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GAUGE FIELD ASSOCIATED WITH
THE THERMAL BOGOLIUBOV
TRANSFORMATION

KOICHI NAKAMURA

Thermo field dynamics (TFD), which is a real time quantum field theory
with themal degrees of freedom, is well established as a theory of equilib-
rium systems [1]. TFD is also extended to describe time-dependent
phnomena and yields many interesting results [2][3]. So far, however, most
arguments are limited to the spatially homogeneous cases. In the paper in
Ref. [4], we proposed a way to extend TFD to spatially inhomogeneous
systems.

In TED we have two kinds of fields, the field by which the dynamics of
the system,.is described and one which has the thermal vacuum as its
vacuum. These two fields are related with each other by the thermal
Bogoliubov transformation which depends on the parameters characterizing
the thermal state of the system. For the spatially inhomogeneous systeni,
these parameters and hence the thermal Bogoliubov transformation must
depend on the space-time coordinates. The space-time dependence of the
thermal Bogoliubov transformation leads the noncommutativity of the
derivation with respect to space-time coordinates and the transformation.
This motivates us to introduce a gauge field associated with the thermal
Bogoliubov transformation to construct the covariant derivative. The

purpose of this note is to show how it can be done.
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Let us begin by recapitulating the results of Ref. [4] to show how to
construct the space-time dependent thermal Bogliubov transformation,

As is known [2], in the spatially homogeneous TFD, the thermal
Bogoliubov transformation matrix B contains the three parameters, 7., as,
Sk-

For simplicity, we choose the paticular values of @, = 1 and s, = (1/2) In

(1+n,;). For this choice, B has a simple form as

o 1

Blny] = ( H_m" T ) , (1)

with ¢ being 1 (-1) for bosonic (fermionic) operators.

The transformation by B is generated formally by the following operator

transformations:
af = BT[] |
e—G[nk]e—Go£;:eGo eG[nk]’
(2)
ay = & Bu™
—. e-—*G[nk}e—»Go{_ﬁcGo CG[nk],
where
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o= faigz ({0 ) e 2

Gln] = /d’?'"‘kfi‘(g (1)) S @b

Here we use the usual thermal doublet notation [3].
To generalize the above trasformation to spatially inhomogeneous situa-

tions, we note that G in eq. (3b) can be rewritten [5] as
| . L
Glng) = (ZTP/dz /dknka(t,:r,;k) | (4)

with -

Tt 3 F) = jcr'"? t,3+ sy O] We(t:h‘—iﬁ)". ®)
| (271')3 2 00 T

Here the fields £(¢, x)* and £({, x)* are defined hy

£, 8" = o

ik-2 T—iwy
(27 )3/2 fdk{p E

Ny 73 —ik- T rwgt
&(t, &) = 271' vl ﬁ’“f : 65)
which obey the equal time commutation relation,
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(€@, Z), (L, 9)"]. = 6*76(Z — 7)), (7)

where [A, Bls means AB — oBA.

In the time dependent but spatially homogeneous case [2], we introcuce
the time dependent Bogoliubov transformation by considering 7, in G[#.],
hence in B[#.], to be time dependent. For spatially inhomogeneous situa-
tion, it seems quite natural to modify the generator G[#.] by replacing 7.,
in (4) with the space-time dependent n{{, X) = n(¢; ¥; k).

The transformations {2) with thus generalized G[#n(tf, x - %)] lead the

momentum mixing Bogoliubov transformations [4, 6]

- 1 - - —i(F—E"Y-Z p— oL oy —iwget gy 8
ot = Gy /dk’ / dize= 2 Bt n(t, 7 o (K + F))e €l (8)

7 - i ZFv zwk: - Y Ve
0 = gy J [ wiplolt 7 5F I g

which assure the commutation relation

[ar ()", a{))e = 8*6(k — 1), )

We note that #(¢, x; k) is expressed as

n(t,Z /dKe'A x(olak-{- x(@) ak 'K(t) 10).
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Now let us construct the field operators ¢(f, ¥) and ¢—5(t, %) for the

oscillator variables a, (¢} and a, () as

. ]' ' i.:.f
3y = o5 [dRar(eyet
i( = 1 o= ¢ —ik-F
3, 2)" = o /dka;c(t)‘e £z

Because of eq. (9), the field operators introduced above satisfy the canoni-
cal commutation relation for a type I field, i. e. a field which contains only

the positive frequency part:
[6(t,2)*, #(t,5)"] = 6" 6(Z —F). (10)

By taking Fourier transform of eq. (8), we get the Bogoliubov transforma-

tions which relate the ficlds ¢{/, ¥) and &({, X} to £({, ¥) and £(¢, %)

a P 1 - :
41,8 = goeye Ji7 [ AheFEI B e, 5+ 9 PP, 1)

n -\ 1 — 7 -—iic.-(i:'—ff)— v _{ g N '_: vie
W6, = G 47 [ dReFEDE D Bl 5 @ RN

The inverse transformations to eq. (11) are given by
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£(L, 7) ( )3 /dy /dke'k (2~ g’B{n(t -(.'B+y) k)]pué(t’?j)y (12a)

E(t, @y = @F— ; 7 [dReFEDg(0, )7 B (e, ‘(Hy) B (120)

The space-time depedence of #(f, x; k) gives rise to the noncom-

mutativily of the Bogoliubov transformation (11) and the derivations with _

respect to space-time coordinates:

Oud(L, 2)" + jdy / dEe®E-Dg n(t, —(J:+y) F)ME 6(t, 5)"

21r)3

= s A7 [T D B, (@ Rl Y, (30

P~ g 47 JAREDoum(e 4 0 Ry M

j JdRe R D06 ) Bln(e, 5 (& + 7 PP, (13b)

where
M, = ( o —1 )
1 —0o
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Here the derivative operator 9, is defined by

. 8/6:1:1 a:i;1,2,3
O = { 3/0t  a=0 14

and the following notation is also used:

i n(t, ):’; E) . (15)

1 "
In(t, S(z + ) k) =
2 0X; X=F+9)

The noncommutativity of the derivations and local (space-time depen-
dent) symmetry transformation is common story in the gauge theory for-
malism. This entice us to introduce gauge fields associated with the space

~-time dependent thermal Bogoliubov transformation (11).

Let us consider new fields A.(f, ¥; #) and assume that these A, are

transformed like
An(l, B k) = Ao(t, 3 k) — idan(l, T3 F) (16)
under the thermal Bogoliubov transformation which transforms
£(t, 2)* — ¢(t, 2)". (17)

By using A, thus introduced, we define the operator D, by
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Do f(t,%)" = 0a (2, Z)"

-t 3 e 1 —
—— |dY ik-(Z-9) - p v
e /dy/dke Aa(t,z(:s"f-y),k)Mo i,y (18)

Then, from eq. (13) and eq. (16), the operator D, thus defined has the

simple transformation property
DE(t, Z) — Doog(t, z)" (19)

under the transformation (11), so that the opeator D, in (18) gives the
covariant derivative with respect to the termal Bogoliubov transformation
(11).

The minimal coupling of the gauge field A, to the ficld ¢ can be derived
in the usual way, that is, by replacing d. with D, in the Lagrangian which
is invariant under the global transformation.

For the simplest example, we take a free Schridinger field which has the

TFED Larangian,

1 -

2m

fo= [d (i(t, 044, — 5 (@O} €O

Clearly [Zo is invariant under a global (with #, not depending on the space
-lime coordiates) thermal Bogoliubov transformation. We can turn this
invariance into one under local (with #», depending on the space-time

coordinate) transformation (11) by replacing 8, with D, to get
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o
Il

/d:;,-* (id(t, 2)* Dy(t, )" ~ i(—D;&(t,a‘:')“)(D.-sb(t, £)*)}
= O—z]dwjdkpg (¢, A (%, Z; k) - (21)
" /d:c /dkm, (1, 7 F) Ai(t, & F), .

with

| 1 YIS C1a
po = (g [T+ GO M 9(1,E — 5BV, (220)

. B
JQi = (271‘)3 /dfetkf“z—m{a,'¢(t,$ 5 ) M (1 - _6) )

+ =6 M O:4(t, 7 — —g)”}. |
(225)

We note that, in the r. h. s. of (21), the term quadratic in A, vanishes

because of the identity
M =0. (23)

The second and the third terms of the r. h. s. of eq. (21) gives the minimal
coupling of the gauge field to the field #.
Thus we have been able to introduce the gauge field associated with the

thermal Bogoliubov transformation and to construct its minimal interaction
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along a conventional way.

We remain with the question of the physical interpretation of this gauge
field.

Here we note only that the Umezawa’s thermal energy [7 ] Q) is

written by using g, in eq. (22a) as

Qt) =i [dit [dFan(t, & F)pa(t,; )

This suggests the possibility that we may be able to interpret our gauge
field as some thermodynamical force. This must be a very interesting

problem left in the futurc.

I would like to thank Professor H. Umezawa and Dr. Y. Yamanaka for

helpful discussions.
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