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Time Evolution of a Bose-Einstein Condensate
in a Trap

—A Field Theoretical Approach—

Koichi Nakamura

The recent observations of Bose-Einstein condensation (BEC) in magneti-
cally trapped atomic gasest!2Jhave stimulated the theoretical study of these
phenomena. In this work, we investigate the particle distribution in a conden-
sate of neutral boson field under the trapping potential and its time evolution
immediately after the trapping potential is switched off, taking the interaction
between the particles into account.

We consider a collection of interacting Bose particles trapped in a harmonic

oscillator potential 1/2 Z%.; w?x#, whose Hamiltonian is given by

HB:S dxg’ (x) {—%A +% ’é w,-zx,-z} ¢ (x)

+ 30| da s @4 I VG286, @

where we set particle mass=#=1.

In a classical paper on BECB], Bogoliubov treated a similar Hamiltonian
but without the trapping potential. The key idea in his theory is that the crea-
tion and annihilation operators for the zero momentum particle should be
replaced by a c-number «/ﬁo» when BEC occurs. The quantity N, is the
average number of particles occupying the zero momentum state and BEC

means that this number becomes very large and macroscopic. Roughly speak-
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ing, this replacement is justified as follows: For BEC state, N, particles are in
the zero momentum state. Thus the creation and annihilation operators for
zero momentum state give

CQ? |No>=4/No+1INo+1>

Co|No>=«/1vo|No—1>- (2)
Since the number Ny is very large, Ny+ 1= N,, both the operations of ¢¢' and
¢o on system states are similar, giving the result /Ny as an eigenvalue. Thus
we can treat both the operators ¢¢' and ¢y as c-number JN_O

To extend this idea to a trapped Bose gas, first let us introduce annihilation

operators of particles a, in the harmonic oscillator modes by expanding the
field operator ¢ (x) in terms of a complete set of the harmonic oscillator wave

functions #, (x):

¢(x) =Y a,u,(x), 3)
where u, (x) satisfies
(-5 a5 2wt} e, @)

and n= (n,, n,, n3) with non-negative integers #;.

In a condensed state, most particles are in the ground state of the harmonic
oscillator, that is, the state for = (0, 0, 0). Therefore, the occupation num-
ber Nj of this state is supposed to be very large. In typical experiments, the
total particle number is of the order of 103~10%. Then we can apply the
Bogoliubov replacement to the creation and annihilation operators, ao" and a¢:

ay —> /Ny, a;—> /N, (5)

Then the field operator ¢ (x) reads

¢(x) =/ Nowo(x) + ¥ @, (x), (6)
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where the prime in ¥,” means to omit the term n= (0, 0, 0).

Substituting the above expression of ¢ (x) into Hgz in (1), we have

Hp=Nyg,+ Z a,,a,,’a,,
+%gN025 dx dx’ u? (x) V(x—x" )u2(x")

+gN3? 3 (4, +a,)

n

xSdxdx'u,,(x)uo(x)V(x—x')uoz(x') +O(gNy). )

when V(x)=V(—x) is assumed. Since N, is large, we shall retain only
terms of order N¢* and N¥/? in the interaction part. We remark the presence
of the terms of order N3/2. In the original Bogoliubov theory, the terms of ord-
er N§’? do not exist, which is due to momentum conservation. In the present
case, however, we do not have such a conservation law, and the dominant ¢-
number terms are linear in the creation and annihilation operators of excited
states.

By defining operators «,' and o, by

an=8y+/Noyn, o' =8, +/Noy, ®
which satisfy the same commutation relations as @, and a,, we can diagonal-
ize the approximated Hamiltonian thus obtained:
Hp= Z €ty tn+ Noko <1 +% Yo~ Z’fﬁ}’nz), )
n n €o

with the c-number coefficient

y,‘sgs—mjdxdx'u,,u)uo(x) V(-5 Yud(x'). (10)

n



4 BIRAREBEHRE BB (2002 - 3)
In terms of these os, the particle number density operator 7 (x) is written

as

A(x)=¢"(1)$(X) = 3 @y ity (1) 4 (x)
/W S (o +anin(x) {i0() - 5 yati() |

. , 2
+No <uo(x) -3 ynun(x)) an

and its thermal average,
n(x)=Z"'Tr e Mi(x)] 12)
with Z=Tr[ e ], can easily be calculated by making use of (9) to find

1
ef—1

n() =N (1000 = X ran(®)) + 5 g (). (13)

In our approximation of taking only the linear terms in a,' and a,, the
energy spectrum of single particle states are not affected by the existence of
interactions between particles. However the wave function of the ground
state does change. This can be seen in the first term above.

The total particle number is also obtained by integrating the above 7 (x)

with respect to x:

4 + 1
N=N, <1+Z yn2>+zeﬂ£'—_1. (14)

This equation gives the relation between the temperature and the condensate
fraction fy=N,/N. It shows that the interaction between particles lowers the
fraction f,.

Now we shall investigate how n(x) evolves, if the trappingpotential is re-
moved. Let us switch off the trapping potential at =0, thereafter the system

develops under the Hamiltonian,
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H=S it () { -3 4} 6(0)

+%9Sdxdx'¢'(x)¢'(x')V(x—x’)¢(x)¢(x'). (15)

For a while, however, the system must be still in BEC. Therefore we may be
able to approximate the self-interaction term (the second term) in (15) by

one in (7) (to neglect the terms of order gN,). Hence we have

H:§ a6 ) { -3 4} o)

+«/1v0 Z, (@, +@n) Eg¥n+ No&o (1 +% }’o) . . (16)

Here N,, and hence y,, must become time dependent. In principle, this depen-
dence will be determined self-consistently by the condition that the total par-
ticle number is conserved. In the following, however, our considerations are
limited to the case of time-independent N; and y,, because we are interested
in the short time evolution after switching off the trapping potential.

The quantum number z does not diagonalize the kinetic term in (15). It is
‘ convenient to introduce the creation and annihilation operators in momentum

eigenstates ¢,' and ¢, in the usual way:
() = s | by o a7
1) zc)—(27r)3/2 Ccp e %,
Inversely we get

C

= /Noito (k) + 3 ayit (k), (18)

where we use the Bogoliubov replaced field operator (6).



6  UIBRKEBRERSE BH3B4S5 (2002 - 3)

The operators a, and ¢; are related as,
=S dxu,(x)¢(x) =S dkeyit,* (k), (19)
where # means the Fourier transform of # defined by
7 = s | o (3) ¢ (20)

Putting (17) and (19) into (16), we have an expression of H written by

¢t and ¢, as

H=S dkEka1Ck+4/ﬁ0§ dk {Ck' Z, 12,, (k)(;‘n}’,, +h.C.}

n

+N080 (1 +% '}’0) (21)

with &,=k2/2.
The Heisenberg operator for >0,
(1) =e™c, e (22)
satisfies the equation of motion

ZCk(t) =eitH[Ck, H] e"”H
=i (1) + /Ny 3 expaita(k). (23)

We can solve this equation with the condition ¢;(0) =c; to get

—igl __

() =creat+ JIVO }_‘, EnValln (k). (24)
Substituting (18) into the first term above, we have

a(t) = Z a,it, (k) e_ie"+Mﬁo(k) o et

e—uz.t

L/, Z, &nPuil (R). (25)
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The field operator in the Heisenberg picture is written as

. . 1 .
o(x, t) =e™p(x) e“’H=WS dkc,(t) e™*
= 3 a,u,(x, 1) +/Nouo(x, 1)

, H
~i/N 3 e || dhin(s, ), (26)
n 0
where we denote
w,(x, 1) =;Sdk12 (k) gthe-iat 27)
n\A, (27[) 3/2 n -
In terms of a,’s, (26) can be rewritten as

$(x, )= 3 o, 1) +/Nou(x, t)
_'\/IVO Z, Ynun(xy t)

—i/N, Z’ e,,y,,S; diu,(x, 1) , (28)

and the number density operator in the Heisenberg picture is given by

i(x, £)=¢"(x,)¢(x, t)

= 3 a, ctt* (%, )t (2, 1)

+4/N, Z’ {a, u,*(x,t)f (x,¢) +h.c.}

+Nol f (2, ) 1%, (29)

where

S t) =up(x, t) — Z Vn {u,, (x, t) +1g, S; dAu,(x, 1) } (30)

7
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The thermal average of #(x, t) is given by

n(x, t)=Z"'Tr e n(x t)], 31
since the density matrix does not change in time in the Heisenberg pic-

ture. Making use of the egs. (9) and (29), finally we find

2

n(x, 1) =Ny|ug(x, t) - Z' Vu {u,,(x, 1) +is,,St du,(x, A)}
n 0

+ Zeﬂ—l_I a5, 8) |2, (32)

As seen in the definition (27), the functions #,(x, ) represent the wave
functions of free motion started from the harmonic oscillator eigenfunctions.
Comparing the above n(x, ) with n(x) givenin (13), we can see that n(x, ¢)
is the result of free evolution of #(x), except for the term e, {§ dAu,(x, 1).
This term gives the effect of the interaction between particles. If we drop this
term, the integration of #(x, ¢) with respect to x becomes the same as Nin eq.

(14), because of the orthogonality of {u,(x, #)}:
j dxn* (%, )t (%, 1) = ym. (33)

‘This means that, in our approximation, the time dependence of the fraction
fo stems from the interaction between particles.

In summary, the two main results of this work are as follows: (I) The
ground state particle distribution in a Bose condensate under the trapping
potential, seen from the first term in (13), is different from the noninteracting
case, where the distribution is expected to be|uy(x)|2. (II) The time evolu-
tion of the particle distribution of a condensed Bose gas immediately after
switching off the trapping potential suddenly can be calculated analytically as
in (32). In (13) and (32) the parameter y,, representing the interaction

effect, is crucial quantitatively. Simple manipulations of (10) lead to
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Ana 1 n/2 ( 1) m
(27[) 3/2 NO H wllz ( '2—) T for all even n;

Va= (34)

0 otherwise

where we put g =47na and a is the s-wave scattering length. To estimate the
numerical order of the interaction effects in our calculations, let us see the
values of the parameters in the experiment{!lusing Rb atoms. There we have
No=2%103, a=110ae(ay: Bohr radius), ws;=4/8 w;=48 w;=200n Hg,
then the leading y, for n= (2, 0, 0) or (0, 2, 0) and the next-leading one for
n=1(2, 2, 0) become —0.23 and 0.06, respectively.

Our calculations are based on the Bogoliubov theory, adapted to a system

trapped by a harmonic oscillator potential. Our approximation scheme is to

1/2

take only the dominant terms in Ng /¢ expansion, but is still nonperturbative

with respect to g (the interaction between particles). Higher order calcula-

1/2

tion in N /2 expansion is under study. The future task is to combine this field

theoretical approach with nonequilibrium Thermo Field Dynamics(45],
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