable, then Σ is sequentially Cohen–Macaulay.

In this thesis, as definition of shellability, we apply the following statement. For

more details we refer the reader to [13].

Proposition 1.6. (cf. [13]) Let Σ be a simplicial complex. Then, the following

conditions are equivalent..

(1) Σ is shellable.
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(2) There exists a numbering F(Σ) = {F1, F2, . . . , Fr} satisfying either the fol-

lowing condition:

(a) r = 1.

(b) r > 1 and for any two facets Fi and Fj with j < i, there is an integer

k < i and a vertex l ∈ Fi \ Fj such that Fi \ Fk = {l}.

In this case, a numbering of F(Σ) satisfying (2)(b) is a shelling of Σ.

Let v be a vertex of Σ. A vertex v is called a shedding vertex if F(delΣ{v}) ⊆

F(Σ), which is equivalent to saying that F(delΣ{v}) ∩ F(linkΣ{v}) = ∅. We say

that Σ is vertex decomposable if Σ is a simplex, or there exists a shedding vertex

v of Σ such that both delΣ{v} and linkΣ{v} are vertex decomposable (cf. [2]). We

recall the following famous result.

Proposition 1.7. (cf.[2, 11.3. Theorem.]) If Σ is vertex decomposable, then Σ is

shellable.

Next, we introduce several properties in terms of graphs and recall the important

results concerning to our argument. Let G be a graph. The square-free monomial

ideal I(G) = (XiXj ; {i, j} ∈ E(G)) of S is called the edge ideal of G. Since

I(G) = (XiXj ; {i, j} ∈ N (∆(G))) = I∆(G), S/I(G) coincides with the Stanley–

Reisner ring S/I∆(G). Therefore, we say that G is sequentially Cohen–Macaulay,

vertex decomposable, shellable and Cohen–Macaulay if the associated simplicial

complex ∆(G) is as well. Besides, the shelling of ∆(G) is called a shelling of G.

Furthermore, if v is a shedding vertex of ∆(G), v is called shedding vertex of G.

From our notations and the above of Section 2, G is vertex decomposable if and

only if E(G) = ∅ or there exists a shedding vertex v such that G\{v} and G\NG[v]

are vertex decomposable. The study of the vertex decomposability of graphs was

started by Dochtermann–Engström ([5]) and Woodroofe ([32, Remark 8]).

We list the important results applied in our argument.
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Lemma 1.8. (cf.[28, Lemma 3.9.]) Let (H ; X,Y ) be a bipartite graph. Suppose

that |X| ≤ |Y | and iso(H) = ∅. If H is sequentially Cohen–Macaulay, then there

exists y ∈ Y such that degH(y) = 1.

In Chapter 2, we will give an alternative proof of Lemma 1.8.

The converse of Proposition 1.5 and Proposition 1.7 is always not true. In the

case of bipartite graphs, the following statement is true by virtue of Lemma 1.8.

Theorem 1.9. ([29, Theorem 2.10.], cf.[28, Theorem 3.10.]) Let H be a bipartite

graph. The following conditions are equivalent.

(1) H is vertex decomposable.

(2) H is shellable.

(3) H is sequentially Cohen–Macaulay.

When ∆(G) is pure, I(G) is an unmixed ideal (i.e., the height of every prime ideal

belonging to I(G) is constant). We simply say that G is unmixed if I(G) is as well.

Finally, in this section, we list some other results of [28] about the shellability of

graphs.

Proposition 1.10. (cf. [28, Lemma 2.4]) Let G be a gprah and H1, . . . , Hr be an

induced subgraph of G with G = H1 ⊔ · · · ⊔Hr. Then, the following conditions are

equivalent..

(1) G is shellable.

(2) The components H1, . . . , Hr is shellable.

Proposition 1.11. (cf. [28, Theorem 2.6]) Let G be a graph. If G is shellable, then

G \NG[V ] is shellable for all V ∈ ∆(G).
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Theorem 1.12. ([28, Theorem 2.9.]) Let G be a graph. Suppose that G has vertices

x and y with NG(x) = {y}. Put G1 = G \ NG[x] and G2 = G \ NG[y]. Then, the

following conditions are equivalent..

(1) G is shellable.

(2) Both G1 and G2 are shellable

In this case, if the shellings are given as F(G1) = {F1, . . . , Fr} and F(G2) =

{H1, . . . , Hs}, then

F(G) = {F1 ∪ {x}, . . . , Fr ∪ {x}, H1 ∪ {y}, . . . , Hs ∪ {y}}

is a shelling of G. Moreover, for any two facets Hi ∪ {y} and Fj ∪ {x}, there is a

facet Fk ∪ {x} such that Hi ∪ {y} \ Fk ∪ {x} = {y}.

1.3 Regularities and induced matching numbers

Let S be a polynomial ring over a field K. Let M be a finite generated Z-graded

S-module. The Castelnuovo–Mumford regularity of M , or simply the regularity of

M , is defined as

reg(M) = max {j ; ToriS(K,M)i+j ̸= 0 for some i},

which is one of the most important invariants in commutative algebra and algebraic

geometry (e.g., see [3]). We are interested in determining reg(S/I(G)) in terms of

the graph G. For a simplicial complex Σ, we set reg(Σ) = reg(S/IΣ) and call it the

regularity of Σ. For a graph G, we set reg(G) = reg(∆(G)) and call it the regularity

of G. By virtue of Hochster’s formula, it follows that reg(Σ′) ≤ reg(Σ) for any

subcomplex Σ′ of Σ. Therefore, if H is an induced subgraph of G, then ∆(H) is a

subcomplex of ∆(G); thus, the inequality reg(H) ≤ reg(G) holds. For a graph G, a
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subset M of E(G) is called an induced matching if |M | = 1 or NG[e1] ∩ e2 = ∅ for

any different edges e1, e2 ∈ M . The induced matching number of G is defined as

im(G) = max{|M | ; M is an induced matching of G},

which is closely related to the regularity of G.

Katzman showed in [17] that the inequality reg(G) ≥ im(G) holds in general.

It is known that the equality holds if the graph belongs to one of the following

classes: the forest ([33]), chordal graphs ([11]), unmixed bipartite graphs ([18]),

Cohen–Macaulay bipartite graphs ([8]), very well covered graphs ([23]), sequentially

Cohen–Macaulay bipartite graphs ([29]), C5-free vertex decomposable graphs ([19])

and Cameron–Walker graphs ([14]). In particular, we state the following claim that

is important in our research below:

Proposition 1.13. Let G be a graph. The inequality im(G) ≤ reg(G) always holds

([17]). The equality holds if one of the following conditions are satisfied.

(1) ([11, Corollary 6.9]) G is a chordal graph,

(2) ([18]) G is a bipartite graph and unmixed,

(3) ([19]) G is vertex decomposable and has no cycle of length 5.

Note that a sequentially Cohen–Macaulay bipartite graph satisfies condition (3)

of Proposition 1.13. In particular, so does a forest (cf.[19]).
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Chapter 2

Characterization by cyclic graphs

Let S = K[X1, . . . , Xn] be the polynomial ring over fixed field K and G be a

graph with n vertices. I(G) is the edge ideal of G. We say that G is sequentially

Cohen–Macaulay if S/I(G) is a sequentially Cohen–Macaulay ring.

G is called a forest if G has no cycles. Since the theory of graphs, forests are

bipartite graphs. If G is a forest, then G is sequentially Cohen–Macaulay([33]). So,

we are interested in the sequential Cohen–Macaulayness of bipartite graphs which

have cycles. In this chapter, we first give an alternative proof of Lemma 1.8. Next,

we investigate the relation between cycles and vertices of degree 1 on bipartite graphs

(Theorem 2.3). The conclusion gives an improvement of Lemma 1.8. Besides, we

will introduce a concept, which is analogy of cycles, and give a characterization

for bipartite graphs to be sequentially Cohen–Macaulay. Furthermore, for (not

necessary bipartite) graphs, we give a sufficient condition to be sequentially Cohen–

Macaulay. As an application, we show that G is sequentially Cohen–Macaulay if

there is a vertex v ∈ NG(C) with degG(v) = 1 for all C ∈ C(G) (Corollary 2.6).

We say that G is shellable if ∆(G) is shellable. Let {x, y} be an edge of G with

NG(x) = {y}. We put G1 = G\NG[x] and G2 = G\NG[y]. In [28], Tuyl and Villar-

real show that G is shellable if and only if G1 and G2 are shellable (Theorem 1.12).

We consider the graphs replaced {x, y} by cyclic graph C5 and show an analogous

statement of Theorem 1.12 (Theorem 2.9). As an application, we investigate the
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shellability of graphs which are two cyclic graphs intersecting at only one vertex.

2.1 Sequential Cohen–Macaulayness of bipartite

graphs with cycles

To give an alternative proof of Lemma 1.8, we recall the following condition of

simplicial complexes.

Definition 2.1. ([12]) Let ∆ be a pure simplicial complex of the dimension d−1. We

say that ∆ is connected codimension one if for each two facets F and G of ∆, there

is a sequence of facets F = F0, F1, . . . , Fq−1, Fq = G such that |Fi ∩ Fi+1| = d− 1.

The following statement is a well-known fact. For the proof, we refer the reader

to [13]

Proposition 2.2. Let ∆ be a simplicial complex. If ∆ is Cohen–Macaulay, then ∆

is connected in codimension one.

In here, we denote by ∆(G)[i] the (i− 1)-th pure skeleton for all 0 ≤ i ≤ dimG.

(Proof of Lemma 1.8)

By Theorem 1.2, ∆(G)[i] is Cohen–Macaulay for all 0 ≤ i ≤ dimG. Applying

Proposition 2.2, ∆(G)[i] is connected in codimension one for all 0 ≤ i ≤ dimG.

In particular, so is ∆(G)[|X|]. We take Y ′ ⊆ Y with |Y ′| = |X|. Then, we get

a sequence of facets X = F0, F1, . . . , Fr = Y ′ such that |Fi ∩ Fj| = |X| − 1. In

particular, |X ∩ F1| = |X| − 1. We put {y} = F1 \ X ⊆ Y . Then, we obtain

degG(y) = 1. □

We give an improvement of Lemma 1.8 by cycles of G. The set of cycles of G

is denoted by C(G). For details of graph concepts (e.g., path, cycle, bridge and so

on), we refer the reader to [4].
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Theorem 2.3. Let G be a bipartite graph with C(G) ̸= ∅. If G is sequentially

Cohen–Macaulay, then there is a vertex x ∈ NG(C) with degG(x) = 1 for some

C ∈ C(G).

Proof. We may assume that G is connected. Applying Lemma 1.8, we take a vertex

v with degG(v) = 1. We put NG(v) = {w}, t = |NG(w) \ {v}|, and NG(w) \ {v} =

{v1, . . . , vt}. We may assume that w /∈ V (C) for all C ∈ C(G). First, we consider

the case t ≥ 2. Put G1 = G \ NG[v] and G2 = G \ NG[w]. By Proposition 1.4,

G1 and G2 are sequentially Cohen–Macaulay. Let Hi be the connected component

of G1 with vi ∈ V (Hi) for all 1 ≤ i ≤ c. We put H ′
i = Hi \ {vi}. Then, H ′

i is

an induced subgraph of G2. Since w /∈ V (C) for all C ∈ C(G), it follows that

{w, v1}, . . . , {w, vt} are bridges of G. Therefore, we obtain

G1 = H1 ⊔ · · · ⊔Ht, G2 = H ′
1 ⊔ · · · ⊔H ′

t

by [4]. We put G(i) = GV (Hi)∪{v,w} and consider the induced subgraphs G(i),1 =

G(i) \ {v, w}, G(i),2 = G(i) \ {v, w, vi} for all 1 ≤ i ≤ t. Since V (G(i),1) = V (Hi)

and V (G(i),2) = V (H ′
i), then it follows that G(i),1 = Hi and G(i),2 = H ′

i. From

Proposition 1.10, G(i),1 and G(i),2 are sequentially Cohen–Macaulay. Therefore,

G(i) is sequentially Cohen–Macaulay by Theorem 1.12 and Theorem 1.9. We have

C(G1) = C(G) because {v, w} ∩ C = ∅ for all C ∈ C(G). Therefore, for some

1 ≤ k ≤ t, it follows that C(Hk) ̸= ∅; hence, C(G(k)) ̸= ∅. Suppose that there

is a vertex v ∈ NG(k)
(C) with degG(k)

(x) = 1 for some C ∈ C(G(k)). We claim

that degG(x) = 1. Indeed, if degG(x) ≥ 2, we take u ∈ V (G) \ V (G(k)) such that

{x, u} ∈ E(G). Since {x, u} ⊆ V (G1), it follows that {x, u} ∈ E(G1) = ⊔t
i=1E(Hi).

Therefore, we have {x, u} ∈ E(Hk). Besides, we also have u ∈ V (Hk) ⊆ V (G(k)).

This is a contradiction. Thus, we need only consider the case t = 1.

Fix t = 1 and put NG(w)\{v} = {x}. Suppose that this statement is false. Then,

we can find a counter example G for this statement. We may assume that |V (G)| is

minimum among the counter examples. By a similar argument (see the case t ≥ 2),
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G1 is sequentially Cohen–Macaulay with C(G1) ̸= ∅. By |V (G1)| < |V (G)|, we can

take a cycle D of G1 and a vertex y ∈ NG1(D) such that degG1
(y) = 1. We note

degG(y) ≥ 2 by our assumption. Therefore, y ∈ NG(w); hence, y = x. The vertex

x is not contained in any cycle of G because C(G) = C(G1) and degG1
(x) = 1.

Since G2 = G \ {v, w, x}, it follows that C(G2) = C(G) ̸= ∅. By |V (G2)| < |V (G)|,

we can take a cycle E of G2 and a vertex z ∈ NG2(E) such that degG2
(z) = 1

and degG(z) ≥ 2. Since z /∈ {v, w}, it follows that z ∈ NG1(x). Then, combining

degG1
(x) = 1 and x ∈ NG1(D), we get z ∈ V (D). Now C(G1) = C(G) = C(G2), it

follows that degG2
(z) ≥ 2, a contradiction. Thus, this statement must be true.

Let v, w ∈ V (G) and X,Y ⊆ V (G). The minimum length of paths from v to

w is denoted by distG(v, w). We denote by distG(X,Y ) the minimum number of

distG(x, y) for all x ∈ X and y ∈ Y . For a positive integer m, we put

Dm
G (X) = {x ∈ V (G) ; distG(x,X) = m}.

Moreover, for the induced subgraph H of G, we put Dm
G (H) = Dm

G (V (H)).

We denote by T (G) the set of the induced subgraphs K of G such that all the

degrees of vertices of K are at least two; i.e.,

T (G) = {K : induced subgraph of G ; degK(v) ≥ 2 for all v ∈ V (K)}.

If C is an induced subgraph of G by vertices of a cycle, then it follows that

C ∈ T (G). We give the characterization of sequentially Cohen–Macaulay bipartite

graphs in terms of T (G).

Theorem 2.4. Let G be a bipartite graph. Then, the following conditions are equiv-

alent.

(1) G is sequentially Cohen–Macaulay.

(2) For all K ∈ T (G) and L ⊆ D2
G(K) where L ∈ ∆(G), the neighborhood

NG\NG[L](K) is no empty set.
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Proof. (1) ⇒ (2) : Let K ∈ T (G), L ⊆ D2
G(K) and L be an independent set

of G. We put G(L) = G \ NG[L]. K is the induced subgraph of G(L) because

V (K) ⊆ V (G) \ NG[L]. Consider the connected component H of G(L) such that

V (K) ⊆ V (H). Since G is sequentially Cohen–Macaulay, H is also sequentially

Cohen–Macaulay. By Lemma 1.8, H has a vertex v with degH(v) = 1. We claim

that v /∈ V (K). Indeed, if v ∈ V (K), then it follows that

2 ≤ degK(v) ≤ degG(L)
(v) = degH(v) = 1,

a contradiction. Since H is the connected component of G(L), there is a path con-

taining v and some vertices of K. Thus, we obtain NG(L)
(K) ̸= ∅.

(2) ⇒ (1) : We may assume that G has no isolated vertices. Suppose that

G ∈ T (G). It is always true that D2
G(G) = ∅. Taking L = ∅, we obtain NG(L)

(G) =

NG(G) = ∅. This contradicts to our assumption. Therefore, G /∈ T (G); hence, G

has a vertex v of degree 1.

Suppose that G is not sequentially Cohen–Macaulay. We put NG(v) = {w},

G1 = G \ NG[v], and G2 = G \ NG[w]. If G1 and G2 have no vertices of degree 1,

we have nothing to do. If G1 has a vertex v1 of degree 1, we put NG1(v1) = {w1},

(G1)1 = G1 \ NG1 [v1], and (G1)2 = G1 \ NG1 [w1]. If G2 also has a vertex v2 of

degree 1, similarly, we put NG2(v2) = {w2}, (G2)1 = G2 \ NG2 [v2], and (G2)2 =

G2 \ NG2 [w2]. We also consider the same operations for (G1)1, (G1)2, (G2)1, and

(G2)2. By |V (G)| < ∞, these operations finish in finite steps. We denote by X

the set of the induced subgraphs without vertices of degree 1 which is given by the

above operations.

Let H ∈ X. If E(H) = ∅, H is shellable; hence H is sequentially Cohen–

Macaulay. Repeated application of Theorem 1.12, it follows that G1 and G2 are

sequentially Cohen–Macaulay; hence, we conclude that G is sequentially Cohen–

Macaulay. But, this is a contradiction. Therefore, E(H) ̸= ∅. We put K =

H \ iso(H). Since K have no vertices of degree ≤ 1, we get K ∈ T (G). From the
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definition of the induced subgraph H, we can take L′ ∈ ∆(G) and can write H =

G\NG(L
′). BecauseK is the induced subgraph of H, it follows that NG(K)∩L′ = ∅.

Put L = L′ ∩D2
G(K). L is an independent set of G.

For K ∈ T (G) and L ⊆ D2
G(K), we have NG\NG[L](K) ̸= ∅ by our assumption.

Take v ∈ NG\NG[L](K). By definition of K, there is a vertex u ∈ L′ such that

v ∈ NG(u). Since NG(K) ∩ L′ = ∅, it follows that u /∈ NG(K). Therefore, we get

u ∈ D2
G(K); hence, u ∈ L. Since v ∈ NG(u), it follows that v /∈ V (G(L)). This

contradicts the choice of v. Thus, G is sequentially Cohen–Macaulay.

According the part ((2) ⇒ (1)) of the proof of Theorem 2.4, we have proved

without the conditions of bipartite graphs. Therefore, the following statement fol-

lows.

Theorem 2.5. Let G be a graph. If NG(K) \ NG[L] ̸= ∅ for all K ∈ T (G) and

L ⊆ D2
G(K) where L ∈ ∆(G), then G is shellable and sequentially Cohen–Macaulay.

The converse of Theorem 2.3 is always not true. As an application of Theorem

2.5 (or Theorem 2.4), we give the following corollary.

Corollary 2.6. Let G be a graph. If there is a vertex v ∈ NG(C) with degG(v) = 1

for all C ∈ C(G), then G is shellable and sequentially Cohen–Macaulay.

Proof. Let K ∈ T (G), L ⊆ D2
G(K) and L be an independent set of G. We can

take a cycle C that is a subgraph of K. By our assumption, there is a vertex

v ∈ NG(C) such that degG(v) = 1. Therefore, v ∈ NG(K); hence, v /∈ NG[L].

Thus, we get v ∈ NG(K) \NG[L]. By Theorem 2.5, G is shellable and sequentially

Cohen–Macaulay.
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2.2 Shellability of graphs intersecting with a cyclic

graph at one vertex

Let Ci be the cyclic graph with i vertices. We first recall the result of sequentially

Cohen–Macaulay cyclic graphs.

Theorem 2.7. ([9, Proposition 4.1]) Let Ci be the cyclic graph with vertices i. Then,

the following conditions are equivalent.

(1) G is sequentially Cohen–Macaulay.

(2) i = 3 or i = 5.

Remark 2.8. We can check that all of the vertices of C3 and C5 are shedding

vertices. Therefore, C3 and C5 are vertex decomposable. By Theorem 1.9, C3 and

C5 are also shellable and sequentially Cohen–Macaulay.

We next give the analogy of Theorem 1.12.

Theorem 2.9. Let G be a graph. Suppose that G contains a cyclic graph C5 with

degG(w) = 2 for all w ∈ V (C5) except for one vertex. Then, the following conditions

are equivalent.

(1) G is shellable.

(2) Both G \ C5 and G \NG[C5] are shellable.

Proof. Suppose that C5 is a connected component of G. Then, it follows that

G \ C5 = G \ NG[C5]. By Remark 2.8, C5 is shellable. Therefore, in this case,

the proof follows from Proposition 1.10. We may assume that C5 is not a connected

component of G. Then, there is an unique vertex v ∈ V (C5) with degG(v) ≥ 3. We

put v = 1, V (C5) = {1, 2, 3, 4, 5}, and E(C5) = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 5}}.

Then, it follows that

F(C5) = {{1, 3}, {1, 4}, {2, 4}, {2, 5}, {3, 5}}.
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Moreover, we have G \NG[A] ∈ {G \ C5, G \NG[C5]} for all A ∈ F(C5).

(1) ⇒ (2) : Suppose that G is shellable. By Proposition 1.11, G \ NG[A] is

shellable for all A ∈ F(C5). Therefore, G \ C5 and G \NG[C5] are shellable.

(2) ⇒ (1) : Put G1 = G \ C5 and G2 = G \NG[C5]. We can check the following

inclusion relation:

∪
A∈F(C5)

{F ′ ∪ A ; F ′ ∈ F(G \NG[A])} ⊆ F(G).

We show the converse inclusion. Let F ∈ F(G). If 1 ∈ F , then 2, 5 /∈ F . Since F is

a maximal independent set, it follows that 3 ∈ F or 4 ∈ F . If 1 /∈ F and 2 ∈ F , then

3 /∈ F ; hence, 4 ∈ F or 5 ∈ F . If 1, 2 /∈ F , then 3, 5 ∈ F . Combining these facts, we

have A ⊆ F for all A ∈ F(C5). Therefore, we see at once that F \A ∈ F(G\NG[A]).

Thus, the converse holds.

Let F(G1) = {F1, . . . , Fr} and F(G2) = {H1, . . . , Hs} be shellings. Then, F(G)

coincides with the union of

F1 = {F1 ∪ {2, 4}, . . . , Fr ∪ {2, 4}},F2 = {F1 ∪ {2, 5}, . . . , Fr ∪ {2, 5}},

F3 = {F1 ∪ {3, 5}, . . . , Fr ∪ {3, 5}},F4 = {H1 ∪ {1, 3}, . . . , Hs ∪ {1, 3}},

F5 = {H1 ∪ {1, 4}, . . . , Hs ∪ {1, 4}}.

We claim that

F(G) ={F1 ∪ {2, 4}, . . . , Fr ∪ {2, 4}, F1 ∪ {2, 5}, . . . , Fr ∪ {2, 5},

F1 ∪ {3, 5}, . . . , Fr ∪ {3, 5}, H1 ∪ {1, 3}, . . . , Hs ∪ {1, 3},

H1 ∪ {1, 4}, . . . , Hs ∪ {1, 4}}

forms a shelling of G in this order. Since G1 and G2 is shellable, the numbering

of Fi is a shelling of ⟨Fi⟩ for all 1 ≤ i ≤ 5. For the simplicial complex ∆(G), we

check to satisfy the condition (2)(b) of Proposition 1.6. Let F, F ′ ∈ F(G). We may

assume that F ∈ Fi and F ′ ∈ Fj where i ̸= j.
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Firstly, we consider the case F, F ′ ∈ F1 ∪ F2 ∪ F3. If F ∈ F3 and F ′ ∈ F1, then

there are 1 ≤ α and α′ ≤ r such that F = Fα∪{3, 5} and F ′ = Fα′∪{2, 4}. It follows

that 3 ∈ F \ F ′. Put F ′′ = Fα ∪ {2, 5} ∈ F2. Then, we have F \ F ′′ = {3}. For the

other choice of F and F ′, we can also check the condition (2)(b) of Proposition 1.6

in the similar way. Therefore, the numbering of F1∪F2∪F3 is a shelling. Similarly,

we can also check that the numbering of F4 ∪ F5 is a shelling.

Finally, we consider the case F ∈ F4 ∪ F5 and F ′ ∈ F1 ∪ F2 ∪ F3. Let F ∈ F5

and F ′ ∈ F3. Then, we can write F = Hβ ∪ {1, 4} and F ′ = Fα ∪ {3, 5}; hence,

1 ∈ F \F ′. Since G1 and G2 are shellable, G\{3, 4, 5} is shellable by Theorem 1.12.

Moreover, the shelling is

F(G \ {3, 4, 5}) = {F1 ∪ {2}, . . . , Fr ∪ {2}, H1 ∪ {1} . . . , Hs ∪ {1}}.

Therefore, for Hβ ∪ {1} and Fα ∪ {2}, there is α′(1 ≤ α′ ≤ r) such that Hβ ∪ {1} \

Fα′ ∪{2} = {1}; hence, it follows that Hβ ∪{1, 4}\Fα′ ∪{2, 4} = {1}. For the other

choice of F and F ′, we can also check the condition to be shelling in the similar way.

Thus, G is shellable.

According to the proof of Theorem 2.9, we get the following corollary.

Corollary 2.10. Under the assumption of Theorem 2.9, let V (C5) = {1, 2, 3, 4, 5},

E(C5) = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 5}} and degG(1) ≥ 3. Then, the following

conditions are equivalent..

(1) G is shellable.

(2) Both G \ C5 and G \NG[C5] are shellable.

(3) G \ {3, 4, 5} is shellable.

Remark 2.11. Replacing C5 by C3 or complete graphs, we obtain the same state-

ment as Theorem 2.9 and Corollary 2.10. The proof is given by the similar argu-

ments.
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Let i, j ≥ 3. We consider a graph G that contains Ci and Cj. If V (G) = V (Ci)∪

V (Cj), |V (Ci) ∩ V (Cj)| = 1, and E(G) = E(Ci) ∪ E(Cj), we write G = Gi ∗1 Gj.

Corollary 2.12. Let Ci be the cyclic graph with vertices i. Then, the following

conditions are equivalent.

(1) Gi ∗1 Gj is sequentially Cohen–Macaulay.

(2) i ∈ {3, 5} or j ∈ {3, 5}.

Proof. Let G = Gi ∗1 Gj and V (Ci) ∩ V (Cj) = {x}.

(1) ⇒ (2) : Suppose that i, j /∈ {3, 5}. We put D2
G(x)∩ V (Ci) = {y, z} (if i = 4,

then y = z). The induced subgraph G \ NG[{y, z}] contains Cj as the connected

component. By Theorem 2.7, Cj is not sequentially Cohen–Macaulay. Therefore,

neither is G \NG[{y, z}]; hence, G is not sequentially Cohen–Macaulay.

(1) ⇒ (2) : Let i = 5. We apply Corollary 2.10 to G. Under the assumption

of Corollary 2.10, let G′ = G \ {3, 4, 5}. Then, it follows that C(G′) = {Cj} and

2 ∈ NG(Cj). Since degG′(2) = 1, G′ is shellable by Corollary 2.6. By Corollary 2.10,

G is shellable; hence, G is sequentially Cohen–Macaulay. Let i = 3. By Remark

2.11, similarly, we can also check that G is sequentially Cohen–Macaulay.
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Chapter 3

Almost complete multipartite graphs

Let S = K[X1, . . . , Kn] be the polynomial ring over a fixed field K and G be a

graph. We define the almost complete multipartite graph which contain the bipartite

graph and the complete multipartite graph.

Definition 3.1. A graph G is an almost complete multipartite graph if there exist

independent sets V0, V1, . . . , Vc of G with c ≥ 1 satisfying the following conditions:

(1) V (G) = V0 ⊔ V1 ⊔ · · · ⊔ Vc,

(2) G \ V0 = GV1⊔···⊔Vc is a complete c-partite graph.

When the (c + 1)-partite graph (G ;V0, V1, . . . , Vc) satisfies conditions (1) and (2),

we simply say that (G ; V0, V1, . . . , Vc) is an almost complete multipartite graph.

Remark 3.2. Let (G ; V0, V1, . . . , Vc) be an almost complete multipartite graph.

If V0 = ∅, then G is a complete multipartite graph. Moreover, bipartite graphs

are always almost complete multipartite graphs. Let c = 2. If V1 and V2 are not

the empty set, the complementary graph G of G is decomposable (see [13] for the

definition).

In this chapter, we investigate the sequential Cohen–Macaulayness of almost com-

plete multipartite graphs.
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Let (G ; V0, V1, . . . , Vc) be an almost complete multipartite graph. We put Gi =

GV0⊔Vi
for all 1 ≤ i ≤ c. Then, Gi is a bipartite graph for all 1 ≤ i ≤ c. Moreover,

one can check that ∆(G) = ∆(G1) ∪ · · · ∪ ∆(Gc). So, we consider the union of

simplicial complexes in Section 1. Let Σ, ∆, and Γ be simplicial complexes with

Σ = ∆ ∪ Γ. We give the characterization for Σ = ∆ ∪ Γ to be sequentially Cohen–

Macaulay (Theorem 3.15). As a corollary, we obtain the characterization for Σ to

be Cohen–Macaulay (Corollary 3.17).

Herzog and Hibi gave a quite interesting characterization for bipartite graphs to

be Cohen–Macaulay as follows:

Theorem 3.3. ([13, Corollary 9.1.14], cf.[12]) Let (H; X, Y ) be a bipartite graph.

Suppose that iso(H) = ∅. Then, the following conditions are equivalent.

(1) H is Cohen–Macaulay.

(2) There exists a numbering of the vertices X = {x1, . . . , xm}, Y = {y1. . . . , ym}

such that the following three conditions hold:

(a) {xi, yi} ∈ E(H) for all 1 ≤ i ≤ m,

(b) if {xi, yj} ∈ E(H), then i ≤ j,

(c) if {xi, yj}, {xj, yk} ∈ E(H), then {xi, yk} ∈ E(H).

The proof of Theorem 3.3 is given in Chapter 4. In Section 2, we first define the

conditions (CM1), (CM2) and (CM3) that are analogous to the conditions (a), (b),

and (c) respectively (Definition 3.18). Then, we study in the behavior of edges of

sequentially Cohen–Macaulay bipartite graphs. The sequentially Cohen–Macaulay

bipartite graph is contained in the class of graphs satisfying the conditions (CM2)

(Proposition 3.19). From the study of sequentially Cohen–Macaulay bipartite graphs

and the results of Section 1, we obtain the main result of this chapter (Theorem

3.22). As an application of the main result, it is follows that sequentially Cohen–
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Macaulay almost complete multipartite graphs are vertex decomposable (Theorem

3.27).

In Section 3, we compute the regularity of the union of simplicial complexes.

We also compute the regularity of almost complete multipartite graphs. As an

application of the main result, we consider a new class of graphs which satisfies

im(G) = reg(G). We show that im(G) = reg(G) if almost complete multipartite

graph G is sequentially Cohen–Macaulay or unmixed (Theorem 3.30).

3.1 The union of simplicial complexes

Let (G ;V0, V1, . . . , Vc) be an almost complete multipartite graph. We set Gi =

GV0⊔Vi
for all i ̸= 0. Then, one can check that ∆(G) =

∪c
i=1 ∆(Gi) and ∆(Gi) ∩

∆(Gj) = ⟨V0⟩ for all i < j. Thus, in order to investigate properties of ∆(G), it

is essential to consider the union of simplicial complexes whose intersection is a

simplex. Moreover, the argument can be reduced to the case where c = 2. In this

section, we take the union of two simplicial complexes and consider the sequential

Cohen–Macaulayness of these complexes.

Let ∆, Γ, and Σ be simplicial complexes such that Σ = ∆ ∪ Γ and V (Σ) = [n].

We set Π = ∆ ∩ Γ. Then, Π is a subcomplex of ∆, Γ, and Σ. Moreover, it holds

that

F(∆) ∩ F(Γ) ⊆ F(Σ) ⊆ F(∆) ∪ F(Γ).

Precisely speaking, we have the following proposition. We omit the proof since it is

done by the routine process.

Proposition 3.4. F(Σ) = (F(∆) \ F(Π)) ⊔ (F(Γ) \ F(Π)) ⊔ (F(∆) ∩ F(Γ)).

For F ∈ Σ, it is obvious that linkΣF = link∆F ∪ linkΓF . We also note that

linkΣF = link∆F if F /∈ Γ and that linkΠF = link∆F ∩ linkΓF if F ∈ Π. Moreover,

it holds that Σ(i) = ∆(i) ∪ Γ(i) and Π(i) ⊆ ∆(i) ∩ Γ(i) for all 0 ≤ i ≤ dimΣ.
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We need a sufficient condition for the equality Π(i) = ∆(i) ∩ Γ(i) to hold for all

0 ≤ i ≤ dimΣ. We set Γ1 = ⟨F(Γ) \ F(Π) ⟩, where Γ1 is a subcomplex of Γ.

Lemma 3.5. Suppose that dimΓ1 ≤ min-dimΠ. Then the following conditions

hold:

(1) dimΓ = dimΠ,

(2) F(Π) ⊆ F(Γ),

(3) Π(i) = ∆(i) ∩ Γ(i) for all 0 ≤ i ≤ dimΣ.

Proof. (1) : Since Π is a subcomplex of Γ, it holds that dimΓ ≥ dimΠ. Let F ∈ F(Γ)

with dimF = dimΓ. We may assume that F /∈ F(Π). Then, F ∈ F(Γ1); hence,

dimF ≤ dimΠ. Thus, dimΓ = dimΠ.

(2) : Let F ∈ F(Π). If F /∈ F(Γ), there exists F ′ ∈ F(Γ) such that F ⊊ F ′.

Now, F ′ /∈ F(Π); hence, F ′ ∈ F(Γ1). Therefore,

min-dimΠ ≤ dimF < dimF ′ ≤ dimΓ1.

This is a contradiction.

(3) : Let 0 ≤ i ≤ dimΣ. It is enough to show that Π(i) ⊇ ∆(i) ∩ Γ(i).

We first suppose that dimΠ < i; then, Π(i) = ∅. By (1), dimΓ = dimΠ < i;

hence, Γ(i) = ∅. Thus, Π(i) = ∆(i) ∩ Γ(i).

Next, suppose that min-dimΠ < i ≤ dimΠ. It is enough to show that Γ(i) ⊆

Π(i). Let H ∈ Γ(i). Then, there exists K ∈ F(Γ) such that i ≤ dimK and H ⊆ K.

Since min-dimΠ < i, we have dimΓ1 < dimK. As F(Γ) ⊆ F(Π) ∪ F(Γ1), it follows

that K ∈ F(Π); thus, H ∈ Π(i).

Finally, we assume that i ≤ min-dimΠ. Let H ∈ ∆(i) ∩ Γ(i). Since H ∈ Π,

there exists K ∈ F(Π) such that H ⊆ K and i ≤ dimK. Therefore, H ∈ Π(i).

Let Σ = ∆ ∪ Γ. When ∆ ∩ Γ is a simplex, one can characterize the purity of Σ

as follows.
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Proposition 3.6. Let H ∈ Σ and ∆ ∩ Γ = ⟨H⟩. Suppose that H ∈ F(∆) ∩ F(Γ)

or H /∈ F(∆) ∪ F(Γ). Then, the following conditions are equivalent.

(1) Σ is pure.

(2) Both ∆ and Γ satisfy the following two conditions:

(i) ∆ and Γ are pure,

(ii) dim link∆ H = dim linkΓ H.

Proof. By Proposition 3.4, either the condition H ∈ F(∆) ∩ F(Γ) or H /∈ F(∆) ∪

F(Γ) implies F(Σ) = F(∆) ∪ F(Γ).

(1) ⇒ (2) : Since Σ is pure, ∆ and Γ are pure and of the same dimension.

Therefore it holds that dim link∆H = dim linkΓH.

(2) ⇒ (1) : From assumptions (i) and (ii), it follows that dim∆ = dimΓ. Thus,

Σ is pure.

Let Σ be a simplicial complex on [n] and ∆ and Γ be subcomplexes of Σ with

Σ = ∆ ∪ Γ. We set Π = ∆ ∩ Γ. We start with the following proposition.

Proposition 3.7. Suppose that Π is Cohen–Macaulay and dimΠ = dim∆ = dimΓ.

Then, Σ is Cohen–Macaulay if and only if ∆ and Γ are Cohen–Macaulay.

Proof. Consider the reduced Mayer–Vietoris exact sequence of link∆F and linkΓF

for all F ∈ Σ :

· · · → H̃i(linkΠF ;K) → H̃i(link∆F ;K)⊕ H̃i(linkΓF ;K) → H̃i(linkΣF ;K) → · · · .

By virtue of Reisner’s criterion of Cohen–Macaulayness on simplicial complexes, the

proof follows because dimΠ = dim∆ = dimΓ = dimΣ.

As a corollary of Proposition 3.7, the sequentially Cohen–Macaulay case imme-

diately follows.
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Corollary 3.8. Suppose that Π is sequentially Cohen–Macaulay and Π(i) = ∆(i) ∩

Γ(i) for all 0 ≤ i ≤ dimΣ. Then, Σ is sequentially Cohen–Macaulay if and only if

∆ and Γ are sequentially Cohen–Macaulay.

Proof. Note that Σ(i) = ∆(i) ∪ Γ(i) and Π(i) = ∆(i) ∩ Γ(i) for all 0 ≤ i ≤ dimΣ.

By virtue of Duval’s criterion, we can apply Proposition 3.7 to Σ(i), ∆(i), and Γ(i)

for all 0 ≤ i ≤ dimΣ.

The following proposition might be well-known. However, it is important in our

argument; therefore, we give a brief proof.

Proposition 3.9. Let ∆ and Γ be pure simplicial complexes of dimension d (≥ 1).

Suppose that dimΠ ≤ d− 2. Then, Σ is not Cohen–Macaulay.

Proof. Take F ∈ F(Π) with dimF = dimΠ. Since ∆ and Γ are pure and dimΠ ≤

d− 2, link∆F ̸= {∅} and linkΓF ̸= {∅}. On the other hand, since linkΠF = {∅}, it

holds that link∆F∩linkΓF = {∅}; hence, linkΣF = link∆F∪linkΓF is not connected.

Moreover, we have dim(link∆F ) = dim(linkΓF ) = d−(dimΠ+1) ≥ 1. In particular,

dim(linkΣF ) ≥ 1. This means that linkΣ F is not Cohen–Macaulay. Thus, Σ is not

Cohen–Macaulay.

The following lemma is a sequentially Cohen–Macaulay version of the ”Rear-

rangement lemma”([1]), which plays a key role in proving the main statement in

this section.

Lemma 3.10. Let Σ be sequentially Cohen–Macaulay. Suppose that dimΠ ≥ 0 and

F(Π) ⊆ F(Γ). If one of the following conditions is satisfied:

(1) dim∆ ≥ dimΓ,

(2) dim∆ > dimΠ,

then dimΠ = dimΓ.
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Proof. We suppose that dimΓ > dimΠ. Let Γ1 = ⟨F ∈ F(Γ) |F /∈ F(Π) ⟩. Then,

we get dimΓ1 > dimΠ. Take F ∈ F(∆) and H ∈ F(Γ1). Since F ∩ H ∈ Π, there

exists H ′ ∈ F(Π) such that F ∩ H ⊆ H ′. If F ∩ H = H ′, then H ′ ⊆ H. Since

F(Π) ⊆ F(Γ), both H and H ′ belong to F(Γ); hence, H = H ′ ∈ F(Π), which is a

contradiction. Thus, F ∩H ⊊ H ′. Therefore, we obtain the following inequalities:

dim(F ∩H) < dimH ′ ≤ dimΠ < dimΓ1.

Now, we set d = min{dim∆, dimΓ1}. By assumption (1) or (2), dimΠ < d.

Since Σ = ∆ ∪ Γ1, it holds that Σ(d) = ∆(d) ∪ Γ1(d). Let Π′ = ∆(d) ∩ Γ1(d).

Then, we have dimΠ′ ≤ d − 2. In fact, if X ∈ Π′, then there exist F ∈ F(∆) and

H ∈ F(Γ1) with X ⊆ F ∩H. From the above inequalities, it follows that

dimX ≤ dimF ∩H < dimΠ < d.

By Proposition 3.9, Σ(d) is not Cohen–Macaulay. This contradicts the fact that Σ

is sequentially Cohen–Macaulay. Thus, dimΠ = dimΓ.

Remark 3.11. Obviously, condition (1) in Lemma 3.5 is equivalent to saying that

dimΓ1 ≤ min-dimΠ if Π is pure. Suppose that dim∆ ≥ dimΓ or dim∆ > dimΠ.

If Σ is sequentially Cohen–Macaulay, then (2) implies (1) in Lemma 3.5 by Lemma

3.10. Therefore, if Σ is sequentially Cohen–Macaulay and Π is pure, then (2) implies

(3) in Lemma 3.5.

Theorem 3.12. Let dim∆ ≥ dimΓ. Suppose that Π is Cohen–Macaulay such that

F(Π) ⊆ F(Γ). Then, the following conditions are equivalent.

(1) Σ is sequentially Cohen–Macaulay.

(2) Both ∆ and Γ are sequentially Cohen–Macaulay and dimΓ = dimΠ.

Proof. Suppose that Σ is sequentially Cohen–Macaulay. If Π = {∅}, then Σ = ∆

and Γ = {∅}. There is nothing to prove. We assume that dimΠ ≥ 0. Because Π
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is pure, condition (3) in Lemma 3.5 holds true by Remark 3.11. Then, the second

statement of the theorem follows from the first one by Corollary 3.8. The converse

also follows from a similar argument.

In the rest of this section, we assume that Π is generated by only one face of

Σ. Let Π = ⟨H⟩, where H ∈ Σ. We immediately get the following corollary from

Theorem 3.12.

Corollary 3.13. Suppose that dim∆ ≥ dimΓ, ∆∩Γ = ⟨H⟩, and H ∈ F(Γ). Then,

the following conditions are equivalent.

(1) Σ is sequentially Cohen–Macaulay.

(2) Both ∆ and Γ are sequentially Cohen–Macaulay and dimΓ = dimH.

Next, we consider the case where H = ∅. The following lemma may be known

(cf. [20]). We prove it for the convenience of the readers.

Lemma 3.14. Suppose that dim∆ ≥ dimΓ, ∆ ∩ Γ = {∅}. Then, the following

conditions are equivalent.

(1) Σ is sequentially Cohen–Macaulay.

(2) ∆ is sequentially Cohen–Macaulay and dimΓ ≤ 0.

Proof. We may assume that dimΣ ≥ 1. Note that dim∆ = dimΣ.

(1) ⇒ (2) : By (1), Σ(i) is Cohen–Macaulay for all 0 ≤ i ≤ dimΣ. In particular,

Σ(1) = ∆(1) ∪ Γ(1) is connected; hence, Γ(1) = ∅. Therefore dimΓ ≤ 0, and for

each 0 < i ≤ dimΣ, Σ(i) = ∆(i).

(2) ⇒ (1) : As dimΓ ≤ 0, it holds that Σ(i) = ∆(i) for all 0 < i ≤ dimΣ. Now,

∆(i) is Cohen–Macaulay for all 0 < i ≤ dimΣ and so is Σ(i).

We come to the proof of the main statement of this section.
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Theorem 3.15. Suppose that dim∆ ≥ dimΓ and ∆∩Γ = ⟨H⟩. Then, the following

conditions are equivalent.

(1) Σ is sequentially Cohen–Macaulay.

(2) ∆ and Γ satisfy the following three conditions:

(i) ∆ and Γ are sequentially Cohen–Macaulay,

(ii) dim linkΓ H ≤ min {0, dim link∆H},

(iii) dim starΓ H = dimΓ.

Proof. By Corollary 3.13 and Lemma 3.14, we may assume that ∅ ̸= H and H /∈

F(Γ).

(1) ⇒ (2) : Suppose that H ∈ F(∆). As H /∈ F(Γ), dimH < dimΓ ≤ dim∆.

Applying Lemma 3.10(2), it follows that dim∆ = dimH, which is a contradiction.

Thus, H /∈ F(∆).

Let W ∈ F(link∆H). We set Γ′ = Γ∪⟨H∪W ⟩. Then, it follows that Σ = ∆∪Γ′,

∆ ∩ Γ′ = ⟨H ∪ W ⟩, and H ∪ W ∈ F(Γ′). Moreover, dim∆ ≥ dimΓ′. Applying

Corollary 3.13, ∆ and Γ′ are sequentially Cohen–Macaulay and dimΓ′ = dim(H∪W ).

We take V ∈ F(linkΓH). Then, V ̸= ∅ sinceH /∈ F(Γ). We set ∆′ = ∆∪⟨H∪V ⟩.

Then, it follows that Σ = ∆′ ∪ Γ, ∆′ ∩ Γ = ⟨H ∪ V ⟩, and H ∪ V ∈ F(Γ). In

addition, dim∆′ ≥ dimΓ. Applying Corollary 3.13, ∆′ and Γ are sequentially

Cohen–Macaulay and dimΓ = dim(H ∪ V ), which also implies that dim starΓH =

dimΓ. Moreover, it follows that

dim linkΓH + dimH = dimΓ ≤ dimΓ′ ≤ dimH + dim link∆H;

hence, dim linkΓH ≤ dim link∆H. Since linkΣH is sequentially Cohen–Macaulay, it

holds that dim linkΓH ≤ 0 by Lemma 3.14.

(2) ⇒ (1) : AsH ̸∈ F(Γ), it follows from hypothesis (ii) that dim linkΓH = 0. By

hypothesis (iii), there exists F ∈ Γ such that H ⊆ F and dimΓ = dimF = dimH+1.
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We set ∆′ = ∆ ∪ ⟨F ⟩; then, it follows that Σ = ∆′∪Γ, ∆′ ∩ Γ = ⟨F ⟩. By Corollary

3.13, it is enough to show that ∆′ is sequentially Cohen–Macaulay.

By hypothesis (ii) again, it holds that 0 ≤ dim link∆H; hence, H /∈ F(∆). We

take H ′ ∈ F(∆) with H ⊊ H ′, and we set Γ1 = ⟨H ′, F ⟩. Because |F \ H ′| = 1,

it follows that Γ1 is shellable and therefore sequentially Cohen–Macaulay. On the

other hand, it is holds that ∆′ = ∆ ∪ Γ1, ∆ ∩ Γ1 = ⟨H ′⟩, and dimΓ1 = dimH ′.

Since ∆ is sequentially Cohen–Macaulay, applying Corollary 3.13 to ∆′ = ∆ ∪ Γ1,

we obtain that ∆′ is sequentially Cohen–Macaulay. Thus, Σ is sequentially Cohen–

Macaulay.

Remark 3.16. When replacing the sequential Cohen–Macaulayness with shellabil-

ity in Theorem 3.15, the theorem does not hold any more. We construct such an

example from [10, Fig. 1.] as follows: Let V (Σ) = {a, b, c, d, e, f, g1, g2, g3},

Σ = ⟨{a, c, d, e}, {a, b, g1}, {a, b, g2}, {a, b, g3}, {a, c, f}, {a, f, g1}, {a, g2, g3},

{b, c, g1}, {b, c, g2}, {b, c, g3}, {c, f, g3}, {c, g1, g2}, {f, g1, g2}, {f, g2, g3}⟩.

Then, Σ is the union of ∆ = ⟨{a, c, d, e}⟩ and Γ = ⟨F(Σ) \ F(∆)⟩. It is known

that both ∆ and Γ are shellable, but Σ is not shellable by [10]. Let H = {a, c}.

Then, one can check that ∆ ∩ Γ = ⟨H⟩, linkH Γ = ⟨{f}⟩, starH Γ = ⟨{a, c, f}⟩, and

linkH ∆ = ⟨{d, e}⟩. Hence, dim linkH Γ = 0 ≤ 1 = dim linkH ∆ and dim starH Γ =

2 = dimΓ. Therefore, conditions (i), (ii), and (iii) of (2) in Theorem 3.15 are all

satisfied.

As a corollary of Theorem 3.15, we have the following statement, which implies

that Σ becomes the ”ridge sum” of ∆ and Γ in the sense of [22] when Σ is Cohen–

Macaulay.

Corollary 3.17. Let ∆∩Γ = ⟨H⟩. Suppose that ∆ ⊋ ⟨H⟩ and Γ ⊋ ⟨H⟩. Then, the

following conditions are equivalent.
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(1) Σ is Cohen–Macaulay.

(2) Both ∆ and Γ satisfy the following two conditions:

(i) ∆ and Γ are Cohen–Macaulay,

(ii) dim link∆ H = dim linkΓ H ≤ 0.

Proof. If Π = {∅}, the statement is evident. We assume that Π ̸= {∅}.

(1) ⇒ (2) : We first check that H ∈ F(∆)∩F(Γ) or H /∈ F(∆)∪F(Γ). Suppose

the contrary. If H ∈ F(Γ) \ F(∆), then there exists H ′ ∈ F(∆) with dimH ′ >

dimH. On the other hand, applying Lemma 3.10(2), it holds that dimΓ = dimH;

hence, there exists F ∈ F(Γ)\{H} with dimF ≤ dimH as Γ ⊋ ⟨H⟩. Then, both H ′

and F belong to F(Σ). This contradicts the purity of Σ. Therefore, from Proposition

3.6, it follows that both ∆ and Γ are pure and dim link∆H = dim linkΓH. Thus,

by Theorem 3.15, we get the Cohen–Macaulayness of ∆ and Γ. It also follows that

dim link∆H = dim linkΓH ≤ 0.

(2) ⇒ (1) : Condition (2) (ii) implies thatH ∈ F(∆)∩F(Γ) orH /∈ F(∆)∪F(Γ).

Hence, Σ is pure by Proposition 3.6. Because Γ is pure, the equality dimΓ =

dim starΓH holds. All of the conditions in (2) of Theorem 3.15 are satisfied; thus,

Σ is Cohen–Macaulay.

3.2 Sequential Cohen–Macaulayness

In this section, we prove the main results of this chapter (Theorem 3.22). We

first define some properties that originate from the behavior of the edges of a graph,

which is an analogous concept introduced by Herzog and Hibi in [12] and [13].

Definition 3.18. Let G be a graph. Let U and V be subsets of V (G) with U ∩V = ∅

and |U | ≤ |V |. We say that an ordered pair U , V satisfies (CM1) and/or (CM2)

and/or (CM3) (a total of six patterns) if there is a numbering of the elements of U

31



and V , say U = {x1, ..., xm} and V = {y1, ..., yn} with m ≤ n, that satisfies (CM1)

and/or (CM2) and/or (CM3) as follows:

(CM1) {xi, yi} ∈ E(G) for all 1 ≤ i ≤ m,

(CM2) if {xi, yj} ∈ E(G), then i ≤ j.

(CM3) if {xi, yj}, {xj, yk} ∈ E(G), then {xi, yk} ∈ E(G)

Let (H ;X, Y ) be a bipartite graph with |X \ iso(H)| ≤ |Y \ iso(H)|. We say that H

satisfies (CM1) and/or (CM2) and/or (CM3) (a total of six patterns) if the ordered

pair X \ iso(H), Y \ iso(H) satisfies (CM1) and/or (CM2) and/or (CM3).

In this chapter, we consider the conditions (CM1) and (CM2). About the con-

dition (CM3), we will consider in Chapter 4.

For any graph G, we set dimG = dim∆(G) + 1 and call it the dimension of G.

Note that dimG = dimS/I(G).

Proposition 3.19. Let (H ;X, Y ) be a bipartite graph. Suppose that iso(H) = ∅

and |X| ≤ |Y |. If H is sequentially Cohen–Macaulay, then H satisfies (CM2).

Proof. We prove this statement by induction on |X|. We set m = |X| and n = |Y |.

When m = 1, this statement is always true.

Suppose that m > 1. Since H is sequentially Cohen–Macaulay and |X| ≤ |Y |,

we can choose x1 ∈ X and y1 ∈ Y such that NH(y1) = {x1} by Lemma 1.8. We

set H1 = H \NH [y1] = H \ {x1, y1}. Then, H1 is sequentially Cohen–Macaulay by

Proposition 1.4. We note that iso(H1) ⊆ Y . Moreover, we set H ′ = H1 \ iso(H1),

X ′ = X \ {x1}, and Y ′ = Y \ ({y1} ∪ iso(H1)). Then, H ′ is a sequentially Cohen–

Macaulay bipartite graph with the partition V (H ′) = X ′ ⊔ Y ′, and iso(H ′) = ∅.

(Case 1.) : |X ′| ≤ |Y ′|.

By the induction hypothesis, (H ′ ;X ′, Y ′) satisfies (CM2), i.e., there is a num-

bering X ′ = {x2, . . . , xm} and Y ′ = {y2, . . . , yt} that satisfies (CM2). We set
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iso(H1) = {yt+1, . . . , yn}; then, H1 satisfies (CM2). Moreover, with the numbering

X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn}, one can see that H satisfies (CM2).

(Case 2.) : |Y ′| < |X ′|.

We set iso(H1) = {y2, . . . , ys}. Note that |Y ′| < |X ′| = m− 1. By the induction

hypothesis, (H ′ ;Y ′, X ′) satisfies (CM2). We set the numbering Y ′ = {y′1, . . . , y′n−s}

and X ′ = {x′
1, . . . , x

′
m−1} that satisfies (CM2). We set xi = x′

m−i+1 for all 2 ≤ i ≤ m

and yj = y′n−j+1 for all s+ 1 ≤ j ≤ n. Then, one can check that H satisfies (CM2)

by the numbering X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , ys, ys+1, . . . , yn}.

Lemma 3.20. Let (H ;X, Y ) be a bipartite graph and assume that iso(H) = ∅. If

H is sequentially Cohen–Macaulay, then the following conditions are equivalent:

(1) dimH = |Y |,

(2) H satisfies both (CM1) and (CM2).

Proof. (1) ⇒ (2) : The statement is proved by induction on |X|. When |X| = 1,

condition (2) is obvious.

Suppose that |X| > 1. By condition (1), it holds that |X| ≤ dimH = |Y |; hence,

we can take x1 ∈ X, y1 ∈ Y , H1, and (H ′ ;X ′, Y ′) as in the proof of Proposition

3.19. Since dimH = |Y |, it follows that dimH1 = |Y \ {y1}|; hence, dimH ′ =

dimH1 − |iso(H1)| = |Y ′|. In particular, |X ′| ≤ |Y ′|.

By the induction hypothesis, (H ′ ;X ′, Y ′) satisfies (CM1). From the same ar-

gument for (Case 1) in the proof of Proposition 3.19, we have the numbering

X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} satisfying (CM1). Obviously, this

numbering also satisfies (CM2).

(2) ⇒ (1): Let Z ∈ F(∆(H)). It follows from (CM1) that |Z∩X| ≤ |NH(Z∩X)|.

Since Z is an independent set, it holds that NH(Z ∩X) ∩ (Z ∩ Y ) = ∅. Therefore,

we get the inequality |Z| ≤ |NH(Z ∩X)|+ |Z ∩ Y | ≤ |Y |. Thus, dimH = |Y |.

If iso(H) is not the empty set, then we get the following corollary.
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Corollary 3.21. Let (H ;X, Y ) be a bipartite graph. If H is sequentially Cohen–

Macaulay, the following conditions are equivalent.

(1) dim(H \NH(Y )) = dimH.

(2) H satisfies both (CM1) and (CM2).

Proof. Condition (1) is equivalent to saying that dimH = |Y ∪ iso(H)| by V (H \

NH(Y )) = Y ∪ iso(H). This means that dim(H \ iso(H)) = |Y \ iso(H)|. In

particular, |X \ iso(H)| ≤ |Y \ iso(H)|. Hence, (1) is equivalent to saying that H \

iso(H) satisfies (CM1) and (CM2) by Lemma 3.20, which implies (2) by Definition

3.18.

Let (G ;V0, V1, . . . , Vc) be an almost complete multipartite graph, and let L =

G \ NG[V0]. Then, (L ; ∅ , V1 \ NG[V0] , . . . , Vc \ NG[V0]) is a complete multipartite

graph. We set Gi = GV0⊔Vi
and Li = LVi\NG[V0] for all 1 ≤ i ≤ c. It is obvious that

Li = Gi \ NGi
[V0], and it is an edgeless graph for each 1 ≤ i ≤ c. The main result

is the following statement.

Theorem 3.22. Suppose that dimG = dimG1. Then, the following conditions are

equivalent.

(1) G is sequentially Cohen–Macaulay.

(2) The bipartite graphs G1, G2, ..., Gc satisfy the following three conditions:

(i) each Gi is sequentially Cohen–Macaulay for 1 ≤ i ≤ c,

(ii) if i ̸= 1, then |V (Li)| ≤ min{1, |V (L1)|},

(iii) if i ̸= 1, then (Gi ; Vi , V0) satisfies both (CM1) and (CM2).

Proof. We prove the theorem by induction on c.

The case where c = 1 is evident. We suppose that c > 1 and set G′ = G\Vc, L
′ =

G′ \NG′ [V0]. Both (G′ ;V0, V1, . . . , Vc−1) and (L′ ; ∅ , V1 \NG′ [V0], . . . , Vc−1 \NG′ [V0])
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are almost complete multipartite graphs. We set G′
i = G′

V0⊔Vi
and L′

i = L′
Vi\NG′ [V0]

for all 1 ≤ i ≤ c − 1. Note that G′
i = Gi and L′

i = Li for all 1 ≤ i ≤ c − 1.

From the argument at the beginning of Section 1, we have ∆(G) = ∆(G′) ∪∆(Gc),

∆(G′) ∩ ∆(Gc) = ⟨V0⟩, and dim∆(G′) = dim∆(G1) ≥ dim∆(Gc). Moreover, it

holds that dimLi = |V (Li)| = dim link∆(Gi) V0 + 1 for all 1 ≤ i ≤ c.

By Theorem 3.15, G is sequentially Cohen–Macaulay if and only if G′ and Gc

satisfy the following three conditions:

(i)′ both G′ and Gc are sequentially Cohen–Macaulay,

(ii)′ |V (Lc)| ≤ min{1, dimL′},

(iii)′ dim(Gc \NGc(V0)) = dimGc.

Applying the induction hypothesis to G′, we conclude that G′ is sequentially Cohen–

Macaulay if and only if the following three conditions are satisfied:

(i)′′ each Gi is sequentially Cohen–Macaulay for 1 ≤ i ≤ c− 1,

(ii)′′ if i ̸= 1, c, then |V (Li)| ≤ min{1, |V (L1)|},

(iii)′′ if i ̸= 1, c, then (Gi ; Vi , V0) satisfies (CM1) and (CM2).

Condition (ii) of the theorem is equivalent to conditions (ii)′ and (ii)′′. Condition

(iii)′ is equivalent to saying that (Gc ; Vc , V0) satisfies (CM1) and (CM2) by Corollary

3.21.

We get Corollary 3.23 as the corollary of Theorem 3.22.

Corollary 3.23. Suppose that V0 is an independent set of G such that |V0| is the

maximum number among all independent sets. Then, the following conditions are

equivalent:

(1) G is sequentially Cohen–Macaulay.

(2) The bipartite graphs G1, G2, . . . , Gc satisfy the following two conditions:

(i) each Gi is sequentially Cohen–Macaulay for 1 ≤ i ≤ c,

(ii) each (Gi ;Vi, V0) satisfies (CM1) and (CM2) for 1 ≤ i ≤ c.
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Proof. Since V0 is a maximal independent set, V (Li) = ∅ for all 1 ≤ i ≤ c, and

condition (2)(ii) of Theorem 3.22 is always true. Further, it follows that dimG =

dimGj for all 1 ≤ j ≤ c. Applying Theorem 3.22, we get this statement.

Example 3.24. Let (H ;X, Y ) be a bipartite graph. We set X = {x1, x2, x3}, Y =

{y1, y2, y3}, and E(H) = {{x1, yi} ; 1 ≤ i ≤ 3} ∪ {{xi, y3} ; 1 ≤ i ≤ 3}. We set

W0 = {x2, x3, y1, y2},W1 = {x1}, and W2 = {y3}; then, (H ;W0,W1,W2) is an

almost complete multipartite graph. Applying Corollary 3.23, one can check that

H is sequentially Cohen–Macaulay as follows, although it is known because H is a

forest([33]). Let Hi = HW0⊔Wi
for all i = 1, 2. Since x1 is a shedding vertex of H1,

H1 is vertex decomposable. For the same reason, H2 is also vertex decomposable.

Therefore, for each i = 1, 2, Hi is sequentially Cohen–Macaulay by Theorem 1.9.

Since Hi satisfies (CM1) and (CM2) for i = 1, 2, H is sequentially Cohen–Macaulay

by Corollary 3.23.

Now, let Z = {z1, z2, z3} and (H ′ ;X,Z) be a bipartite graph with the edges

E(H ′) = {{x3, zi} ; 1 ≤ i ≤ 3} ∪ {{xi, z1} ; 1 ≤ i ≤ 3}. Since H and H ′ are

isomorphic as graphs, H ′ is sequentially Cohen–Macaulay. We set V0 = X, V1 = Y ,

and V2 = Z. We consider the almost complete multipartite graph (G ;V0, V1, V2)

such that G1 = H and G2 = H ′. Then, one can check that dimG = dimG1,

but G2 does not satisfy (2)(iii) of Theorem 3.22. Therefore, G is not sequentially

Cohen–Macaulay.

We next consider the Cohen–Macaulayness on almost complete multipartite

graphs. For the unmixedness, we have the following statement, which is a translation

of Proposition 3.6.

Proposition 3.25. Suppose that V0 ∈
∩c

i=1 F(∆(Gi)) or V0 /∈
∪c

i=1F(∆(Gi)).

Then, the following conditions are equivalent.

(1) G is unmixed.
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(2) The bipartite graphs G1, G2, ..., Gc satisfy the following two conditions:

(i) each Gi is unmixed for 1 ≤ i ≤ c,

(ii) |V (L1)| = · · · = |V (Lc)|.

Corollary 3.26. Under the assumption of Proposition 3.25, let c ≥ 2, and suppose

that Vi is not an empty set for i = 1, 2. Then, the following conditions are equivalent.

(1) G is Cohen–Macaulay.

(2) The bipartite graphs G1, G2, ..., Gc satisfy the following two conditions:

(i) each Gi is Cohen–Macaulay for 1 ≤ i ≤ c,

(ii) |V (L1)| = · · · = |V (Lc)| ≤ 1.

Proof. The proof follows from Theorem 3.22 and Proposition 3.25 (or Corollary

3.17).

Recall that a vertex v of G is shedding vertex if F(∆(G \ NG[v])) ∩ F(∆(G \

{v})) = ∅. One can check that v is a shedding vertex of G if there exists w ∈ V (G)

with NG(w) = {v}. We say that G is vertex decomposable if E(G) = ∅ or there

exists a shedding vertex v such that G\{v} and G\NG[v] are vertex decomposable.

Now, we give the proof of Theorem 3.27.

Theorem 3.27. Let G be an almost complete multipartite graph. Then, the follow-

ing conditions are equivalent..

(1) G is sequentially Cohen–Macaulay.

(2) G is vertex decomposable.

Proof. Suppose that G is sequentially Cohen–Macaulay. We may assume that

dim G = dim G1. If c = 1, then G = G1, which is a bipartite graph. The con-

clusion follows from Theorem 1.9.
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Suppose that c ≥ 2. We may assume that Vi is not an empty set for all 1 ≤ i ≤ c.

We next use induction on |V (G)|. Let i ̸= 1. By Theorem 3.22, (Gi ;Vi, V0) is a

sequentially Cohen–Macaulay graph that satisfies (CM1) and (CM2).

We claim that G has a shedding vertex in Vi. If E(Gi) ̸= ∅, then there exist

v ∈ Vi and w ∈ V0 with NGi
(w) = {v} by (CM1) and (CM2). Therefore, v is a

shedding vertex of Gi. Then, v is also a shedding vertex of G. In fact, if there exists

F ∈ F(∆(G \NG[v]))∩F(∆(G \ {v})), then F ⊆ V (G \NG[v]) = V (Gi \NGi
[v]) ⊆

V (Gi \ {v}) while ∆(Gi \ {v}) ⊆ ∆(G \ {v}); hence, F ∈ F(∆(Gi \ NGi
[v])) ∩

F(∆(Gi \ {v})), which is a contradiction.

Suppose that E(Gi) = ∅. We take v ∈ Vi. By condition (2)(ii) of Theorem 3.22,

it holds that Vi = {v}, and there exists w ∈ V1 such that w ∈ iso(G1). Then, we get

F(G \NG[v]) = {V0} and V0 ∪ {w} ∈ ∆(G \ {v}). Hence, v is a shedding vertex of

G.

Let v ∈ Vi be a shedding vertex of G. Then, (G\{v}; V0, V1, . . . , Vi \{v}, . . . , Vc)

is an almost complete multipartite graph. In order to see that G \ {v} is sequen-

tially Cohen–Macaulay, we check conditions in (2) of Theorem 3.22. Since Gi \ {v}

coincides with the graph adding w as an isolated vertex to G \ NG[w], Gi \ {v} is

sequentially Cohen–Macaulay by Proposition 1.4. Thus, condition (2)(i) is satis-

fied. There is nothing to check for (2)(ii). To check (2)(iii), we may assume that

E(Gi) ̸= ∅. Then, Gi \{v} satisfies (CM1) and (CM2) by the choice of v. Therefore,

G \ {v} is sequentially Cohen–Macaulay. By the induction hypothesis, G \ {v} is

vertex decomposable. On the other hand, it holds that G \ NG[v] = Gi \ NGi
[v],

which is also vertex decomposable. Thus, G is vertex decomposable.

The converse follows from Theorem 1.9.
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3.3 Regularities

The purpose of this section is to present examples of almost complete multipartite

graphs G such that the equality reg(G) = im(G) holds, but G does not belong to

the classes stated in Proposition 1.13.

We first compute the regularity of simplicial complexes. Let K be a field. Let

Σ be a simplicial complex on [n]. Let ∆, Γ, and Π be subcomplexes such that

Σ = ∆ ∪ Γ and Π = ∆ ∩ Γ. We set S = K[Xi | 1 ≤ i ≤ n], S1 = K[Xi | i ∈ V (∆)],

S2 = K[Xi | i ∈ V (Γ)], and S3 = K[Xi | i ∈ V (Π)]. As is well known, we have the

following Mayer–Vietoris exact sequence:

0 −→ S/IΣ −→ S1/I∆ ⊕ S2/IΓ −→ S3/IΠ −→ 0

as S-modules. Then, we get the following lemma.

Lemma 3.28. Suppose that Π = ⟨H⟩. If ∆ ⊋ ⟨H⟩ and Γ ⊋ ⟨H⟩, then

reg(Σ) = max{reg(∆), reg(Γ), 1}.

Next, we give a method to compute the regularity and induced matching number

of almost complete multipartite graphs.

Let (G; V0, V1, . . . , Vc) be an almost complete multipartite graph. In the rest of

this section, we use the notation preceding Theorem 3.22. We note that (1) of the

following lemma was essentially proved in [24].

Lemma 3.29. Let (G; V0, V1, . . . , Vc) be an almost complete multipartite graph, and

let E(G) ̸= ∅. Then, we have the following condtions:

(1) reg(G) = max{reg(G1), . . . , reg(Gc), 1},

(2) im(G) = max{im(G1), . . . , im(Gc), 1},

(3) if reg(Gi) = im(Gi) for all 1 ≤ i ≤ c, then reg(G) = im(G).
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Proof. (1) : Since E(G) ̸= ∅, it holds that reg(G) ≥ im(G) ≥ 1. If c = 1, there is

nothing to prove. We may assume that c ≥ 2 and Vi ̸= ∅ for all 1 ≤ i ≤ c. By

induction on c, this statement follows from Lemma 3.28.

(2) : Let M be an induced matching of G, and let im(G) = |M | ≥ 2. Assume

that M ∩ E(G \ V0) ̸= ∅. Take e ∈ E(G \ V0) ∩ M and f ∈ M such that e ̸= f .

Then, it holds that
∪c

i=1 Vi ⊆ NG[e] and f ⊈ V0. Hence, NG[e] ∩ f ̸= ∅. This

contradicts the fact that M is an induced matching of G. Thus, M ∩E(G \V0) = ∅.

This implies that M ⊆ E(Gi) for some 1 ≤ i ≤ c. Then, we obtain that im(G) =

max{im(G1), . . . , im(Gc), 1}.

Assertion (3) follows from (1) and (2).

Finally, we prove the main result of this section.

Theorem 3.30. Let G be an almost complete multipartite graph. Then, reg(G) =

im(G) if one of the following conditions is satisfied.

(1) G is sequentially Cohen–Macaulay,

(2) G is unmixed.

Proof. We may assume that E(G) ̸= ∅.

(1) : IfG is sequentially Cohen–Macaulay, thenGi is sequentially Cohen–Macaulay

by Theorem 3.22. By Theorem 1.9, Gi is vertex decomposable. Since Gi is a bi-

partite graph, it has no odd cycle. Then, it follows from Proposition 1.13(3) that

reg(Gi) = im(Gi); hence, reg(G) = im(G) by Lemma 3.29(3).

(2) : Suppose that V0 /∈
∩c

i=1F(∆(Gi)). We may assume that V0 /∈ F(∆(Gc)).

Let W = V (Lc). Then, W ̸= ∅. Let W0 = V0 ⊔ W , Wi = Vi (i ̸= c), and

Wc = Vc \W . Then, (G; W0,W1, . . . ,Wc) is an almost complete multipartite graph.

We set Hi = GW0⊔Wi
. Since NG[w] ⊇

∪c
i=1 Vi for each w ∈ W , we have that

W0 ∈
∩c

i=1F(∆(Hi)). Thus, we may assume that V0 ∈
∩c

i=1F(∆(Gi)). Under

this condition, Gi is unmixed for all 1 ≤ i ≤ c by Proposition 3.25. Therefore, by
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Proposition 1.13(2), reg(Gi) = im(Gi) for all 1 ≤ i ≤ c. This implies reg(G) =

im(G) by Lemma 3.29(3).

Example 3.31. We consider the almost complete multipartite graph G in Example

3.24. Then, G1 coincides with the bipartite graph H, and reg(G1) = im(G1)=1.

Similarly we have that G2 = H ′ and reg(G2) = im(G2) = 1. This means that the

assumptions in (3) of Lemma 3.29 are satisfied. Hence, reg(G) = im(G) = 1.

Example 3.32. Let V0 = {x1, x2, x3, x4}, V1 = {y1, y2, y3}, and V2 = {z1, z2, z3}.

We consider an almost complete multipartite graph (G ;V0, V1, V2) such that

E(G1) = {{y1, x1}, {y2, x1}, {y3, x1}, {y3, x2}, {y3, x3}} and

E(G2) = {{z1, x1}, {z1, x3}, {z2, x2}, {z2, x3}, {z2, x4}, {z3, x3}, {z3, x4}}.

z1 z2 z3

y3y2y1

x1 x2 x3 x4G : }
G1

}
G2

Figure

We note that G \V0 is a complete multipartite graph, but we do not draw the edges

of G \ V0 in Figure.

We claim that G is sequentially Cohen–Macaulay. Now, G1 is the graph ob-

tained from H of Example 3.24 by adding x4 as an isolated vertex. Hence, G1 is

sequentially Cohen–Macaulay. On the other hand, z2 is a shedding vertex of G2

because NG2(x2) = {z2}, whereas G2 \ {z2} and G2 \NG2 [z2] are trees; in particular,
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they are vertex decomposable. Hence, G2 is vertex decomposable. By Theorem

1.9, G2 is sequentially Cohen–Macaulay. Note that dimG = dimG1 = 5 (in fact,

{x2, x3, x4, y1, y2} ∈ F(∆(G))), and (G2 ;V2, V0) satisfies (CM1) and (CM2). Apply-

ing Theorem 3.22, G is a sequentially Cohen–Macaulay graph.

By Theorem 3.30, we know that reg(G) = im(G) = 2. However, G is not

unmixed; further, G is not chordal since {x3, z3, x4, z2} is an induced cycle of length

4. Moreover, G has a cycle {x1, z1, x3, z3, y1} of length 5. Therefore, G does not

belong to any class stated in Proposition 1.13.
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Chapter 4

Semi-unmixed graphs

Let (H ; X, Y ) be a bipartite graph with |X| ≤ |Y | and iso(H) = ∅. In Section

1, we define the semi-unmixed graph as a class of graphs containing the unmixed

graph. Villarreal gave a characterization of the unmixed bipartite graph as follows:

Theorem 4.1. ([31]) Let (H; X, Y ) be a bipartite graph. Suppose that iso(H) =

∅. H is unmixed if and only if there exists a numbering of the vertices X =

{x1, . . . , xm}, Y = {y1. . . . , ym} such that the following two conditions hold:

(a) {xi, yi} ∈ E(H) for all 1 ≤ i ≤ m,

(c) if {xi, yj}, {xj, yk} ∈ E(H), then {xi, yk} ∈ E(H).

Villarreal says that this result is inspired by a characterization of Herzog and

Hibi in [31]. The characterization of semi-unmixed bipartite graphs (Theorem 4.4)

comes from Theorem 4.1.

Let (G ; V0, V1, . . . , Vc) be an almost complete multipartite graph. Put Gi =

GV0⊔Vi
for all 1 ≤ i ≤ c. In Section 2, we investigate the relation between unmixed

almost complete multipartite graphs and semi-unmixed graphs. We will a more

refined criterion (Theorem 4.8) than Proposition 3.25. After that, we compute the

regularity of semi-unmixed graphs. As an application, we also give a new method

to calculate the regularity of unmixed almost complete multipartite graphs.
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In Section 3, we give a characterization of sequentially Cohen–Macaulay semi-

unmixed graphs in terms of the conditions (CM1), (CM2), and (CM3) (Theorem

4.14). Moreover, from the proof of Theorem 4.14, we will obtain a criterion for

bipartite graphs satisfying (CM1) and (CM3) to be sequentially Cohen–Macaulay

(Theorem 4.15). As an application, the alternative proof of Theorem 3.3 is given

by Theorem 4.15. Finally, as an application of Theorem 3.22 and Theorem 4.15, we

present a sufficient condition for almost complete multipartite graph to be sequen-

tially Cohen–Macaulay in terms of edges (Theorem 4.16).

4.1 Behavior of edges

Let (H; X,Y ) be a bipartite graph. The definition of semi-unmixed graphs is as

follows:

Definition 4.2. Let (H; X,Y ) be a bipartite graph with |X \ iso(H)| ≤ |Y \ iso(H)|.

Let X1 be a set with X1 ∩V (H) = ∅ and |X1| = |Y \ iso(H)| − |X \ iso(H)|. We say

that (H; X,Y ) is semi-unmixed, if (H ′; X ′, Y ) is unmixed where X ′ = X ∪X1 and

E(H ′) = E(H) ∪ {{x, y}; x ∈ X1, y ∈ Y \ iso(H)}.

Remark 4.3. Let (H; X,Y ) be a semi-unmixed graph. When |X \ iso(H)| =

|Y \ iso(H)| holds, i.e., X1 = ∅ in Definition 4.2, H is unmixed. Thus, the class of

semi-unmixed graphs contains unmixed bipartite graphs.

According to Definition 4.2, (H; X, Y ) is semi-unmixed if and only if (H \

iso(H); X \ iso(H), Y \ iso(H)) is semi-unmixed.

We give a condition of edges of semi-unmixed graphs and characterize semi-

unmixed graphs in terms of the simplicial complex.

Proposition 4.4. Let (H; , X, Y ) be a bipartite graph with iso(H) = ∅ and m =

|X| < |Y | = n. Then, the following conditions are equivalent.

(1) (H; X,Y ) is semi-unmixed.

44



(2) There is a numbering X = {x1, . . . , xm} and Y = {y1, . . . , yn} satisfied the

following three conditions:

(CM1) {xi, yi} ∈ E(H) for all 1 ≤ i ≤ m,

(CM3) if {xi, yj}, {xj, yk} ∈ E(H), then {xi, yk} ∈ E(H),

(CP) HNH({ym+1,...,yn})⊔Y is a complete bipartite graph.

(3) If F is a facet of ∆(H) with F ̸= X, then dim F = dim ∆(H)

Proof. Let X1 be a set with X1 ∩ V (H) = ∅. Let (H ′; X ′, Y ) be a bipartite graph

with X ′ = X ⊔X1, X1 ∩V (H) = ∅, |X1| = n−m and E(H ′) = E(H)∪{{x, y}; x ∈

X1, y ∈ Y }

(1) ⇒ (2) : Suppose that (H; X, Y ) is semi-unmixed. By Definition 4.2, (H ′; X ′, Y )

is unmixed. By Theorem 4.1, (H ′; X ′, Y ) satisfies (CM1) and (CM3), i.e., there

is a numbering X ′ = {x1, . . . , xn} and Y = {y1, . . . , yn} which satisfies (CM1)

and (CM3). For any i < j, the numbering X ′ = {. . . , xj, . . . , xi, . . . } and Y =

{. . . , yj, . . . , yi, . . . } also satisfies (CM1) and (CM3), because there is no harm in

exchanging i and j. We may assume that X1 = {xm+1, . . . , xn}. Then, the num-

bering of vertices of H, X = X ′ \X1 = {x1, . . . , xm} and Y = {y1, . . . , yn}, satisfies

(CM1) and (CM3). Therefore, (H; X,Y ) satisfies (CM1) and (CM3). The remain-

ing is to check the condition (CP) for the numbering. Let xi ∈ HNH({ym+1,...,yn}) and

yk ∈ Y . Then, there is yj such that m + 1 ≤ j ≤ n and {xi, yj} ∈ E(H) ⊆ E(H ′).

By Definition 4.2, it follows that {xj, yk} is an edge of H ′. Therefore, we obtain

{xi, yk} ∈ E(H ′) by (CM3); hence {xi, yk} ∈ E(H). Thus, HNH({ym+1,...,yn})⊔Y is

complete.

(2) ⇒ (3) : Let W = NH({ym+1, . . . , yn}) and Z = {yj ∈ Y ; xj ∈ W} ∪

{ym+1, . . . , yn}. We claim that W = NH(Z). Indeed, it is clear that W ⊆ NH(Z).

Conversely, we take xi ∈ NH(Z) where i ≤ m. Then, there is a yj ∈ Z such

that {xi, yj} ∈ E(H). If j = m + 1, . . . , n, then xi ∈ W by definition of W . If
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j = 1, . . . ,m, then xj ∈ W by definition of Z, i.e., there is a integer k > m such that

{xj, yk} ∈ E(H). By the condition (CM3), we obtain {xi, yk} ∈ E(H). Therefore,

it follows that xi ∈ W .

We put H0 = H \ NH [Z], X0 = X \ W , and Y0 = Y \ Z. (H0; X0, Y0) is a

bipartite graph. Since W = NH(Z), one can check that α = |X0| = |Y0|; hence, we

write X0 = {xi1, . . . , xiα} and Y0 = {yi1, . . . , yiα}. Since H0 is an induced subgraph

of H, it follows that H0 satisfies the conditions (CM1) and (CM3). Therefore, H0

is unmixed.

Let F be a maximal independent set of H with F ̸= X; then, F ∩ Y ̸= ∅. By

the condition (CP), it follows that F ∩ W = ∅. Since W = NH(Z), we obtain

F ∪ Z ∈ ∆(H). Then, the inclusion relation F ⊇ Z holds because F is maximal

independent set. Therefore, F \ Z is a maximal independent set of H0. Since H0

is unmixed, it follows that the equality dimF \ Z = dimY0 = dimY \ Z; hence,

dimF = dimY . Thus, we obtain dimF = dim∆(H).

(3) ⇒ (1) : We show that ∆(H ′) is pure. Let F ∈ F(∆(H ′)). If F = X ′, then

dimF = dimY . Suppose that F ̸= X ′; then, F ∩ Y ̸= ∅ and F ̸= X. By definition

of E(H ′), we have F ∩ X1 = ∅. Since H is an induced subgraph of H ′, it follows

that F ∈ F(∆(H)). By our assumption, we have dimF = dim∆(H). In particular,

when we take F = Y , it follows that dimY = dim∆(H). Thus, ∆(H ′) is pure.

4.2 Relationship with almost complete multipar-

tite graphs

In this section, we investigate the relation between unmixed almost complete

multipartite graphs and semi-unmixed graphs. Firstly, we begin with proving the

following two statements about the union of simplicial complexes.

Lemma 4.5. Let Σ be a simplicial complex and both ∆ and Γ be subcomplexes of Σ

with Σ = ∆ ∪ Γ and ∆ ∩ Γ = ⟨F ⟩. If X ∈ F(∆) and there is a vertex v ∈ X such
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that v /∈ F , then it follows that X ∈ F(Σ).

Proof. If there is a vertex v ∈ X such that v /∈ F , then we get X /∈ Γ; hence there

is no X ′ ∈ F(Γ) such that X ⊆ X ′. It is always true that F(Σ) ⊆ F(∆) ∪ F(Γ).

Therefore, X ∈ F(∆) implies X ∈ F(Σ).

Proposition 4.6. Let Σ be a simplicial complex, and ∆1, . . . ,∆c be subcomplexes of

Σ with Σ = ∪c
i=1∆i and c ≥ 2. Suppose that F ∈ Σ, ∆i ∩∆j = ⟨F ⟩, and ∆i ⊋ ⟨F ⟩

for all i < j. If Σ is pure, then for each i the following conditions are equivalent:

(1) A subcomplex ∆i is pure.

(2) dim linkΣ F = dim link∆i
F .

Proof. Note that linkΣ F , link∆1 F, . . . , link∆c F are always pure.

(1) ⇒ (2) : Suppose that dim linkΣ F > dim link∆i
F . Since linkΣ F is pure and

link∆i
F is connected component of linkΣ F , it follows that link∆i

F = {∅}; hence,

F ∈ F(∆i). By our assumption ∆i ⊋ ⟨F ⟩, there is a face F ′ ∈ F(∆i) such that

F ′ ̸= F . From Lemma 4.5, F ′ ∈ F(Σ). Since dim linkΣ F ≥ 0, i.e., F /∈ F(Σ), we

have dimF ′ > dimF . Thus, ∆i is not pure.

(2) ⇒ (1) : Let X ∈ F(∆i). If X ⊇ F , then X \ F ∈ F(link∆i
F ). Since

link∆i
F is pure, it follows that dimX \ F = dim link∆i

F . By our assumption (2),

we have dimX \F = dim linkΣ F . Therefore, X \F ∈ F(linkΣ F ); hence, X ∈ F(Σ).

Suppose that X ⊉ F . By Lemma 4.5, we obtain X ∈ F(Σ).

Let (G ;V0, V1, . . . , Vc) be an almost complete multipartite graph. We put Gi =

GV0⊔Vi
and Li = Gi \NGi

[V0] for all 1 ≤ i ≤ c.

Lemma 4.7. Let (G; V0, V1, . . . , Vc) be an almost complete multipartite graph with

c ≥ 2. Suppose that Vi ̸= ∅ for all 1 ≤ i ≤ c. If G is unmixed, then each Gi is

semi-unmixed for all 1 ≤ i ≤ c.
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Proof. We put Gi = GV0⊔Vi
, L = G \ NG[V0], and Li = Gi \ NGi

[V0]. If dimLi =

dimL, then Gi is unmixed by Lemma 4.5. Suppose that dimL > dimLi. Since ∆(L)

is pure and ∆(Li) is a component of ∆(L); then, dimLi = 0. Besides, iso(Gi) ⊆ V0.

We show that the bipartite graph (Gi \ iso(Gi); V0 \ iso(Gi), Vi) is semi-unmixed.

First, we check that |V0 \ iso(Gi)| < |Vi|. Since Gi is bipartite graph, it follows

that Vi ∪ iso(Gi) ∈ F(Gi). Besides, Vi ∪ iso(Gi) ∈ F(G) by Lemma 4.5. Therefore,

|Vi∪ iso(Gi)| = dimG, hence |Vi| = dimG−| iso(Gi)|. Since dimL > 0, one has V0 /∈

F(G). Then, it follows that dimG > |V0|, therefore we get |Vi| > |V0| − | iso(Gi)|.

Next, we take X ∈ F(Gi\iso(Gi)) with X ̸= V0\iso(Gi). Then, X⊔iso(Gi) ∈ F(Gi)

and X ∩ Vi ̸= ∅. By Lemma 4.5, we get X ⊔ iso(Gi) ∈ F(G). Since G is unmixed,

it follows that dimG = |X ⊔ iso(Gi)|. Therefore, dimGi = |X ⊔ iso(Gi)|; hence,

dim(Gi \ iso(Gi)) = |X|. Then, we can apply Proposition 4.4(3) to (Gi \ iso(Gi); V0 \

iso(Gi), Vi). Thus, (Gi \ iso(Gi); V0 \ iso(Gi), Vi) is semi-unmixed.

We give the characterization of unmixed almost complete multipartite graph in

terms of semi-unmixedness.

Theorem 4.8. Let (G; V0, V1, . . . , Vc) be an almost complete multipartite graph.

Suppose that Vi ̸= ∅ and Gi = GV0⊔Vi
for all 1 ≤ i ≤ c. Then, the following

conditions are equivalent:

(1) G is unmixed.

(2) There is an unmixed bipartite graph Gj. Moreover, the bipartite graphs

G1, G2, . . . , Gc satisfy the following conditions:

(a) (Gi ; V0, Vi) is semi-unmixed for all 1 ≤ i ≤ c,

(b) if Gi is not unmixed, then iso(Gi) is contained in V0,

(c) dimG1 = · · · = dimGc.
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Proof. (1) ⇒ (2) : Suppose that G is unmixed. By Lemma 4.7, Gi is semi-unmixed

for all 1 ≤ i ≤ c. Moreover, according to the proof of Lemma 4.7, there is an

unmixed bipartite graph Gj. (2)(b) also follows. Fix 1 ≤ i ≤ c. Since Vi ̸= ∅, there

is a maximal independent set Fi of Gi with Vi ∩ Fi ̸= ∅. From Lemma 4.5, Fi is a

maximal independent set of G. Therefore, it follows that dimFi = dimG. Thus,

dimG = dimGi.

(2) ⇒ (1) : Let F ∈ F(∆(G)). There is the induced subgraph Gi such that

F ∈ F(∆(Gi)). If (F \ iso(Gi)) ∩ Vi ̸= ∅, |F | = dimGi by Proposition 4.4(3).

Suppose that (F \ iso(Gi)) ∩ Vi = ∅. Then, it follows that F ⊇ V0. Let Gj be an

unmixed graph. If F = V0, then |F | = |V0| = dim Gj. Suppose that F ⊋ V0. Then,

Gi is unmixed by (2)(b). Therefore, it follows that dim Gi = |F |. By (2)(c), it

follows that |F | is a constant . Thus, G is unmixed.

Remark 4.9. Proposition 3.25 follows from Theorem 4.8 by Proposition 4.6.

Finally, we calculate the regularity of unmixed almost complete multipartite

graphs. We first compute the regularity of semi-unmixed graphs.

Theorem 4.10. Let (H ;X, Y ) be a bipartite graph. If H is semi-unmixed, then

reg(H) = im(H).

Proof. We may assume that iso(H) = ∅. Then, it follows that im(H) ≥ 1, because

E(G) ̸= ∅. If |X| = |Y |, then reg(H) = im(H) by Proposition 1.13(2). Suppose that

|X| < |Y |. By definition of semi-unmixed, (H ′ ; X ′, Y ) is unmixed, i.e., we consider

the graph H ′ such that V (H ′) = X ′ ⊔ Y , X ′ = X ⊔X1 with X1 ∩ V (H) = ∅, and

E(H ′) = E(H)∪{{x, y}; x ∈ X1, y ∈ Y }. Then, it follows that reg(H) ≤ reg(H ′) =

im(H ′). On the other hand, we take an induced matching M of H ′. If M ⊈ E(H),

then there is an edge {x1, y1} ∈ M such that x1 ∈ X1. Since NG(x1) = Y , it follows

that M = {{x1, y1}}; hence, |M | = 1 ≤ im(H). If M ⊆ E(H), then M is an

induced matching of H. In any case, it follows that |M | ≤ im(H). Therefore, we

get im(H ′) ≤ im(H). Thus, reg(H) = im(H).

49



Let (G ;V0, V1, . . . , Vc) be an almost complete multipartite graph. We put Gi =

GV0⊔Vi
. As an application for almost complete multipartite graph, we give the

following statement.

Corollary 4.11. Let (G ;V0, V1, . . . , Vc) be an almost complete multipartite graph

with E(G) ̸= ∅. If Gi is semi-unmixed for all 1 ≤ i ≤ c, then reg(G) = im(G).

Proof. We can check the statement by Theorem 4.10 and Lemma 3.29(3).

We can get Theorem 3.30(2) as a corollary of the above statement.

4.3 Sequential Cohen–Macaulayness as bipartite

graphs

In this section, we characterize of sequentially Cohen–Macaulay semi-unmixed

graphs in terms of the condition of edges. The conditions (CM1), (CM2), and (CM3)

are introduced in Definition 3.18.

Lemma 4.12. (H ;X, Y ) be a bipartite graph and iso(H) = ∅. Suppose that H has

a vertex y ∈ Y of degree 1. If (H ;X,Y ) satisfies (CM1) and (CM3), then there is a

numbering X = {x′
1, . . . , x

′
m} and Y = {y′1, . . . , y′n} which satisfies (CM1), (CM3),

and y = y′1.

Proof. Suppose that a numbering X = {x1, . . . , xm} and Y = {y′1, . . . , y′n} which

satisfies (CM1) and (CM3). We put yr = y and {xs} = NH(yr). If r > m, then

degH ys = 1 by (CM3). We may assume that r ≤ m. Let a permutation φ on m.

We put x′
φ(i) = xi and y′φ(i) = yi for all 1 ≤ i ≤ m and y′j = yj for all j > m. Then,

one can check that the numbering X = {x′
1, . . . , x

′
m} and Y = {y′1, . . . , y′n} satisfies

(CM1) and (CM3). Taking φ such that φ(r) = 1, then y = yr = y′1. This completes

the proof.

Lemma 4.13. Let (H ;X,Y ) be a bipartite graph and iso(H) = ∅. If (H ;X, Y )

satisfies (CM1), (CM2), and (CM3), then G is sequentially Cohen–Macaulay.
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Proof. By Theorem 1.9, it is enough to show that H is vertex decomposable. We

prove this statement by induction on |X|. When |X| = 1, G is always vertex

decomposable.

Let m = |X| > 1. Suppose that a numbering X = {x1, . . . , xm} and Y =

{y1, . . . , yn} satisfies (CM1), (CM2), and (CM3). We put H1 = G\NH [y1] and H2 =

H\NH [x1]. By definition of vertex decomposable, we show thatH1 andH2 are vertex

decomposable. Since H is a bipartite graph, it follows that iso(H1) ⊆ Y . Moreover,

iso(H1) ⊆ {ym+1, . . . , yn} because H satisfies (CM1). Therefore, H1 \ iso(H1) is a bi-

partite graph with a vertex partition V (H1\iso(H1)) = {x2, . . . , xm}∪({y2, . . . , ym}∪

{yj ; yj /∈ iso(H1)}). Hence, one can check that H1 \ iso(H1) satisfies (CM1), (CM2),

and (CM3) on the numbering induced by that of V (H). By induction, H1 \ iso(H1)

is vertex decomposable; then, H1 is vertex decomposable.

It remain to prove that H2 is vertex decomposable. We have iso(H2) ⊆ X

because H is a bipartite graph. If xi ∈ iso(H2), then yi ∈ NH(x1). Moreover, by

(CM3), we can check that the converse holds for 2 ≤ i ≤ m, i.e., it follows that

iso(H2) = {xi ; yi ∈ NH(x1), 2 ≤ i ≤ m}. Therefore, we can write X \ iso(H2) =

{xi1 , . . . , xit} and Y \NH(x1) = {yi1 , . . . , yit} ∪ {yj ; yj /∈ NH(x1), m+ 1 ≤ j ≤ n},

hence H2 \ iso(H2) is a bipartite graph with V (H2 \ iso(H2)) = {xi1 , . . . , xit} ∪

({yi1 , . . . , yit} ∪ {yj ; yj /∈ NH(x1), m + 1 ≤ j ≤ n}). Then, one can check that

H2 \ iso(H2) satisfies (CM1), (CM2), and (CM3). By induction, H2 \ iso(H2) is

vertex decomposable, hence H2 is also vertex decomposable.

The main result in this section is given by the following statement:

Theorem 4.14. Let (H ;X,Y ) be a semi-unmixed graph and iso(H) = ∅. Then,

the following conditions are equivalent:

(1) H is sequentially Cohen–Macaulay.

(2) (H ; X, Y ) satisfies (CM1), (CM2), and (CM3).
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(3) H is vertex decomposable.

Proof. (2) ⇒ (3) : By the proof of Lemma 4.13.

(3) ⇒ (1) : By Theorem 1.9.

(1) ⇒ (2) : We prove this statement by induction on |X|. When |X| = 1, H

always satisfies (CM1), (CM2), and (CM3). Suppose that m = |X| > 1. Since H

is sequentially Cohen–Macaulay, H has a vertex y ∈ Y of degree 1. By Proposi-

tion 4.4, there is a numbering X = {x1, . . . , xm} and Y = {y1, . . . , yn} satisfying

(CM1) and (CM3). We may assume that y = y1 by Lemma 4.12. Put H1 =

H \ NH [y1]. Applying Proposition 1.4, H1 is sequentially Cohen–Macaulay; hence,

H1 \ iso(H1) is also sequentially Cohen–Macaulay. By the proof of Lemma 4.13,

(H1 \ iso(H1) ; {x2, . . . , xm}, {y2, . . . , ym} ∪ {yj ; yj /∈ iso(H1)} satisfies (CM1) and

(CM3). By induction, H1 \ iso(H1) satisfies (CM1), (CM2), and (CM3), i.e., there is

a numbering X \ {x1} = {x′
2, . . . , x

′
m} and Y \ ({y1} ∪ iso(H1)) = {y′2, . . . , y′t} which

satisfies (CM1), (CM2), and (CM3), and t ≤ n. we put iso(H1) = {y′t+1, . . . , y
′
n},

x′
1 = x1, and y′1 = y1. Then, one can check that a numbering X = {x′

1, x
′
2, . . . , x

′
m}

and Y = {y′1, y′2, . . . , y′t, y′t+1, . . . , y
′
n} satisfies (CM1), (CM2), and (CM3). Thus,

(H ; X, Y ) satisfies (CM1), (CM2), and (CM3).

On the proof of the part ((1) ⇒ (2)) of Theorem 4.14, we have proved without

the condition (CP) of definition of semi-unmixed. Therefore, generally, we see the

following statement:

Theorem 4.15. Let (H ;X, Y ) be a bipartite graph satisfying (CM1) and (CM3).

Then, the following conditions are equivalent:

(1) H is sequentially Cohen–Macaulay.

(2) (H ; X, Y ) satisfies (CM1), (CM2), and (CM3).

(3) H is vertex decomposable.
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We give the proof of Theorem 3.3.

(Proof of Theorem 3.3 ) (1) ⇒ (2) : Suppose that H is Cohen–Macaulay with

iso(H) = ∅. By Theorem 4.14, (H ; X,Y ) satisfies (CM1), (CM2), and (CM3), i.e.,

there exists a numbering X = {x1, . . . , xm} and Y = {y1, . . . , yn} such that (CM1),

(CM2), and (CM3). SinceX and Y is maximal, then |X| = dimH = |Y |. Therefore,

the numbering satisfies (a), (b), and (c) of Theorem 3.3 by Definition 3.18.

(2) ⇒ (1) : There exists a numbering X = {x1, . . . , xm} and Y = {y1, . . . , ym}

such that (a), (b), and (c). By Theorem 4.1, H is unmixed. On the other hand, by

Definition 3.18 and Theorem 4.15, H is sequentially Cohen–Macaulay. Thus, H is

Cohen–Macaulay. □

Finally, in this section, we give a sufficient condition for almost complete multi-

partite graph to be sequentially Cohen–Macaulay in terms of the edges.

Theorem 4.16. Let (G ; V0, V1, . . . , Vc) be an almost complete multipartite graph,

Gi = GV0⊔Vi
, and Li = Gi \NGi

[V0] for all 1 ≤ i ≤ c. Suppose that dimG = dimG1,

either (G1 ; V0, V1) or (G1 ; V1, V0) satisfies (CM1) and (CM3), and (Gi ; Vi, V0) sat-

isfies (CM1) and (CM3) for all i ̸= 1. Then, the following conditions are equivalent.

(1) G is sequentially Cohen–Macaulay.

(2) The bipartite graphs G1, G2, . . . , Gc satisfy the following three conditions:

(i) Either (G1 ; V0, V1) or (G1 ; V1, V0) satisfies (CM1), (CM2), and (CM3),

(ii) if i ̸= 1, (Gi ; Vi, V0) satisfies (CM1), (CM2), and (CM3),

(iii) if i ̸= 1, then |V (Li)| ≤ min{1, |V (L1)|}.

Proof. (1) ⇒ (2) : Suppose that G is sequentially Cohen–Macaulay. We can ap-

ply Theorem 3.22 to G. Therefore, (iii) of this statement is clear. By Theorem

4.15, (Gi ; Vi, V0) satisfies (CM1), (CM2), and (CM3) for all i ̸= 1. In the similar

argument, (G1 ; V0, V1) or (G1 ; V1, V0) satisfies (CM1), (CM2), and (CM3).
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(2) ⇒ (1) : By Theorem 4.15, all of the condition of Theorem 3.22 is satisfied.

The proof is complete.
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