
Computer-Aided Generation of Escher-like Sky
and Water Tiling Patterns

言語: eng

出版者: Taylor & Francis

公開日: 2019-01-31

キーワード (Ja): 

キーワード (En): 

作成者: 杉原, 厚吉

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/10291/19875URL



Computer-Aided Generation of Escher-like

Sky and Water Tiling Patterns

Kokichi Sugihara∗

Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan
kokichis@meiji.ac.jp

Abstract Dutch graphic artist M. C. Escher created many interesting prints based on tiling patterns. A

typical example of such a print is Sky and Water I, in which a bird at the top deforms gradually towards

the bottom and melts away into the background, while a fish gradually appears from the background.

This paper presents an interactive system for creating Escher-like Sky and Water tiling patterns. In this

system, a user supplies two figures, and the system places deformed copies of them in such a way that,

from top to bottom, one figure gradually disappears into the background, while the other figure gradually

appears from the background. The system combines tiling, morphing, and figure-ground reversal. The

user can also specify the density of and a global pattern for the tiling.
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1 Introduction

M. C. Escher (1898–1972), a Dutch graphic artist, created many interesting works based on tiling. A

typical class of tiling art is based on isohedral tiling, in which identical tiles are placed so that the plane

is covered without gaps or overlaps and each tile is surrounded in the same manner. For this class of

tiling, possible patterns can be enumerated using a group-theoretic approach, and the complete list of 17

symmetry groups and the complete list of 93 types of incidence structure for tile boundaries have been

constructed [6, 10]. These lists have been used to analyze Escher’s work from a mathematical point of

view [3, 11, 13], and interactive systems for creating them have also been proposed

[2, 8, 9]. This class of tiling art has been well studied mathematically, from both the analytic and synthetic

points of view, perhaps because isohedral tiling is a purely mathematical topic in itself.

Another class of Escher’s tiling art is based on gradually deforming tiles. Escher used various de-

formation variations, and Kaplan (2008) classified them into six types of transition, namely realization,

∗This manuscript was published in Journal of mathematics and the Arts, vol. 3, no. 4 (2009), pp. 195–207.
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crossfade, abutment, growth, sky-and-water, and interpolation. He also pointed out that all six types are

used in Metamorphosis II and Metamorphosis III. Moreover, the table in his paper [7] suggests that the

sky-and-water type and the interpolation type are used more often than the other four types.

In this paper, we concentrate on the fifth type, namely the sky-and-water type. A typical example

of this type is Sky and Water I (1938), as shown in Figure 1, where a bird is placed at the top, a

fish at the bottom, and there are several tiles in between so that the bird shape continuously deforms

downwards, melting away into the background, and the fish gradually appears from the background [11].

As Teuber (1986) has pointed out, this class of art is a mixture of tile packing, figure-ground reversal,

and gradual deformation of figures (see also [4]). In this sense, this class of tiling art does not have a

purely mathematical structure, but is a mixture of mathematics and other areas that are more vague.

Because of its nature, this class of tiling art has not been studied from a mathematical point of view as

rigorously as other tiling art such as isohedral tiling art.

Figure 1. M. C. Escher’s “Sky and Water I” c©2009 The M. C. Escher Company-Holland. All rights
reserved. www.mcescher.com

Recently, Schattschneider (2008) has studied the figure-ground aspect of Escher’s art in terms of

“duality”, which describes the property that the tiles are assigned one of two colors so that tiles sharing

an edge have different colors from each other. If we pay attention to one of these colors, the tiles with the
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other color are perceived to be part of the background. She classified two-colored monohedral and dihedral

tilings into three categories according to the color assignment patterns [12]. Although she concentrated

on tilings without transitional deformation, she pointed out that Sky and Water I is a typical example

in which the duality and individuality of tiles are emphasized.

In this paper, we consider how to create Sky and Water tiling patterns automatically for an arbitrary

pair of figures. Escher (and later, Kaplan and Salesin [8]) create Sky and Water designs from the “inside

out”— first they develop a central tiling that matches the two goal shapes, and then deform above and

below to the shapes. This paper works from the “outisde in”— it starts with the goal shapes and finds

a best compromise interface between them.

The basic graphical technique we use is morphing [1, 5], but it is not trivial to apply this technique

to our problem. This is because the original morphing technique was for deformation from one figure to

another, whereas our goal is the deformation from a figure to the background, and from the background to

a second figure. We present a method for applying the morphing technique to this requirement, together

with computer-generated examples.

We would emphasize that the primary aim of this paper is in developing an engineering technique.

That is, we are interested in constructing a computer-aided system that helps designers to create their

own patterns. The patterns created by this system are inspired by Escher’s Sky and Water I, but they are

not necessarily faithful simulations of Escher’s method. We will first propose our method, then observe

the behavior of our system, and finally compare the outputs of our system with Escher’s Sky and Water

patterns.

2 Figure-Background Morphing

2.1 Basic Idea

Suppose that we are given two tiles A and B and we want to generate a Sky and Water pattern using

these tiles.

For this purpose, we consider an (n + 1) × n black-and-white checkerboard of rhombuses as shown in

Figure 2. Without loss of generality, assume that the top rhombus is colored white. Because the number

of rhombuses along one side differs by one from that along the other side, the color of the bottom rhombus

is black. Place the tile A and its deformed copies in white rhombuses and the tile B and its deformed

copies in black rhombuses.

We want to deform the tiles A and B so that they gradually melt away into the background. To

achieve this, we apply morphing techniques to the tile A and the pattern generated as a vacant space

surrounded by copies of the pattern B. The procedure comprises the following six steps, and a detailed
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Figure 2. Checkerboard pattern for tile placement.

description of these steps will be given in the next and later subsections.

Step 1. Choose a rhombus shape that closely fits both tiles A and B.

Step 2. Construct the shape, say shape C, that is formed by four copies of the tile B around a

single white rhombus in the checkerboard.

Step 3. Generate a sequence of continuous deformations from the tile A to the shape C.

Step 4. Place the sequence of deformed tiles in the columns of the white rhombuses in the checker-

board.

Step 5. Reconnect the boundary segments of the deformed tiles so that the tile A and its deformed

copies are visible in the upper part of the checkerboard and the tile B and its deformed

copies are visible in the lower part.

Step 6. Paint the tiles and the background.

In the following sections, we discuss each step in more detail.

2.2 Adjustment of the Tile Sizes

Suppose that the tiles A and B are represented by closed sets of points. Let xmax(A) be the maximum

of the x coordinates of the points on the boundary of A. Similarly, let xmin(A), ymax(A), and ymin(A) be

the minimum x coordinate, the maximum y coordinate, and the minimum y coordinate, respectively, of

the boundary of A. We define

w(A) = xmax(A) − xmin(A), (1)

h(A) = ymax(A) − ymin(A), (2)
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and call them the width and the height of A, respectively. We also define the center of A as(
xmax(A) + xmin(A)

2
,
ymax(A) + ymin(A)

2

)
. (3)

The width, the height, and the center of the other shape B are defined similarly.

Next, let r be the average of h(A)/w(A) and h(B)/w(B), and let R be a rhombus with height r and

width 1. That is, R is a rhombus whose height-to-width ratio is equal to the average of those of A and

B. This completes Step 1.

We now adjust the sizes of A and B by scale transformations, so that they are contained within a

rectangle of height r and width 1 and are the largest having this property.

From now on, we assume that tiles A and B are always accompanied by the rhombus R with the

same center.
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(a) Tile A (b) Tile B

Figure 3. Pair of scale-adjusted tiles.

Figure 3 shows an example of a pair of scale-adjusted tiles A and B accompanied by the rhombus R.

In what follows, we use this pair of tiles to describe the proposed method.

2.3 Construction of the Vacant Space

Our next task is to construct the shape of the vacant space that is formed by four copies of the tile B

around a single white rhombus on the checkerboard. To achieve this, we partition the boundary curves

of the tiles into four segments. We consider the rhombus as the basic tile shape with its four vertices at

the top, the bottom, the right, and the left. Therefore, we also partition the boundary of a given tile at

the top, the bottom, the rightmost, and the leftmost points.
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As shown in Figure 3(a), let P1,P2,P3, and P4 be the rightmost, the top, the leftmost, and the bottom

points of A. These points may not be unique. If the rightmost point is not unique, we choose as P1 the

point that is closest to the rightmost vertex of the rhombus R. A similar convention is adopted for the

points P2,P3, and P4 if they are not unique. We assume that the resulting four points are all distinct.

We partition the boundary of the tile A into four segments, delimited by P1,P2,P3, and P4. Let the

segment from P1 to P2 be represented by the curve a1(s), 0 ≤ s ≤ 1, using the parameter s. That is, a1

is the mapping from the interval [0, 1] to the plane such that, as s moves from 0 to 1 continuously, a1(s)

traces the segment of the boundary of the tile A from P1 to P2 counterclockwise. Similarly, we define

a2(s), a3(s), and a4(s), 0 ≤ s ≤ 1, as the curves corresponding to the segments of the boundary of A from

P2 to P3, from P3 to P4, and from P4 to P1, respectively. Therefore,

a1(0) = a4(1) = P1, a1(1) = a2(0) = P2, a2(1) = a3(0) = P3,

a3(1) = a4(0) = P4. (4)

As shown in Figure 3(b), the boundary of the tile B is also partitioned into four segments at the

rightmost point Q1, the top point Q2, the leftmost point Q3, and the bottom point Q4. Let the resulting

curves be represented by b1(s), b2(s), b3(s), and b4(s), 0 ≤ s ≤ 1, such that the curve b1(s) represents

the segment from Q1 to Q2, b2(s) from Q2 to Q3, b3(s) from Q3 to Q4, and b4(s) from Q4 to Q1.

Next, as shown in Figure 4, we place four copies of B in such a way that the accompanying four

rhombuses form a checkerboard pattern surrounding a common rhombus. We collect the segments of the

boundary curves facing the common rhombus at the center. The resulting collection of four segments can

be regarded as the representation of the vacant space surrounded by the copies of B in counterclockwise

order b3, b4, b1, and b2.

The vacant space is to the right of each curve bi. So we reverse the direction of the curves and define

the resulting segments by
b̄1(s) = (−1/2,−r/2) + b1(1 − s),
b̄2(s) = (+1/2,−r/2) + b2(1 − s),
b̄3(s) = (+1/2,+r/2) + b3(1 − s),
b̄4(s) = (−1/2,+r/2) + b4(1 − s),

(5)

where the first term in each right-hand side represents a translation (recall that the width of the rhombus

is 1 and the height is r) and the second term reverses the direction of the curve. Note that these segments

do not necessarily form a closed curve. For example, the end point b̄1(1) of the first segment does not

coincide with the start point b̄2(0) of the second segment, in general. However, this does not cause a

problem in our case, in the sense that the subsequent steps of the procedure can be executed no matter

how distant the four segments are from each other. The quality of the resulting pattern, on the other

hand, does depend on the configuration of the segments. We will discuss this issue further, in Subsection
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Figure 4. Vacant space surrounded by four tiles.

3.1. We denote as shape C the collection of segments b̄1(s), b̄2(s), b̄3(s), and b̄4(s). This completes Step

2.

2.4 Morphing from the Tile to the Vacant Space

We next generate a continuous deformation from the tile A to the vacant space C. Here, we apply the

morphing technique to the four pairs of the associated segments of A and C. For example, the simplest

way is to apply a linear morphism, from which we obtain

c1(s, t) = (1 − t)a1(s) + tb̄3(s),
c2(s, t) = (1 − t)a2(s) + tb̄4(s),
c3(s, t) = (1 − t)a3(s) + tb̄1(s),
c4(s, t) = (1 − t)a4(s) + tb̄2(s),

(6)

where the new parameter t varies as 0 ≤ t ≤ 1. Note that, if t = 0, ci(s, t) coincides with ai(s), and if

t = 1, ci(s, t) coincides with b̄i+2(s), where b̄5 and b̄6 should be read as b̄1 and b̄2, respectively.

The linear morphism defined by equations (6) is the simplest possible, and this morphism might

generate self-intersection if the corresponding two curves differ too much. However, there are many so-

phisticated nonlinear morphisms [1, 5], and we can use them if the linear morphism proves unsatisfactory.

Next, we fix t1 = 0 < t2 < t3 < · · · < tn = 1, and construct the sequence of deformed patterns

ci(s, tj), i = 1, 2, 3, 4, j = 1, 2, · · · , n. This completes Step 3.

Figure 5 shows the sequence of deformed boundary segments for the example tile A in Figure 3(a)

and the vacant space in Figure 4.
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Figure 5. Morphing from the tile A to the vacant space.

2.5 Placement of Tiles

The original tile A (i.e., ci(s, t1)) is placed on the top white rhombus. Then place the deformed tiles

ci(s, tj) on the white rhombuses of the checkerboard from the top downwards. Copies of the second

deformed pattern ci(s, t2) are placed on the white rhombuses in the next row. Similarly, the copies of

the jth deformed pattern ci(s, tj) are placed on the white rhombuses in the jth row from the top. This

completes Step 4.

Figure 6 shows the result of this step for the example pair of tiles in Figure 3 placed on the checkerboard

in Figure 2.

Next, we reconnect the curves so that, in the upper half of the checkerboard, the tiles at the white

rhombuses are represented by closed curves, while, in the lower half, the tiles at the black rhombuses are

represented by closed curves. In this way, we connect the end point of the ith segment ci(s, tj) and the

start point of the (i + 1)st segment ci+1(s, tj) in the upper half of the checkerboard. In the lower half

of the checkerboard, on the other hand, we connect the terminal points of the four segments so that the

tiles at the black rhombuses are represented by closed curves. More specifically, the start point of c1 is

connected to the end point of c2 of its right neighbor tile, the end point of c1 is connected to the start

point of c3 of its upper neighbor tile, the start point of c2 is connected to the end point of c3 of its upper

neighbor tile, the end point of c2 is connected to the start point of c1 at its left neighbor tile, and so on.

Finally, we move the tiles apart from each other slightly so that the distinction between the figures

and the background becomes clearer. This completes Step 5.
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Figure 6. Placement of the boundary segments of the morphing patterns.

Figure 7 shows the result of Step 5 for the example pair of the tiles.

Figure 7. Sky and Water pattern generated by the proposed method.

2.6 Painting

We paint the tiles and the background in a monochrome tone. To achieve this, we first choose a color to

paint, and then assign this color to the background in such a way that the brightness is the highest at

the top and gradually decreases downwards.

For the tiles, on the other hand, we paint the lowest tile most brightly, and decrease the brightness
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Figure 8. Final result of painting.

gradually upwards. This completes Step 6.

Figure 8 shows an example of painting the tile pattern of Figure 7.

3 Some Extensions

3.1 Choice of Congenial Tiles

The proposed method can create a Sky and Water pattern for any pair of tiles. However, the smoothness

of the transition from the tiles to the background depends heavily on the choice of the shapes of the

two tiles, with some transitions being smooth and graceful while others are just mechanical. A smooth

transition is more likely to be achieved when we choose the pair in such a way that one tile’s shape is

very close to the shape of the vacant space surrounded by four copies of the other tile.

As Figure 4 illustrates, our system constructs that vacant space after just one tile is supplied. Once

the shape of the vacant space is shown, the user can choose rather easily another tile that is “congenial”

with respect to the first one, that is, one which is a good fit to the vacant space.

For example, the tile shown in Figure 9(a) is similar to the shape of the vacant space in Figure 4,
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(a) (b)

Figure 9. Congenial and uncongenial tiles with respect to the vacant space in Figure 4.

whereas the tile in Figure 9(b) is not at all close to that shape. Therefore, we can expect the pair of tiles

in Figure 3(b) and Figure 9(a) to be congenial, while the pair in Figure 3(b) and Figure 9(b) will not be.

Figure 10. Sky and Water pattern generated by congenial tiles.
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Figure 11. Sky and Water pattern generated by uncongenial tiles.

In fact, the pair in Figure 3(b) and Figure 9(a) produces the Sky and Water pattern shown in Figure 10,

and the pair in Figure 3(b) and Figure 9(b) produces the pattern shown in Figure 11. We observe that

the transition in Figure 10 is much smoother and more graceful than that in Figure 11, in the sense that

the transition from the tiles to the background is more natural.

Therefore, it is important to select the pair of tiles carefully, and the system function that shows the

vacant space is useful in enabling users to choose congenial pairs.

3.2 Variations to the Checkerboard Pattern

We used the checkerboard pattern in Figure 2 to deform the tiles vertically from the top downwards.

However, we can also use it to deform the tiles horizontally from left to right, as in Escher’s print Day

and Night (1938) [11]. Figure 12 shows an example of this type of pattern, which is generated by our

system for a pair of tiles representing a butterfly and a bee.

Other checkerboard patterns can be utilized in a similar manner. Figure 13 shows a vertically de-

forming tiling pattern based on a parallelogram checkerboard. The composition of the tiling pattern in
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title of the work       

Kokichi Sugihara        

2007-06-18

Ehime Prefecture Musium 

Figure 12. Day and Night pattern generated by a bee and a butterfly.

Figure 13 is somewhat similar to that of Escher’s print Sky and Water II [11]. In this figure, the steps

for generating the tiling patterns are almost the same as those described in Section 2, with the only

difference being the shape of the underlying checkerboard grid.

4 Discussion

The algorithm proposed in this paper was inspired by Escher’s print Sky and Water I, but it is much

simpler than Escher’s original procedure for creating his print. Therefore, the resulting output of our

algorithm is only an approximation of Escher’s print, and is not a faithful reproduction of his art, there

being many differences in detail. In this section, we compare our algorithm with Escher’s work, and

discuss the differences.

First, our output pattern, such as that of Figure 8, does not have the same symmetry as Escher’s Sky

and Water I print. In his print, the top bird is in vertical alignment with the bottom fish, whereas, in

Figure 8, the bottom fish is one column to the left of a vertical line through the top bird. This is because

our underlying checkerboard is not symmetric, with the number of cells in one side differing by one from
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Figure 13. Tiling pattern with a vertical transition, based on a parallelogram checkerboard, and generated
by cherry blossom and leaf tiles.

that in the other side.

Escher’s more symmetrical effect can be achieved in one of two ways, using our process. First, we

could begin with a grid of parallelograms rather than rhombuses, whose n rows and n+1 columns outline

a rhombus with vertical and horizontal lines of symmetry. Alternatively, we could have followed our

method to obtain the tiling pattern in Figure 7 and then applied a horizontal shear to the pattern of

tiles, to make the outline of the underlying grid a rhombus with vertical and horizontal lines of symmetry.

In our procedure, we started with an underlying checkerboard of rhomboid cells, but there is some

choice in the underlying cell pattern. For example, we might consider using a grid of rectangular cells

instead of rhomboid cells, as shown in Figure 14. In this grid, we would also place the rectangular cells

in an asymmetric manner, to ensure that the top cell and the bottom cell have different colors. We could

achieve Escher’s symmetry in a similar way, even starting with this grid pattern. It is not easy to tell

which grid is more suitable, Figure 2 or Figure 14.

Another clear difference between our output and Escher’s print is that our algorithm generates only

silhouettes of the deformed tiles, whereas, in Escher’s prints, details within the tiles are also drawn.

However, it might not be too difficult to automatically generate these details.

14



Figure 14. Another possible grid for Sky and Water patterns.

Suppose that the input tiles A and B contain internal details represented by curved lines, in addition to

their silhouettes. We can then apply mesh morphing techniques to the tiles. That is, we first approximate

the curved lines by polygonal lines, and then generate a triangular mesh inside the tiles in such a way

that all the polygonal lines are used as edges of the mesh. Next, we apply mesh morphing, by which the

mesh structure is deformed according to the deformation of the boundary (i.e., the tile shape), and collect

the deformed edges associated with the details within the tile. In this way, we obtain a deformed version

of the details. Finally, we add these deformed details to the corresponding deformed tiles so that the

details gradually decrease in contrast and eventually fade out midway through the deformation. In other

words, the details within the bird tile are most clear at the top, gradually become less clear downwards,

and fade out in the middle row. Similarly, the details within the fish tile are most clear at the bottom,

and gradually fade out upwards.

Another difference between our algorithm and Escher’s work might be the way the pair of top and

bottom tiles are chosen. In our algorithm, an arbitrary pair of tiles can be supplied, and the transition is

generated automatically. On the other hand, it seems that Escher aimed for “perfectly congenial” tiles in

the middle row. That is, one tile perfectly filled the vacant space formed by the four tiles that surrounded

it. He achieved this by beginning with an interlocking periodic tiling of two tiles (a 2-isohedral tiling)

in which one tile could serve as the figure while the other tile served as the background [12]. He then

used one strip of these interlocking tiles as his starting point, deforming the dark-colored tiles upwards

to generate the top tile (tile A in our algorithm), and deforming the light-colored tiles downwards to

generate the bottom tile (tile B in our algorithm). Therefore, Escher might have generated the actual

top and the bottom tiles at the final stage, whereas they are supplied at the initial stage of our algorithm.
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5 Concluding Remarks

We have presented a method for generating Escher-like Sky and Water tiling patterns. In this method,

the user supplies a pair of tiles, and the system automatically generates a tiling pattern in which one

tile gradually melts away to the background while the other tile gradually appears from the background.

This method therefore provides a computer-aided system that enables anyone to create Escher-like Sky

and Water tiling patterns easily.

Figure 15. System used in the museum.

A version of this system was placed in the Ehime Prefecture Museum in Matsuyama City, Japan,

during the special exhibition of Escher’s World held in the summer of 2007. Visitors could use it to

create their own Sky and Water patters. Figure 15 shows visitors using the system during the exhibition.

We collected comments from users and are using them as feedback to aid revision of the system.

We are considering several directions for further research. One is to extend the method to three or

more basic tiles. In his print Day and Night, Escher used three basic tiles, a bird flying to the left, a

bird flying to the right and a rhombus representing a division of a farmer’s field. These tiles deform both

horizontally and vertically, thereby generating an interesting tiling pattern. We would like to construct

a mathematical method for generating these patterns automatically.

Another direction for extension is altering the checkerboard. In this paper, we used a regular checker-

board with congruent rhombuses as cells. The rhombuses could easily be replaced by congruent parallel-

ograms. However, we could also consider a deformation of the checkerboard itself, such as a checkerboard

in which the cell sizes change gradually.

Japanese tessellation artist Makoto Nakamura presents many tiling works in his web page (http://www.k4.dion.ne.jp/˜mnaka/home.index.html)
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in which the figure-background reversal is realized in animation. Indeed, deformation of tiles in time is

another possibility to realize the figure-background reversal. To construct a computer-aided system for

making this kind of animation, particularly deformation of tiles in both space and time, is another

interesting direction of future work.

Yet another direction for extension might be the construction of three-dimensional works.
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